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Abstract 
 

 

 

 
 

Ferreira, Bruno Xavier; Santos, Brunno Ferreira dos (Advisor); 

Montalvão, Vinicius Tadeu Kartnaller (Co-Advisor). Development of 

artificial intelligence models applied to the flow assurance problems 

in the oil and gas industry. Rio de Janeiro, 2022. 172p. Dissertação de 

mestrado – Departamento de Engenharia Química e de Materiais, 

Pontifícia Universidade Católica do Rio de Janeiro. 

 

A significant concern during oil and gas production is flow assurance to 

avoid loss of time and money. Due to production conditions changes (such as 

pressure and temperature), especially in the Brazilian pre-salt region, the solubility 

of the components of the crude oil (oil-gas-water) can decrease, resulting in the 

formation of deposits. The fouling is usually caused by wax, gas hydrate, and 

inorganic salt (scale). In this work, models were developed using Machine 

Learning strategies for scale formation monitoring and measuring process 

parameters associated with remediation of obstruction from other sources. First, 

models for the calcium carbonate scaling formation process in the presence of 

monoethylene glycol (typical gas hydrate inhibitor) were created using 

feedforward neural network architecture to predict the differential pressure (ΔP) 

one and five steps ahead, obtaining an R2 higher than 92.9% for the training and 

test group for both the prediction horizon. The second approach explored was the 

development of models for determining the pH in atmospheric and pressurized 

systems (up to 6.0 MPa) using image analysis. These models could be applied to 

control and monitor the Nitrogen Generation System, which can be used for 

different flow assurance problems, and its kinetics strongly depend on the system’s 

pH value. This step initially created classification models for the system pH (2, 3, 

4, 5, 6, 7, 8, 9, 10) using the Convolution Neural Networks (CNN), Support Vector 

Machine, and decision tree architectures. Also, CNN models were built to predict 

the pH in the range of 2-10. 

 
Keywords 

Flow assurance; Scale; pH measurement; Convolution Neural Network; 

Multilayer perceptron.
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Resumo 
 

 

Ferreira, Bruno Xavier; Santos, Brunno Ferreira dos (Advisor); 

Montalvão, Vinicius Tadeu Kartnaller (Co-Advisor). 

Desenvolvimento de modelos utilizando inteligência artificial para 

problemas de garantia de escoamento na indústria de petróleo. Rio 

de Janeiro, 2022. 172p. Dissertação de Mestrado – Departamento de 

Engenharia Química e de Materiais, Pontifícia Universidade Católica 

do Rio de Janeiro. 

 

Uma preocupação significativa durante a produção de óleo e gás é a garantia 

de escoamento para evitar desperdício de tempo e dinheiro. Devido às mudanças 

nas condições durante a produção (como pressão e temperatura), principalmente 

na região do pré-sal brasileiro, a solubilidade dos componentes do petróleo bruto 

(óleo-gás-água) pode diminuir, resultando na formação de depósitos. A 

incrustação é geralmente causada por parafina, hidratos e sal inorgânico. Neste 

trabalho, foram desenvolvidos modelos utilizando estratégias de Aprendizado de 

Máquina para monitoramento da formação de incrustações inorgânicas e 

medição de parâmetros de processo associados com formas de remediação de 

obstruções de outras fontes. Primeiramente, foram criados modelos do processo 

de formação de incrustação de carbonato de cálcio na presença de 

monoetilenoglicol (inibidor de hidrato) usando a arquitetura de redes neurais 

feedfoward prever o pressão diferencial um e cinco instantes à frente, obtendo 

um R2 superior a 92,9% para ambos os horizontes de predição. O segundo tópico 

explorado foi desenvolver modelos para determinação do pH em sistemas 

pressurizados (até 6,0 MPa) por meio de análise de imagens. Podendo ser 

aplicados no monitoramento de sistemas como Sistema Gerador de Nitrogênio, 

utilizado para remediar alguns problemas de incrustação, dado que sua cinética 

depende fortemente do pH do sistema. Foram criados modelos de classificação 

para o pH do sistema (2, 3, 4, 5, 6, 7, 8, 9, 10) usando Redes Neurais 

Convolucionais (CNN), Máquina de Vetor de Suporte e Árvores de Decisão. 

Além disso, modelos CNN foram construídos para predizer o pH na faixa de 2-

10. 

 

Palavras-chave 

 Garantia de escoamento; Incrustação inorgânica; Medição de pH; Redes 

Neurais Convolucionais; Perceptrons Multi-Camadas. 
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1 

Introduction 

 

 

 

 

Petroleum reservoirs have complex compositions due to their formation 

process. Usually, they present three phases of the mixture formed by gas-oil-

water, which are present inside the pores of the reservoir rock. The gas phase 

generally comprises small chain hydrocarbons and other gases, such as 

hydrogen sulfide (H2S) and carbon dioxide (CO2). The oil phase is formed by a 

diverse mixture of heavier hydrocarbon molecules, such as paraffin, aromatics, 

resins, and asphaltenes. The third phase contains water with different types of 

ions dissociated; that aqueous solution originated during the reservoir formation 

is called “formation water”. The three phases are mixed inside the reservoirs in 

equilibrium under high pressure and temperature conditions (KELLAND, 

2014; NASIRI and JAFARI, 2017; ALADE et al., 2020). 

Associated with this diverse composition of the fluid mixture in the oil 

well, the operational conditions during the exploration, such as the change in 

the pressure and temperature during the transportation process in the pipelines, 

can provoke the precipitation, deposition, and agglomeration of solids in the 

pipelines and equipment (also called fouling). These flow assurance problems 

can be the result of different kinds of obstructions, the main ones being 

associated with the formation of gas hydrates, the precipitation of inorganic 

salts (scale), and the solidification of wax (MAGNINI et al., 2019; 

MELCHUNA et al., 2020; AMAR et al., 2021). 

The flow assurance problems result in great financial losses and safety 

problems. The fouling process is a complex subject that simultaneously 

involves kinetics, thermodynamics, and transport phenomena for understanding 

(FRENIER and ZIAUDDIN, 2008; ZHENG et al., 2017; MELCHUNA et al., 

2020). These reasons led to several studies for understanding and monitoring 

the fouling formation (LEOPORINI et al., 2019; ZAREI and BAGHBAN, 

2017; LIM et al., 2020), avoiding their appearance (SOUZA et al., 2019), and 
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for treatments to unplug the pipelines once they are formed (RAMZI et al., 

2016). 

Meanwhile, different kinds of Artificial Intelligence (AI) techniques are 

being used to model problems associated with the petroleum industry 

(RAHMANIFARD and PLAKSINA, 2019). Due to the vast amount of data 

generated for this industry and the complexity of some of the systems to be 

modeled and monitored, the strategy to create the AI models known as data-

driven is very commonly applied. In this method, the models (also called black-

box models) are created using only the process data. (MOHAMMADPPOR and 

TORABI, 2020; SHANG et al., 2014). 

Artificial Neural Networks (ANNs), inspired by the human brain neural 

arrangement, are a group of AI strategies commonly used to develop models. 

One of this set's most usually applied structures is the Multilayer Perceptron 

(MLP) topology. It is often composed of three layers: input layer, hidden layer, 

and output layer (KUMAR et al., 2013; CHOJACZYK et al., 2015; LI et al., 2017). 

The Convolutional Neural Network (CNN) is another type of ANN but is frequently 

used for image classification since its usual topology has more than two hidden 

layers, making this also a Deep Learning (DL) technique (MADHAN et al., 2021). 

Other AI techniques have been used to develop data-driven models. For this 

work, it is interesting to highlight the Support Vector Machine (SVM) and the 

Decision Tree (DT). SVM is based on statistical learning theory and geometric 

distance interval maximization to give a solid generalization capability. The 

technique evolve to be used for multiclass classification problems (PENG et al., 

2018; CHAUHAN et al., 2019). DT is another technique usually applied for 

classification problems. It is formed by combining a series of hierarchically 

organized binary tests (GEURTS et al., 2009). 

In this scenario, this work proposes to apply AI techniques to develop 

models that could be used to resolve different assurance problems.  

 

 

1.1  

Objectives 

This work aims to apply AI strategies to develop models that can be applied in 

future applications as soft sensors relate to flow assurance problems during the oil 
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production process. For that, two secondary goals were chosen.  

First, to create models to monitor the fouling of inorganic salts (scaling) in the 

presence of a gas hydrate inhibitor by predicting the differential pressure (ΔP) 

reached inside a pipeline during the obstruction process. The next secondary aim 

was to create models to determine the pH in atmospheric and pressurized systems 

using image analysis, exploring the different types of AI, and developing 

classification and prediction models. 

To reach the secondary objectives, the following specific targets were settled: 

 Organize and pre-treat the databases; 

 Create the MLP models to predict the ΔP in different prediction 

horizons; 

 Develop the classificatory models for the pH class (2, 3, 4, 5, 6, 7, 8, 

9, 10); 

  Develop the prediction models for the pH values in the range 2-10; 

 Evaluate and optimize the models’ hyperparameters; 

 Analyze the models’ performance parameters and choose the best 

ones; 

 

 

1.2  

Organization of the Dissertation 

 

The organization of this work was chosen to provide a better experience for 

the readers. This first chapter is composed of a brief introduction with the general 

motivation, the general and specific objectives, and a description of this study.  

Chapter 2 presents a literature review of the flow assurance problems that 

arise during oil and gas production and the application of different kinds of AI 

models to monitor, detect and solve these problems with several approaches 

presented.  

Chapter 3 presents the information about the first main objective, the MLP 

models to predict the scale formation process in the presence of a gas hydrate 

inhibitor (monoethylene glycol). The section is composed of a short introduction, 

followed by the manuscript of the article published in the scientific journal Energy 

DBD
PUC-Rio - Certificação Digital Nº 2012332/CA



26  

& Fuels. 

Chapter 4 carries the content of the second main goal, creating the 

classification and prediction models for the pH measurement using image analysis. 

It follows a similar structure to the previous section but presents the manuscript of 

the article to be submitted to the scientific journal such as Computer and Chemical 

Engineering, Sensors and Chemical Engineering Research and Design. 

Chapter 5 contains the general conclusions of this study, and in Chapter 6 

the suggestions for future works are presented. The related references are placed at 

the end of each section. 

The supporting information associated with the articles is presented in the 

Appendix section. 
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2 

Literature review 

 

 

 

 

 

2.1 

Oil and Gas Production 

An oil reservoir is formed under high pressure and temperature conditions 

where the organic material is transformed into hydrocarbons. Usually, it 

contains a three-phase mixture: oil, gas, and water. The gas phase is mainly 

composed of methane (CH4), but also other light hydrocarbons (such as ethane 

(C2H6), propane (C3H8), butane (C4H10)), and other compounds (hydrogen 

sulfide (H2S), carbon dioxide (CO2), water vapor and others). The crude oil 

phase is a complex mixture of organic compounds, mainly hydrocarbons. The 

latter phase is composed of the formation of water. This water may contain 

different kinds of ions such as K+, Na+, Mg2+, Ca2+, Ba2+, Sr2+, Cl-, HCO3
-, SO4

2-

, and others that naturally exist in the reservoir (RENPU, 2011; DEVOLD, 

2006). 

The oil and gas industry, Figure 2.1, is commonly divided into three 

sectors: upstream, midstream, and downstream. The upstream sector is 

responsible for searching for the oil and gas wells and then extracting their raw 

resources, bringing the oil and gas to the surface (AALSALEM et. al, 2018). 

The problems with fouling faced in this area were the motivation for this work. 
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Figure 2.1: Subdivisions of Oil and Gas Industrial operations (adapted 

from AALSALEM et. al., 2018). 

 

2.1.1 

Flow assurance 

Flow assurance is a multidisciplinary area responsible for guaranteeing 

the transport of hydrocarbons in all the industry sectors, concerning the safety 

and economical parts. Its importance is even more significant in deepwater and 

ultra-deepwater scenarios due to the operational conditions (high pressure and 

low subsea temperatures) and the long distances associated with these 

environments (OLAJIRE, 2020; MELCHUNA et al., 2020; DE OLIVEIRA 

AND GONÇALVES, 2012). With the beginning of the exploration of the well, 

the system is exposed to an abrupt change in its conditions. Directly, there is a 

reduction in the temperature due to the deepwater characteristic and the 

pressure, which continues to drop from the wellhead to the end of the pipelines. 

This causes several alterations in the equilibrium and saturation conditions of 

the several species present in the mixture that leaves the well, resulting in more 

favorable conditions and the appearance of solid deposits and obstructions 

along the pipelines during the production (BELL et al., 2021; THEYAB, 2018; 

KARTNALLER, 2018). 

The most common kinds of obstruction are associated with phase change 

or precipitation, caused by the formation of gas hydrate, organic fouling 

(asphaltene and wax), and inorganic fouling (scale), Figure 2.2 (MELCHUNA 

et al., 2020;  DE OLIVEIRA AND GONÇALVES, 2012). 
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Figure 2.2: Real cases of fouling formations: (a) inorganic (scale), (b) 

organic, (c) gas hydrate (KARTNALLER, 2018; Hw Institute of Petroleum 

Engineering; Doelman, 2013; Irmann-Jacobsen e Hægland, 2014) 

  

Gas hydrates are formed under the production and transportation 

conditions, with the combination of high pressure and low temperature, in 

which gas molecules, such as CH4, C2H6, C3H8, CO2, and H2S, are trapped in 

cages by hydrogen bonding with water through van der Waals forces, creating 

crystal-like solids (Figure 2.2(c)). Their formatting can lead to the shutting 

down of production, costing around $1 million per day (QASIM et al., 2019; 

NASIR et al., 2020).  

 There are several approaches to avoid hydrate formation in pipelines, 

one of the most adopted is the injection of thermodynamic hydrate inhibitors 

(THIs), such as monoethylene glycol (MEG) (one of the most commonly used). 

The inhibitor changes the pressure and temperature conditions to the hydrate 

stability to values beyond the operation conditions (LIM et al., 2020). 

 Another significant fouling problem is scale, caused by the inorganic 

deposition on the pipelines due to the exceeded solubility limit of one or more 

components, and the solution becomes saturated. That condition can be 

achieved by a change in the ionic composition, pH, pressure, temperature, 

partial pressure of CO2, and other factors. The most common kinds of scales 
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found in the oilfield are calcium carbonate (CaCO3), calcium sulfate, barium 

sulfate, and strontium sulfate. To prevent scale formation, it can also be used 

chemicals inhibitors. (OLAJIRE, 2015; DYER and GRAHAM, 2002; KUMAR 

et al., 2018). 

 The CaCO3 can be used as an example to show the effects of pressure 

variation and pH on their formation. For that, it is important to analyze the 

equilibrium equation of the CO2 solubilization on water, Eq. 2.1, and the 

equilibrium dissociation equation of its species, Eqs.2.2-3. The presence of the 

different species is directly related to the pH conditions, in which the low values 

favor the CO2, and high pH values increase the predominance of the CO3
2-. The 

relation between the presence of the species is dependent on the temperature 

conditions (KARTNALLER, 2018). 

 

𝐶𝑂2(𝑔) ⇄ 𝐶𝑂2(𝑎𝑞)        (2.1) 

𝐶𝑂2(𝑎𝑞) + 𝐻2𝑂 ⇄ 𝐻2𝐶𝑂3(𝑎𝑞) ⇄ 𝐻+(𝑎𝑞) + 𝐻𝐶𝑂3
−(𝑎𝑞)   (2.2) 

𝐻𝐶𝑂3
−(𝑎𝑞) ⇄ 𝐶𝑂3

2−(𝑎𝑞) + 𝐻+(𝑎𝑞)      (2.3) 

𝐶𝑎2+(𝑎𝑞) + 𝐶𝑂3
2−(𝑎𝑞) ⇄ 𝐶𝑎𝐶𝑂3(𝑠)      (2.4) 

 

Another variable that has a significant influence on the equilibria is 

pressure. During the production of the fluids that come from the reservoir to the 

surface, there is a decrease in its pressure, which results in a reduction in the 

CO2 solubility due to the Le Chatelier principle. This change results in the exit 

of CO2 from the solution, which leads to an increase in pH and a rise in the 

CO3
2- relative concentration, which can lead to the system reaching the 

supersaturation condition for the CaCO3, Eq. 2.4 (KARTNALLER, 2018). 

 A concern with using the chemical formulation as an inhibitor for 

different fouling problems is how they affect the formation of the other types 

of fouling and the performance of other products. For example, this happens 

with gas hydrate chemical inhibitors, such as MEG, and how their interaction 

with the water molecules affects the equilibrium of the other system species. 

The direct effect is the increase in the activity of the ions that elevates the 

supersaturation ratio favoring the scale formation. However, the works of 

Kartnaller et al. (2018b) and Chao et al. (2020) show that the use of MEG as 

hydrate inhibitor results in an increase in the scaling time. The opposite 
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expected result because it minimizes the CaCO3 accumulation in the system. 

That shows the complexity of using these chemical products and why they need 

to be tested to verify their effect in real situations.  

  Specifically for scale management, a typical methodology to evaluate a 

commercial inhibitor before its application during production is the dynamic 

tube blocking test (TBT), Figure 2.3. It allows not only to verify if the product 

works but also to determine an inhibitor's minimum inhibitor concentration 

(MIC). These experiments can also be modified to study the inorganic salt 

morphologies.  Also, these experiments result in an extensive data set that can 

be applied to modeling the scale formation, which is a complicated task since it 

happens in a complex system (SANTOS et al., 2017; PAZ et al., 2017; RAMZI 

et al., 2016). An example of this kind of study is the works of Kartnaller et al. 

(2018) and Chao et al. (2020), which study the effect of the MEG, a hydrate 

inhibitor, on scale formation, using the CaCO3 as a model of the salts. 

 

Figure 2.3: Scheme of a Dynamic Scale Loop (DSL) system used in a TBT 

experiment (adapted from KARTNALLER et al., 2018). 

  

Organic fouling is another serious flow assurance problem. Paraffin wax 

deposition tends to occur peripherally of the flow, like the walls of the pipelines, 

progressively decreasing the sectional area and blocking the pipelines 

completely. This question is more preoccupancy in subsea pipelines due to the 

low-temperature conditions once the wax formation happens when the 
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operational conditions are below the wax appearance temperature (WAT) 

(MAHIR et al., 2019; De SOUZA et al., 2019; ZHENG et al., 2017). To 

remediate wax fouling, several kinds of treatments can be adopted, such as 

thermal, mechanical, chemical, and biological methods (ALADE et al., 2020). 

An example of a chemical treatment used is the Nitrogen Generated Systems 

(NGSs) application, which can also be applied to solve gas hydrates problems 

(DE OLIVEIRA, 2019).  

NGS consists of a highly exothermic reaction with nitrogen gas (N2) and 

water (H2O) as products. A reaction that can be classified as NGS happens 

between ammonium chloride (NH4Cl) and the sodium nitrite (NaNO2) (ΔHRx = 

-79.95 kcal·mol-1), Eq. 2.5. This kind of reaction has its kinetics strongly 

influenced by the pH value, as shown in Figure 2.4, in which the rate constant 

(k) has an exponential increase for pH values below 4 (NGUYEN et al., 2001; 

NGUYEN et al., 2003; and DE OLIVEIRA, 2019). 

 

𝑁𝑎𝑁𝑂2 + 𝑁𝐻4𝐶𝑙 → 𝑁𝑎𝐶𝑙 + 𝐻2𝑂 + 𝑁2
↑     (2.5) 

 

 

Figure 2.4: Reaction rate constant as a function of pH (adapted from 

NGUYEN et al., 2001). 
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2.2 

Modeling in the oil and gas industry 

 The day-by-day monitoring and controlling of tests and experiments to 

solve flow assurance issues or other sources of problems have been generating 

a massive amount of datasets that only tends to rise with the introduction of the 

new technologies in oil and gas production (MOHAMMADPPOR and 

TORABI, 2020). However, the digitalization of most companies and their 

deepening entry into the "Oil and Gas 4.0" phase has been slow (LU et al., 

2019). This digitalization process demands a rigorous use of the Big Data (BD) 

analysis, but that could lead to an improvement in operational efficiency 

(NGUYEN et al., 2020). That represents a promising field for applying 

different types of Artificial Intelligence (AI) strategies to solve some of the 

problems and challenges of this industry sector, Figure 2.5. 

 

Figure 2.5: Scenarios with good application potential in the context of the "Oil 

and Gas 4.0" era (adapted from LU et al., 2020). 

 

Following this necessity of the industry, many works have been published 

applying different kinds of AI to use those datasets and develop models that 

help to solve some issues or to facilitate the integration of the equipment and 

the control strategies. For example, creating digital twins, Figure 2.6, and soft 

sensors to be applied in all three big areas of the oil and gas industry 

(WANASINGHE et al., 2020; LU et al., 2019; RAHMANIFARD and 

PLAKSINA, 2018). 
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Figure 2.6: Scheme of physical and virtual space using a digital twin 

framework with five components (physical space, virtual space, connection 

between them, data, and service) (adapted from WANASINGHE et al., 2020). 

 

Some examples of the application of AI in the oil and gas industry are 

Multilayer Perceptron (MLP) for wax deposition (AMAR et al., 2021), MLP 

for prediction of volume fraction in a three-phase flow meter (ISLAMI RAD 

and PEYVANDI, 2019), MLP to model the asphaltene precipitation (ZAREI 

and BAGHBAN, 2017), CNN to predict oil and gas flow rate of a two-phase 

flow (XU et al., 2020), CNN to predict the volume flow rates of the individual 

phases in a three-phase mixture (LI et al., 2021), LS-SVM to determine the 

stability region in crude oil (CHAMKALANI et al., 2012). 

 

2.3 

pH meter techniques  

The pH measurement is essential to be monitored in several kinds of 

processes associated with the chemical industry. Its control can be used to 

regulate the solubility of chemicals or biomolecules, avoid undesired side 

reactions or promote the mechanism for the desired product and influence the 

kinetics of the chemical reactions. There are several kinds of techniques to 

gauge the pH value, using the classical chemical indicators, glass electrodes to 
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optical fiber, fluorometric, and Ion sensitive FET (field effect transistor) pH 

sensors (KHAN et al., 2017). The pH glass electrodes are the most commonly 

used type of pH measurement. Still, they usually do not perform well under 

extreme conditions like extremes of the pH scales, high pressure, or high 

temperature. (GOTOR et al., 2017 and BYCHKOV et al., 2020).  

The in situ measurement for this kind of environmental condition does 

not have a wide range of equipment available in the market. Some of that, for 

the high pressurized system, are shown in Table 1, although it has been studied 

through the last decades using different approaches (BYCHKOV et al., 2020 

CROLET and BONIS, 1983). For example, Samaranayake and Sastry (2013) 

used a high pressure pH sensor based on electrical signals to measure the 

properties under hydrostatic pressure up to 800 MPa. This study also reported 

the use of different methods to develop high pressure pH sensors, such as glass 

electrodes, electrical conductivity, reaction volume, and spectrophotometry in 

the period between 1959 and 2010. 

 

Table 1: pH meter electrodes for pressurized system (Hanna Instruments, 

2021; Ato, 2021; Winn-Marion Companies, 2021). 

Electrodes Companies Maximum 

pressure 

(bar) 

Price (Dollars) 

 

Hanna Instruments 6 261.16 

 

Ato 10 351.75 

 

Winn-Marion 

Companies 

13.8 890.41 
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2.3.1 

pH sensors using image processing 

 

As an exciting alternative to be applied in extreme conditions, the optical 

pH sensors, using fluorescence or absorbance, or image-based pH sensors, have 

been developed for in situ and laboratory analysis. These techniques have the 

disadvantage of the use of optically active molecules to act as indicators. The 

fluorescence methods have been used to determine the pH values in the 

extremes of the traditional pH scale, using ANN models to interpret the 

spectrophotometer signal (SAFAVI and BAGHERI, 2003), smartphone apps to 

predict the pH value through a picture of the sensor under a UV light (GOTOR 

et al., 2017) or picture of a pH sensor stipes using Least Squares-Support Vector 

Machine (LS-SVM) to classify the pH values (MUTLU et al., 2017). 

De Oliveira et al. (2019) proposed a method to measure the pH values 

in a pressurized system for real-time application through image analysis, Figure 

2.7. In the study, a webcam was used to collect an image of the pressurized 

reactor in the RGB color system, where software pre-developed by the research 

group processed the RGB values. Then the RGB was converted to the HSV 

system to be applied in the proposed equation that correlated the hue value with 

the pH. The method was developed to work on the pH range of 2 to 10, using 

as an indicator a mix of buffer solution known as the Korthoff indicator, being 

tested on the pressure range of 0 to 6.0 MPa.  

 

Figure 2.7: Experimental setup scheme (adapted from DE OLIVEIRA et al., 

2019) 
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Although the good performance obtained in that work, a solution using 

only one software, with the possibility of a future wireless application 

developed in open-source software are interesting reasons to develop studies in 

this area. For that, different deep learning strategies can be used to create 

models to classify and predict the pH values through image analysis. 

 

 

2.4 

Soft sensors 

Soft sensors are usually predictive models for a variable of interest, using 

the information of other available variables and process parameters. This 

characteristic allows the estimation and monitoring, in real-time, of operational 

parameters that before needed to be sent to the laboratory to be analyzed. Also, 

software tools are not subject to mechanical problems and have easier to 

maintain than a conventional sensor, given an economy for the process manager 

(KADLEC et al., 2009; POERIO and BROWN, 2018). Some of the challenges 

that could be found during their development are presented in Figure 2.8. 

 

Figure 2.8: Flow of soft sensor analysis and problems involved at each stage 

(adapted from FUNATSU, 2018). 

 

They can be divided into three main types: First Principles Models (FPM), 
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data-driven models, and mixed models. The FPM models (white-box models) 

are built mainly from the mechanical knowledge of the process, which can be 

hard or complex to determine and demand a significant computation effort and 

time. In turn, the data-driven models (black-box models) are created using only 

the process dataset, making them a more popular strategy for developing soft 

sensors. For that, several kinds of AI methods can be used, such as Artificial 

Neural Network (ANN), fuzzy logic, Support Vector Machine (SVM), Decision 

Tree (DT), Principal Component Analysis (PCA), hybrid methods, and others 

(YAN et al., 2017; SHANG et al., 2014). 

ANN are mathematical models developed based on the biological neural 

systems, initially presented in the work of MacCulloh and Pitts (1943) 

(KUMAR et al., 2013). ANN models are one of the most common strategies 

explored due to their advantages as training and adaptive structure (LI et al., 

2017). ANNs represent a large class of model structures, and one of the most 

popular ones is the Multi-Layer Perceptrons (MLP). However, the MLP could 

present some optimization problems with more deep structures with more than 

two hidden layers (SHANG et al., 2014).  

In this case, the model needs a bigger number of hidden layers or even 

more complex structures. They are known as Deep Learning (DL) techniques 

(SUN and GE, 2021) and are very present in the chemical engineering field, 

Figure 2.9. Among the ANN techniques that could be classified as DL, one can 

be pointed out the Convolutional Neural Network (CNN), traditionally used in 

image classification (MADHAN et al., 2021). 

 

Figure 2.9: Statistics on exiting relevant work applications in different fields 

(adapted from SUN and GE, 2021). 
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2.4.1 

Multi-Layer Perceptron (MLP) 

MLPs are usually formed by three layers: input layer, hidden layer, and 

output layer, Figure 2.10. In some cases, more than one hidden layer can be 

used. The input layer has the same number of neurons as the model's input 

variables, and the output one has the number of neurons equal to the number of 

target variables. The number of neurons in the hidden layers is one of the 

parameters adapted during the development of the model (CHOJACZYK et al., 

2015; LI et al., 2017). 

 

Figure 2.10: Multi-Layer Neural Network scheme (adapted from 

CHOJACZYK et al., 2015). 

 

The information flow through the interconnected neurons from the input 

to the output layer. When the neuron receives the information, input (xi), the 

information is processed according to Eq. 2.6, in which the input is multiplied 

by a factor called weight (wij), related to the importance of the variable, and is 

added to a constant named bias (bj). This constant is responsible for avoiding 
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the resultant value (aj) from assuming negative values before it was passed to 

the activation function (f(aj)) (LI et al., 2017; HAMMOUDI et al., 2019). 

 

𝑎𝑗 =  ∑ 𝑤𝑖𝑗
𝑛
𝑖=1 ∙ 𝑥𝑖 + 𝑏𝑗     (2.6) 

 

where j and i, respectively, represent the identification of the origin and the 

destination neuron. 

The activation functions’ process is responsible for calculating the 

information that leaves the neuron to the next layer or as the model's output. 

The most common types of activation functions used on MLP are the sigmoid 

functions and the linear function ( Eq.2.7), Figure 2.11. The first type is usually 

represented by the logsigmoid function and the hyperbolic tangent, Eqs. 2.8-9 

(SOLEIMANI et al., 2013; CHOJACZYK et al., 2015 and VALIM et al., 

2017). 

 

𝑓(𝑎𝑚) = 𝑥       (2.7) 

𝑓(𝑎𝑚) =  
1

(1+𝑒−𝑥)
      (2.8) 

𝑓(𝑎𝑚) =  
2

(1+𝑒−2𝑥)
− 1      (2.9) 

 

 

Figure 2.11: Activation functions: (a) logsigmoid, (b) hyperbolic tangent, (c) 

linear (adapted from SOLEIMANI et al., 2013). 

 

An essential part of the application of the MLP models is the training 

algorithm, being the backpropagation (BP) is one of the most common kinds 

applied to the MLPs. They belong to the supervised classification of the training 

algorithms, in which the model outputs are compared to a corresponding target 
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data using an error function, such as mean-squared error (MSE), and the 

weights and bias of the parameters are modified to minimize the evaluation 

parameter (SOLEIMANI et al., 2013; HAYKIN, 2001).  

Modifications of the BP algorithm have been proposed aiming to 

improve the method. The Bayesian Regularization BP algorithm uses a 

Bayesian regulation to enhance efficiency. The Levenberg-Marquardt BP and 

gradient descent with momentum and adaptive learning rate BP use a quasi-

Newton method to make the convergence faster and with a smaller computation 

effort due to the use of an approximation of the Hessian matrix (PLUMB et al., 

2005; FORESEE and HAGAN, 1997; HAGAN and MEHAJ, 1994; HAYKIN, 

2001). 

 

2.4.2 

Convolutional Neural Network (CNN) 

CNNs are a type of DL architecture based on the animal visual cortex, 

and it has been successfully used to extract features through image analysis. 

The first ones were proposed by LeCun et al. (1989), but they became more 

popular after overcoming some technological challenges at the beginning of the 

last decade (MARQUES, 2018; BOUWMANS, 2019; YUAN et al., 2020). As 

a DL method, the CNN models have some advantages compared to more 

traditional AI strategies (ZAN et al., 2020): 

 Use of the raw data directly in the training and test in many cases, 

avoiding the pre-processing data necessity; 

 Being able to be applied in more complex tasks; 

 Learn the most appropriate features from the classification problems. 

The structure of the CNN, Figure 2.12, similarly to the MLP, can be 

described in three parts: input layer, hidden layers, and output layer. However, 

in these cases, there are multiple hidden layers, which can be split into three 

classes: convolutional, pooling (or subsampling), and fully connected (YAO et 

al., 2019). 

DBD
PUC-Rio - Certificação Digital Nº 2012332/CA



44  

 

Figure 2.12: Typical CNN structure (adapted from ZAN et al., 2020). 

 

The most significant component of a CNN is the convolutional layers. 

The weights and biases are organized in a series of convolutional filters (or 

kernels). The filter coefficients are optimized during the model training, where 

each filter learns to extract specific features or patterns from its input layer. As 

the convolution process, Figure 2.13, is a linear operation, this non-linearity in 

the signal is granted by the activation function, which in the case of the CNN, 

the ReLU function (Rectified Linear Unit), Eq. 2.10, is usually chosen to be 

used (SHEN et al., 2021; ZAN et al., 2020; CASTANEDA, 2017). 

 

𝑅𝑒𝐿𝑈(𝑥) =  max (0, x)       (2.10) 

 

 

Figure 2.13: Convolutional operation with a 3 x 3 convolutional kernel 

(adapted from YUAN et al., 2020). 
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The pooling layer, Figure 2.14, is completed by downsampling the 

feature maps resulting from the convolutional operations. Unlike the 

convolutional layer, the subsampling layer has no specific value or parameters 

to represent the compositive features of the receptive field. It can quickly reduce 

the scale of the feature maps but also the sensitivity of similar light features. 

The most common kinds of strategies applied are max pooling and average 

pooling (YUAN et al., 2020; ZAN et al., 2020; MARQUES, 2018). 

 

Figure 2.14: Max pooling operation with 2 x 2 size (adapted from YUAN et 

al., 2020). 

 

Fully connected layers (or dense layers) are the last ones of the hidden 

layers. They have all their neurons fully connected with the previous layer, such 

as the hidden layer in the MLP structure (ZAN et al., 2020). The last layer of 

the CNN, the output layer, is also a dense layer, which in the case of a regression 

model, has the number of the output variables. For classification models, the 

number of neurons is equal to the number of classes, having as output in each 

neuron the probability of the belongs to each class. Usually, the function 

softmax is used for this last case (MARQUES, 2018; ZAN et al., 2020).  

 

2.4.3 

Support Vector Machine (SVM) 

SVM is a Machine Learning technique to create supervised learning 

models, which could be used for classification and regression problems. It was 

presented in the work of Cortes and Vapnik (1995), based on a statistical 
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learning theory and structural risk minimization, for binary classification (WU 

et al., 2018). SVM is based on the geometric distance class interval 

maximization strategy, giving the model a strong generalization ability (PENG 

et al., 2020). 

The first applications of the SVM were developed for binary 

classification with linearly separable data, in which the classes can be split by 

a straight line, as shown in Figure 2.15. (NOGUEIRA, 2021). 

 

 

Figure 2.15: Linearly separable data with two dimensions and two classes 

(solid line – hyperplane separating the classes; dashed lines – margins of the 

hyperplane) (adapted from NOGUEIRA, 2021). 

 

In the following years, the SVM models were evolving, allowing them 

to be used for non-linearly separable data problems and multi-class problems. 

The first challenge was solved using kernels, which are mathematical functions 

(φ) that transform the data from a given space (Input space) to a new high-

dimensional one (Feature Space), where the classes can be separated by a linear 

surface (hyperplane), Figure 2.16 (CHAUHAN et al., 2019).  
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Figure 2.16: Representation of the input transformation from the Input space 

(right) to the Feature space (left) by the use of the kernels (adapted from 

CHAUHAN et al., 2019). 

 

The most often used kernel functions, Figure 2.17, are: linear (Eq. 2.11), 

polynomial (Eq. 2.12), RBF (Radial-Basis Function, Eq. 2.13), and sigmoid 

(Eq. 2.14) (CHAUHAN et al., 2019; GONG et al., 2019). 

 

𝜑(𝑥) =  𝐾𝑒𝑟𝑛𝑒𝑙𝑙𝑖𝑛𝑒𝑎𝑟(𝑥𝑖 , 𝑥𝑗) = (𝑔𝑎𝑚𝑚𝑎(𝑥𝑖 , 𝑥𝑗) + 𝑐𝑜𝑒𝑓)  (2.11) 

𝜑(𝑥) =  𝐾𝑒𝑟𝑛𝑒𝑙𝑝𝑜𝑙𝑦(𝑥𝑖, 𝑥𝑗) = (𝑔𝑎𝑚𝑚𝑎(𝑥𝑖 , 𝑥𝑗) + 𝑐𝑜𝑒𝑓)
𝑑𝑒𝑔𝑟𝑒𝑒𝑒

 (2.12) 

𝜑(𝑥) =  𝐾𝑒𝑟𝑛𝑒𝑙𝑅𝐵𝐹(𝑥𝑖 , 𝑥𝑗) =  exp(−𝑔𝑎𝑚𝑚𝑎‖𝑥𝑖−𝑥𝑗‖
2

)    (2.13) 

𝜑(𝑥) =  𝐾𝑒𝑟𝑛𝑒𝑙𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥𝑖 , 𝑥𝑗) = 𝑡𝑎𝑛ℎ(𝑔𝑎𝑚𝑚𝑎(𝑥𝑖, 𝑥𝑗) + 𝑐𝑜𝑒𝑓) (2.14) 
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Figure 2.17: Kernel functions behavior in classification with SVM (adapted 

from NOGUEIRA, 2021). 

 

The gamma and degree are hyperparameters that could be modified to 

adjust the model fit. The gamma represents the influence of each data in training 

in general and in the surface position. In turn, the degree is the parameter 

associated with the polynomial level. The coef is an independent term of each 

function (RHYS et al., 2020; SCIKIT-LEARN, 2022 and NOGUEIRA, 2021). 

The application of the SVM models to the multi-class problem was 

allowed by the implementation of strategies such as One-versus-One (OvO) and 

One-versus-Rest (OvR or One-versus-All (OvA)). OvR is probably one of the 

first techniques applied for the multi-class classification problem. Its class is 

separated from the others by a hyperplane, reducing the situation to a group of 

binary classification problems. For the OvO technique, the classification is 

realized between each pair of classes, usually resulting in a higher number of 

hyperplanes, although it could demand less from the computer (CHAUHAN et 
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al., 2019; DING et al., 2019; RHYS et al., 2020 and NOGUEIRA, 2021). Figure 

2.18 shows an example of OvR and OvO approaches with a three-class 

situation. 

 

Figure 2.18: Multi-class SVM approaches (a) OvR (One-versus-Rest) and (b) 

OvO (One-versus-One) (dashed lines – hyperplanes) (adapted from 

NOGUEIRA, 2021). 

 

2.4.4 

Decision tree (DT) 

The decision tree is another AI technique with supervised learning 

algorithms and is commonly used for classification problems. DT has a simple 

form that combines several binary tests in its structure (GEURTS et al., 2009 

TANGIRALA, 2020). It is structured as a tree, Figure 2.19, hierarchically 

structured with a group of interconnected nodes. The process starts in the root 

node where the input is inserted, then it and each internal node of the tree are 

responsible for a test, and each terminal node (or leaf node) is labeled with a 

class (PRIYAM et al., 2013; GEURTS et al., 2009; ARAUJO, 2017). 

 

(b) (a) 
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Figure 2.19: Example of a general decision tree for classification (adapted 

from BARROS, 2014). 

 

Other important concepts are depth and breadth. The first one is related 

to the number of levels (layers) that DT has from the root node to the terminal 

node. The breadth refers to the number of internal nodes in each level of the 

tree (BARROS, 2014). 

For the training process of the DT, models have used some functions to 

measure the impurity level of a node, in which the lower this parameter, the 

better the prediction. This helps to decide the necessity to split the node. In the 

case of classification problems, the most common functions are the Gini 

impurity (gini) and the cross-entropy (entropy) (HASTIE et. al., 2009; BARROS, 

2014).  
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Development of Artificial Neural Networks models for the 

simulation of CaCO3 scale formation process in the 

presence of monoethylene glycol (MEG) in Dynamic Tube 

Blocking Test equipment  

 

 

 

 

In the first part of this study, the target goal was to model the scale 

formation process caused by inorganic salts (scale). As presented in the 

previous section, they are formed by the deposition of salts in the pipeline 

wall caused by the variation of operation conditions (temperature, pressure, 

pH, and others) encountered during the production process. Monitoring this 

deposition process and being able to understand and predict how the other 

chemicals used during the process, such as inhibitors for other sources of 

incrustation, affects these dynamics is very important to the operation of the 

exploration and to avoid product losses.  

In this scenario, the current section presents the development of 

models for the simulation of the scale formation in the presence of MEG, a 

hydrate inhibitor, using data from the Dynamic Tube Blocking Test (TBT). 

The results presented here were already published at Energy & Fuels 

(https://doi.org/10.1021/acs.energyfuels.1c03364), presented in Appendix 

A. The appendix published together with the main file of the article is 

presented in Appendix B.  

This section contains the full version of the article (as found online), 

and the Supporting Information available with the published article is 

presented in Appendix C. 
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ABSTRACT:  The precipitation of gas hydrate and inorganic salts (scale) during 

oil and gas production represents a significant flow assurance hindrance for the 

industry. Chemical inhibitors can prevent the fouling process, but specific inhibitors 

to address a problem could result in synergistic or adverse effects. Simulations in 

tubes and pipelines are necessary to understand these behaviors by assessing the 

scaling tendency of the water. The primary objective of this study was to create 

models using an Artificial Neural Network (ANN) of the Multi-Layer Perceptron 

(MLP) type for the simulation of the calcium carbonate scaling formation process 
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in the presence of monoethylene glycol (MEG), a typical gas hydrate inhibitor. A 

database was obtained from 38 Tube Blocking Test (TBT) experiments with 

different conditions. The models were developed using MATLAB R2020a, splitting 

the database into two groups on the ratio of 70:30, respectively, train and test ones, 

preserving the time-dependency of the differential pressure (ΔP) data. The ANNs 

were created using six inputs (temperature, pressure, calcium and bicarbonate 

concentration, MEG concentration, and the ΔP measured at a selected time) and 

one output (the ΔP measured at a later time). The goal was to explore how 

monitoring the conditions in a pipeline can predict the evolution of the scaling 

process. We investigated two scenarios for the ΔP prediction: a near future (1 step 

ahead) and a far future (5 steps ahead). The MLP models demonstrated high 

performance, with an R2 higher than 92.9% for both training and test groups for 

both prediction horizons. Then the models were tested with a second data group to 

evaluate their applicability to control systems. The best models showed good 

scaling prediction, with R² ranging from 80.0 to 99.9%. The results represent a 

promising step towards applying machine learning techniques to simulate and 

predict scaling tendencies in controlled pipelines. 

3.1.1 

Introduction 

Flow assurance is a significant concern during oil and gas production and is 

achieved by guaranteeing that hydrocarbon production from wells is maintained 

without loss over time due to flow restrictions. During production, the oil–gas–

water mixture undergoes drastic variations in operating conditions, such as 

temperature and pressure, so the solubility of certain compounds can decrease, 

leading to the formation of deposits (fouling). Fouling may occur in pipelines and 

equipment and is generally caused by the formation of wax, gas hydrate, and scale 

(inorganic salts). This scenario can require expensive and complex remediation 

processes and, in severe cases, production stoppage and well shutdown (SOUZA et 

al., 2019; KHORMALI et al., 2018; NGUYEN et al., 2003). This problem is of 

great concern, especially for wells in the Brazilian pre-salt region located in 

ultradeep waters with mainly carbonaceous reservoir rocks, and can result in 

potential issues such as calcium carbonate and gas hydrates fouling (DE 

OLIVEIRA and GONÇALVES, 2012).  
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Gas hydrate originates from the crystallization of water molecules 

encapsulating small and light gas molecules (e.g., CO2, methane, and propane) 

under operating conditions with high pressure and low temperature, such as those 

found in deep and ultradeep water (KIM et al., 2020; NASIR et al., 2020). The most 

practical and economical method for preventing hydrate formation or others kinds 

of obstructions in lines (e.g., scales) is using chemical inhibitors (KUMAR et. 

al.¸2018; DE ROSA et. al., 2019; AHMED et. al., 2020). Thermodynamic Hydrate 

Inhibitors (THIs) are typically injected into the production line to prevent the 

formation of gas hydrates. THIs consist of alcohols or glycols, such as methanol, 

triethylene glycol (TEG), and monoethylene glycol (MEG), and function by 

moving the equilibrium curve envelope towards lower temperature and higher 

pressure (KAN et al., 2002; LIM et al.i, 2002).  

Scale forms as a result of the deposition of inorganic salts precipitating from 

the supersaturated water. Their formation depends on several factors such as 

temperature, pressure, ion concentration, pH, and others (OLAJIRE, 2015). Barium 

sulfate, strontium sulfate, and calcium carbonate are the most common types of 

scale found during oil and gas production (DYER and GRAHAM, 2002; ODDO 

and TOMSON, 1994). However, calcium carbonate (CaCO3) formation is of greater 

concern since the water may be in equilibrium with carbonaceous rocks in the 

reservoir, leading to a significant number of bicarbonate ions dissolved in the water 

phase (Eq. B1–B3, in the Appendix B). The precipitation of CaCO3 occurs as this 

fluid is produced and faces a pressure drop, which decreases the CO2 solubility and 

increases pH, leading to precipitation (Eq. B4, in the Appendix B).  

There are dozens of different inhibitor types used for typical inorganic scale. 

There are three main classes of inhibitors: phosphate esters, phosphonates, and 

polymers. The first two classes act as chelators, sequestering the metals from 

solution, while the polymeric class achieves scale control through crystal distortion.  

In 2002, the average cost due to scale formation was more than 1.4 billion dollars 

(FRENIER and ZIAUDDIN, 2008). As a result, the market for scale inhibitors for 

the oil and gas industry continues to grow and currently represents millions of 

dollars annually.  Market analyses predict further increases in the expenditures with 

a CAGRs (Compound Annual Growth Rates) of 5.5% and 6.9% for the scale and 

hydrate inhibitors markets, respectively (Global Oilfield Scale Inhibitor Market, 

2021; Hydrate Inhibitors Market Analysis, 2021; Oilfield Scale Inhibitor Market, 

https://www.investopedia.com/terms/c/cagr.asp
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2021). 

A concern with the use of inhibitors for production is the compatibility 

between the different inhibitors and other chemicals. Several studies have 

investigated these compatibilities, including the effects of the Enhanced Oil 

Recovery (EOR) chemicals on scale inhibitors (WANG et al., 2018) and the 

interaction between scale inhibitors and hydrate inhibitors(CHAO et al., 2020). For 

example, Seiersten and Kundu (2018) and Kartnaller et al. (2018) studied the 

impact of MEG as a gas hydrate scale inhibitor, concluding that MEG serves as an 

inhibitor by increasing the scaling time. This result was unexpected because the 

presence of MEG in water increases ion activities. That behavior has been proposed 

to be connected to the high-energy bond between -OH groups and the CaCO3 

surface; this indicates that thermodynamic hydrate inhibitors can also benefit wells 

experiencing calcium carbonate scale formation. 

Understanding the interactions between inhibitors, water, and ions is 

essential for predicting the phase behavior during production and estimating the 

solid accumulation tendency in production lines. A common and well-known 

methodology to evaluate inhibitor efficiency is the Dynamic Tube Blocking Test 

(TBT). It is usually applied to verify a product’s performance and Minimum 

Inhibitor Concentration (MIC), allowing comparison with other commercially 

available products (RAMZI et. al., 2016; MACEDO et al., 2019; FERNANDES et 

al., 2021). TBT experiments are also used to study inorganic salt morphologies (DE 

MORAIS et al., 2020; SANNI et al., 2019) and develop scale formation models.  

However, it is difficult to predict how the scaling process will develop using flow 

and phase behavior models due to the system's complexity, the large number of 

variables, and some stochastic behavior. A previous work has attempted to model 

the scale formation in pipelines, specifically in TBT experiments, but only using 

physical models (SANTOS et al., 2017). These models, based on Darcy Weisbach 

equation for pressure loss in pipes and on a growth rate scale formation model, were 

successful in fitting the TBT experiments curves, enabling an estimation on how 

fast the process was happening. However, the model was learning only the 

information regarding that specific experiment and not acquiring information for 

predicting the behavior of the system.  

Other studies have explored the use of Artificial Neural Networks (ANNs) 

and other machine learning algorithms to create new models since they do not 
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demand an understanding of the scale formation mechanism, only requiring a 

“black-box” model. These models were able to predict the thermodynamics related 

to the calcium carbonate precipitation (saturation ratio of the solution) and its 

dissolution capacity (PAZ et al., 2017; AHMADI et al., 2015). However, literature 

still lacks kinetic modeling related to the scale formation process. Recently, Wang 

et al. (2019) have developed an Elman Neural Network (ENN) with genetic 

algorithm (GA) to predict calcium carbonate scale formation in shell and tube heat 

exchangers over time. They were able to successfully predict the fouling resistance 

as a function of conductivity, pH and dissolved oxygen. Still, as far as the author’s 

knowledge, no study relating scale formation and variables to simulate conditions 

during oil and gas production has been previously assessed.  

In recent decades, different types of Artificial Intelligence (AI), such as 

ANN, GA, Support Vector Machines (SVMs), Adaptive Neuro-Fuzzy Inference 

System (ANFIS), Least Square Support Vector Machine (LSSVM), Principal 

Component Analysis (PCA), Committee Machine Intelligent System (CMIS) have 

been applied to solve problems and challenges in several fields like nanofluids 

properties (BAGHBAN et al., 2018a; BAGHBAN et al., 2018b; BAGHBAN et al., 

2019), systems efficiency (AHMADI et al., 2020; ZAMEN et al., 2019) and in the 

oil and gas industry, from the reservoir to production (ALKINANI et al., 2019; 

OTCHERE  et al., 2021; RAHMANIFARD and PLAKSINA, 2019). The ANN was 

inspired by the neural arrangement of the human brain. It is easy to train and has 

tunable parameters and an adaptive structure, making it one of the most widely used 

machine learning techniques (LI et al., 2017). One of the most common classes of 

the ANN is the Feedforward Neural Network (FFNN) with MLP (Multi-Layer 

Perceptron) topologies, which can model complex systems (HEIDARI et al., 2020). 

The usual structure of the MLP consists of an input layer, where the number of 

neurons is equal to the number of model inputs, and an output layer. In addition, 

there is at least one hidden layer between them with several neurons to be selected 

by the user (LI et al., 2021; HAMMOUDI et al., 2019). This structure has been 

used to predict different parameters for the oil and gas industry, such as the gas-oil 

ratio (SEFIDI and AJORKARAN, 2019), the volume fraction percentage in three-

phase systems (ISLAMI RAD and PEYVANDI, 2019), and the deposition process 

of asphaltene (ZAREI et al., 2017) and wax (AMAR et al., 2021). 

Knowing the importance of digital transformation, AI, and process 
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monitoring in the oil and gas industries, this work intends to model the scale 

formation process using the MLP to predict the differential pressure (ΔP) one and 

five steps ahead in time. The goal is to explore how monitoring the conditions in a 

pipeline (i.e., temperature, pressure, ion concentrations, and differential pressure) 

can predict the evolution of the scaling process. This study may lead to deeper 

investigations into applications in monitoring systems and fault detection. TBT 

differential pressures were monitored over time for different temperatures, 

pressures, calcium and bicarbonate concentrations, and MEG concentrations. MEG 

concentration was used as a variable since many scale inhibitor products are 

solutions of the active molecule in a mixture of water and MEG. Also, MEG can be 

directly injected in high amounts as thermodynamic gas hydrate inhibitors. Even 

further, MEG can change the viscosity of the solution and can influence the 

crystallization of calcium carbonate, which would lead to different effects to be 

modeled in order to best simulate the scale formation process. Two scenarios were 

considered: a near future time (differential pressure measured 1 step ahead) and a 

far future time (differential pressure measured 5 steps ahead). The models showed 

good scaling prediction for both time horizons, showing a promising step towards 

simulating and predicting scaling tendencies in controlled pipes in production lines.  

 

3.1.2 

Methodology 

 

3.2.1  

Experimental details 

Experiments were performed in a TBT equipment, in which two solutions 

containing incompatible cations and anions are pumped into tubes inside an oven, 

conditioned to the test temperature, mixed in a micro-chamber, and then flown into 

a capillary tube called loop test. The apparatus consisted of two high performance 

liquid chromatography (HPLC) pumps pushing newly prepared calcium chloride 

and sodium bicarbonate solutions, with pH ranging from 7.0-7.5 depending on the 

salts concentration, into a thermostat-regulated oven through 1.8 m long stainless-

steel tubes with 1 mm inner diameters (i.e., two conditioning loops, one for each 

solution).  
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Figure 3.1: Scheme of a Dynamic Scale Loop (DSL) system used in a TBT 

experiment (adapted from KARTNALLER et al., 2018). 

 

These loops ensured the solutions reached the mixture chamber at the 

correct temperature for the experiments. After mixing, the combined solution 

flowed through a third tube (loop test) with the same dimensions as the other tubes. 

This process resulted in a supersaturated solution leading to calcium carbonate 

formation and deposition. When deposition occurred, the inlet pressure became 

higher than the outlet pressure, generating a differential pressure. This differential 

pressure was measured using a model EJA 130A high-static differential pressure 

transmitter (Yokogawa, Musashino, Tokyo, Japan). The data were acquired at 1 s 

intervals using a LabView-based software program.  The injection flow rate was 

10.0 mL min−1 (5.00 mL min−1 for each solution, leading to a 1:1 mixture ratio of 

the two solutions). The pressure of the system was regulated using a PSV valve 

connected outside the oven. 

 

3.1.2.2 

ANN database preparation 

The experimental data used in this study are the results from 38 TBT 

experiments previously presented in Kartnaller et al. (2018), which used a modeling 

approach with experiments from a central composite design of experiment and 

multivariate linear regression (MLR). In the previous work, MLR was applied to 
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model the scaling time to reach several differential pressure levels (1 to 25 psi, in 

intervals of 1 psi). For each pressure, a different model had to be made, totaling 25 

different models to predict a single scaling tendency. These experiments varied the 

pressure, temperature, concentration of MEG (CMEG) (v/v %), and concentration of 

the carbonate (CHCO3
-) (ppm) and calcium (CCa2+) (ppm) ions over the operating 

ranges shown in Table 3.1. The experiments measure the ΔP every second as the 

monitored variable. 

 

Table 3.1: Range of the experimental variables. 

Variable Unit Minimum value Maximum value 

Pressure bar 0 170 

Temperature ºC 40 110 

CMEG  v/v % 0 80 

CCa2+ ppm 1000 6000 

CHCO3
- 

ppm 1000 6000 

 

The goal for the ANN modeling in the present work was to improve the 

prediction of the scale formation process, in which the differential pressure was also 

an input for the modeling. The measurement of the differential pressure at a moment 

in time, plus the experimental variables, was used to estimate the differential 

pressure in a later time. Hence, experimental data were first preprocessed to adjust 

the signal baseline and create the differential pressure variables one step ahead, 

(ΔP(t+1)) and five steps ahead (ΔP(t+5)) (one second and five seconds ahead 

respectively)  to be used in the prediction models. The database was then split into 

two parts. The first database consisted of 32 experiments, totaling 46,698 data 

points. This database was separated into two groups, train (70%) and test (30%), 

and was used to train the MLP models. To preserve the time information about the 

scale formation associated with the pressure differential, this division was 

accomplished by selecting 7 data points for the train group and 3 for the test group 

from every 10 data points. 

The second database consisted of 6 experiments, totaling 7,705 data points. 

Those experiments were conducted with fixed values of pressure, temperature, 

CHCO3
- and CCa2+ in their central values of the design of experiments, and varying 
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CMEG (10, 20, 30, 50, 60, and 70 v/v %). This database was used to separately 

validate the models constructed by the ANN for each experiment.  

 

3.1.2.3 

Artificial Neural Network optimization  

For this study, MLP type ANN models with one output neuron were 

developed using Matlab R2020a (developed by Mathworks, Inc) to predict ΔP(t+1) 

and ΔP(t+5). Six input variables were chosen for the input layer: the five independent 

variables (pressure, temperature, CHCO3
- and CCa2+, and CMEG) and the differential 

pressure at the selected time t (ΔP(t)). The proposed MLP structure had one hidden 

layer, in which the number of neurons is one of the hyperparameters to be 

optimized. The search was started with the same number of neurons as the input 

layer. 

The activation function, applied to the connection between the input and 

hidden layers, was the second hyperparameter studied, and the hyperbolic tangent 

(tansig) and log sigmoid (logsig) functions were used. Both functions are 

commonly used due to their sigmoidal form. The linear activation function (purelin) 

was used between the hidden layer and the output layer (CHOJACZYK et al., 2015; 

SOLEIMANI et. al., 2013; HAYKIN, 2001).  

The last hyperparameter optimized for the MLP models was the training 

algorithm. The Gradient Descent with Momentum and Adaptive Learning Rate 

Backpropagation (traingdx), Levenberg-Marquardt Backpropagation (trainlm), and 

Bayesian Regularization Backpropagation (trainbr) functions were selected for 

testing. The first of these algorithms improves upon traditional backpropagation 

with a combination of an adaptive learning rate and momentum training, while the 

others apply a quasi-Newton method for faster convergence (MATHWORKS, 2020 

a; MATHWORKS, 2020b; MATHWORKS, 2020c). 

 

3.1.2.4 

Statistical performance evaluation 

To evaluate the performance of the ANN models, the coefficient of 

determination parameter (R2, Eq. B5), Sum of Squared Errors (SSE, Eq. B1), Mean 

Squared Error (MSE, Eq. B2), and Root Mean Squared Error (RMSE, Eq. B3), were 
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chosen. For R², the goal was to achieve a value close to one, while the goal for the 

others was to achieve the lowest value possible, indicating the best fit between the 

experimental data and the predicted data from the ANN models. To calculate R2, it 

is also necessary to calculate the Total Sum of Squares (TSS, Eq. B4). The 

equations are available in the Appendix B. 

Figure 3.2 shows a schematic for the process adopted in this study, from the 

data acquisition on the experiments to the determination of the best MLP model. 

 

Figure 3.2: Flowchart of the methodology. 

 

3.1.2.5 

Sensitivity analysis 

The “black-box” group of models, in which the ANN models are often 

included, present some difficult to extract information about the process from their 

parameters. However, the evaluation of the input variables effects over the output 

variable can be determined by a sensitivity analysis. 

For that, in this study two approaches were explored. First, it was used the 

relevancy factor (r, Eq. 3.1), which can be applied to quantify these effects, with 

values on the range from -1 to +1. The highest absolute value of r indicates the 

variables that most affect the target variable, in which the positive values indicate 

an elevation on the output variable whereas the negative ones designate a decrease 

on the target variable (BAGHBAN, 2019b; AHMADI et. al., 2020b). 

 

𝑟 =
∑ (𝑋𝑘,𝑖− 𝑋𝑘̅̅ ̅̅ )(𝑦𝑖−�̅�)𝑁

𝑖=1

∑ (𝑋𝑘,𝑖− 𝑋𝑘̅̅ ̅̅ )
2𝑁

𝑖=1 ∑ (𝑦𝑖−�̅�)2𝑁
𝑖=1

      (3.1) 
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where N is the total number of data points, Xk,i is the ith input value of the kth 

parameter, yi is ith output value, 𝑋𝑘
̅̅ ̅  is the average value of the kth input parameter 

and �̅� is the mean value of the output parameter.  

The second parameter adopted was the Relative Importance (RI), in which 

the methodology proposed by Garson (1991) (Eq. 3.2) was chosen to obtain the RI 

values, varying between 0 and 1, which is based on the connection weights between 

the ANN layers (DE ONA and GARRIDO, 2014; XU et al., 2013; PENTÓS, 2016). 

 

𝑅𝐼𝑖𝑗 =  
∑

|𝑤𝑖𝑗|∙|𝑤𝑗𝑘|

∑ |𝑤𝑖𝑗|𝑁
𝑖=1

𝑃
𝑗=1

∑ ∑
|𝑤𝑖𝑗|∙|𝑤𝑗𝑘|

∑ |𝑤𝑖𝑗|𝑁
𝑖=1

𝑃
𝑗=1

𝑁
𝑖=1

       (3.2) 

 

where RIij is the parameters RI of the variable xi concerning the output neuron j, wij 

is the weight parameter of the connection between the input xi and the jth hidden 

neuron, wjk is the weight parameter of the connection between the jth hidden neuron 

and the kth output variable. 

 

 

3.1.3 

Results and Discussion 

The data were selected, processed, and separated into two groups for training 

and testing to optimize the ANN model. The training data were used to construct 

the model and calculate the estimated parameters. Once the model was constructed, 

it was applied to the testing data to predict the output and compare it to the known 

values. Different types of models were tested by changing the hyperparameters of 

the ANN and were compared to indicate the best ones.  

 

3.1.3.1 

Evaluation of the ANN models 

MLP topologies developed to predict ΔP(t+1) and ΔP(t+5) are shown in Table B1 

in the Appendix B, along with the optimized hyperparameters of the trained models 

and the performance parameters from the train and test groups, for models having 

6-8 neurons in the hidden layer. These results show that the best performance for 

the ΔP(t+1) was achieved with seven neurons in the hidden layer using the tansig 
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activation function and the trainlm training algorithm. This topology had an R2 

equal to 99.88% for the test set and the lowest values for error. However, only three 

trained topologies had an R² lower than 99%, showing that the models have very 

similar accuracy.  

For the topologies built to predict ΔP(t+5),
 the model with the best results had the 

same hidden layer configuration as the best model for ΔP(t+1) but used the trainbr as 

the training algorithm. Its performance had an R2 equal to 98.93% and the lowest 

values for the other error parameters as well. However, as observed in the 

predictions for the ΔP(t+1) case, most of the models had very similar figures of merit, 

indicating that the accuracy was largely independent of the activation function and 

training algorithm used (trainlm and trainbr). It is also interesting to point out that 

the worst results, in both cases, were obtained when using the traingdx training 

algorithm.  

 This investigation optimizing the hyperparameters of the MLP model for 

each output, primarily the number of neurons and the transfer function on the hidden 

layer, is an important step toward achieving the best models. Another essential 

phase in the model development is to validate them with new experimental data, 

verifying the model's prediction capability before using it in real applications. 

 

3.1.3.2 

Validation of the MLP models 

Since the MLP models demonstrated similar accuracy for both time 

horizons, all were used in this validation phase. This evaluation used the second 

database in which the MEG concentration was changed from 10% to 70%, while 

all other variables were unchanged. This series of experiments tested the behavior 

of the scaling process in the presence of the glycol molecule. In a previously 

published article (KARTNALLER et al., 2018), our research group has shown that 

MEG can act as a calcium carbonate inhibitor at concentrations above 30%. 

The correct mechanism to explain how MEG acts in the calcium carbonate 

crystallization is still not completely known. The interaction of alcohols (and 

therefore polyols) have been studied by several works in the past years, and 

simulations have shown that the -OH group can bind to specific faces of the calcite 

polymorph, which can lead to control of the crystal growth (SAND et. al., 2010; 

BOVET et al., 2015; ZHANG et al., 2008). Okhrimenko et al. (2013) showed that 
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this adsorption could also happen for aragonite and vaterite (other calcium 

carbonate polymorphs), although the binding energy in these cases is lower than for 

calcite. This adsorption comes from the fact that the Ca–CO3 ion pair (note that this 

is just a representation of pairs, not chemical bond) delocalizes charges by ordering 

the –OH group of the organic molecules. Thus, the O of this group is associated 

with Ca, while the H is associated with CO3 (Okhrimenko et al., 2013). This causes 

a highly organized monolayer structure to form on the surface of the crystal, in 

which the hydrophobic part of the chains face away from the surface. Many other 

types of organic molecules have also been studied on the calcium carbonate 

crystallization, specifically related to biomineralization.  

Biomineralization is the process in which living organisms produce hard 

minerals that act as support, protection or nourishment structures. A wide variety 

of minerals can be synthesized by these organisms, such as silica, calcium 

phosphate and calcium carbonate. The calcite polymorph synthesized in pure 

solution in a laboratory has a large crystalline difference from that synthesized by 

mineralization (YANG et al., 2008). This control of crystal growth is generally 

attributed to complex organic molecules known as coccolith-associated 

polysaccharides (CAPs). These are large polymeric carbohydrate molecules 

containing a variety of functional groups, such as –COOH and –OH. Hence, since 

MEG contains 3 hydroxyl groups in its structure, it is possible to suppose an 

association that there is an interaction of this molecule with the surface of the 

particles being formed, controlling crystal growth, which would also explain how 

it controls inhibition. Also, changing its concentration changes the viscosity of the 

solution (affecting the flow dynamics inside the tube).  

The performance parameters for all MLP models for each new experiment 

are presented in the Appendix C in Tables C1-6. The models are validated by 

observing how they predict the scaling process under conditions different from the 

training or testing. Although the models showed very high accuracy for both 

training and test sets, their application to the new data was not completely 

successful. Some of the models’ prediction of the scaling process over time was 

unsatisfactory for a few experiments, which showed that certain regions in the 

modeled response did not fit the actual expected experimental values. For the ΔP(t+1) 

scenario, the logsig_7_purelin_1_trainbr model (values of the weights and bias are 

available in the Appendix C, Table C7) was the best with an R2 over 99.3% for all 
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new experiments. Figure 3.3 shows the predicted differential pressure from this 

MLP model and the experimental data for all six experiments. In addition, four 

other topologies had an R² higher than 97% showing that they are also very accurate 

models. 

 

Figure 3.3: Representation of the behavior of the experimental data of the six 

experiments of the second database and the respective predicted data for the output 

ΔP(t+1) by the MLP model logsig_7_purelin_1_trainbr. 

 

The lack of fit of parts of the predicted region was mainly observed for the 

ΔP(t+5) case. For example, the best model for this case could not predict the scaling 

tendency for MEG concentrations between 20 – 50%. For some of the experiments, 
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the R² of the fit was actually negative, indicating that the scaling process was not 

being accurately modeled (or that the residues of the regression in that region did 

not follow a normal distribution with a mean equal to zero).  

While most models did not present a good prediction performance for the 

new experiments, some were still very accurate. For the ΔP(t+5) time horizon, the 

logsig_6_purelin_1_trainlm model (values of the weights and bias are available in 

the Appendix C, Table C8) was the most accurate, with an R² ranging from 79.7% 

to 96.4%. Figure 3.4 shows the predicted differential pressure from this MLP model 

and the experimental data for all six experiments. These results are important 

because they show that even though accurate predictions can be made for some 

regions of the studied response, continuous validation of the best models is 

necessary as new data is obtained. 
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Figure 3.4. Representation of the behavior of the experimental data of the six 

experiments of the second database and the respective predicted data for the 

output ΔP(t+5) by the MLP model logsig_6_purelin_1_trainlm. 

 

For the best models chosen for each output variable, ΔP(t+1) and ΔP(t+5), a 

deeper evaluation was performed, starting for a comparison between the 

experimental and predicted values for the training and test datasets, shown on 

Figure S1A-B respectively for the variables ΔP(t+1) and ΔP(t+5). These results also 

show that the model chosen to predict the ΔP(t+1) has the best prediction power. 

 Another investigation adopted was to evaluate the behavior of the normalized 

residuals according to the ΔP values, comparing the response for the both output 
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variables ΔP(t+1) and ΔP(t+5) for the training and test datasets, respectively, Figure 

S2A-B. From that could be extract that the MLP model for the ΔP(t+5) variable has 

a tendency to predict higher values than the experimental measures, what is worsen 

in higher values of ΔP. However, it is important to highlight that the amount of data 

points with absolute normalized residuals higher than 0.1 is less than 1 % for the 

analyzed datasets for both output variables. 

 

3.1.3.3  

Sensitivity analysis 

For the sensitivity analysis, the best models for each output variable, ΔP(t+1) 

and ΔP(t+5), were chosen, which had the topologies logsig_7_purelin_1_trainbr and 

logsig_6_purelin_1_trainlm. The first sensitivity evaluation was made for the 

relevancy factor (r), Figures 3.5A-B show the values of r of each input variable for 

both target variables, respectively, ΔP(t+1) and ΔP(t+5). They indicate that the ΔP(t) 

are by far the most influential parameter for the two prediction horizons with a r 

close to 1, indicating expected strong correlation between the measure of the ΔP 

and its prediction for future horizons.  

 

Figure 3.5. Relevancy factor of both output variables ΔP(t+1) (A) and ΔP(t+5) (B). 

 

Then, these MLP models were analyzed for the Relative Importance (RI) 

parameter, which the values are presented on Figures 3.6A-B for the output 

variables ΔP(t+1) and ΔP(t+5) respectively. For the best ΔP(t+1) model, the inputs 
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pressure, temperature, CMEG and CHCO3- presented an RI varying between 14 % and 

19 %, and the input variable CCa2+ was the most relevant one for the ΔP(t+1) 

prediction. In turn, the input with less impact was the ΔP(t). 

 

 

Figure 3.6. Relative Importance (RI) of both output variables ΔP(t+1)(A) and 

ΔP(t+5)(B) calculated by the Garson method (GARSON, 1991). 

 

Conversely, for the best ΔP(t+5) model the most significant variables were 

the CMEG followed for the ΔP(t), respectively with the values of 34.7 % and 22.5 %, 

while the other inputs variables presented RI values lower than 15 %. This 

difference on the influence hierarchy of the input variables is interesting, since it 

shows an increase on the importance of the ΔP(t) for the prediction of the future. 

Also, for the ΔP(t+5) model, the high RI value of the variable CMEG indicates a reason 

for this MLP model presenting the best performance against the validation data 

group. This may indicate a strong implication that MEG has in impacting the 

development of the scale formation process due to its inhibitor effect. 

The two analyzed parameters, r and RI, led to different levels of influence 

for each input in the target variables. While the parameter r indicates the effect of 

the input values on the target variable, the RI parameter shows how the model 

attributes the importance for these inputs. Although, the ΔP(t) variable has a huge 

absolute value for the parameter r, a model that only uses this variable as input 

probably could predict the tendency of the ΔP curve but it would not be able to 

distinguish between the different scenarios. That way, the combination of these 
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results indicates that maybe a hybrid model could be a better approach for this 

problem, applying the MLP to lead with the ΔP curve behavior and another kind of 

model to handle the environment conditions information. However, this premise is 

outside of the scope of this work. 

Finally, the modeling results indicated that ANN could be applied to predict the 

differential pressure and to understand the evolution of the scaling process at earlier 

as well as later times. For process monitoring, this appears to be a promising tool 

for transforming digital data acquired during production to establish the scaling 

tendency of a well over time, by relating the scale formation process with 

operational variables as a start to develop a model that could simulate the conditions 

during oil and gas production.  

 

3.1.4 

Conclusions 

This study showed that using an MLP-type ANN enabled the modeling of the 

scaling process in a tube with a dynamic flow containing precipitated calcium 

carbonate. Even though the scaling process is a very complex system with 

stochastic behavior, this machine learning technique permitted its prediction over 

different time horizons: a “near future”, or one step ahead (ΔP(t+1)), and a “far 

future”, or five steps ahead (ΔP(t+5)). The generated models were highly accurate for 

both training and test data sets and for both time horizons, regardless of the 

activation function and the training algorithm used (trainlm and trainbr). However, 

using traingdx as a training algorithm gave poorer results. When using the models 

to predict a different series of experiments that simulated various viscosities with 

calcium carbonate inhibition, most models did not show the same initial high 

accuracy. In fact, only a few models were very accurate for all the experiments. 

Overall, for the ΔP(t+1) time horizon, the logsigs_7_purelin_1_trainbr was the best 

model, with an R² over 99.3% for the additional experiments. The 

logsig_6_purelin_1_trainlm model was the best model for the ΔP(t+5) time horizon, 

with an R² ranging from 79.7% to 96.4%. These results show that ANN can predict 

the differential pressure in a tube to understand the evolution of the scaling process 

in the near time as well as its development in the future. This strategy represents an 

important application of digital transformation to oil and gas production to establish 

the scaling tendency during the lifetime of a well based on differential pressure 
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process monitoring. 
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Machine learning models for measurement of pH using a low-

cost image analysis strategy 

 

 

 

 

The second part of this work is indirectly connected with the other 

type of fouling that may occur during production and has its origin in the 

organic components from the oil and gas. They are also caused by the 

different conditions (mainly pressure and temperature) that the three-

phase mixture (oil-gas-water) is exposed to during the extraction 

process. This problem can be avoided using inhibitors, but once the 

fouling is formed, there are some strategies that can be used to unplug 

the pipes and valves. One of these alternatives has been used extensively 

in the last decades, known as Nitrogen Generating System (NGS). This 

system releases a great amount of heat and N2 gas that act to redissolve 

the wax precipitates and gas hydrates. 

As presented in Section 2, this system has its kinetics very 

dependent on the pH conditions, which is a complex parameter to 

measure and monitor under high-pressure conditions. That motivates the 

development of a model to determine the pH in a pressurized system that 

could be applied to monitor the NGS in future applications. 

This section contains the manuscript version of the article that presents 

the results of the development of the model. Supporting Information, which 

will be available with the manuscript during the submission process, is 

presented in Appendix B. 
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ABSTRACT:  

One difficult measurement to be performed is the pH values in a pressurized system, 

requiring specialized equipment. With this problem as a goal, this work aims to 

develop models to determine the pH in pressurized systems (up to 6 MPa) as an 

initial step to create an applicable soft sensor. For that, classification and prediction 

models were created using image analysis and different Machine Learning 

techniques: Convolution Neural Networks (CNN), Support Vector Machines, and 

Decision Trees. All of them were explored in the classification models, but CNN 

was the only used for the regression ones. The best models for each technique were 

tested in two study cases: titration curve and CO2-H2O equilibrium systems. The 

best classification models were the CNN ones, but the model with the best 

performance was the predictive CNN using the reduce RGB images with 30 neurons 

in the last dense layer, which presents R2 values higher than 80%. 
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4.1.1 

Introduction 

Industrial processes demand the use of a large number of sensors to control 

and monitor the operational conditions for several different variables, such as 

temperature, pressure, liquid level, and concentration. However, some of these 

parameters are hard to measure in real time because of technical difficulties, 

elevated costs, and other factors (KADLEC et al., 2009; FUNATSU, 2018). One 

special process variable is the pH, which is present in several types of chemical 

industries, from the control of the kinetics of a reaction to the monitoring of the 

quality of the product or reagents (KHAN et al., 2017).  

Inside the pH measurement context, monitoring the pH values in the high-

pressure system is challenging due to the difficulty of producing the equipment, 

even though there have been published studies in this field since the middle of the 

last century. Usually, the standard pH sensors, such as glass electrode ones, are 

available for pressures up to 16 bar. Making that suitable equipment available in 

the market has high prices. That makes the development of indirect methods to 

measure or predict pH-value in high pressure conditions an interest subject to be 

explored, as highlighted by Lemmer et al. (2017) (DE OLIVEIRA et al., 2019; 

BYCHKOV et al., 2020; CROLET and BONI, 1983; SAMARAYAKE and 

SASTRY, 2013).  

As an alternative to physical sensors, the development and application of 

the called soft sensors are becoming more common in the industrial scenario, with 

an emphasis on the chemical industry (POERIO and BROWN, 2018; Sun and GE, 

2021; YAN et al., 2017).  Soft sensors are predictive models, which are usually 

created using two main strategies: using first-principal models (white-box models) 

or using the available database store from the past measurements (data-driven or 

black-box models) (SHANG et al., 2014; KADLEC et al., 2009). Data-driven 

models are a very popular strategy adopted to develop soft sensors since they do 

not require extensive knowledge about the system but a sufficient amount of 

information with enough quality to estimate the process's properties properly. That 
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makes this strategy very attractive to complex processes found in the industry. For 

that, conventionally, the modeling process uses a variety of statistical inference and 

Machine Learning (ML) techniques (SUN and GE, 2021; SANSANA et al., 2021).  

Due to the huge importance of pH for the industry, many soft sensors were 

created to measure the pH values in different specific industrial processes, applying 

different modeling strategies. For example, Dixit et al. (2021) have used 

Convolution Neural Network (CNN) models to predict the pH in red meat using 

hyperspectral images intended to monitor this important quality parameter. Also, 

the work of Capel-cuevas et al. (2011) developed a Multi-layer Perceptron (MLP) 

model to predict the pH value in a solution through image analysis for that using 

the hue value (h) of a picture with 11 immobilized sensing elements, covering the 

pH values on the range 0-14.  

This study aimed to develop classification and prediction models to determine 

the pH in pressurized systems, using image analysis and different ML strategies. 

The models will be developed using known buffer solutions. Then the best model 

will be tested in two other scenarios (study cases) to evaluate their performance.   

 

4.1.1.1 

Modeling Strategies 

 

4.1.1.1.1 

Convolution Neural Networks (CNNs) 

Considered a subtype of deep discriminative architecture, the CNN is 

inspired by the animal visual cortex organization and has its concept based on a 

Time-delay Neural Network (TDNN). In the CNN, the convolution process 

replaced the general matrix multiplication presented in others Artificial Neural 

Networks (ANN). CNN has been demonstrated to be suitable for processing two-

dimensional data with grid-like topologies, like images and videos. Additionally, 

the use of CNN requires minimal pre-processing, allowing end-to-end solutions. 

With the rapid development of computation, the use of GPU-accelerated computing 

has improved the CNNs train efficiency (BOUWMANS et al., 2019; LIU et al., 

2017). CNN has been applied in several fields, such as sea surface temperature 

prediction (HAGHBIN et al., 2021), detection of fracture in coal (KARIMPOULI 

et al., 2020), identification of superheat situations (LEI et al., 2020), and to predict 
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soil properties (WADOUX et al., 2019). 

CNN structure, Figure 4.1, consists of an input layer, an output layer, and 

multiple hidden layers. The hidden layers are divided into three classes: 

convolutional, pooling, and fully connected. In the convolutional layers, the most 

important part of the CNNs, are applied the convolution operations, the addition of 

the bias as the input data, and the transference of the results to the activation 

functions, so the result can be directed to the next layer. The weights and biases of 

this layer are organized into a series of kernels (or filters) responsible for the local 

feature extractions (YAO et al., 2019; ZAN et al., 2020; SHEN et al., 2021). The 

most common type of activation functions used for the CNN is the sigmoid function 

(sigmoid) and rectified linear units (ReLU) (ZAN et al., 2020), but other kinds, such 

as hyperbolic tangents (tanh), can be used (RIZKIN et al., 2019). 

 

Figure 4.1: CNN schematic representation. 

 

In the polling layers (or subsampling layer), the downsampling is completed, 

reducing the dimension of feature maps. Commonly, the strategies used in this layer 

are maximum pooling (max pooling) (used in this study) and average pooling. 

These layers are used after one or two convolutional layers. Finally, the last hidden 

layer type is the fully connected layer (or dense layer), where all the neurons are 

connected with active ones from the previous layer. Then the last dense layers are 

connected with the output layer that aims to integrate the highly abstract features 

for classification or regression tasks. In this type, all the neurons are connected with 

active ones from the previous layer (YAO et al., 2019; ZAN et al., 2020; YUAN et 

al., 2020). 
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4.1.1.1.2 

Support Vector Machines (SVMs) 

Support vector machine, Figure 4.2, is a ML method that was first developed 

for binary linear classification problems proposed by Cortes and Vapnik (1995). 

The technique separates the classes with the largest gap (optimal margin) between 

the borderline instances (Support Vectors), which leads to the method being known 

as an optimal margin classifier. SVM is widely used in classification problems due 

to its simplicity, strong generalization ability, and computational efficiency 

(ASGHER et al., 2020; PENG et al., 2020). The method evolution allows it to be 

applied to multi-class problems, using techniques like One-versus-One (OvO) and 

One-versus-Rest (OvR), and to be used for non-linearly separable data using 

kernels (CHAUHAN et al., 2019; DING et al., 2019). 

 

Figure 4.2: SVM schematic representation, with a three classes problem using 

linear kernels (dashed lines) 

 

Kernels are mathematical functions that transform the data from a given 

space (input space) to a new one with more dimensions (feature space), where this 

data can be separated with the linear surfaces (hyperplanes) (CHAUHAN et al., 

2019). The most common kinds of a kernel are linear (Eq. 4.1), polynomial (Eq. 

4.2), RBF (Radial-Basis Function, Eq. 4.3), and sigmoid (Eq. 4.4).  

 

𝐾𝑒𝑟𝑛𝑒𝑙𝑙𝑖𝑛𝑒𝑎𝑟(𝑥𝑖, 𝑥𝑗) = (𝑔𝑎𝑚𝑚𝑎(𝑥𝑖, 𝑥𝑗) + 𝑐𝑜𝑒𝑓)    (4.1) 

𝐾𝑒𝑟𝑛𝑒𝑙𝑝𝑜𝑙𝑦(𝑥𝑖, 𝑥𝑗) = (𝑔𝑎𝑚𝑚𝑎(𝑥𝑖, 𝑥𝑗) + 𝑐𝑜𝑒𝑓)
𝑑𝑒𝑔𝑟𝑒𝑒𝑒

   (4.2) 
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𝐾𝑒𝑟𝑛𝑒𝑙𝑅𝐵𝐹(𝑥𝑖 , 𝑥𝑗) =  𝑒𝑥𝑝(−𝑔𝑎𝑚𝑚𝑎‖𝑥𝑖−𝑥𝑗‖2)      (4.3) 

𝐾𝑒𝑟𝑛𝑒𝑙𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥𝑖 , 𝑥𝑗) = 𝑡𝑎𝑛ℎ(𝑔𝑎𝑚𝑚𝑎(𝑥𝑖 , 𝑥𝑗) + 𝑐𝑜𝑒𝑓)   (4.4) 

 

They depend on the hyperparameters degree and gamma, which can be 

optimized. The first one is related to the degree of the polynomial function, being 

present only in Eq. 4.2. The hyperparameter gamma represents the influence of each 

data in the training database in the optimal decision surface position, which then 

can be a function of only the numbers of the variable or also the variance of the 

normalized dataset matrix. Another important hyperparameter is the C, which 

represents a regularization cost of the misclassification and the influence on the 

margin width and hardness of the SVM models (LORENA et al., 2007; RHYS et 

al., 2020 and SCIKIT-LEARN, 2022a). 

 

4.1.1.3 

Decision Trees (DTs) 

Decision Tree (DT) is another very widely used ML technique for 

classification problems due to the easy implementation and understanding of its 

step. DT structure, Figure 4.3, is composed of several binary tests along the tree, 

where the tests start in the root node of the DT and progress through the different 

nodes, still reaching one of the leaf nodes the determine the class of the data 

(GEURTS et al., 2009; TANGIRALA, 2020; PRIYAM et al., 2013 and SCIKIT-

LEARN, 2022b).  

Figure 4.3: DT schematic representation. 

 

Some of the hyperparameters which can be explored during the 

development of the models are the depth of the tree that is determined by the 
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number of layers from the root node to the leaf node, the maximum number of 

leaves in the last layer of DT, and the criteria applied to evaluate the quality of the 

split during the training process. To evaluate the quality of the split can be used 

different metrics parameters the measure the purity of the nodes along the DT. In 

this study, the two ones tested were the Gini impurity (gini) and the cross-entropy 

(entropy) (HASTIE et al., 2009 and SCIKIT-LEARN, 2022b). 

 

 

4.1.2. 

Methodology 

 

4.1.2.1 

Case study: Pressurized reactor 

The experiments were conducted on a midiclave reactor apparatus 

(Büchiglasuster, Gschwaderstrasse 12, Uster, Switzerland) with a double-walled 

reaction vessel constructed on AISI 316 stainless steel, Figure 4.4. It had two 

borosilicate windows disposed at a 180º angle horizontally, temperature and 

pressure transducers, mechanical stirring, and data acquisition controlled by Büchi 

software bls2 2.7e. In one window, a light source was adapted, provided by a LED 

lamp dimmer GU 10 5 W, dual voltage, with a luminous flux of 280 lm, coupled 

with a polymer circular polarizer filter (with a diameter of 40 mm) and with the 

light intensity controlled using a dimmer shield together with an Arduino Uno. On 

the second window was connected to a Microsoft LifeCam Cinema HD. The image 

acquisition occurred at the rate of 20 images of 32 bits per second with a resolution 

of 1280 x 800 pixels. 
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Figure 4.4: Experimental setup scheme (adapted from DE OLIVEIRA et al., 

2019) 

 

The Korthoff indicator was prepared by mixing different pH indicators, 

previously diluted to 0.1 %, and more details can be found in De Oliveira et al. 

(2019). It was added to the proportion of 1 % v/v of the liquid phase for all 

experiments. The nine buffer solutions in the pH range 2-10 were prepared in a 

concentration of 0.1 mol L-1 with deionized water in the final volume of 500 mL, 

according to the procedure described in De Oliveira et al. (2019). All the buffer 

solutions had their exact pH value at atmospheric pressure determined using a 

previously calibrated pH meter (Mettler-Toledo SevenMultiTM S47, Columbus, 

USA). 

To construct the calibration curve, the batch reactor was loaded with 200 mL of 

the buffer solution containing the Kortthoff indicator for each pH value. The 

experiments were maintained at 298.15 K, 200 rpm stirring rate and using different 

working pressure (0.0, 0.5, 1.0, 2.0, 4.0, 6.0 MPa with N2), waiting around 10 

minutes to stabilize the signal at each pressure. 

Aiming to test the developed models with the different strategies, they were 

applied to predict the pH values in two situations. First, an acid-base titration curve 

was performed using a strong base (NaOH 0.04724 mol L-1) and a strong acid (HCl 

0.01789 mol L-1). The reactor, at 298.15 K, 200 rpm, and atmospheric pressure, was 

filled with 200 mL of HCl solution with the Kortthoff indicator, and the NaOH 

solution was added to 150 mL at the flow rate of 2.00 mL min-1 using an HPLC 

pump (Shimadzu model LC-20AR, Kyoto, Japan). In some experiments, the system 

was pressurized with N2 at 6 MPa. The pH values obtained through the models were 
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compared with the values calculated using the concentrations of the solutions for 

the theoretical titration curve. The second case was the pH measurement in the 

pressurized CO2-H2O systems. For that, first, the system was pressurized with CO2 

at the desired pressures (0.1, 0.3, 0.5, 1.0, 2.0, and 5.0 MPa). Then, 200 mL of 

distilled water containing the Korthoff indicator was added to the reactor using an 

HPLC pump, waiting around 2 h for the stabilization of the system. The system 

pressure raised with the addition of water, but then it decreased due to the 

dissolution of the CO2 in the water until it reached the system equilibrium. The pH 

values measured in the equilibrium condition were compared with obtained data in 

the literature. 

 

4.1.2.2 

Database preparation 

The experimental data used in this work were previously presented by De 

Oliveira et al. (2019). For the development of the model, a dataset with 386 images 

on the RGB color system with 1280 x 800 pixels of resolution was selected, 

composed of images for all the nine pH categories in the amount shown in Table 

4.1. Figure 4.5 shows examples of images for each pH category. The pH values 

were verified using the equation presented on the based work and using, when 

necessary, the function round (NUMPY, 2022). This database was split into three 

groups, train (70%), validation (15%), and test (15%) to develop the models. 

 

Table 4.1. Number of images for each pH category in the training database 

pH categories  Number of images 

2 40 

3 49 

4 45 

5 45 

6 39 

7 24 

8 50 

9 43 

10 51 
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Total 386 

 

 

Figure 4.5:  Examples of the images presented in the dataset for each pH category. 

 

To build the models, different kinds of input were tested. For that, the 

reactor images pass for some simple pre-processing steps, such as changing the 

color system from RGB to HSV and reducing their resolution by cropping the center 

region of the images. Thus, resulting in the input types presented in Table 4.2. 

Table 4.2. Types of input tested in the different models developed. 

Code Color system  Input information Resolution 

Input 1 RGB  RGB components 1280 x 800 

Input 2 RGB  RGB components 280 x 280 

Input 3 HSV HSV components 280 x 280 

Input 4 HSV hue 280 x 280 

Input 5 HSV saturation 280 x 280 

Input 6 HSV value 280 x 280 

 

A second image dataset was also obtained from the application test of the 

models developed on the acid-base titration curve and the pressurized CO2-H2O 

systems cases for those following the same procedures to determine the pH values 

or classes applied for the first database. 

 

4.1.2.3 

Modeling strategies 

This work explored three methodologies to build a soft sensor to determine the 

pH value as a class: CNN, SVM, and DT. The CNN models also developed a sensor 

to predict the pH value with one decimal case of accuracy. All the models were 
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built and tested using Python v3.6 as a programming language on the Google 

Colaboratory Pro environment. 

 

4.1.2.3.1 

CNN 

The proposed architecture for the CNNs had two dense layers using 

Rectified Linear Units (ReLU) as activation functions. For the classifier models, 

the output layer had nine neurons, one for each class that gives the probability of 

the image belong to each class, using the softmax as an activation function. The 

regression models had only one neuron in this layer that gives a value for the pH in 

the range of 2-10, in which linear activation function was used. The other 

parameters of the architecture were explored as hyperparameters and summarized 

with their options or search regions on Tab. 4.3. For the CNNs models, all six types 

of inputs were tested. 

 

Table 4.3: Hyperparameters tested in the CNN models 

Hyperparameters Search region or Options 

Number epochs for training [80 2000] 

Batch size 4, 8, 16, 32, 64,128 

Number of convolution layer [2 8] 

Activation functions ‘linear', 'ReLU', 'sigmoid', 'tanh' 

Filter size 8, 16,32, 64 

filter kernel 1,3, 5 

Optimizer ‘adam', 'SGD', 'Adadelta' 

Dropout layer percentage 0.05, 0.1, 0.15, 0.2, 0.25, 0.3 

Learning rate 0.01, 0.005, 0.001, 0.0005, 0.0001 

Number of neurons - first dense layer 40, 50, 60, 70, 80, 90, 100, 120 

Number of neurons - second dense layer 10, 20, 30, 40, 50, 60 

 

The results of the training and initial tests of both types of CNN models 

were compiled in the Weight and Biases (wandb) platform (Weight and Bias, 2022). 

This platform developed in Python gives an alternative to organize the machine 

learning results using different kinds of frameworks and libraries (such as PyTorch, 

Keras, and Scikit-learn) on a regular computer or using cloud-hosted ones (such as 
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Azure, Google Cloud, and AWS). It also gives an iterative way to compare the 

performance of the models and the influence of each hyperparameter, using, for 

example, the parallel coordinate plot.  

 

4.1.2.3.2 

SVM 

The SVM classifier models were developed using the Input 2 kind. The 

scikit-learn library 1.0.2 (Scikit-learn, 2022a; Pedregosa et al., 2011) is used to 

create, train and test the models, and permits the implementation of two different 

approaches for the multi-class cases. The first one, known as OvR, creates a binary 

classification for each class versus the rest of the dataset, and the second one is 

called OvO, which also builds a binary classification for each class but against every 

other class. This was explored as a hyperparameter (Dec_func_shape). The other 

four hyperparameters investigated, Tab. 4.4, are related to the type of kernel applied 

and their parameters. 

Table 4.4. Hyperparameters tested in SVM 

Hyperparameters Search region or options 

Dec_func_shape ‘OvO', 'OvR' 

C [0.001; 0.1; 0.5; 1; 2; 5]  

kernel ‘linear', 'poly', 'rbf', 'sigmoid' 

degree 1, 2, 3, 4, 5, 6 

gamma ‘scale', 'auto' 

 

4.2.3.1 

Decision Tree (DT) 

The classifier models were developed using Input 2 and using the scikit-

learn library 1.0.2 (Scikit-learn, 2022b; Pedregosa et al., 2011) to train and test 

them. Table 4.5 shows the four hyperparameters explored during the development 

of the models. 

Table 4.5: Hyperparameters tested in DT 

Hyperparameters Search region or options 

Crit ‘gini', 'entropy' 

max_depth 5, 7, 9, 11, None 
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max_leaf_nodes 10, 20, None 

min_samples_leaf 1, 5, 7, 10 

  

 

4.1.2.4 

Statistical Performance Evaluation 

To evaluate the performance of the classifiers of the models, with the 

different hyperparameters and architecture, the metrics were obtained using the 

python library sklearn.metrics 1.0.2 (SCIKIT-LEARN, 2022c; PEDREGOSA et 

al., 2011). A very common metric is accuracy (ACC, Eq. 4.6), which is calculated 

by the ratio of the number of correct predictions to the total number of them 

(NAMUDURI et al., 2020). Another two parameters used were the precision (PR, 

Eq. 4.7), a measure of the quantity of the prediction for a class is correct, and the 

recall (RC, Eq. 4.8) (or sensitivity), which represents the models' ability to correctly 

detect the objects that belong to the class. For the case of these three parameters, 

the results are in the range [0 1], being the best values closer to 1. 

 

𝐴𝐶𝐶 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
       (4.6) 

𝑃𝑅 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
        (4.7) 

𝑅𝐶 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
        (4.8) 

 

where TP was the number of true positives, TN was the number of true negatives, 

FP was the number of false positives, and FN was the number of false negatives. 

Another common technique to evaluate the performance of a classifier is the 

Confusion Matrix (CM), which allows visualization of the classification results, and 

was also applied in this study. In a binary case, it is a square matrix, a 2x2 matrix 

(Figure 4.6), where the number of rows and columns is equal to the number of 

classes. CM presents information about how often a certain behavior is detected 

correctly or not, in which the values for parameters TP, TN, FP, and FN are reported 

(CAELEN, 2017; RUUSKA et al., 2018; HASNAIN et al., 2020). 
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Figure 4.6:  Scheme of a confusion matrix (2x2) in a binary case 

 

For the regression CNN models, the evaluation parameters chosen were 

Sum of Squared Errors (SSE, Eq. 4.9), Root Mean Squared Error (RMSE, Eq. 4.10), 

and coefficient of determination parameter (R2, Eq. 4.12). To calculate R2, it was 

also necessary to calculate the Total Sum of Squares (TSS, Eq. 4.11). For the errors 

criteria adopted, the goal was to achieve the lowest values, and for the R2 the best 

results were indicated for values closer to 1. 

 

𝑆𝑆𝐸 =  ∑ (𝑥𝑖 − 𝑥�̂�)
2𝑛

𝑖=1                      (4.9) 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑥𝑖−𝑥�̂�)2𝑛

𝑖=1

𝑛
                     (4.10) 

𝑇𝑆𝑆 = ∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1            (4.11) 

𝑅² = 1 −
𝑆𝑆𝐸

𝑇𝑆𝑆
                   (4.12) 

 

where variables n, 𝑥𝑖, 𝑥�̂� and �̅� represent the total number of data points, the 

observed value, the predicted value, and the mean value of the samples, 

respectively. 

Figure 4.7 shows a schematic representation of the proposed methodology, 

from the dataset pre-processing up to the choice of the best models, which are then 

tested with the data from the system pressurized with CO2 and the acid-base titration 

curve. 
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Figure 4.7:  Flowchart of the methodology 

 

4.1.3 

Results and Discussion 

Once the results were determined and processed into the database, they were 

split into training, validation, and test groups to build and optimize the models. The 

training data of the first two groups were directly used in the development of the 

models, and the test group was used as the first validation step. The different 

classificatory and prediction models were explored with their respective 

hyperparameters to compare them and find the best ones to be tested in specific 

applied situations. 

 

 4.1.3.1 

Evaluation of the classification models 

 

4.1.3.1.1 

CNN classification models 

Table 4.6 shows the hypermeters and the performance parameters for the 

best five models for Inputs 1, 2, and 3, in which the activation function used was 

ReLU for all models. Table 4.7 also show the same kind of information but referent 
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to Inputs 4, 5, and 6, which had the different types of activation function used. The 

results indicated that the best option for input was the image with 280 x 280 pixels 

using the RGB color system (Input 2) since these models presented the highest ACC 

values, greater than 96% for the validation and test groups, with the highest ACC 

value equal to 97.87% for the test group, and they also had a small number of 

neurons on the dense layers, making the models lighter. The better performance of 

the models using Input 2 is probably due to the section of the image selected 

containing the most important part of the information. 
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Table 4.6: CNN classification models topologies for the best models – Part I   

models ID Input Hyperparametersa training time (s) Validation group Test group 

1 2 3 4 5 6 7 8 9 10 11 ACC ACC 

CNN_class_1 Input 1 12 139 8 8 1 3 0.001 4 0.2 120 30 578 0.9772 0.9575 

CNN_class_2 12 157 4 8 3 5 0.0005 3 0.15 100 40 688 0.9635 0.95745 

CNN_class_3 8 156 8 8 3 5 0.0005 3 0.2 120 20 724 0.9635 0.95745 

CNN_class_4  12 137 4 8 3 5 0.0005 3 0.25 120 60 610 0.9543 0.95745 

CNN_class_5  12 137 8 8 3 1 0.0005 3 0.2 100 50 580 0.9543 0.95745 

CNN_class_6 Input 2 4 128 8 8 3 5 0.0001 4 0.05 100 60 98 0.9817 0.97872 

CNN_class_7 12 140 8 8 3 3 0.0005 3 0.1 70 30 84 0.9817 0.97872 

CNN_class_8 8 132 8 8 5 5 0.0001 4 0.05 90 60 143 0.9772 0.97872 

CNN_class_9  12 123 8 8 5 5 0.0005 4 0.15 80 10 95 0.9635 0.97872 

CNN_class_10  4 118 8 8 3 5 0.0001 4 0.1 120 60 99 0.9635 0.97872 

CNN_class_11 Input 3 12 145 8 8 5 5 0.005 4 0.1 70 60 112 0.9178 0.85106 

CNN_class_12 8 153 8 8 5 3 0.005 4 0.05 40 50 129 0.8950 0.85106 

CNN_class_13 12 152 8 8 3 5 0.005 4 0.05 50 40 105 0.9452 0.80851 

CNN_class_14 12 148 8 8 5 3 0.005 4 0.05 40 30 113 0.8356 0.78723 

CNN_class_15  8 152 4 8 3 5 0.01 2 0.05 120 40 100 0.8721 0.78723 

a - hyperparameters: 1 – batch_size; 2- epochs; 3 – filter_size 1; 4 – filter_size_2; 5 - kernel_size_1; 6 - kernel_size_2; 7 - learning rate, 8 - n_layers; 9 – p_dropout; 10 - size_dense_1; 11 – size_sense_2   
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Table 4.7: CNN classification models topologies for the best models – Part II 

models ID Input Hyperparametersa training 

time (s) 

Validation 

group 

Test 

group 

1 2 3 4 5 6 7 8 9 10 11 12 13 ACC ACC 

CNN_class_16 Input 4 8 261 4 8 1 3 0.0001 2 0.25 90 40 linear sigmoid 154 0.1598 0.1064 

CNN_class_17 12 146 8 8 5 5 0.0001 4 0.2 40 60 sigmoid linear 98 0.1507 0.1489 

CNN_class_18 12 130 8 4 5 3 0.01 3 0.3 40 30 sigmoid linear 83 0.1461 0.1489 

CNN_class_19 12 163 8 4 5 5 0.005 4 0.05 50 40 relu relu 104 0.1461 0.1489 

CNN_class_20 4 134 4 8 5 5 0.01 4 0.15 50 30 relu linear 100 0.1461 0.1489 

CNN_class_21 Input 5 4 261 4 8 5 5 0.0005 4 0.2 80 60 tanh relu 180 0.6347 0.6596 

CNN_class_22 4 615 4 8 3 3 0.001 3 0.15 100 20 relu sigmoid 345 0.5890 0.6596 

CNN_class_23 4 257 8 8 5 5 0.001 3 0.15 40 50 tanh relu 246 0.7580 0.6596 

CNN_class_24 8 455 4 8 3 1 0.01 4 0.1 100 50 tanh relu 196 0.6621 0.6596 

CNN_class_25 12 683 8 4 5 5 0.005 2 0.2 50 20 relu sigmoid 221 0.6667 0.6596 

CNN_class_26 Input 6 8 222 4 4 5 3 0.005 4 0.05 40 30 linear relu 146 0.9224 0.8723 

CNN_class_27 12 416 8 8 3 5 0.005 4 0.3 120 60 relu relu 247 0.9909 0.8723 

CNN_class_28 12 447 8 8 3 3 0.005 4 0.25 90 60 linear relu 253 0.9909 0.8723 

CNN_class_29 8 446 8 8 5 5 0.001 4 0.2 90 30 relu relu 437 0.8904 0.8085 

CNN_class_30 8 549 8 8 5 5 0.001 3 0.15 120 30 linear tanh 355 0.9315 0.7872 

a - hyperparameters: 1 – batch_size; 2- epochs; 3 – filter_size 1; 4 – filter_size_2; 5 - kernel_size_1; 6 - kernel_size_2; 7 - learning rate, 8 - n_layers; 9 – p_dropout; 10 - size_dense_1; 11 – size_sense_2; 

12 – activation_function_1; 13 – activation_function_2 
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The performance of the models can also be analyzed using the CM, which 

allows an examination of the models’ performance for each class. To exemplify 

that, Figure 4.8A-B shows the CMs from the CNN_class_10 for the training and 

test datasets, respectively. The images confirm the good classification results 

presented in Table 6 but also show that the misclassification happens between the 

pH classes 2, 3, and 4, presenting the class that the models could find more difficult 

to classify in other tests.  

 

 

Figure 4.8:  Confusion matrix (CM) of the CNN_class_10 for the training (A) and 

test (B) datasets. 

 

The results also showed that the models using the RGB values had a better 

performance compared to the ones using the HSV information. This behavior was 

not expected since prediction models for the pH value presented in the works of 

Capel-Cuevas et al. (2011), and De Oliveira et al. (2019) had good results using the 

component hue of the HSV system to predict the pH value. Thus, indicating that 

the convolution process could extract the representative information without the 

need to swap the color system. 

For the models using as input the RGB information and all the components 

of the HSV, the hyperparameters of the activation_functions were optimized in an 

initial exploratory step, in which it was found that the best activation function for 

the convolution layer was the ReLU, being applied in all the models shown on Table 

6. Another hyperparameter optimized in the initial search was the optimization 

algorithm, in which the “adam” had the best results and was the one used to build 

all the CNN models.   

DBD
PUC-Rio - Certificação Digital Nº 2012332/CA



106 

 

 

 

Since the CNN models created using the individual components of the HSV 

did not present the expected performance, other kinds of activation functions were 

explored for the convolution layers. Still, no significant improvements were 

noticed, being the ReLU type the most common one applied in the best models, as 

presented in Table 4.7.  

The hyperparameter filtr_size for these best models was commonly equal to 

eight, one of the lowest values tested, reducing the number of parameters of the 

models. Another interesting result was the number of layers of the best models 

(n_layers) indicates that the best ones are formed by three or four convolution 

layers. The fact that the CNNs were not too deep also gives a small number of 

parameters for the models. 

 

4.1.3.1.2 

SVM models 

The hyperparameters of the five best models are shown in Table 4.8, along 

with the performance parameters for the validation and test groups, since all of them 

presented accuracy equal to 1 for the training group. The results for all trained SVM 

models are available in Appendix D in Table D1. It was observed that the best 

performance was obtained using the kernel of the polynomial form with the lowest 

degrees. The best way to determine the parameter gamma was by using their 

dependency on the number of classes. Also, the best methodology to approach this 

multiclass problem was the OvO, present in the three best models. 

All five models presented high values for all the performance parameters, 

higher than 90% for all groups. However, the values for the test group were higher 

than the ones for the validation group, which could indicate that models could have 

a problem with overfitting or that the division of the unbalanced dataset could result 

in a problem during the training process.
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Table 4.8. SVM topologies for the best models 

Model ID Hyperparameters Validation group Test group 

Dec_func_shape C Kernel degree gamma training time (s) PR RC ACC PR RC ACC 

SVM_1 OvO 0.01 poly 1 Auto 73.63 0.9434 0.9471 0.9362 0.9815 0.9630 0.9787 

SVM_2 OvO 0.02 poly 2 Auto 67.54 0.9352 0.9378 0.9362 0.9815 0.9630 0.9787 

SVM_3 OvO 0.03 poly 3 Auto 65.69 0.9352 0.9378 0.9362 0.9815 0.9630 0.9787 

SVM_4 OvR 0.04 poly 1 Auto 78.13 0.9434 0.9471 0.9362 0.9815 0.9630 0.9787 

SVM_5 OvR 0.05 poly 2 Auto 68.44 0.9352 0.9378 0.9362 0.9815 0.9630 0.9787 
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4.1.3.1.3 

DT models 

Table 4.9 shows the results of the five best models according to the 

performance parameters and their respective hyperparameters. The results for all 

trained DT models are available in Appendix D in Table D2. From the results, it 

was possible to observe that the “entropy” were the best criteria to measure the split’ 

quality, being applied in all five models. The other hyperparameter that can be 

noticed is the max_leaf_nodes equal to 10, which appears in three of the five models 

shown that is concordant with the number of pH classes, which are equal to 9. 

Another interesting result is that the DT models demanded a longer training time 

than the SVM ones, even though they were simple models. Analyzing the 

performance parameters can be observed the same problems that were pointed out 

for the SVM models, and the ACC values are lower than the ones obtained for those 

models. 

DBD
PUC-Rio - Certificação Digital Nº 2012332/CA



109 

 

 

 

Table 4.9: DT topologies for the best models 

Model ID Hyperparameters  Validation group Test group  

Crit max_depth max_leaf_nodes min_samples _leaf training time (s) PR RC ACC PR RC ACC 

DT_1 entropy None 10 7 198.70 0.8977 0.8479 0.8723 0.9397 0.9434 0.9362 

DT_2 entropy 7 None 1 224.67 0.8825 0.8405 0.8511 0.9139 0.9249 0.9149 

DT_3 entropy None 20 1 222.43 0.8726 0.8442 0.8511 0.9212 0.9063 0.9149 

DT_4 entropy 11 10 10 188.88 0.8636 0.8479 0.8511 0.9212 0.9063 0.9149 

DT_5 entropy None 10 5 206.46 0.8852 0.8442 0.8511 0.9119 0.9249 0.9149 
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4.3.2 

Evaluation of the prediction models 

 

4.3.2.1 

CNN prediction models 

Table 4.10 shows the performance values, and the hyperparameters of the 

best five models of each kind of input tested. These models had R2 and RMSE as 

the performance parameters evaluated, where the lowest value indicated the best 

response for all of them. As observed in the classification models, the best results 

were obtained with the Input 2 type. The results also showed that these models also 

had a low number of convolutional layers and neurons in the dense layers. 

Different from the strategy for the classification of CNN models, the 

prediction models have only one neuron in the output layer, given the predicted pH 

value. In the hyperparameters, exploration for the prediction models tested different 

types of activation functions for all input types. Although the ReLU function type 

was present in several topologies, it did not have the same predominance observed 

in the classificatory models. The batch size use to train the all best models of the 

Input 1 was equal to 12, while for the models using Input 2 and Input 3 the best 

results were obtain with batch sizes of 8 and 4. For all the prediction models, 

“adam” was also applied as the optimizer algorithm. 

Also, in the prediction models case, the results for the ones using RGB 

values had a better performance than those using the HSV information, and again 

Input 6 showed the worst results. 

For the prediction models, the best performance results were often obtained 

when the CNN had three or four convolution layers in its topology. However, some 

models with only two layers appeared among the best ones.  

 

DBD
PUC-Rio - Certificação Digital Nº 2012332/CA



111 

 

 

 

Table 4.10: CNN prediction models topologies for the best models 

models ID Input variables Hyperparameters Training time 

(s) 

RMSE (test) R2 (test) 

1 2 3 4 5 6 7 8 9 10 11 12 13 

CNN_pred_1 Input 1 12 99 8 8 1 5 0.005 3 0.25 100 60 relu relu 277 0.316 0.982 

CNN_pred_2 12 106 8 8 1 3 0.0005 3 0.3 50 50 linear linear 251 0.438 0.978 

CNN_pred_3 12 104 8 8 3 5 0.0005 3 0.25 90 50 tanh relu 359 0.481 0.971 

CNN_pred_4 12 101 8 8 3 3 0.001 4 0.3 120 50 relu relu 334 0.636 0.942 

CNN_pred_5 12 90 4 4 1 1 0.01 4 0.25 40 20 linear relu 199 0.643 0.940 

CNN_pred_6 Input 2 8 86 8 8 3 3 0.0005 4 0.3 60 40 tanh tanh 46 0.150 0.993 

CNN_pred_7 8 102 8 8 3 1 0.0005 3 0.15 60 50 sigmoid relu 53 0.184 0.994 

CNN_pred_8 4 113 8 4 3 1 0.005 2 0.25 70 40 relu linear 58 0.200 0.990 

CNN_pred_9 4 118 8 8 3 1 0.001 3 0.15 100 30 relu linear 67 0.219 0.995 

CNN_pred_10 8 104 8 8 1 5 0.0005 4 0.2 100 60 relu sigmoid 56 0.191 0.994 

CNN_pred_11 Input 3 4 118 8 8 1 3 0.005 2 0.2 100 40 linear relu 78 0.480 0.979 

CNN_pred_12 8 120 8 8 3 3 0.005 2 0.05 120 20 relu linear 58 0.486 0.971 

CNN_pred_13 8 119 8 8 5 5 0.005 2 0.05 120 40 linear relu 68 0.463 0.971 

CNN_pred_14 4 118 8 8 3 3 0.01 2 0.1 100 40 relu relu 77 0.499 0.966 

CNN_pred_15 12 106 8 8 1 3 0.01 2 0.15 100 20 linear relu 48 0.487 0.967 

CNN_pred_16 Input 4 12 102 8 8 5 1 0.01 2 0.05 100 40 tanh tanh 41 2.740 -0.005 

CNN_pred_17 12 116 8 8 5 1 0.01 2 0.2 70 60 sigmoid sigmoid 35 2.740 -0.004 

CNN_pred_18 12 93 4 8 5 1 0.0001 2 0.05 70 30 linear sigmoid 36 2.740 -0.005 

CNN_pred_19 12 114 8 8 3 5 0.01 2 0.25 70 60 sigmoid sigmoid 43 2.740 -0.005 

CNN_pred_20 12 113 8 8 3 3 0.01 2 0.25 120 60 sigmoid tanh 42 2.740 -0.005 

CNN_pred_21 Input 5 12 111 8 8 5 5 0.01 3 0.2 70 60 relu linear 62 0.854 0.921 
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CNN_pred_22 12 98 4 8 5 3 0.005 2 0.3 90 10 linear relu 38 0.876 0.920 

CNN_pred_23 8 92 4 8 5 5 0.01 2 0.15 120 60 relu linear 43 0.881 0.919 

CNN_pred_24 8 96 4 4 5 1 0.005 2 0.3 90 60 linear linear 42 0.901 0.863 

CNN_pred_25 12 111 4 8 5 3 0.01 2 0.2 70 60 linear relu 41 0.904 0.975 

CNN_pred_26 Input 6 8 120 8 8 5 5 0.01 3 0.1 80 50 tanh relu 93 0.446 0.972 

CNN_pred_27 4 93 8 8 3 3 0.005 3 0.2 90 60 relu relu 63 0.815 0.908 

CNN_pred_28 4 105 4 8 3 3 0.01 2 0.15 90 20 linear relu 59 0.830 0.917 

CNN_pred_29 8 104 4 8 1 3 0.01 3 0.1 40 60 tanh relu 63 0.965 0.885 

CNN_pred_30 4 112 8 8 3 3 0.01 4 0.1 90 50 sigmoid relu 94 0.976 0.879 

a - hyperparameters: 1 – batch_size; 2- epochs; 3 – filter_size 1; 4 – filter_size_2; 5 - kernel_size_1; 6 - kernel_size_2; 7 - learning rate, 8 - n_layers; 9 – p_dropout; 10 - size_dense_1; 11 – size_sense_2; 12 – activation_function_1; 13 – 

activation_function_2 
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4.1.3.3 

Validation of the models 

Once the best models were selected, a natural next step was to test their 

applicability to determine the pH value, using the two scenarios in which they could 

be exposed during their use. For that, the classification and prediction CNN models 

with Input 2 images were chosen since they presented the best performance results, 

respectively models CNN_class_6-10 and CNN_pred_6-10. DT and SVM models 

were also tested to compare their efficiency with the classification CNN ones.  

 

4.1.3.3.1 

Case study: Titration curve of strong acid with a strong base 

The first case studied was the already known strong acid – strong base 

titration.  For that, the images of six experiments were used (four at atmospheric 

pressure and two pressurized at 6 MPa)  to test the best five classification models 

of each technique CNN, SVM, and DT, and the five CNN prediction models. 

Figure 4.9 shows a comparison between the ACC values of each CNN 

classificatory model tested, presenting the mean, low and high values of the 

performance parameter. The average ACC values are very similar for all the 

models, ranging from 88% to 92%. In general, the performance of the CNN models 

was lower than expected, although all the models had no ACC values lower than 

80%, except for the CNN_class_7.  

 

Figure 4.9:  Accuracy values for the CNN classification models in the 
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neutralization curve scenario 

Figure 4.10A shows the ACC values for the SVM model tested, and Figure 

4.10B shows the values for the DT models, presenting the mean, low and high 

values of the performance parameter. Both strategies present a worst performance 

than the CNN classification models, with average ACC values, lowers than 75%. 

SVM models show a better performance than the DT models, but both strategies 

had models with a big range of ACC values. 

 

Figure 4.10:  Accuracy values in the neutralization curve scenario for the 

classification models: SVM (A) and DT (B). 

 

The performance parameters of the prediction CNN models are presented in 

Figures 4.11A-B, respectively, the parameters RMSE and R2. Comparing the 

parameters’ results, it is observed that the five models showed a good fit with the 

experimental values, presenting R2 values high than 90 %, in which the best model 

was the CNN_pred_6 with the average R2 and RMSE, respectively, equal to 94.96% 

and 0.8198. The result indicates that the prediction models had a better performance 

than the classification ones. 
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Figure 4.11:  RMSE (A) and R2 (B) values for the CNN predict models in the 

neutralization curve scenario. 

 

4.1.3.3.2 

Case study: CO2-H2O equilibrium systems 

In this second study case, the analyzed scenario was the change in the pH of 

the aqueous solution due to the dissolution of the CO2 in the solution due to the 

pressure applied in the reactor. The ten CNN models, five classificatory and five 

predictions, and the DT and SVM models were evaluated using data obtained from 

eight experiments, in which the CO2 pressure in the system varied between 0.1 MPa 

and 5 MPa. 

The performance parameter analyzed for the CNN classification models was 

the ACC, shown in Figure 4.12. As observed in the first case study, the models 

presented similar average ACC values in the range of 81% to 85%. Although these 

values were not distant from those found in the previous case, when the lowest 

values obtained were analyzed, ACC values were lower than 71% for all models, 

indicating that they could classify with a lower precision in some of the 

experimental situations. This worsening in the results was expected since the CO2-

H2O equilibrium leads to low pH values with the increase of the pressure, and the 

differentiation between the pH classes 2, 3, and 4 was one of the challenges during 

the models' development. 
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Figure 4.12:  Accuracy values for the CNN classification models in the 

equilibrium CO2-H2O system scenario 

 

The ACC values for the SVM and DT models are shown in Figure 4.13A-

B, presenting the mean, low and high values of the performance parameter. Again, 

the models of both strategies had a worse performance than the CNN models. 

However, for this case study, the average ACC values were lower than 50%, 

indicating that these models are not to be applied in this experimental condition. 

 

Figure 4.13:  Accuracy values in the equilibrium CO2-H2O system scenario for the 

classification models: SVM (A) and DT (B). 
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Figure 14A-B shows the results of the performance parameters RMSE and 

R2, respectively, for the prediction CNN models. As observed with the classification 

models, the prediction models also presented a significant worsening in their 

performance. However, the models had different behaviors, with the average R2 

values varying between 63% and 87%. The model CNN_pred_8 presented the worst 

performance with a low R2 value equal to 37.87%. Otherwise, the model 

CNN_pred_9 showed the most promising one, with its lowest R2 value equaling 

80.13%. 

 

 

Figure 4.14:  RMSE (A) and R2 (B) values for the CNN predict models in the 

equilibrium CO2-H2O system scenario 

 

In this work was developed different types of classification and regression 

models to determine the pH values in the range of 2-10 using different ML 

techniques. It is the first step in developing a soft sensor to be applied for real-time 

monitoring situation with pressurized system, such as the NGS (Nitrogen 

generation system) process using a submersion probe to acquire the images.  

 

 

4.1.4. 

Conclusions 

This study developed models to determine the pH values in atmospheric and 
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pressurized systems (up to 6 MPa) using images from the reactor vessel acquired 

using low-cost methods. For that purpose, it was explored three different types of 

ML strategies (CNN, SVM, and DT) for the development of the classification 

models, which classify the aqueous solution pH into one of the nine classes. Also, 

regression models using the CNN strategy were developed to predict the pH values 

in the range of 2-10. The best five models of explored strategies were tested in two 

scenarios to verify their application in other operational situations. The best 

classification model was the CNN one, with both the buffer solutions and the cases 

of study datasets. Although, the best performance was obtained by the prediction 

CNN models, highlighting the model CNN_pred_9, which presents R2 values 

higher than 80% for all tested datasets. Thus, the regression CNN models are the 

most interesting strategy to continue developing the soft sensor to determine the pH 

values in high pressure systems. 
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Conclusions 

 
 
 
 

In this work, several models were developed using AI, intended to be 

applied directly or indirectly to oil and gas production problems related to flow 

assurance. In the first part of the study, it was possible to develop MLP models 

to predict the scaling process in a tube with a dynamic flow using the 

differential pressure (ΔP) to monitor this process. The models were created 

using the six process variables as inputs. The prediction of the ΔP in two-time 

horizons (one step ahead (ΔP(t+1))  and five steps ahead (ΔP(t+5))) was explored 

as output variable individually.  The best model for variable ΔP(t+1) was the 

one with the topology logsig_7_purelin_1_trainbr, with R2 over 99.3%. 

Otherwise, for the ΔP(t+5) the best model with the best overall performance has 

the topology logsig_6_purelin_1_trianlm, presenting an R2 between 79.7% 

and 96.4%. 

In the second part, the creation of classification and prediction models, 

using different AI techniques (CNN, SVM, and DT), to determine the pH 

values in the atmospheric and pressurized system from image analysis was 

accomplished. The best classification model was 

CNN_clas_RGB_crop_model_4 presenting accuracy values equal to 97.87 % 

for the test group. The best prediction model was 

CNN_pred_RGB_crop_model_4, which also uses Input 2, having an R2 value 

higher than 80% in all tested scenarios. 

In conclusion, the models developed during this study presented high levels 

in their respective performance parameters, indicating that they are exciting 

candidates that keep being studied and developed to be applied for the tasks of 

monitoring and controlling in the oil and gas industry.  

 

 

. 
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Suggestions for future works 

 
 
 
 

As a first suggestion, it would be interesting to start by the suggestion 

that the MLP models developed to predict ΔP of the tubes in both time horizons 

(ΔP(t+1) and ΔP(t+5)) were tested on real-time experiments as validation of their 

performance and their applicability. Also another interesting path is to use this 

concept and create new models to predict the ΔP during the scale formation 

using a more extensive database that could amplify the application range or 

include more variables to create a more robust model that could be applied in 

several scenarios. 

 

Regarding the models developed to determine the pH base in imagining 

analysis, the first suggestion is to test the performance in real-time 

experiments. These tests could also be used to evaluate the full time to 

determine the pH value, from the image capture to the models' response, which 

could be an important parameter in case this was used in a controlling strategy 

in future works. Also, it would be possible to develop a control loop based on 

this soft sensor. Another point to be explored is to test the viability of using 

this form of detection on the NGS due to the bubbles obtained during the 

process that could disturb the results.  
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Development of Artificial Neural Network Models for the Simulation
of a CaCO3 Scale Formation Process in the Presence of
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ABSTRACT: The precipitation of gas hydrate and inorganic salts (scale) during oil and gas production represents a significant flow
assurance hindrance for the industry. Chemical inhibitors can prevent the fouling process, but specific inhibitors to address a
problem could result in synergistic or adverse effects. Simulations in tubes and pipelines are necessary to understand these behaviors
by assessing the scaling tendency of the water. The primary objective of this study was to create models using an artificial neural
network (ANN) of the multilayer perceptron (MLP) type for the simulation of the calcium carbonate scaling formation process in
the presence of monoethylene glycol (MEG), a typical gas hydrate inhibitor. A database was obtained from 38 tube blocking test
(TBT) experiments with different conditions. The models were developed using MATLAB R2020a, splitting the database into two
groups on the ratio of 70:30, respectively, train and test ones, preserving the time dependency of the differential pressure (ΔP) data.
The ANNs were created using six inputs (temperature, pressure, calcium and bicarbonate concentrations, MEG concentration, and
ΔP measured at a selected time) and one output (ΔP measured at a later time). The goal was to explore how monitoring the
conditions in a pipeline can predict the evolution of the scaling process. We investigated two scenarios for the ΔP prediction: a near
future (one step ahead) and a far future (five steps ahead). The MLP models demonstrated high performance, with an R2 higher
than 92.9% for both training and test groups for both prediction horizons. Then, these models were tested with a second data group
to evaluate their applicability to control the systems. The best models showed good scaling prediction, with R2 ranging from 80.0%
to 99.9%. These results represent a promising step toward applying machine learning techniques to simulate and predict scaling
tendencies in controlled pipelines.

1. INTRODUCTION

Flow assurance is a significant concern during oil and gas
production and is achieved by guaranteeing that hydrocarbon
production from wells is maintained without loss over time due
to flow restrictions. During production, the oil−gas−water
mixture undergoes drastic variations in operating conditions,
such as temperature and pressure, so that the solubility of
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certain compounds can decrease, leading to the formation of
deposits (fouling). This fouling may occur in pipelines and
equipment and is generally caused by the formation of wax, gas
hydrate, and scale (inorganic salts). These can require
expensive and complex remediation processes and, in severe
cases, production stoppage and well shutdown.1−3 This
problem is of great concern, especially for wells in the
Brazilian presalt region located in ultradeep waters with mainly
carbonaceous reservoir rocks, and can result in potential issues
such as calcium carbonate and gas hydrate fouling.4,5

Gas hydrate originates from the crystallization of water
molecules encapsulating small and light gas molecules (e.g.,
CO2, methane, and propane) under operating conditions with
high pressure and low temperature, such as those found in
deep and ultradeep water.6,7 The most practical and
economical method for preventing hydrate formation or others
kinds of obstructions in lines (e.g., scales) is using chemical
inhibitors.8−10 Thermodynamic hydrate inhibitors (THIs) are
typically injected into the production line to prevent the
formation of gas hydrates. THIs consist of alcohols or glycols,
such as methanol, triethylene glycol (TEG), and monoethylene
glycol (MEG), and function by moving the equilibrium curve
envelope toward lower temperature and higher pressure.11,12

Scale forms as a result of the deposition of inorganic salts
precipitating from the supersaturated water. Their formation
depends on several factors such as temperature, pressure, ion
concentration, pH, and others.13 Barium sulfate, strontium
sulfate, and calcium carbonate are the most common types of
scale found during oil and gas production.14,15 However,
calcium carbonate (CaCO3) formation is of greater concern
since the water may be in equilibrium with carbonaceous rocks
in the reservoir, leading to a significant number of bicarbonate
ions dissolved in the water phase (eqs S1−S3, Supporting
Information). The precipitation of CaCO3 occurs as this fluid
is produced and faces a pressure drop, which decreases the
CO2 solubility and increases pH, leading to precipitation (eq
S4, Supporting Information).
There are dozens of different inhibitor types used for typical

inorganic scale. There are three main classes of inhibitors:
phosphate esters, phosphonates, and polymers. The first two
classes act as chelators, sequestering the metals from solution,
while the polymeric class achieves scale control through crystal
distortion.
In 2002, the average cost due to scale formation was more

than 1.4 billion dollars.16 As a result, the market for scale
inhibitors for the oil and gas industry continues to grow and
currently represents millions of dollars annually. Market
analyses predict further increases in these expenditures with
a CAGRs (compound annual growth rates) of 5.5% and 6.9%
for the scale and hydrate inhibitors markets, respectively.17−19

A concern with the use of inhibitors for production is the
compatibility between the different inhibitors and other
chemicals. Several studies have investigated these compatibil-
ities, including the effects of the enhanced oil recovery (EOR)
chemicals on scale inhibitors20 and the interaction between
scale inhibitors and hydrate inhibitors.21 For example,
Seiersten and Kundu22 and Kartnaller et al.23 studied the
impact of MEG as a gas hydrate scale inhibitor, concluding
that MEG serves as an inhibitor by increasing the scaling time.
This result was unexpected because the presence of MEG in
water increases ion activities. That behavior has been proposed
to be connected to the high-energy bond between −OH
groups and the CaCO3 surface; this indicates that thermody-

namic hydrate inhibitors can also benefit wells experiencing
calcium carbonate scale formation.
Understanding the interactions between inhibitors, water,

and ions is essential for predicting the phase behavior during
production and estimating the solid accumulation tendency in
production lines. A common and well-known methodology to
evaluate inhibitor efficiency is the dynamic tube blocking test
(TBT). It is usually applied to verify a product’s performance
and minimum inhibitor concentration (MIC), allowing
comparisona with other commercially available products.24−26

TBT experiments are also used to study inorganic salt
morphologies27,28 and develop scale formation models.
However, it is difficult to predict how the scaling process
will develop using flow and phase behavior models due to the
system’s complexity, the large number of variables, and some
stochastic behavior. A previous work has attempted to model
the scale formation in pipelines, specifically in TBT experi-
ments, but only using physical models.29 These models, based
on the Darcy Weisbach equation for pressure loss in pipes and
on a growth rate scale formation model, were successful in
fitting the TBT experiments curves, enabling an estimation on
how fast the process was happening. However, the model was
learning only the information regarding that specific experi-
ment and not acquiring information for predicting the behavior
of the system.
Other studies have explored the use of artificial neural

networks (ANNs) and other machine learning algorithms to
create new models since they do not demand an understanding
of the scale formation mechanism, only requiring a “black-box”
model. These models were able to predict the thermodynamics
related to the calcium carbonate precipitation (saturation ratio
of the solution) and its dissolution capacity.30,31 However,
literature still lacks kinetic modeling related to the scale
formation process. Recently, Wang et al.32 have developed an
Elman neural network (ENN) with a genetic algorithm (GA)
to predict calcium carbonate scale formation in shell and tube
heat exchangers over time. They were able to successfully
predict the fouling resistance as a function of conductivity, pH,
and dissolved oxygen. Still, as far as the author’s knowledge, no
study relating scale formation and variables to simulate
conditions during oil and gas production has been previously
assessed.
In recent decades, different types of artificial intelligence

(AI), such as ANN, GA, support vector machines (SVMs), the
adaptive neuro-fuzzy inference system (ANFIS), least square
support vector machine (LSSVM), principal component
analysis (PCA), and the committee machine intelligent system
(CMIS) have been applied to solve problems and challenges in
several fields like nanofluids properties33−35 and systems
efficiency36,37 and in the oil and gas industry, from the
reservoir to production.38−40 ANN was inspired by the neural
arrangement of the human brain. It is easy to train and has
tunable parameters and an adaptive structure, making it one of
the most widely used machine learning techniques.41 One of
the most common classes of ANN is the feedforward neural
network (FFNN) with MLP (multilayer perceptron) top-
ologies, which can model complex systems.42 The usual
structure of MLP consists of an input layer, where the number
of neurons is equal to the number of model inputs, and an
output layer. In addition, there is at least one hidden layer
between them with several neurons to be selected by the
user.43,44 This structure has been used to predict different
parameters for the oil and gas industry, such as the gas−oil
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ratio,45 volume fraction percentage in three-phase systems,46

and deposition process of asphaltene47 and wax.48

Knowing the importance of digital transformation, AI, and
process monitoring in the oil and gas industries, this work
intends to model the scale formation process using MLP to
predict the differential pressure (ΔP) one and five steps ahead
in time. The goal is to explore how monitoring the conditions
in a pipeline (i.e., temperature, pressure, ion concentrations,
and differential pressure) can predict the evolution of the
scaling process. This study may lead to deeper investigations
into applications in monitoring systems and fault detection.
TBT differential pressures were monitored over time for
different temperatures, pressures, calcium and bicarbonate
concentrations, and MEG concentrations. MEG concentration
was used as a variable since many scale inhibitor products are
solutions of the active molecule in a mixture of water and
MEG. Also, MEG can be directly injected in high amounts as
thermodynamic gas hydrate inhibitors. Even further, MEG can
change the viscosity of the solution and can influence the
crystallization of calcium carbonate, which would lead to
different effects to be modeled in order to best simulate the
scale formation process. Two scenarios were considered: a near
future time (differential pressure measured one step ahead)
and a far future time (differential pressure measured five steps
ahead). The models showed good scaling prediction for both
time horizons, showing a promising step toward simulating and
predicting scaling tendencies in controlled pipes in production
lines.

2. METHODOLOGY
2.1. Experimental Details. Experiments were performed

in TBT equipment, in which two solutions containing
incompatible cations and anions are pumped into tubes inside
an oven, conditioned to the test temperature, mixed in a
microchamber, and then flown into a capillary tube called a
loop test. The apparatus consisted of two high performance
liquid chromatography (HPLC) pumps pushing newly
prepared calcium chloride and sodium bicarbonate solutions,
with pH ranging from 7.0 to 7.5 depending on the salts
concentration, into a thermostat-regulated oven through 1.8 m
long stainless-steel tubes with 1 mm inner diameters (i.e., two
conditioning loops, one for each solution). These loops
ensured that the solutions reached the mixture chamber at the
correct temperature for the experiments. After mixing, the
combined solution flowed through a third tube (loop test)
with the same dimensions as the other tubes. This process
resulted in a supersaturated solution leading to calcium
carbonate formation and deposition. When deposition
occurred, the inlet pressure became higher than the outlet
pressure, generating a differential pressure. This differential
pressure was measured using a model EJA 130A high-static
differential pressure transmitter (Yokogawa, Musashino,
Tokyo, Japan). The data were acquired at 1 s intervals using
a LabView-based software program. The injection flow rate
was 10.0 mL min−1 (5.00 mL min−1 for each solution, leading
to a 1:1 mixture ratio of the two solutions). The pressure of the
system was regulated using a PSV valve connected outside the
oven.
2.2. ANN Database Preparation. The experimental data

used in this study are the results from 38 TBT experiments
previously presented in Kartnaller et al.,23 which used a
modeling approach with experiments from a central composite
design of the experiment and multivariate linear regression

(MLR). In the previous work, MLR was applied to model the
scaling time to reach several differential pressure levels (1−25
psi, in intervals of 1 psi). For each pressure, a different model
had to be made, totaling 25 different models to predict a single
scaling tendency. These experiments varied the pressure,
temperature, concentration of MEG (CMEG) (v/v %), and
concentration of the carbonate (CHCO3

−) (ppm) and calcium
(CCa

2+) (ppm) ions over the operating ranges shown in Table
1. The experiments measure the ΔP every second as the
monitored variable.

The goal for the ANN modeling in the present work was to
improve the prediction of the scale formation process, in which
the differential pressure was also an input for the modeling.
The measurement of the differential pressure at a moment in
time, plus the experimental variables, was used to estimate the
differential pressure in a later time. Hence, experimental data
were first preprocessed to adjust the signal baseline and create
the differential pressure variables one step ahead (ΔP(t+1)) and
five steps ahead (ΔP(t+5)) to be used in the prediction models.
The database was then split into two parts. The first database
consisted of 32 experiments, totaling 46,698 data points. This
database was separated into two groups, train (70%) and test
(30%), and was used to train the MLP models. To preserve the
time information about the scale formation associated with the
pressure differential, this division was accomplished by
selecting seven data points for the train group and three for
the test group from every 10 data points.
The second database consisted of six experiments, totaling

7705 data points. Those experiments were conducted with
fixed values of pressure, temperature, CHCO3

− and CCa
2+, and

varying CMEG (10, 20, 30, 50, 60, and 70 v/v %). This database
was used to separately validate the models constructed by the
ANN for each experiment.

2.3. Artificial Neural Network Optimization. For this
study, MLP type ANN models with one output neuron were
developed using Matlab R2020a (developed by Mathworks,
Inc.) to predict ΔP(t+1) and ΔP(t+5). The inputs chosen were
the five independent variables (pressure, temperature, CHCO3

−

and CCa
2+, and CMEG) plus the differential pressure at the

selected time t (ΔP(t)), resulting in six neurons on the input
layer. The proposed MLP structure had one hidden layer, in
which the number of neurons is one of the hyperparameters to
be optimized. The search was started with the same number of
neurons as the input layer.
The activation function, applied to the connection between

the input and hidden layers, was the second hyperparameter
studied, and the hyperbolic tangent (tansig) and log sigmoid
(logsig) functions were used. Both functions are commonly
used due to their sigmoidal form. The linear activation
function (purelin) was used between the hidden layer and the
output layer.49−51

Table 1. Range of Experimental Variables

Variable Unit Minimum value Maximum value

Pressure bar 0 170
Temperature °C 40 110
CMEG v/v % 0 80
CCa

2+ ppm 1000 6000
CHCO3

− ppm 1000 6000
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The last hyperparameter optimized for the MLP models was
the training algorithm. The gradient descent with momentum
and adaptive learning rate backpropagation (traingdx),
Levenberg−Marquardt backpropagation (trainlm), and Baye-
sian regularization backpropagation (trainbr) functions were
selected for testing. The first of these algorithms improves
upon traditional backpropagation with a combination of an
adaptive learning rate and momentum training, while the
others apply a quasi-Newton method for faster conver-
gence.52−54

2.4. Statistical Performance Evaluation. To evaluate
the performance of the ANN models, the coefficient of
determination parameter (R2, eq A5), sum of squared errors
(SSE, eq A1), mean squared error (MSE, eq A2), and root
mean squared error (RMSE, eq A3) were chosen. For R2, the
goal was to achieve a value close to one, while the goal for the
others was to achieve the lowest value possible, indicating the
best fit between the experimental data and the predicted data
from the ANN models. To calculate R2, it is also necessary to
calculate the total sum of squares (TSS, eq A4). The equations
are available in Appendix A.
Figure 1 shows a schematic for the process adopted in this

study, from the data acquisition on the experiments to the
determination of the best MLP model.
2.5. Sensitivity Analysis. The “black-box” group of

models, in which the ANN models are often included, present
some difficult to extract information about the process from
their parameters. However, the evaluation of the input
variables effects over the output variable can be determined
by a sensitivity analysis.
For that, in this study two approaches were explored. First, it

was used the relevancy factor (r, eq 1), which can be applied to
quantify these effects, with values on the range from −1 to +1.
The highest absolute value of r indicates the variables that
most affect the target variable, in which the positive values
indicate an elevation on the output variable, whereas the
negative ones designate a decrease on the target variable.55,56
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where N is the total number of data points, Xk,i the ith input
value of the kth parameter, yi the ith output value, Xk the
average value of the kth input parameter, and y̅ the mean value
of the output parameter.
The second parameter adopted was the relative importance

(RI), in which the methodology proposed by Garson57 (eq 2)
was chosen to obtain the RI values, varying between 0 and 1,
which are based on the connection weights between the ANN
layers.58−60
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where RIij is the parameters RI of the variable xi concerning the
output neuron j, wij the weight parameter of the connection
between the input xi and the jth hidden neuron, and wjk the
weight parameter of the connection between the jth hidden
neuron and the kth output variable.

3. RESULTS AND DISCUSSION
The data were selected, processed, and separated into two
groups for training and testing to optimize the ANN model.
The training data were used to construct the model and
calculate the estimated parameters. Once the model was
constructed, it was applied to the testing data to predict the
output and compare it to the known values. Different types of
models were tested by changing the hyperparameters of ANN
and were compared to indicate the best ones.

3.1. Evaluation of ANN Models. MLP topologies
developed to predict ΔP(t+1) and ΔP(t+5) are shown in Table
B1 in Appendix B, along with the optimized hyperparameters
of the trained models and the performance parameters from
the train and test groups, for models having six−eight neurons
in the hidden layer. These results show that the best

Figure 1. Flowchart of the methodology.
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performance for ΔP(t+1) was achieved with seven neurons in
the hidden layer using the tansig activation function and the
trainlm training algorithm. This topology had an R2 equal to
99.88% for the test set and the lowest values for error.
However, only three trained topologies had an R2 lower than
99%, showing that the models have very similar accuracy.
For the topologies built to predict ΔP(t+5), the model with

the best results had the same hidden layer configuration as the
best model for ΔP(t+1) but used the trainbr as the training
algorithm. Its performance had an R2 equal to 98.93% and the
lowest values for the other error parameters as well. However,

as observed in the predictions for the ΔP(t+1) case, most of the
models had very similar figures of merit, indicating that the
accuracy was largely independent of the activation function
and training algorithm used (trainlm and trainbr). It is also
interesting to point out that the worst results, in both cases,
were obtained when using the traingdx training algorithm.
This investigation optimizing the hyperparameters of the

MLP model for each output, primarily the number of neurons
and the transfer function on the hidden layer, is an important
step toward achieving the best models. Another essential phase
in the model development is to validate them with new

Figure 2. Representation of the behavior of the experimental data of the six experiments of the second database and the respective predicted data
for the output ΔP(t+1) by the MLP model logsig_7_purelin_1_trainbr.
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experimental data, verifying the model’s prediction capability
before using it in real applications.
3.2. Validation of MLP Models. Since the MLP models

demonstrated similar accuracy for both time horizons, all were
used in this validation phase. This evaluation used the second
database in which the MEG concentration was changed from
10% to 70%, while all other variables were unchanged. This
series of experiments tested the behavior of the scaling process
in the presence of the glycol molecule. In a previously
published article,23 our research group has shown that MEG

can act as a calcium carbonate inhibitor at concentrations
above 30%.
The correct mechanism to explain how MEG acts in the

calcium carbonate crystallization is still not completely known.
The interactions of alcohols (and therefore polyols) have been
studied by several works in the past years, and simulations have
shown that the −OH group can bind to specific faces of the
calcite polymorph, which can lead to control of crystal
growth.61−63 Okhrimenko et al.64 showed that this adsorption
could also happen for aragonite and vaterite (other calcium
carbonate polymorphs), although the binding energy in these

Figure 3. Representation of the behavior of the experimental data of the six experiments of the second database and the respective predicted data
for the output ΔP(t+5) by the MLP model logsig_6_purelin_1_trainlm.
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cases is lower than for calcite. This adsorption comes from the
fact that the Ca−CO3 ion pair (note that this is just a
representation of pairs, not chemical bond) delocalizes charges
by ordering the −OH group of the organic molecules. Thus,
the O of this group is associated with Ca, while the H is
associated with CO3.

64 This causes a highly organized
monolayer structure to form on the surface of the crystal, in
which the hydrophobic parts of the chains face away from the
surface. Many other types of organic molecules have also been
studied on the calcium carbonate crystallization, specifically
related to biomineralization.
Biomineralization is the process in which living organisms

produce hard minerals that act as support, protection, or
nourishment structures. A wide variety of minerals can be
synthesized by these organisms, such as silica, calcium
phosphate, and calcium carbonate. The calcite polymorph
synthesized in pure solution in a laboratory has a large
crystalline difference from that synthesized by mineralization.65

This control of crystal growth is generally attributed to
complex organic molecules known as coccolith-associated
polysaccharides (CAPs). These are large polymeric carbohy-
drate molecules containing a variety of functional groups, such
as −COOH and −OH. Hence, since MEG contains three
hydroxyl groups in its structure, it is possible to suppose an
association that there is an interaction of this molecule with the
surface of the particles being formed, controlling crystal
growth, which would also explain how it controls inhibition.
Also, changing its concentration changes the viscosity of the
solution (affecting the flow dynamics inside the tube).
The performance parameters for all MLP models for each

new experiment are presented in the Supporting Information
in Tables S3−S8. The models are validated by observing how
they predict the scaling process under conditions different
from the training or testing. Although the models showed very
high accuracy for both training and test sets, their application
to the new data was not completely successful. Some of the
models’ predictions of the scaling process over time were
unsatisfactory for a few experiments, which showed that certain
regions in the modeled response did not fit the actual expected
experimental values. For the ΔP(t+1) scenario, the logsig_7_-
purelin_1_trainbr model (values of the weights and bias are
available in the Supporting Information, Table S1) was the

best with an R2 over 99.3% for all new experiments. Figure 2
shows the predicted differential pressure from this MLP model
and the experimental data for all six experiments. In addition,
four other topologies had an R2 higher than 97% showing that
they are also very accurate models.
The lack of fit of parts of the predicted region was mainly

observed for the ΔP(t+5) case. For example, the best model for
this case could not predict the scaling tendency for MEG
concentrations between 20%−50%. For some of the experi-
ments, the R2 of the fit was actually negative, indicating that
the scaling process was not being accurately modeled (or that
the residues of the regression in that region did not follow a
normal distribution with a mean equal to zero).
While most models did not present a good prediction

performance for the new experiments, some were still very
accurate. For the ΔP(t+5) time horizon, the logsig_6_pur-
elin_1_trainlm model (values of the weights and bias are
available in the Supporting Information, Table S2) was the
most accurate, with an R2 ranging from 79.7% to 96.4%. Figure
3 shows the predicted differential pressure from this MLP
model and the experimental data for all six experiments. These
results are important because they show that even though
accurate predictions can be made for some regions of the
studied response continuous validation of the best models is
necessary as new data are obtained.
For the best models chosen for each output variable, ΔP(t+1)

and ΔP(t+5), a deeper evaluation was performed, starting for a
comparison between the experimental and predicted values for
the training and test data sets, shown on Figure S1A and B,
respectively, for the variables ΔP(t+1) and ΔP(t+5). These results
also show that the model chosen to predict the ΔP(t+1) has the
best prediction power.
Another investigation adopted was to evaluate the behavior

of the normalized residuals according to the ΔP values,
comparing the response for the both output variables ΔP(t+1)

and ΔP(t+5) for the training and test data sets, respectively
(Figure S2A, B). From that could be extract that the MLP
model for the ΔP(t+5) variable has a tendency to predict higher
values than the experimental measures, which is worse in
higher values of ΔP. However, it is important to highlight that
the amount of data points with absolute normalized residuals

Figure 4. Relevancy factor of both output variables ΔP(t+1) (A) and ΔP(t+5) (B).
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higher than 0.1 is less than 1% for the analyzed data sets for
both output variables.
3.3. Sensitivity Analysis. For the sensitivity analysis, the

best models for each output variable, ΔP(t+1) and ΔP(t+5), were
chosen, which had the topologies logsig_7_purelin_1_trainbr
and logsig_6_purelin_1_trainlm. The first sensitivity evalua-
tion was made for the relevancy factor (r); Figure 4A and B
shows the values of r of each input variable for both target
variables, respectively, ΔP(t+1) and ΔP(t+5). They indicate that
ΔP(t) is by far the most influential parameter for the two
prediction horizons with a r close to 1, indicating expected
strong correlation between the measure of the ΔP and its
prediction for future horizons.
Then, these MLP models were analyzed for the relative

importance (RI) parameter, where the values are presented in
Figure 5A and B for the output variables ΔP(t+1) and ΔP(t+5),
respectively. For the best ΔP(t+1) model, the inputs pressure,
temperature, CMEG, and CHCO3− presented an RI varying
between 14% and 19%, and the input variable CCa

2+ was the
most relevant one for the ΔP(t+1) prediction. In turn, the input
with the less impact was ΔP(t).
Conversely, for the best ΔP(t+5) model, the most significant

variables were CMEG followed for ΔP(t), respectively with the
values of 34.7% and 22.5%, while the other inputs variables
presented RI values lower than 15%. This difference on the
influence hierarchy of the input variables is interesting, since it
shows an increase on the importance of ΔP(t) for the
prediction of the future. Also, for the ΔP(t+5) model, the
high RI value of the variable CMEG indicates a reason for this
MLP model presenting the best performance against the
validation data group. This may indicate a strong implication
that MEG has in impacting the development of the scale
formation process due to its inhibitor effect.
The two analyzed parameters, r and RI, led to different levels

of influence for each input in the target variables. While the
parameter r indicates the effect of the input values on the target
variable, the RI parameter shows how the model attributes the
importance for these inputs. Although, the ΔP(t) variable has a
huge absolute value for the parameter r, a model that only uses
this variable as input probably could predict the tendency of
the ΔP curve, but it would not be able to distinguish between
the different scenarios. That way, the combination of these

results indicates that maybe a hybrid model could be a better
approach for this problem, applying the MLP to lead with the
ΔP curve behavior and another kind of model to handle the
environment conditions information. However, this premise is
outside of the scope of this work.
Finally, the modeling results indicated that ANN could be

applied to predict the differential pressure and to understand
the evolution of the scaling process at earlier as well as later
times. For process monitoring, this appears to be a promising
tool for transforming digital data acquired during production
to establish the scaling tendency of a well over time, by relating
the scale formation process with operational variables as a start
to develop a model that could simulate the conditions during
oil and gas production.

4. CONCLUSIONS

This study showed that using an MLP-type ANN enabled
modeling of the scaling process in a tube with a dynamic flow
containing precipitated calcium carbonate. Even though the
scaling process is a very complex system with stochastic
behavior, this machine learning technique permitted its
prediction over different time horizons: a “near future” or
one step ahead (ΔP(t+1)) and a “far future” or five steps ahead
(ΔP(t+5)). The generated models were highly accurate for both
training and test data sets and for both time horizons,
regardless of the activation function and the training algorithm
used (trainlm and trainbr). However, using traingdx as a
training algorithm gave poorer results. When using the models
to predict a different series of experiments that simulated
various viscosities with calcium carbonate inhibition, most
models did not show the same initial high accuracy. In fact,
only a few models were very accurate for all the experiments.
Overall, for the ΔP(t+1) time horizon, the logsigs_7_pur-
elin_1_trainbr was the best model, with an R2 over 99.3% for
the additional experiments. The logsig_6_purelin_1_trainlm
model was the best model for the ΔP(t+5) time horizon, with an
R2 ranging from 79.7% to 96.4%. These results show that ANN
can predict the differential pressure in a tube to understand the
evolution of the scaling process in the near time as well as its
development in the future. This strategy represents an
important application of digital transformation to oil and gas

Figure 5. Relative importance (RI) of both output variables ΔP(t+1) (A) and ΔP(t+5) (B) calculated by the Garson method.57

Energy & Fuels pubs.acs.org/EF Article

https://doi.org/10.1021/acs.energyfuels.1c03364
Energy Fuels 2022, 36, 2288−2299

2295

https://pubs.acs.org/doi/10.1021/acs.energyfuels.1c03364?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.1c03364?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.1c03364?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.1c03364?fig=fig5&ref=pdf
pubs.acs.org/EF?ref=pdf
https://doi.org/10.1021/acs.energyfuels.1c03364?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
DBD
PUC-Rio - Certificação Digital Nº 2012332/CA



production to establish the scaling tendency during the lifetime
of a well based on differential pressure process monitoring.

■ APPENDIX A

Performance Evaluation Equations
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In the above equations, variables n, xi, ̂xi , and x̅ represent the
total number of data points, the observed value, the predicted
value, and the mean value of the samples, respectively.

■ APPENDIX B

MLP Topologies Performances
MLP topologies performances are presented in Table B1.
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Appendix of the article: Development of MLP artificial neural 

network models for the simulation of CaCO3 scale formation 

process in the presence of monoethylene glycol (MEG) in a 

dynamic tube blocking test (TBT) equipment 
 

 PERFORMANCE EVALUATION EQUATIONS 

 

𝑆𝑆𝐸 =  ∑ (𝑥𝑖 − 𝑥�̂�)
2𝑛

𝑖=1           (B1) 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑥𝑖 − 𝑥�̂�)

2𝑛
𝑖=1                      (B2) 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑥𝑖−𝑥�̂�)2𝑛

𝑖=1

𝑛
          (B3) 

𝑇𝑆𝑆 = ∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1            (B4) 

𝑅² = 1 −
𝑆𝑆𝐸

𝑇𝑆𝑆
            (B5) 

 

In the above equations, variables n, 𝑥𝑖, 𝑥�̂� and �̅� represent the total number of data 

points, the observed value, the predicted value, and the mean value of the samples, 

respectively. 
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Table B1. MLP topology models for the variables ΔP(t+1) and ΔP(t+5). 

  Hidden Layer                   

Variables 
Number 

of neurons 

Activation 

function 

Training 

algorithm 

R2 

(train) 
R2 (test) 

SSE 

(train)a 

SSE 

(test)a 

MSE 

(train)a 

MSE 

(test)a 

RMSE 

(train)a 

RMSE 

(test)a 

ΔP (t+1) 7 tansig trainlm 0.99938 0.99883 0.1830 0.1532 0.0045 0.0087 0.0669 0.0935 

 8 tansig trainbr 0.99941 0.99879 0.1754 0.1575 0.0043 0.0090 0.0655 0.0948 

 7 logsig trainbr 0.99937 0.99877 0.1862 0.1606 0.0046 0.0092 0.0675 0.0958 

 7 tansig trainbr 0.99939 0.99877 0.1810 0.1616 0.0044 0.0092 0.0665 0.0960 

 6 logsig trainbr 0.99934 0.99875 0.1954 0.1638 0.0048 0.0093 0.0691 0.0967 

 6 tansig trainbr 0.99920 0.99869 0.2373 0.1706 0.0058 0.0097 0.0762 0.0987 

 7 logsig trainlm 0.99876 0.99861 0.3679 0.1809 0.0090 0.0103 0.0949 0.1016 

 6 tansig trainlm 0.99921 0.99859 0.2332 0.1843 0.0057 0.0105 0.0755 0.1026 

 8 tansig trainlm 0.99934 0.99848 0.1950 0.1983 0.0048 0.0113 0.0691 0.1064 

 8 tansig traingdx 0.97068 0.97227 8.4319 3.5668 0.2062 0.2036 0.4541 0.4512 

 8 logsig traingdx 0.93977 0.94472 16.9728 6.9699 0.4151 0.3978 0.6443 0.6307 

 7 tansig traingdx 0.93472 0.93567 18.4571 7.9237 0.4514 0.4522 0.6719 0.6725 

ΔP (t+5) 7 tansig trainbr 0.99049 0.98927 3.6088 1.8554 0.0883 0.1059 0.2971 0.3254 

 8 logsig trainbr 0.99087 0.98886 3.4662 1.9151 0.0848 0.1093 0.2912 0.3306 

 7 logsig trainlm 0.99105 0.98884 3.3971 1.9314 0.0831 0.1102 0.2882 0.3320 

 8 tansig trainbr 0.99099 0.98846 3.4214 1.9797 0.0837 0.1130 0.2893 0.3361 

 7 tansig trainlm 0.98958 0.98834 3.9501 2.0475 0.0966 0.1169 0.3108 0.3418 

 7 logsig trainbr 0.98940 0.98584 4.0165 2.4110 0.0982 0.1376 0.3134 0.3709 

 6 logsig trainbr 0.98860 0.98570 4.3171 2.4271 0.1056 0.1385 0.3249 0.3722 

 6 tansig trainbr 0.98828 0.98411 4.4384 2.7042 0.1085 0.1543 0.3295 0.3929 

 6 tansig trainlm 0.98192 0.97995 6.8011 3.4036 0.1663 0.1943 0.4078 0.4407 
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 6 logsig trainlm 0.98435 0.97816 5.9041 3.6896 0.1444 0.2106 0.3800 0.4589 

 6 logsig traingdx 0.94447 0.93134 16.4750 8.9705 0.4029 0.5120 0.6348 0.7155 

 6 tansig traingdx 0.93674 0.92913 22.7857 11.3463 0.5573 0.6476 0.7465 0.8047 

a - Using normalized data 
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Supporting information of the article: Development of MLP 

artificial neural network models for the simulation of CaCO3 

scale formation process in the presence of monoethylene 

glycol (MEG) in a dynamic tube blocking test (TBT) 

equipment 
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Equilibrium equations of the calcium carbonate scale formation 

𝐶𝑂2(𝑔) ⇄ 𝐶𝑂2(𝑎𝑞)        (C1) 

𝐶𝑂2(𝑎𝑞) + 𝐻2𝑂 ⇄ 𝐻2𝐶𝑂3(𝑎𝑞) ⇄ 𝐻+(𝑎𝑞) + 𝐻𝐶𝑂3
−(𝑎𝑞)   (C2) 

𝐻𝐶𝑂3
−(𝑎𝑞) ⇄ 𝐶𝑂3

2−(𝑎𝑞) + 𝐻+(𝑎𝑞)      (C3) 

𝐶𝑎2+(𝑎𝑞) + 𝐶𝑂3
2−(𝑎𝑞) ⇄ 𝐶𝑎𝐶𝑂3(𝑠)      (C4) 

 

 

 
Figure C1. Regression plot between experimental versus the predicted values for the 

variables ΔP(t+1)(A)and ΔP(t+5)(B). 
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Figure C2. Comparison between normalized residuals of the prediction of the ΔP(t+1) and 

ΔP(t+5) variables for the training dataset (A) and test dataset(B).
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Table C1: Performance values for each MLP topology for the experiment with 10 v/v% MEG. 

  Hidden Layer   CMEG 

  10 v/v % 

Variables Number of neurons Activation function Training algorithm R2  SSEa MSEa RMSEa 

ΔP (k+1) 7 tansig trainlm 0.9404 1.7051 2.1569 1.4686 

 8 tansig trainbr 0.7485 7.9869 10.1033 3.1786 

 7 logsig trainbr 0.9934 0.1745 0.2208 0.4699 

 7 tansig trainbr 0.9932 0.1527 0.1931 0.4395 

 6 logsig trainbr 0.9660 1.0771 1.3625 1.1673 

 6 tansig trainbr 0.9877 0.3445 0.4358 0.6602 

 7 logsig trainlm 0.9972 0.0617 0.0780 0.2793 

 6 tansig trainlm 0.9829 0.4988 0.6309 0.7943 

 8 tansig trainlm 0.9917 0.2201 0.2784 0.5276 

 8 tansig traingdx 0.9712 0.4982 0.6302 0.7939 

 8 logsig traingdx 0.9742 0.6964 0.8810 0.9386 

 7 tansig traingdx 0.5967 3.5043 4.4329 2.1054 

ΔP (k+5) 7 tansig trainbr 0.6573 41.4766 52.4490 7.2422 

 8 logsig trainbr -27.4508 2490.9010 3149.8582 56.1236 

 7 logsig trainlm -10.9546 963.4933 1218.3813 34.9053 

 8 tansig trainbr -11.0535 2101.0571 2656.8828 51.5450 

 7 tansig trainlm 0.5905 24.1539 30.5438 5.5266 

 7 logsig trainbr 0.5555 125.0289 158.1048 12.5740 

 6 logsig trainbr 0.6414 36.7254 46.4410 6.8148 

 6 tansig trainbr -0.0358 69.5040 87.8910 9.3750 
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 6 tansig trainlm 0.1875 61.7697 78.1105 8.8380 

 6 logsig trainlm 0.9033 5.0087 6.3337 2.5167 

 6 logsig traingdx -0.1372 32.4990 41.0964 6.4106 

  6 tansig traingdx 0.9678 0.7685 0.9717 0.9858 

a - Using normalized data 

 

 

Table C2: Performance values for each MLP topology for the experiment with 20 v/v% MEG. 

 

 

Hidden Layer   CMEG 

  20 v/v % 

Variables Number of neurons Activation function Training algorithm R2  SSEa MSEa RMSEa 

ΔP (k+1) 7 tansig trainlm 0.8438 1.1654 1.4931 1.2219 

 8 tansig trainbr 0.5093 3.1002 3.9720 1.9930 

 7 logsig trainbr 0.9977 0.0156 0.0200 0.1415 

 7 tansig trainbr 0.9675 0.1834 0.2350 0.4848 

 6 logsig trainbr 0.9535 0.4052 0.5192 0.7205 

 6 tansig trainbr 0.9849 0.1033 0.1323 0.3638 

 7 logsig trainlm 0.9878 0.0694 0.0889 0.2982 

 6 tansig trainlm 0.9993 0.0044 0.0057 0.0755 

 8 tansig trainlm 0.9836 0.1103 0.1413 0.3759 

 8 tansig traingdx 0.9942 0.0380 0.0487 0.2208 

 8 logsig traingdx 0.9311 0.5920 0.7585 0.8709 

 7 tansig traingdx 0.6628 0.8787 1.1258 1.0610 

ΔP (k+5) 7 tansig trainbr -0.0338 72.5838 92.9622 9.6417 
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 8 logsig trainbr -18.7222 1210.2739 1550.0678 39.3709 

 7 logsig trainlm -8.9682 309.1142 395.9004 19.8972 

 8 tansig trainbr -61.5184 4641.2074 5944.2628 77.0990 

 7 tansig trainlm -8.2588 75.1440 96.2413 9.8103 

 7 logsig trainbr 0.5621 47.5270 60.8705 7.8020 

 6 logsig trainbr -3.9839 205.6587 263.3990 16.2296 

 6 tansig trainbr 0.5886 10.2781 13.1638 3.6282 

 6 tansig trainlm -6.5523 167.3544 214.3404 14.6404 

 6 logsig trainlm 0.9446 1.2849 1.6456 1.2828 

 6 logsig traingdx -10.5975 87.5857 112.1761 10.5913 

  6 tansig traingdx 0.8979 0.8438 1.0808 1.0396 

a - Using normalized data 

 

 

Table C3: Performance values for each MLP topology for the experiment with 30 v/v% MEG. 

  Hidden Layer   CMEG 

  30 v/v % 

Variables Number of neurons Activation function Training algorithm R2  SSEa MSEa RMSEa 

ΔP (k+1) 7 tansig trainlm 0.9460 0.4234 0.5183 0.7200 

 8 tansig trainbr 0.9744 0.1796 0.2199 0.4689 

 7 logsig trainbr 0.9990 0.0075 0.0091 0.0956 

 7 tansig trainbr 0.9843 0.1061 0.1299 0.3604 

 6 logsig trainbr 0.9414 0.5028 0.6156 0.7846 

 6 tansig trainbr 0.9958 0.0305 0.0373 0.1931 
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 7 logsig trainlm 0.9900 0.0632 0.0774 0.2782 

 6 tansig trainlm 0.9921 0.0588 0.0720 0.2683 

 8 tansig trainlm 0.9996 0.0029 0.0036 0.0598 

 8 tansig traingdx 0.9877 0.1025 0.1255 0.3543 

 8 logsig traingdx 0.9582 0.3593 0.4399 0.6633 

 7 tansig traingdx 0.9093 0.3842 0.4703 0.6858 

ΔP (k+5) 7 tansig trainbr -571.6200 1366.2200 1672.0900 40.8900 

 8 logsig trainbr -0.5428 59.3964 72.6940 8.5261 

 7 logsig trainlm -8.1633 153.1347 187.4183 13.6901 

 8 tansig trainbr -21.5072 1175.7158 1438.9338 37.9333 

 7 tansig trainlm -14.3092 122.3726 149.7692 12.2380 

 7 logsig trainbr 0.3275 25.2963 30.9597 5.5641 

 6 logsig trainbr -5.7828 213.8681 261.7487 16.1786 

 6 tansig trainbr 0.9467 1.1251 1.3770 1.1735 

 6 tansig trainlm -15.0054 357.4552 437.4818 20.9161 

 6 logsig trainlm 0.9609 0.8400 1.0280 1.0139 

 6 logsig traingdx -5.8235 54.0330 66.1299 8.1320 

  6 tansig traingdx 0.9450 0.5433 0.6650 0.8155 

a - Using normalized data 
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Table C4: Performance values for each MLP topology for the experiment with 50 v/v% MEG. 

  Hidden Layer   CMEG 

  50 v/v % 

Variables Number of neurons Activation function Training algorithm R2  SSEa MSEa RMSEa 

ΔP (k+1) 7 tansig trainlm 0.9376 0.5845 0.4042 0.6358 

 8 tansig trainbr 0.9715 0.2954 0.2043 0.4520 

 7 logsig trainbr 0.9981 0.0192 0.0133 0.1152 

 7 tansig trainbr 0.9586 0.4245 0.2936 0.5418 

 6 logsig trainbr 0.9671 0.2896 0.2003 0.4475 

 6 tansig trainbr 0.9908 0.0901 0.0623 0.2496 

 7 logsig trainlm 0.9885 0.1086 0.0751 0.2740 

 6 tansig trainlm 0.9768 0.2241 0.1550 0.3937 

 8 tansig trainlm 0.9950 0.0498 0.0345 0.1856 

 8 tansig traingdx 0.9747 0.3215 0.2223 0.4715 

 8 logsig traingdx 0.9776 0.1919 0.1327 0.3643 

 7 tansig traingdx 0.9625 0.3940 0.2725 0.5220 

ΔP (k+5) 7 tansig trainbr 0.0298 9.4548 6.5365 2.5567 

 8 logsig trainbr -3.9217 43.3274 29.9541 5.4730 

 7 logsig trainlm -18.7737 320.6140 221.6544 14.8881 

 8 tansig trainbr -484.8908 287.0268 198.4341 14.0867 

 7 tansig trainlm -28.9126 267.9047 185.2141 13.6093 

 7 logsig trainbr -1.1301 20.5066 14.1771 3.7652 

 6 logsig trainbr -17.8273 27985.8641 19347.8407 139.0965 
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 6 tansig trainbr 0.8653 2.5848 1.7870 1.3368 

 6 tansig trainlm -1.1671 45.6665 31.5712 5.6188 

 6 logsig trainlm 0.7974 3.3790 2.3360 1.5284 

 6 logsig traingdx -9.0137 93.6943 64.7749 8.0483 

  6 tansig traingdx 0.5214 6.2932 4.3507 2.0858 

a - Using normalized data 

 

 

Table C5. Performance values for each MLP topology for the experiment with 60 v/v% MEG. 

  Hidden Layer   CMEG 

  60 v/v % 

Variables Number of neurons Activation function Training algorithm R2  SSEa MSEa RMSEa 

ΔP (k+1) 7 tansig trainlm 0.8635 1.5935 0.7318 0.8554 

 8 tansig trainbr 0.8520 1.9841 0.9111 0.9545 

 7 logsig trainbr 0.9992 0.0109 0.0050 0.0707 

 7 tansig trainbr 0.8801 1.5705 0.7212 0.8492 

 6 logsig trainbr 0.9716 0.3115 0.1431 0.3782 

 6 tansig trainbr 0.9894 0.1334 0.0612 0.2475 

 7 logsig trainlm 0.9931 0.0859 0.0394 0.1986 

 6 tansig trainlm 0.9945 0.0672 0.0309 0.1757 

 8 tansig trainlm 0.9298 0.8811 0.4046 0.6361 

 8 tansig traingdx 0.9799 0.3414 0.1568 0.3959 

 8 logsig traingdx 0.9442 0.5271 0.2421 0.4920 

 7 tansig traingdx 0.9346 1.0160 0.4665 0.6830 
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ΔP (k+5) 7 tansig trainbr 0.7816 3.2599 1.4964 1.2233 

 8 logsig trainbr -62.3342 229.2742 105.2466 10.2590 

 7 logsig trainlm -20.8211 326.8558 150.0407 12.2491 

 8 tansig trainbr -577.0620 506.9002 232.6887 15.2541 

 7 tansig trainlm -17.8622 218.2728 100.1965 10.0098 

 7 logsig trainbr -3.1168 48.8241 22.4123 4.7342 

 6 logsig trainbr -12.0190 362993.7519 166629.5401 408.2028 

 6 tansig trainbr 0.8718 2.8607 1.3132 1.1459 

 6 tansig trainlm -1.3260 39.5380 18.1496 4.2602 

 6 logsig trainlm 0.8318 2.8749 1.3197 1.1488 

 6 logsig traingdx -17.4929 219.2948 100.6656 10.0332 

  6 tansig traingdx 0.8104 3.0840 1.4157 1.1898 

a - Using normalized data 

 

 

Table C6: Performance values for each MLP topology for the experiment with 70 v/v% MEG. 

  Hidden Layer   CMEG 

  70 v/v % 

Variables Number of neurons Activation function Training algorithm R2  SSEa MSEa RMSEa 

ΔP (k+1) 7 tansig trainlm 0.9579 2.0775 0.5717 0.7561 

 8 tansig trainbr 0.9490 2.7186 0.7482 0.8650 

 7 logsig trainbr 0.9992 0.0435 0.0120 0.1094 

 7 tansig trainbr 0.9662 1.7686 0.4867 0.6977 

 6 logsig trainbr 0.9498 2.3628 0.6503 0.8064 
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 6 tansig trainbr 0.9980 0.1014 0.0279 0.1670 

 7 logsig trainlm 0.9992 0.0433 0.0119 0.1092 

 6 tansig trainlm 0.9993 0.0340 0.0093 0.0967 

 8 tansig trainlm 0.8533 7.2194 1.9868 1.4095 

 8 tansig traingdx 0.9746 1.8028 0.4962 0.7044 

 8 logsig traingdx 0.9434 1.8831 0.5182 0.7199 

 7 tansig traingdx 0.9554 2.8289 0.7785 0.8823 

ΔP (k+5) 7 tansig trainbr 0.9884 0.7300 0.2008 0.4482 

 8 logsig trainbr -10.5339 161.0831 44.3155 6.6570 

 7 logsig trainlm 0.8767 5.8786 1.6173 1.2717 

 8 tansig trainbr -15.9223 45.2201 12.4405 3.5271 

 7 tansig trainlm -0.7421 89.2030 24.5406 4.9538 

 7 logsig trainbr 0.5290 25.7058 7.0719 2.6593 

 6 logsig trainbr -401.5163 40425.2866 11121.3776 105.4579 

 6 tansig trainbr 0.9326 5.1796 1.4250 1.1937 

 6 tansig trainlm -1.1537 150.2429 41.3332 6.4291 

 6 logsig trainlm 0.9639 2.2455 0.6178 0.7860 

 6 logsig traingdx -2.5397 175.3307 48.2351 6.9452 

  6 tansig traingdx 0.9867 0.8371 0.2303 0.4799 

a - Using normalized data 
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Table C7: Optimized parameters (weight and bias) of the MLP logsig_7_purelin_1_trainbr used to predict the ΔP(t+1). 

    Parameters connecting the input and hidden neurons       Parameters connecting the 
hidden and output neurons 

  wj1 (i=1) wj2 (i=2) wj3 (i=3) wj4 (i=4) wj5 (i=5) wj6 (i=6)  bj1 (i=1)    wj1 (k=1) bk (k=1) 

j=1  -0.0719 0.5510 -0.8545 0.9714 1.6225 0.0680  0.27177  j=1  6.3578 -0.1811 

j=2  0.6330 -2.0230 2.8739 -0.5121 -0.6166 -1.6893  1.421  j=2  -0.4174  

j=3  1.4327 -0.9769 -0.7022 -0.7209 0.7137 -0.3642  -0.3152  j=3  -4.2264  

j=4  0.8456 0.7333 0.3548 0.2277 0.2538 -0.1296  -0.7738  j=4  -7.4539  

j=5  8.2765 -5.4457 -0.6467 -3.5122 5.3282 -0.9758  -1.5888  j=5  0.68132952  

j=6  0.0007 -0.5577 -0.4325 0.7543 -0.8844 -0.1982  -0.263  j=6  -8.9164202  

j=7   1.0517 -0.6232 0.1544 0.0566 -1.4625 0.0042   -0.0744   j=7   10.1681218   

 

 

Table C8. Optimized parameters (weight and bias) of the MLP logsig_6_purelin_1_trainlm used to predict the ΔP(t+5). 

    Parameters connecting the input and hidden neurons       Parameters connecting the 

hidden and output neurons 

  wj1 (i=1) wj2 (i=2) wj3 (i=3) wj4 (i=4) wj5 (i=5) wj6 (i=6)  bj1 (i=1)    wj1 (k=1) bk (k=1) 

j=1  0.1772 -0.0609 4.2388 -0.0234 0.0847 -2.8046  1.66666  j=1  50.6089 -52.5521 

j=2  -0.3512 -0.3111 0.1776 0.2761 -0.3175 1.6985  1.42789  j=2  2.6236  

j=3  -5.4440 -1.9806 -0.1860 8.7545 -6.9442 -3.0622  -3.1773  j=3  -0.4000  

j=4  -1.8506 1.6964 1.6203 -3.4523 1.8862 3.7338  -0.0657  j=4  27.3521  

j=5  -0.1484 0.1629 -4.2434 0.0656 -0.0813 2.8580  -1.5943  j=5  50.2158673  

j=6   -1.8321 1.6810 1.6508 -3.4241 1.8643 3.6932   -0.0901   j=6   -27.555778   
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Table D1: Performance values for all SVM models (PR = Precision, RC = Recall, ACC = Accuracy)  

Model ID Hyperparameters 

  

      Training 

time (s) 

Training 

group 

  Validation 

group 

  Test group   

Dec_func_shape C Kernel degree gamma PR RC ACC PR RC ACC PR RC ACC 

SVM_1 OvO 0.01 poly 1 auto 73.6327 1.000 1.000 1.000 0.943 0.947 0.936 0.981 0.963 0.979 

SVM_2 OvO 0.01 poly 2 auto 67.5487 1.000 1.000 1.000 0.935 0.938 0.936 0.981 0.963 0.979 

SVM_3 OvO 0.01 poly 3 auto 65.6985 1.000 1.000 1.000 0.935 0.938 0.936 0.981 0.963 0.979 

SVM_4 OvR 0.01 poly 1 auto 78.1301 1.000 1.000 1.000 0.943 0.947 0.936 0.981 0.963 0.979 

SVM_5 OvR 0.01 poly 2 auto 68.4474 1.000 1.000 1.000 0.935 0.938 0.936 0.981 0.963 0.979 

SVM_6 OvR 0.01 poly 3 auto 66.1859 1.000 1.000 1.000 0.935 0.938 0.936 0.981 0.963 0.979 

SVM_7 OvO 0.01 linear - - 73.9518 1.000 1.000 1.000 0.943 0.947 0.936 0.944 0.947 0.957 

SVM_8 OvR 0.01 linear - - 72.3457 1.000 1.000 1.000 0.943 0.947 0.936 0.944 0.947 0.957 

SVM_9 OvO 0.01 poly 4 auto 66.4678 1.000 1.000 1.000 0.916 0.916 0.915 0.944 0.947 0.957 

SVM_10 OvR 0.01 poly 4 auto 66.5141 1.000 1.000 1.000 0.916 0.916 0.915 0.944 0.947 0.957 

SVM_11 OvO 0.1 linear - - 71.9084 1.000 1.000 1.000 0.932 0.899 0.894 0.956 0.956 0.957 

SVM_12 OvO 0.1 poly 1 auto 72.1042 1.000 1.000 1.000 0.932 0.899 0.894 0.956 0.956 0.957 

SVM_13 OvR 0.1 linear - - 73.1657 1.000 1.000 1.000 0.932 0.899 0.894 0.956 0.956 0.957 

SVM_14 OvR 0.1 poly 1 auto 71.7229 1.000 1.000 1.000 0.932 0.899 0.894 0.956 0.956 0.957 

SVM_15 OvO 0.5 linear - - 20.4319 1.000 1.000 1.000 0.932 0.899 0.894 0.956 0.956 0.957 

SVM_16 OvO 0.5 poly 1 auto 20.3909 1.000 1.000 1.000 0.932 0.899 0.894 0.956 0.956 0.957 

SVM_17 OvR 0.5 linear - - 19.9021 1.000 1.000 1.000 0.932 0.899 0.894 0.956 0.956 0.957 

SVM_18 OvR 0.5 poly 1 auto 20.2430 1.000 1.000 1.000 0.932 0.899 0.894 0.956 0.956 0.957 

SVM_19 OvO 1 linear - - 19.5853 1.000 1.000 1.000 0.932 0.899 0.894 0.956 0.956 0.957 

SVM_20 OvO 1 poly 1 auto 19.7388 1.000 1.000 1.000 0.932 0.899 0.894 0.956 0.956 0.957 
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SVM_21 OvR 1 linear - - 20.7276 1.000 1.000 1.000 0.932 0.899 0.894 0.956 0.956 0.957 

SVM_22 OvR 1 poly 1 auto 20.2096 1.000 1.000 1.000 0.932 0.899 0.894 0.956 0.956 0.957 

SVM_23 OvO 2 linear - - 20.4769 1.000 1.000 1.000 0.932 0.899 0.894 0.956 0.956 0.957 

SVM_24 OvO 2 poly 1 auto 20.1835 1.000 1.000 1.000 0.932 0.899 0.894 0.956 0.956 0.957 

SVM_25 OvR 2 linear - - 20.1731 1.000 1.000 1.000 0.932 0.899 0.894 0.956 0.956 0.957 

SVM_26 OvR 2 poly 1 auto 20.2983 1.000 1.000 1.000 0.932 0.899 0.894 0.956 0.956 0.957 

SVM_27 OvO 5 linear - - 19.9585 1.000 1.000 1.000 0.932 0.899 0.894 0.956 0.956 0.957 

SVM_28 OvO 5 poly 1 auto 20.7580 1.000 1.000 1.000 0.932 0.899 0.894 0.956 0.956 0.957 

SVM_29 OvR 5 linear - - 20.2323 1.000 1.000 1.000 0.932 0.899 0.894 0.956 0.956 0.957 

SVM_30 OvR 5 poly 1 auto 20.0705 1.000 1.000 1.000 0.932 0.899 0.894 0.956 0.956 0.957 

SVM_31 OvO 0.1 poly 2 auto 68.8614 1.000 1.000 1.000 0.914 0.881 0.872 0.944 0.940 0.936 

SVM_32 OvR 0.1 poly 2 auto 67.6416 1.000 1.000 1.000 0.914 0.881 0.872 0.944 0.940 0.936 

SVM_33 OvO 0.5 poly 2 auto 19.0878 1.000 1.000 1.000 0.914 0.881 0.872 0.944 0.940 0.936 

SVM_34 OvR 0.5 poly 2 auto 18.8967 1.000 1.000 1.000 0.914 0.881 0.872 0.944 0.940 0.936 

SVM_35 OvO 1 poly 2 auto 18.9032 1.000 1.000 1.000 0.914 0.881 0.872 0.944 0.940 0.936 

SVM_36 OvR 1 poly 2 auto 18.7249 1.000 1.000 1.000 0.914 0.881 0.872 0.944 0.940 0.936 

SVM_37 OvO 2 poly 2 auto 18.8447 1.000 1.000 1.000 0.914 0.881 0.872 0.944 0.940 0.936 

SVM_38 OvR 2 poly 2 auto 20.1455 1.000 1.000 1.000 0.914 0.881 0.872 0.944 0.940 0.936 

SVM_39 OvO 5 poly 2 auto 18.9318 1.000 1.000 1.000 0.914 0.881 0.872 0.944 0.940 0.936 

SVM_40 OvO 5 rbf - scale 83.6070 0.992 0.992 0.991 0.932 0.913 0.915 0.944 0.940 0.936 

SVM_41 OvR 5 poly 2 auto 18.7070 1.000 1.000 1.000 0.914 0.881 0.872 0.944 0.940 0.936 

SVM_42 OvR 5 rbf - scale 57.6971 0.992 0.992 0.991 0.932 0.913 0.915 0.944 0.940 0.936 

SVM_43 OvO 0.1 poly 3 auto 67.6992 1.000 1.000 1.000 0.895 0.881 0.872 0.937 0.924 0.915 

SVM_44 OvO 0.1 poly 4 auto 66.4869 1.000 1.000 1.000 0.860 0.853 0.851 0.944 0.940 0.936 

SVM_45 OvR 0.1 poly 3 auto 66.4615 1.000 1.000 1.000 0.895 0.881 0.872 0.937 0.924 0.915 
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SVM_46 OvR 0.1 poly 4 auto 65.4905 1.000 1.000 1.000 0.860 0.853 0.851 0.944 0.940 0.936 

SVM_47 OvO 0.5 poly 3 auto 18.8342 1.000 1.000 1.000 0.895 0.881 0.872 0.937 0.924 0.915 

SVM_48 OvO 0.5 poly 4 auto 17.9543 1.000 1.000 1.000 0.860 0.853 0.851 0.944 0.940 0.936 

SVM_49 OvR 0.5 poly 3 auto 18.4414 1.000 1.000 1.000 0.895 0.881 0.872 0.937 0.924 0.915 

SVM_50 OvR 0.5 poly 4 auto 17.8248 1.000 1.000 1.000 0.860 0.853 0.851 0.944 0.940 0.936 

SVM_51 OvO 1 poly 3 auto 18.3908 1.000 1.000 1.000 0.895 0.881 0.872 0.937 0.924 0.915 

SVM_52 OvO 1 poly 4 auto 18.0865 1.000 1.000 1.000 0.860 0.853 0.851 0.944 0.940 0.936 

SVM_53 OvR 1 poly 3 auto 18.4174 1.000 1.000 1.000 0.895 0.881 0.872 0.937 0.924 0.915 

SVM_54 OvR 1 poly 4 auto 17.7328 1.000 1.000 1.000 0.860 0.853 0.851 0.944 0.940 0.936 

SVM_55 OvO 2 poly 3 auto 19.3454 1.000 1.000 1.000 0.895 0.881 0.872 0.937 0.924 0.915 

SVM_56 OvO 2 poly 4 auto 18.4938 1.000 1.000 1.000 0.860 0.853 0.851 0.944 0.940 0.936 

SVM_57 OvR 2 poly 3 auto 18.6079 1.000 1.000 1.000 0.895 0.881 0.872 0.937 0.924 0.915 

SVM_58 OvR 2 poly 4 auto 18.1854 1.000 1.000 1.000 0.860 0.853 0.851 0.944 0.940 0.936 

SVM_59 OvO 5 poly 3 auto 18.3817 1.000 1.000 1.000 0.895 0.881 0.872 0.937 0.924 0.915 

SVM_60 OvO 5 poly 4 auto 20.2391 1.000 1.000 1.000 0.860 0.853 0.851 0.944 0.940 0.936 

SVM_61 OvR 5 poly 3 auto 19.2050 1.000 1.000 1.000 0.895 0.881 0.872 0.937 0.924 0.915 

SVM_62 OvR 5 poly 4 auto 18.3742 1.000 1.000 1.000 0.860 0.853 0.851 0.944 0.940 0.936 

SVM_63 OvO 0.01 poly 5 auto 65.9490 1.000 1.000 1.000 0.888 0.842 0.872 0.878 0.888 0.894 

SVM_64 OvO 0.01 poly 6 auto 65.6963 1.000 1.000 1.000 0.885 0.842 0.872 0.878 0.888 0.894 

SVM_65 OvR 0.01 poly 5 auto 66.2891 1.000 1.000 1.000 0.888 0.842 0.872 0.878 0.888 0.894 

SVM_66 OvR 0.01 poly 6 auto 67.2551 1.000 1.000 1.000 0.885 0.842 0.872 0.878 0.888 0.894 

SVM_67 OvO 0.1 poly 5 auto 67.5335 1.000 1.000 1.000 0.860 0.853 0.851 0.883 0.903 0.894 

SVM_68 OvR 0.1 poly 5 auto 65.7002 1.000 1.000 1.000 0.860 0.853 0.851 0.883 0.903 0.894 

SVM_69 OvO 0.5 poly 5 auto 18.4619 1.000 1.000 1.000 0.860 0.853 0.851 0.883 0.903 0.894 

SVM_70 OvR 0.5 poly 5 auto 18.2668 1.000 1.000 1.000 0.860 0.853 0.851 0.883 0.903 0.894 
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SVM_71 OvO 1 poly 5 auto 18.2470 1.000 1.000 1.000 0.860 0.853 0.851 0.883 0.903 0.894 

SVM_72 OvR 1 poly 5 auto 18.4467 1.000 1.000 1.000 0.860 0.853 0.851 0.883 0.903 0.894 

SVM_73 OvO 2 poly 5 auto 18.6633 1.000 1.000 1.000 0.860 0.853 0.851 0.883 0.903 0.894 

SVM_74 OvR 2 poly 5 auto 18.5536 1.000 1.000 1.000 0.860 0.853 0.851 0.883 0.903 0.894 

SVM_75 OvO 5 poly 5 auto 18.4825 1.000 1.000 1.000 0.860 0.853 0.851 0.883 0.903 0.894 

SVM_76 OvR 5 poly 5 auto 18.5648 1.000 1.000 1.000 0.860 0.853 0.851 0.883 0.903 0.894 

SVM_77 OvO 5 poly 2 scale 19.5816 0.989 0.985 0.986 0.922 0.897 0.894 0.900 0.903 0.894 

SVM_78 OvR 5 poly 2 scale 19.5647 0.989 0.985 0.986 0.922 0.897 0.894 0.900 0.903 0.894 

SVM_79 OvO 0.1 poly 6 auto 66.8405 1.000 1.000 1.000 0.815 0.757 0.787 0.863 0.880 0.872 

SVM_80 OvR 0.1 poly 6 auto 65.7677 1.000 1.000 1.000 0.815 0.757 0.787 0.863 0.880 0.872 

SVM_81 OvO 0.5 poly 6 auto 23.6465 1.000 1.000 1.000 0.815 0.757 0.787 0.863 0.880 0.872 

SVM_82 OvR 0.5 poly 6 auto 17.9289 1.000 1.000 1.000 0.815 0.757 0.787 0.863 0.880 0.872 

SVM_83 OvO 1 poly 6 auto 18.1661 1.000 1.000 1.000 0.815 0.757 0.787 0.863 0.880 0.872 

SVM_84 OvR 1 poly 6 auto 18.1014 1.000 1.000 1.000 0.815 0.757 0.787 0.863 0.880 0.872 

SVM_85 OvO 2 poly 6 auto 18.2913 1.000 1.000 1.000 0.815 0.757 0.787 0.863 0.880 0.872 

SVM_86 OvR 2 poly 6 auto 18.0889 1.000 1.000 1.000 0.815 0.757 0.787 0.863 0.880 0.872 

SVM_87 OvO 5 poly 3 scale 19.8430 0.985 0.980 0.982 0.875 0.832 0.851 0.889 0.909 0.894 

SVM_88 OvO 5 poly 6 auto 18.3918 1.000 1.000 1.000 0.815 0.757 0.787 0.863 0.880 0.872 

SVM_89 OvR 5 poly 3 scale 19.4896 0.985 0.980 0.982 0.875 0.832 0.851 0.889 0.909 0.894 

SVM_90 OvR 5 poly 6 auto 18.4311 1.000 1.000 1.000 0.815 0.757 0.787 0.863 0.880 0.872 

SVM_91 OvO 5 poly 1 scale 20.5908 0.959 0.954 0.954 0.922 0.897 0.894 0.929 0.917 0.915 

SVM_92 OvR 5 poly 1 scale 20.3333 0.959 0.954 0.954 0.922 0.897 0.894 0.929 0.917 0.915 

SVM_93 OvO 2 poly 2 scale 20.8323 0.959 0.949 0.950 0.886 0.823 0.851 0.900 0.903 0.894 

SVM_94 OvR 2 poly 2 scale 20.1677 0.959 0.949 0.950 0.886 0.823 0.851 0.900 0.903 0.894 

SVM_95 OvO 2 rbf - scale 82.8456 0.947 0.938 0.941 0.916 0.876 0.894 0.884 0.880 0.872 
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SVM_96 OvR 2 rbf - scale 84.4934 0.947 0.938 0.941 0.916 0.876 0.894 0.884 0.880 0.872 

SVM_97 OvO 5 poly 4 scale 20.0378 0.960 0.949 0.950 0.831 0.758 0.787 0.908 0.925 0.915 

SVM_98 OvR 5 poly 4 scale 19.5585 0.960 0.949 0.950 0.831 0.758 0.787 0.908 0.925 0.915 

SVM_99 OvO 2 poly 1 scale 24.6015 0.944 0.932 0.936 0.784 0.802 0.851 0.879 0.880 0.872 

SVM_10

0 

OvR 2 poly 1 scale 21.8771 0.944 0.932 0.936 0.784 0.802 0.851 0.879 0.880 0.872 

SVM_10

1 

OvO 2 poly 3 scale 20.7346 0.950 0.935 0.936 0.853 0.786 0.809 0.895 0.887 0.872 

SVM_10

2 

OvR 2 poly 3 scale 20.1369 0.950 0.935 0.936 0.853 0.786 0.809 0.895 0.887 0.872 

SVM_10

3 

OvO 1 poly 2 scale 21.5510 0.935 0.911 0.918 0.748 0.765 0.809 0.860 0.843 0.830 

SVM_10

4 

OvR 1 poly 2 scale 21.5702 0.935 0.911 0.918 0.748 0.765 0.809 0.860 0.843 0.830 

SVM_10

5 

OvO 2 poly 4 scale 20.2783 0.937 0.909 0.909 0.807 0.721 0.745 0.939 0.925 0.915 

SVM_10

6 

OvR 2 poly 4 scale 20.2763 0.937 0.909 0.909 0.807 0.721 0.745 0.939 0.925 0.915 

SVM_10
7 

OvO 1 rbf - scale 81.6530 0.917 0.896 0.904 0.794 0.806 0.851 0.849 0.825 0.809 

SVM_10

8 

OvR 1 rbf - scale 85.2323 0.917 0.896 0.904 0.794 0.806 0.851 0.849 0.825 0.809 

SVM_10

9 

OvO 5 poly 5 scale 20.1014 0.940 0.913 0.913 0.760 0.696 0.723 0.878 0.847 0.851 

SVM_11

0 

OvR 5 poly 5 scale 20.1531 0.940 0.913 0.913 0.760 0.696 0.723 0.878 0.847 0.851 

SVM_11

1 

OvO 1 poly 3 scale 20.9656 0.925 0.891 0.890 0.710 0.712 0.745 0.867 0.850 0.830 

SVM_11

2 

OvR 1 poly 3 scale 21.4649 0.925 0.891 0.890 0.710 0.712 0.745 0.867 0.850 0.830 

SVM_11
3 

OvO 2 poly 5 scale 21.3406 0.943 0.884 0.886 0.848 0.702 0.723 0.830 0.769 0.787 
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SVM_11

4 

OvR 2 poly 5 scale 20.2931 0.943 0.884 0.886 0.848 0.702 0.723 0.830 0.769 0.787 

SVM_11

5 

OvO 5 poly 6 scale 20.2130 0.953 0.894 0.895 0.774 0.637 0.660 0.835 0.792 0.809 

SVM_11

6 

OvR 5 poly 6 scale 20.4282 0.953 0.894 0.895 0.774 0.637 0.660 0.835 0.792 0.809 

SVM_11

7 

OvO 1 poly 1 scale 23.5627 0.880 0.853 0.863 0.731 0.727 0.766 0.835 0.809 0.787 

SVM_11

8 

OvR 1 poly 1 scale 24.9392 0.880 0.853 0.863 0.731 0.727 0.766 0.835 0.809 0.787 

SVM_11

9 

OvO 0.5 poly 2 scale 24.1426 0.868 0.833 0.840 0.671 0.660 0.702 0.857 0.841 0.830 

SVM_12

0 

OvR 0.5 poly 2 scale 24.0889 0.868 0.833 0.840 0.671 0.660 0.702 0.857 0.841 0.830 

SVM_12

1 

OvO 1 poly 4 scale 21.0243 0.922 0.856 0.858 0.702 0.647 0.681 0.821 0.757 0.766 

SVM_12

2 

OvR 1 poly 4 scale 21.2123 0.922 0.856 0.858 0.702 0.647 0.681 0.821 0.757 0.766 

SVM_12

3 

OvO 1 poly 5 scale 21.2567 0.925 0.855 0.858 0.698 0.644 0.681 0.789 0.714 0.745 

SVM_12
4 

OvR 1 poly 5 scale 21.1990 0.925 0.855 0.858 0.698 0.644 0.681 0.789 0.714 0.745 

SVM_12

5 

OvO 2 poly 6 scale 21.2306 0.930 0.864 0.868 0.617 0.578 0.617 0.778 0.692 0.723 

SVM_12

6 

OvR 2 poly 6 scale 31.5717 0.930 0.864 0.868 0.617 0.578 0.617 0.778 0.692 0.723 

SVM_12

7 

OvO 1 poly 6 scale 25.5722 0.922 0.845 0.849 0.698 0.644 0.681 0.778 0.692 0.723 

SVM_12

8 

OvR 1 poly 6 scale 21.3149 0.922 0.845 0.849 0.698 0.644 0.681 0.778 0.692 0.723 

SVM_12

9 

OvO 0.5 poly 4 scale 22.9189 0.901 0.826 0.831 0.667 0.622 0.660 0.694 0.717 0.745 

SVM_13

0 

OvR 0.5 poly 4 scale 25.3530 0.901 0.826 0.831 0.667 0.622 0.660 0.694 0.717 0.745 
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SVM_13

1 

OvO 0.5 poly 3 scale 23.0260 0.887 0.810 0.817 0.727 0.690 0.723 0.675 0.716 0.723 

SVM_13

2 

OvR 0.5 poly 3 scale 22.5973 0.887 0.810 0.817 0.727 0.690 0.723 0.675 0.716 0.723 

SVM_13

3 

OvO 0.5 poly 5 scale 22.7091 0.904 0.819 0.822 0.667 0.622 0.660 0.671 0.695 0.723 

SVM_13

4 

OvR 0.5 poly 5 scale 22.4033 0.904 0.819 0.822 0.667 0.622 0.660 0.671 0.695 0.723 

SVM_13

5 

OvO 0.5 rbf - scale 59.6960 0.859 0.802 0.822 0.682 0.648 0.660 0.685 0.734 0.702 

SVM_13

6 

OvR 0.5 rbf - scale 59.7815 0.859 0.802 0.822 0.682 0.648 0.660 0.685 0.734 0.702 

SVM_13

7 

OvO 0.5 poly 6 scale 22.7071 0.926 0.803 0.804 0.665 0.594 0.638 0.657 0.673 0.702 

SVM_13

8 

OvR 0.5 poly 6 scale 22.4208 0.926 0.803 0.804 0.665 0.594 0.638 0.657 0.673 0.702 

SVM_13

9 

OvO 1 rbf - auto 118.8883 1.000 1.000 1.000 0.017 0.111 0.149 0.017 0.111 0.149 

SVM_14

0 

OvR 1 rbf - auto 124.4400 1.000 1.000 1.000 0.017 0.111 0.149 0.017 0.111 0.149 

SVM_14
1 

OvO 2 rbf - auto 124.8738 1.000 1.000 1.000 0.017 0.111 0.149 0.017 0.111 0.149 

SVM_14

2 

OvR 2 rbf - auto 125.8524 1.000 1.000 1.000 0.017 0.111 0.149 0.017 0.111 0.149 

SVM_14

3 

OvO 5 rbf - auto 124.1344 1.000 1.000 1.000 0.017 0.111 0.149 0.017 0.111 0.149 

SVM_14

4 

OvR 5 rbf - auto 82.9192 1.000 1.000 1.000 0.017 0.111 0.149 0.017 0.111 0.149 

SVM_14

5 

OvO 0.1 poly 6 scale 96.6185 0.794 0.734 0.735 0.607 0.511 0.532 0.678 0.677 0.702 

SVM_14

6 

OvR 0.1 poly 6 scale 97.3522 0.794 0.734 0.735 0.607 0.511 0.532 0.678 0.677 0.702 

SVM_14

7 

OvO 0.1 poly 5 scale 99.1677 0.779 0.723 0.726 0.581 0.503 0.532 0.678 0.677 0.702 
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SVM_14

8 

OvR 0.1 poly 5 scale 99.9254 0.779 0.723 0.726 0.581 0.503 0.532 0.678 0.677 0.702 

SVM_14

9 

OvO 0.5 poly 1 scale 28.0745 0.689 0.684 0.717 0.622 0.593 0.596 0.563 0.712 0.681 

SVM_15

0 

OvR 0.5 poly 1 scale 27.4439 0.689 0.684 0.717 0.622 0.593 0.596 0.563 0.712 0.681 

SVM_15

1 

OvO 0.1 poly 4 scale 103.2796 0.748 0.698 0.703 0.502 0.489 0.532 0.650 0.654 0.681 

SVM_15

2 

OvR 0.1 poly 4 scale 102.9692 0.748 0.698 0.703 0.502 0.489 0.532 0.650 0.654 0.681 

SVM_15

3 

OvO 0.1 poly 3 scale 110.1472 0.719 0.660 0.671 0.523 0.461 0.489 0.646 0.661 0.681 

SVM_15

4 

OvR 0.1 poly 3 scale 110.0066 0.719 0.660 0.671 0.523 0.461 0.489 0.646 0.661 0.681 

SVM_15

5 

OvO 2 sigmoid - scale 30.3691 0.558 0.568 0.612 0.517 0.380 0.426 0.478 0.481 0.489 

SVM_15

6 

OvR 2 sigmoid - scale 29.9800 0.558 0.568 0.612 0.517 0.380 0.426 0.478 0.481 0.489 

SVM_15

7 

OvO 0.1 poly 2 scale 121.9873 0.444 0.548 0.575 0.355 0.430 0.426 0.469 0.601 0.617 

SVM_15
8 

OvR 0.1 poly 2 scale 121.8429 0.444 0.548 0.575 0.355 0.430 0.426 0.469 0.601 0.617 

SVM_15

9 

OvO 1 sigmoid - scale 33.8316 0.374 0.490 0.562 0.388 0.412 0.468 0.360 0.524 0.532 

SVM_16

0 

OvR 1 sigmoid - scale 34.1463 0.374 0.490 0.562 0.388 0.412 0.468 0.360 0.524 0.532 

SVM_16

1 

OvO 0.5 sigmoid - scale 37.9933 0.292 0.360 0.425 0.262 0.296 0.340 0.371 0.437 0.468 

SVM_16

2 

OvR 0.5 sigmoid - scale 38.5091 0.292 0.360 0.425 0.262 0.296 0.340 0.371 0.437 0.468 

SVM_16

3 

OvO 5 sigmoid - scale 25.5321 0.661 0.416 0.457 0.500 0.298 0.319 0.407 0.331 0.319 

SVM_16

4 

OvR 5 sigmoid - scale 25.2560 0.661 0.416 0.457 0.500 0.298 0.319 0.407 0.331 0.319 
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SVM_16

5 

OvO 0.01 poly 6 scale 124.0644 0.518 0.402 0.402 0.561 0.449 0.447 0.474 0.398 0.404 

SVM_16

6 

OvR 0.01 poly 6 scale 123.6579 0.518 0.402 0.402 0.561 0.449 0.447 0.474 0.398 0.404 

SVM_16

7 

OvO 0.1 rbf - scale 163.5958 0.227 0.367 0.406 0.203 0.324 0.319 0.213 0.370 0.383 

SVM_16

8 

OvR 0.1 rbf - scale 163.2050 0.227 0.367 0.406 0.203 0.324 0.319 0.213 0.370 0.383 

SVM_16

9 

OvO 0.01 poly 5 scale 128.9090 0.534 0.387 0.388 0.376 0.394 0.383 0.317 0.325 0.319 

SVM_17

0 

OvR 0.01 poly 5 scale 130.9366 0.534 0.387 0.388 0.376 0.394 0.383 0.317 0.325 0.319 

SVM_17

1 

OvO 0.1 poly 1 scale 146.0755 0.210 0.350 0.388 0.192 0.296 0.298 0.199 0.333 0.362 

SVM_17

2 

OvR 0.1 poly 1 scale 145.9695 0.210 0.350 0.388 0.192 0.296 0.298 0.199 0.333 0.362 

SVM_17

3 

OvO 0.01 poly 4 scale 135.6832 0.413 0.358 0.361 0.376 0.394 0.383 0.347 0.344 0.340 

SVM_17

4 

OvR 0.01 poly 4 scale 138.2390 0.413 0.358 0.361 0.376 0.394 0.383 0.347 0.344 0.340 

SVM_17
5 

OvO 0.1 sigmoid - scale 155.6791 0.069 0.222 0.288 0.061 0.222 0.255 0.074 0.222 0.298 

SVM_17

6 

OvR 0.1 sigmoid - scale 155.4850 0.069 0.222 0.288 0.061 0.222 0.255 0.074 0.222 0.298 

SVM_17

7 

OvO 0.01 poly 2 scale 149.1872 0.129 0.216 0.224 0.129 0.222 0.213 0.129 0.222 0.213 

SVM_17

8 

OvO 0.01 poly 3 scale 138.5773 0.129 0.216 0.224 0.129 0.222 0.213 0.129 0.222 0.213 

SVM_17

9 

OvR 0.01 poly 2 scale 149.3683 0.129 0.216 0.224 0.129 0.222 0.213 0.129 0.222 0.213 

SVM_18

0 

OvR 0.01 poly 3 scale 140.1225 0.129 0.216 0.224 0.129 0.222 0.213 0.129 0.222 0.213 

SVM_18

1 

OvO 0.01 poly 1 scale 154.0070 0.016 0.111 0.146 0.017 0.111 0.149 0.017 0.111 0.149 
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SVM_18

2 

OvO 0.01 rbf - scale 163.4359 0.016 0.111 0.146 0.017 0.111 0.149 0.017 0.111 0.149 

SVM_18

3 

OvO 0.01 rbf - auto 180.1035 0.016 0.111 0.146 0.017 0.111 0.149 0.017 0.111 0.149 

SVM_18

4 

OvO 0.01 sigmoid - scale 155.7240 0.016 0.111 0.146 0.017 0.111 0.149 0.017 0.111 0.149 

SVM_18

5 

OvO 0.01 sigmoid - auto 151.5917 0.016 0.111 0.146 0.017 0.111 0.149 0.017 0.111 0.149 

SVM_18

6 

OvR 0.01 poly 1 scale 155.6617 0.016 0.111 0.146 0.017 0.111 0.149 0.017 0.111 0.149 

SVM_18

7 

OvR 0.01 rbf - scale 163.1617 0.016 0.111 0.146 0.017 0.111 0.149 0.017 0.111 0.149 

SVM_18

8 

OvR 0.01 rbf - auto 176.2421 0.016 0.111 0.146 0.017 0.111 0.149 0.017 0.111 0.149 

SVM_18

9 

OvR 0.01 sigmoid - scale 159.7846 0.016 0.111 0.146 0.017 0.111 0.149 0.017 0.111 0.149 

SVM_19

0 

OvR 0.01 sigmoid - auto 150.0988 0.016 0.111 0.146 0.017 0.111 0.149 0.017 0.111 0.149 

SVM_19

1 

OvO 0.1 rbf - auto 175.2291 0.016 0.111 0.146 0.017 0.111 0.149 0.017 0.111 0.149 

SVM_19
2 

OvO 0.1 sigmoid - auto 150.8025 0.016 0.111 0.146 0.017 0.111 0.149 0.017 0.111 0.149 

SVM_19

3 

OvR 0.1 rbf - auto 175.3881 0.016 0.111 0.146 0.017 0.111 0.149 0.017 0.111 0.149 

SVM_19

4 

OvR 0.1 sigmoid - auto 151.5459 0.016 0.111 0.146 0.017 0.111 0.149 0.017 0.111 0.149 

SVM_19

5 

OvO 0.5 rbf - auto 81.0795 0.016 0.111 0.146 0.017 0.111 0.149 0.017 0.111 0.149 

SVM_19

6 

OvO 0.5 sigmoid - auto 42.2812 0.016 0.111 0.146 0.017 0.111 0.149 0.017 0.111 0.149 

SVM_19

7 

OvR 0.5 rbf - auto 80.6303 0.016 0.111 0.146 0.017 0.111 0.149 0.017 0.111 0.149 

SVM_19

8 

OvR 0.5 sigmoid - auto 41.7899 0.016 0.111 0.146 0.017 0.111 0.149 0.017 0.111 0.149 
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SVM_19

9 

OvO 1 sigmoid - auto 42.1566 0.016 0.111 0.146 0.017 0.111 0.149 0.017 0.111 0.149 

SVM_20

0 

OvR 1 sigmoid - auto 42.9797 0.016 0.111 0.146 0.017 0.111 0.149 0.017 0.111 0.149 

SVM_20

1 

OvO 2 sigmoid - auto 43.2634 0.016 0.111 0.146 0.017 0.111 0.149 0.017 0.111 0.149 

SVM_20

2 

OvR 2 sigmoid - auto 42.5592 0.016 0.111 0.146 0.017 0.111 0.149 0.017 0.111 0.149 

SVM_20

3 

OvO 5 sigmoid - auto 43.1205 0.016 0.111 0.146 0.017 0.111 0.149 0.017 0.111 0.149 

SVM_20

4 

OvR 5 sigmoid - auto 43.3328 0.016 0.111 0.146 0.017 0.111 0.149 0.017 0.111 0.149 
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Table D2: Performance values for all DT models (PR = Precision, RC = Recall, ACC = Accuracy)  

Model 

ID 

Hyperparameters     Training 

time (s) 

Training group   Validation 

group 

  Test group   

Crit max_depth max_leaf_

nodes 

min_samples 

_leaf 

PR RC ACC PR RC ACC PR RC ACC 

DT_1 entropy None 7 10 198.6981 0.989 0.987 0.986 0.898 0.848 0.872 0.940 0.943 0.936 

DT_2 entropy 7 1 None 224.6720 1.000 1.000 1.000 0.883 0.840 0.851 0.914 0.925 0.915 

DT_3 entropy None 1 20 222.4325 1.000 1.000 1.000 0.873 0.844 0.851 0.921 0.906 0.915 

DT_4 entropy 11 10 10 188.8843 0.989 0.987 0.986 0.864 0.848 0.851 0.921 0.906 0.915 

DT_5 entropy None 5 10 206.4564 0.989 0.987 0.986 0.885 0.844 0.851 0.912 0.925 0.915 

DT_6 entropy 5 1 20 228.2701 1.000 1.000 1.000 0.813 0.728 0.745 0.915 0.925 0.915 

DT_7 entropy 5 5 10 209.3055 0.989 0.987 0.986 0.824 0.790 0.787 0.900 0.906 0.915 

DT_8 entropy 9 7 None 199.6455 0.989 0.987 0.986 0.808 0.757 0.766 0.924 0.928 0.915 

DT_9 entropy 7 1 20 225.0789 1.000 1.000 1.000 0.939 0.880 0.915 0.899 0.890 0.894 

DT_10 gini 11 1 None 193.8204 1.000 1.000 1.000 0.887 0.880 0.894 0.909 0.905 0.894 

DT_11 entropy 5 7 20 201.3851 0.989 0.987 0.986 0.928 0.894 0.915 0.899 0.890 0.894 

DT_12 entropy 5 10 10 190.0051 0.989 0.987 0.986 0.911 0.872 0.894 0.887 0.890 0.894 

DT_13 entropy 7 1 10 223.8978 0.993 0.990 0.991 0.896 0.854 0.872 0.884 0.888 0.894 

DT_14 entropy 7 5 10 207.9183 0.989 0.987 0.986 0.914 0.885 0.894 0.895 0.906 0.894 

DT_15 entropy 11 5 20 206.9108 0.989 0.987 0.986 0.912 0.857 0.894 0.899 0.890 0.894 

DT_16 entropy 9 5 None 208.1672 0.989 0.987 0.986 0.888 0.858 0.872 0.899 0.893 0.894 

DT_17 entropy None 1 10 222.4532 0.993 0.990 0.991 0.869 0.848 0.851 0.880 0.888 0.894 

DT_18 entropy None 7 None 198.4000 0.989 0.987 0.986 0.900 0.863 0.872 0.887 0.906 0.894 

DT_19 entropy 5 10 20 191.8055 0.989 0.987 0.986 0.873 0.844 0.851 0.887 0.906 0.894 

DT_20 entropy None 10 None 187.5435 0.989 0.987 0.986 0.878 0.844 0.851 0.878 0.888 0.894 
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DT_21 entropy 7 7 None 201.2883 0.989 0.987 0.986 0.840 0.813 0.830 0.899 0.872 0.894 

DT_22 entropy 11 7 None 198.7149 0.989 0.987 0.986 0.875 0.803 0.830 0.909 0.906 0.894 

DT_23 entropy 9 5 20 209.3711 0.989 0.987 0.986 0.863 0.761 0.809 0.899 0.890 0.894 

DT_24 entropy 11 1 20 224.6336 1.000 1.000 1.000 0.886 0.844 0.872 0.865 0.872 0.872 

DT_25 entropy 5 7 10 201.0931 0.989 0.987 0.986 0.912 0.861 0.894 0.874 0.872 0.872 

DT_26 entropy None 10 10 188.0587 0.989 0.987 0.986 0.900 0.863 0.872 0.856 0.869 0.872 

DT_27 entropy None 10 20 188.4272 0.989 0.987 0.986 0.875 0.829 0.851 0.881 0.884 0.872 

DT_28 gini 11 10 10 180.7146 0.972 0.973 0.973 0.887 0.880 0.894 0.870 0.868 0.872 

DT_29 gini 11 10 20 181.1326 0.972 0.973 0.973 0.887 0.880 0.894 0.870 0.868 0.872 

DT_30 gini None 5 20 188.3494 0.972 0.973 0.973 0.887 0.880 0.894 0.870 0.868 0.872 

DT_31 gini None 10 10 181.5692 0.972 0.973 0.973 0.897 0.880 0.894 0.870 0.868 0.872 

DT_32 gini None 10 20 180.2820 0.972 0.973 0.973 0.887 0.880 0.894 0.870 0.868 0.872 

DT_33 entropy 9 10 10 191.0532 0.989 0.987 0.986 0.857 0.822 0.830 0.850 0.869 0.872 

DT_34 gini None 7 20 184.3694 0.972 0.973 0.973 0.875 0.866 0.872 0.870 0.868 0.872 

DT_35 gini 9 10 10 181.1932 0.972 0.973 0.973 0.861 0.829 0.851 0.870 0.868 0.872 

DT_36 gini None 7 None 185.7719 0.972 0.973 0.973 0.855 0.829 0.851 0.870 0.868 0.872 

DT_37 entropy 9 1 10 225.9190 0.993 0.990 0.991 0.935 0.917 0.936 0.846 0.853 0.851 

DT_38 gini 9 1 None 193.5661 0.997 0.996 0.995 0.887 0.880 0.894 0.826 0.831 0.851 

DT_39 gini None 1 None 194.0073 1.000 1.000 1.000 0.856 0.848 0.851 0.853 0.852 0.851 

DT_40 entropy None 1 None 222.0445 1.000 1.000 1.000 0.870 0.835 0.851 0.837 0.835 0.851 

DT_41 entropy 7 10 20 190.5960 0.989 0.987 0.986 0.911 0.872 0.894 0.837 0.835 0.851 

DT_42 entropy 7 10 10 190.9484 0.989 0.987 0.986 0.877 0.862 0.872 0.869 0.838 0.851 

DT_43 gini 9 1 10 195.5095 0.980 0.977 0.977 0.891 0.880 0.894 0.857 0.846 0.851 

DT_44 gini 11 1 10 193.6495 0.980 0.977 0.977 0.895 0.880 0.894 0.859 0.852 0.851 

DT_45 gini 9 7 20 184.7079 0.972 0.973 0.973 0.891 0.880 0.894 0.853 0.852 0.851 
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DT_46 gini 11 10 None 181.4457 0.972 0.973 0.973 0.887 0.880 0.894 0.853 0.852 0.851 

DT_47 gini None 10 None 180.1495 0.972 0.973 0.973 0.891 0.880 0.894 0.853 0.852 0.851 

DT_48 gini 9 7 None 184.3993 0.972 0.973 0.973 0.869 0.861 0.872 0.852 0.846 0.851 

DT_49 gini 11 7 None 184.6349 0.972 0.973 0.973 0.875 0.866 0.872 0.859 0.852 0.851 

DT_50 gini None 5 10 186.8215 0.972 0.973 0.973 0.873 0.864 0.872 0.852 0.846 0.851 

DT_51 gini None 5 None 186.6592 0.972 0.973 0.973 0.873 0.864 0.872 0.853 0.852 0.851 

DT_52 entropy 7 7 20 203.1044 0.989 0.987 0.986 0.836 0.785 0.809 0.865 0.859 0.851 

DT_53 entropy 11 10 20 189.5346 0.989 0.987 0.986 0.833 0.782 0.787 0.850 0.872 0.851 

DT_54 gini 11 5 None 187.0591 0.972 0.973 0.973 0.831 0.799 0.830 0.853 0.852 0.851 

DT_55 gini None 1 20 193.8636 1.000 1.000 1.000 0.944 0.922 0.936 0.854 0.830 0.830 

DT_56 entropy 9 1 20 227.2644 1.000 1.000 1.000 0.869 0.839 0.851 0.829 0.819 0.830 

DT_57 entropy 11 1 None 223.5777 1.000 1.000 1.000 0.863 0.844 0.851 0.829 0.835 0.830 

DT_58 entropy 9 1 None 226.3461 1.000 1.000 1.000 0.860 0.784 0.830 0.870 0.859 0.830 

DT_59 entropy 11 1 10 224.5103 0.993 0.990 0.991 0.888 0.862 0.872 0.840 0.835 0.830 

DT_60 entropy 5 5 None 208.4174 0.989 0.987 0.986 0.910 0.850 0.872 0.830 0.835 0.830 

DT_61 entropy 7 5 20 208.5141 0.989 0.987 0.986 0.877 0.821 0.851 0.850 0.838 0.830 

DT_62 entropy 9 7 20 199.7175 0.989 0.987 0.986 0.865 0.839 0.851 0.839 0.813 0.830 

DT_63 gini 9 5 20 187.0887 0.972 0.973 0.973 0.891 0.880 0.894 0.826 0.831 0.830 

DT_64 gini 11 5 20 186.9737 0.972 0.973 0.973 0.891 0.880 0.894 0.826 0.831 0.830 

DT_65 gini 9 5 None 189.6498 0.972 0.973 0.973 0.869 0.857 0.872 0.826 0.831 0.830 

DT_66 gini None 1 10 194.4044 0.980 0.977 0.977 0.856 0.847 0.851 0.847 0.824 0.830 

DT_67 entropy 9 10 None 189.9840 0.989 0.987 0.986 0.844 0.790 0.809 0.862 0.856 0.830 

DT_68 entropy None 5 None 206.1365 0.989 0.987 0.986 0.832 0.816 0.809 0.851 0.856 0.830 

DT_69 entropy 5 7 None 200.5122 0.989 0.987 0.986 0.829 0.786 0.787 0.828 0.835 0.830 

DT_70 entropy 9 10 20 191.1951 0.989 0.987 0.986 0.821 0.786 0.787 0.871 0.851 0.830 
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DT_71 entropy 11 7 20 199.7647 0.989 0.987 0.986 0.821 0.786 0.787 0.835 0.832 0.830 

DT_72 gini 9 1 20 193.1450 0.997 0.996 0.995 0.857 0.840 0.851 0.804 0.809 0.809 

DT_73 entropy 5 1 None 227.1413 1.000 1.000 1.000 0.853 0.820 0.830 0.835 0.822 0.809 

DT_74 entropy 7 10 None 190.5470 0.989 0.987 0.986 0.907 0.881 0.894 0.827 0.822 0.809 

DT_75 entropy 11 5 10 207.0994 0.989 0.987 0.986 0.904 0.863 0.872 0.834 0.832 0.809 

DT_76 gini 9 7 10 184.7154 0.972 0.973 0.973 0.900 0.880 0.894 0.808 0.815 0.809 

DT_77 gini 11 7 10 186.1690 0.972 0.973 0.973 0.861 0.840 0.851 0.804 0.794 0.809 

DT_78 gini 9 5 10 189.7158 0.972 0.973 0.973 0.833 0.822 0.830 0.808 0.815 0.809 

DT_79 entropy 9 5 10 209.4935 0.989 0.987 0.986 0.807 0.764 0.766 0.813 0.838 0.809 

DT_80 gini 11 7 20 184.4725 0.972 0.973 0.973 0.848 0.811 0.809 0.796 0.809 0.809 

DT_81 gini 7 10 10 168.8146 0.814 0.862 0.890 0.751 0.806 0.851 0.704 0.757 0.809 

DT_82 gini 7 7 10 171.5456 0.814 0.862 0.890 0.730 0.783 0.830 0.704 0.757 0.809 

DT_83 gini 7 7 20 171.5379 0.814 0.862 0.890 0.727 0.769 0.830 0.704 0.757 0.809 

DT_84 gini 7 7 None 171.6062 0.814 0.862 0.890 0.741 0.790 0.830 0.704 0.757 0.809 

DT_85 gini 7 10 None 169.2891 0.814 0.862 0.890 0.721 0.773 0.809 0.704 0.757 0.809 

DT_86 entropy 5 1 10 225.8063 0.993 0.990 0.991 0.914 0.898 0.915 0.794 0.779 0.787 

DT_87 entropy 5 5 20 208.9354 0.989 0.987 0.986 0.888 0.858 0.872 0.806 0.801 0.787 

DT_88 entropy 5 10 None 189.6989 0.989 0.987 0.986 0.872 0.825 0.851 0.805 0.803 0.787 

DT_89 entropy 7 5 None 207.7634 0.989 0.987 0.986 0.834 0.811 0.809 0.790 0.785 0.787 

DT_90 entropy 11 5 None 208.7633 0.989 0.987 0.986 0.824 0.804 0.809 0.787 0.785 0.787 

DT_91 entropy None 5 20 206.5249 0.989 0.987 0.986 0.831 0.799 0.809 0.794 0.782 0.787 

DT_92 gini 9 10 None 180.6487 0.972 0.973 0.973 0.868 0.835 0.851 0.774 0.772 0.787 

DT_93 gini 11 5 10 187.4583 0.972 0.973 0.973 0.868 0.835 0.851 0.789 0.776 0.787 

DT_94 gini None 7 10 184.0691 0.972 0.973 0.973 0.868 0.838 0.851 0.786 0.778 0.787 

DT_95 gini 7 1 20 176.0546 0.827 0.876 0.904 0.751 0.806 0.851 0.698 0.760 0.787 
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DT_96 entropy 7 7 10 202.9389 0.989 0.987 0.986 0.842 0.826 0.830 0.778 0.785 0.766 

DT_97 entropy 9 7 10 200.4623 0.989 0.987 0.986 0.842 0.818 0.830 0.772 0.782 0.766 

DT_98 entropy 11 7 10 201.7677 0.989 0.987 0.986 0.848 0.818 0.830 0.770 0.761 0.766 

DT_99 entropy 11 10 None 188.2425 0.989 0.987 0.986 0.861 0.821 0.830 0.771 0.761 0.766 

DT_100 gini 9 10 20 180.8291 0.972 0.973 0.973 0.883 0.857 0.872 0.784 0.781 0.766 

DT_101 entropy None 7 20 199.6641 0.989 0.987 0.986 0.832 0.808 0.809 0.763 0.782 0.766 

DT_102 gini 7 1 None 175.9758 0.827 0.876 0.904 0.744 0.769 0.830 0.691 0.725 0.766 

DT_103 gini 7 5 10 171.5165 0.814 0.862 0.890 0.773 0.780 0.830 0.674 0.720 0.766 

DT_104 gini 7 5 20 171.0032 0.814 0.862 0.890 0.729 0.783 0.830 0.693 0.720 0.766 

DT_105 gini 7 5 None 173.3215 0.814 0.862 0.890 0.765 0.780 0.830 0.674 0.720 0.766 

DT_106 gini 11 1 20 194.8051 1.000 1.000 1.000 0.773 0.751 0.766 0.751 0.761 0.745 

DT_107 gini 7 10 20 168.5786 0.814 0.862 0.890 0.765 0.780 0.830 0.662 0.704 0.745 

DT_108 gini 7 1 10 175.7481 0.821 0.870 0.900 0.694 0.661 0.745 0.637 0.688 0.723 

DT_109 gini 5 1 20 146.8047 0.696 0.665 0.721 0.491 0.593 0.574 0.618 0.639 0.638 

DT_110 gini 5 1 10 147.4505 0.696 0.665 0.721 0.525 0.620 0.596 0.489 0.598 0.596 

DT_111 gini 5 5 None 143.2902 0.573 0.651 0.708 0.510 0.620 0.596 0.464 0.579 0.596 

DT_112 gini 5 7 20 142.3548 0.573 0.651 0.708 0.510 0.620 0.596 0.444 0.579 0.596 

DT_113 gini 5 7 None 141.8879 0.573 0.651 0.708 0.510 0.620 0.596 0.444 0.579 0.596 

DT_114 gini 5 10 10 139.6752 0.573 0.651 0.708 0.510 0.620 0.596 0.461 0.579 0.596 

DT_115 gini 5 10 20 140.1616 0.573 0.651 0.708 0.510 0.620 0.596 0.461 0.579 0.596 

DT_116 gini 5 10 None 139.9196 0.573 0.651 0.708 0.525 0.620 0.596 0.461 0.579 0.596 

DT_117 gini 5 5 10 145.0393 0.573 0.651 0.708 0.515 0.583 0.574 0.461 0.579 0.596 

DT_118 gini 5 5 20 143.8020 0.573 0.651 0.708 0.483 0.598 0.574 0.444 0.579 0.596 

DT_119 gini 5 7 10 142.1834 0.573 0.651 0.708 0.488 0.583 0.574 0.461 0.579 0.596 

DT_120 gini 5 1 None 146.8746 0.696 0.665 0.721 0.506 0.552 0.532 0.443 0.563 0.574 
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Graphical Abstracts from the articles 
 

 

 

 

Figure E.1:  Graphical Abstract of the article: Development of artificial neural 

network models for the simulation of CaCO3 scale formation process in the 

presence of monoethylene glycol (MEG) in a dynamic tube blocking test (TBT) 

equipment 

 

 

 

Figure E.2:  Graphical Abstract of the article: Machine learning models for 

measurement of pH using a low-cost image analysis strategy 
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F 

Databases and codes 
 

The databases and the codes developed in this study are available at: 

https://github.com/FerreiraBX95/Master-Thesis---Bruno-Xavier-Ferreira. 
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