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Abstract

Ferreira, Bruno Xavier; Santos, Brunno Ferreira dos (Advisor);
Montalvéo, Vinicius Tadeu Kartnaller (Co-Advisor). Development of
artificial intelligence models applied to the flow assurance problems
in the oil and gas industry. Rio de Janeiro, 2022. 172p. Dissertacdo de
mestrado — Departamento de Engenharia Quimica e de Materiais,
Pontificia Universidade Catdlica do Rio de Janeiro.

A significant concern during oil and gas production is flow assurance to
avoid loss of time and money. Due to production conditions changes (such as
pressure and temperature), especially in the Brazilian pre-salt region, the solubility
of the components of the crude oil (oil-gas-water) can decrease, resulting in the
formation of deposits. The fouling is usually caused by wax, gas hydrate, and
inorganic salt (scale). In this work, models were developed using Machine
Learning strategies for scale formation monitoring and measuring process
parameters associated with remediation of obstruction from other sources. First,
models for the calcium carbonate scaling formation process in the presence of
monoethylene glycol (typical gas hydrate inhibitor) were created using
feedforward neural network architecture to predict the differential pressure (AP)
one and five steps ahead, obtaining an R? higher than 92.9% for the training and
test group for both the prediction horizon. The second approach explored was the
development of models for determining the pH in atmospheric and pressurized
systems (up to 6.0 MPa) using image analysis. These models could be applied to
control and monitor the Nitrogen Generation System, which can be used for
different flow assurance problems, and its kinetics strongly depend on the system’s
pH value. This step initially created classification models for the system pH (2, 3,
4,5,6,7,8,9, 10) using the Convolution Neural Networks (CNN), Support Vector
Machine, and decision tree architectures. Also, CNN models were built to predict
the pH in the range of 2-10.

Keywords
Flow assurance; Scale; pH measurement; Convolution Neural Network;

Multilayer perceptron.
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Resumo

Ferreira, Bruno Xavier; Santos, Brunno Ferreira dos (Advisor);
Montalvéo, Vinicius Tadeu Kartnaller (Co-Aduvisor).
Desenvolvimento de modelos utilizando inteligéncia artificial para
problemas de garantia de escoamento na industria de petréleo. Rio
de Janeiro, 2022. 172p. Dissertagdo de Mestrado — Departamento de
EngenhariaQuimica e de Materiais, Pontificia Universidade Catdlica
do Riode Janeiro.

Uma preocupacao significativa durante a producéo de 6leo e gas é a garantia
de escoamento para evitar desperdicio de tempo e dinheiro. Devido as mudancas
nas condig¢des durante a producdo (como presséo e temperatura), principalmente
na regido do pré-sal brasileiro, a solubilidade dos componentes do petrdleo bruto
(6leo-gés-agua) pode diminuir, resultando na formacdo de depdsitos. A
incrustacdo é geralmente causada por parafina, hidratos e sal inorganico. Neste
trabalho, foram desenvolvidos modelos utilizando estratégias de Aprendizado de
Maquina para monitoramento da formacdo de incrustagdes inorganicas e
medicdo de parametros de processo associados com formas de remediacdo de
obstrucdes de outras fontes. Primeiramente, foram criados modelos do processo
de formagdo de incrustacdo de carbonato de célcio na presenca de
monoetilenoglicol (inibidor de hidrato) usando a arquitetura de redes neurais
feedfoward prever o pressao diferencial um e cinco instantes a frente, obtendo
um R? superior a 92,9% para ambos os horizontes de predicio. O segundo topico
explorado foi desenvolver modelos para determinacdo do pH em sistemas
pressurizados (até 6,0 MPa) por meio de andlise de imagens. Podendo ser
aplicados no monitoramento de sistemas como Sistema Gerador de Nitrogénio,
utilizado para remediar alguns problemas de incrustacdo, dado que sua cinética
depende fortemente do pH do sistema. Foram criados modelos de classificacao
para 0 pH do sistema (2, 3, 4, 5, 6, 7, 8, 9, 10) usando Redes Neurais
Convolucionais (CNN), Maquina de Vetor de Suporte e Arvores de Deciséo.
Além disso, modelos CNN foram construidos para predizer o pH na faixa de 2-
10.

Palavras-chave

Garantia de escoamento; Incrustacdo inorganica; Medigédo de pH; Redes
Neurais Convolucionais; Perceptrons Multi-Camadas.
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1

Introduction

Petroleum reservoirs have complex compositions due to their formation
process. Usually, they present three phases of the mixture formed by gas-oil-
water, which are present inside the pores of the reservoir rock. The gas phase
generally comprises small chain hydrocarbons and other gases, such as
hydrogen sulfide (H2S) and carbon dioxide (CO3). The oil phase is formed by a
diverse mixture of heavier hydrocarbon molecules, such as paraffin, aromatics,
resins, and asphaltenes. The third phase contains water with different types of
ions dissociated; that aqueous solution originated during the reservoir formation
is called “formation water”. The three phases are mixed inside the reservoirs in
equilibrium under high pressure and temperature conditions (KELLAND,
2014; NASIRI and JAFARI, 2017; ALADE et al., 2020).

Associated with this diverse composition of the fluid mixture in the oil
well, the operational conditions during the exploration, such as the change in
the pressure and temperature during the transportation process in the pipelines,
can provoke the precipitation, deposition, and agglomeration of solids in the
pipelines and equipment (also called fouling). These flow assurance problems
can be the result of different kinds of obstructions, the main ones being
associated with the formation of gas hydrates, the precipitation of inorganic
salts (scale), and the solidification of wax (MAGNINI et al., 2019;
MELCHUNA et al., 2020; AMAR et al., 2021).

The flow assurance problems result in great financial losses and safety
problems. The fouling process is a complex subject that simultaneously
involves kinetics, thermodynamics, and transport phenomena for understanding
(FRENIER and ZIAUDDIN, 2008; ZHENG et al., 2017; MELCHUNA et al.,
2020). These reasons led to several studies for understanding and monitoring
the fouling formation (LEOPORINI et al., 2019; ZAREI and BAGHBAN,
2017; LIM et al., 2020), avoiding their appearance (SOUZA et al., 2019), and
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for treatments to unplug the pipelines once they are formed (RAMZI et al.,
2016).

Meanwhile, different kinds of Artificial Intelligence (Al) techniques are
being used to model problems associated with the petroleum industry
(RAHMANIFARD and PLAKSINA, 2019). Due to the vast amount of data
generated for this industry and the complexity of some of the systems to be
modeled and monitored, the strategy to create the Al models known as data-
driven is very commonly applied. In this method, the models (also called black-
box models) are created using only the process data. (MOHAMMADPPOR and
TORABI, 2020; SHANG et al., 2014).

Artificial Neural Networks (ANNS), inspired by the human brain neural
arrangement, are a group of Al strategies commonly used to develop models.
One of this set's most usually applied structures is the Multilayer Perceptron
(MLP) topology. It is often composed of three layers: input layer, hidden layer,
and output layer (KUMAR et al., 2013; CHOJACZYK et al., 2015; LI et al., 2017).
The Convolutional Neural Network (CNN) is another type of ANN but is frequently
used for image classification since its usual topology has more than two hidden
layers, making this also a Deep Learning (DL) techniqgue (MADHAN et al., 2021).

Other Al techniques have been used to develop data-driven models. For this
work, it is interesting to highlight the Support Vector Machine (SVM) and the
Decision Tree (DT). SVM is based on statistical learning theory and geometric
distance interval maximization to give a solid generalization capability. The
technique evolve to be used for multiclass classification problems (PENG et al.,
2018; CHAUHAN et al., 2019). DT is another technique usually applied for
classification problems. It is formed by combining a series of hierarchically
organized binary tests (GEURTS et al., 2009).

In this scenario, this work proposes to apply Al techniques to develop

models that could be used to resolve different assurance problems.

1.1
Objectives
This work aims to apply Al strategies to develop models that can be applied in

future applications as soft sensors relate to flow assurance problems during the oil
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production process. For that, two secondary goals were chosen.

First, to create models to monitor the fouling of inorganic salts (scaling) in the
presence of a gas hydrate inhibitor by predicting the differential pressure (AP)
reached inside a pipeline during the obstruction process. The next secondary aim
was to create models to determine the pH in atmospheric and pressurized systems
using image analysis, exploring the different types of Al, and developing
classification and prediction models.

To reach the secondary objectives, the following specific targets were settled:

e Organize and pre-treat the databases;

e Create the MLP models to predict the AP in different prediction

horizons;

e Develop the classificatory models for the pH class (2, 3, 4, 5, 6, 7, 8,

9, 10);

e Develop the prediction models for the pH values in the range 2-10;

e Evaluate and optimize the models’ hyperparameters;

e Analyze the models’ performance parameters and choose the best

ones;

1.2

Organization of the Dissertation

The organization of this work was chosen to provide a better experience for
the readers. This first chapter is composed of a brief introduction with the general
motivation, the general and specific objectives, and a description of this study.

Chapter 2 presents a literature review of the flow assurance problems that
arise during oil and gas production and the application of different kinds of Al
models to monitor, detect and solve these problems with several approaches
presented.

Chapter 3 presents the information about the first main objective, the MLP
models to predict the scale formation process in the presence of a gas hydrate
inhibitor (monoethylene glycol). The section is composed of a short introduction,

followed by the manuscript of the article published in the scientific journal Energy
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& Fuels.

Chapter 4 carries the content of the second main goal, creating the
classification and prediction models for the pH measurement using image analysis.
It follows a similar structure to the previous section but presents the manuscript of
the article to be submitted to the scientific journal such as Computer and Chemical
Engineering, Sensors and Chemical Engineering Research and Design.

Chapter 5 contains the general conclusions of this study, and in Chapter 6
the suggestions for future works are presented. The related references are placed at
the end of each section.

The supporting information associated with the articles is presented in the

Appendix section.
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2

Literature review

2.1

Oil and Gas Production

An oil reservoir is formed under high pressure and temperature conditions
where the organic material is transformed into hydrocarbons. Usually, it
contains a three-phase mixture: oil, gas, and water. The gas phase is mainly
composed of methane (CHys), but also other light hydrocarbons (such as ethane
(C2He), propane (CsHs), butane (CsHi0)), and other compounds (hydrogen
sulfide (H2S), carbon dioxide (CO2), water vapor and others). The crude oil
phase is a complex mixture of organic compounds, mainly hydrocarbons. The
latter phase is composed of the formation of water. This water may contain
different kinds of ions such as K*, Na*, Mg?*, Ca?*, Ba?*, Sr*, CI', HCOg3", SO4*
, and others that naturally exist in the reservoir (RENPU, 2011; DEVOLD,
2006).

The oil and gas industry, Figure 2.1, is commonly divided into three
sectors: upstream, midstream, and downstream. The upstream sector is
responsible for searching for the oil and gas wells and then extracting their raw
resources, bringing the oil and gas to the surface (AALSALEM et. al, 2018).
The problems with fouling faced in this area were the motivation for this work.
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Figure 2.1: Subdivisions of Oil and Gas Industrial operations (adapted
from AALSALEM et. al., 2018).

2.1.1
Flow assurance

Flow assurance is a multidisciplinary area responsible for guaranteeing
the transport of hydrocarbons in all the industry sectors, concerning the safety
and economical parts. Its importance is even more significant in deepwater and
ultra-deepwater scenarios due to the operational conditions (high pressure and
low subsea temperatures) and the long distances associated with these
environments (OLAJIRE, 2020; MELCHUNA et al., 2020; DE OLIVEIRA
AND GONCALVES, 2012). With the beginning of the exploration of the well,
the system is exposed to an abrupt change in its conditions. Directly, there is a
reduction in the temperature due to the deepwater characteristic and the
pressure, which continues to drop from the wellhead to the end of the pipelines.
This causes several alterations in the equilibrium and saturation conditions of
the several species present in the mixture that leaves the well, resulting in more
favorable conditions and the appearance of solid deposits and obstructions
along the pipelines during the production (BELL etal., 2021; THEYAB, 2018;
KARTNALLER, 2018).

The most common kinds of obstruction are associated with phase change
or precipitation, caused by the formation of gas hydrate, organic fouling
(asphaltene and wax), and inorganic fouling (scale), Figure 2.2 (MELCHUNA
et al., 2020; DE OLIVEIRA AND GONCALVES, 2012).
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Figure 2.2: Real cases of fouling formations: (a) inorganic (scale), (b)
organic, (c) gas hydrate (KARTNALLER, 2018; Hw Institute of Petroleum
Engineering; Doelman, 2013; Irmann-Jacobsen e Hagland, 2014)

Gas hydrates are formed under the production and transportation
conditions, with the combination of high pressure and low temperature, in
which gas molecules, such as CHs, C2Hs, C3Hs, CO2, and H>S, are trapped in
cages by hydrogen bonding with water through van der Waals forces, creating
crystal-like solids (Figure 2.2(c)). Their formatting can lead to the shutting
down of production, costing around $1 million per day (QASIM et al., 2019;
NASIR et al., 2020).

There are several approaches to avoid hydrate formation in pipelines,
one of the most adopted is the injection of thermodynamic hydrate inhibitors
(THIs), such as monoethylene glycol (MEG) (one of the most commonly used).
The inhibitor changes the pressure and temperature conditions to the hydrate
stability to values beyond the operation conditions (LIM et al., 2020).

Another significant fouling problem is scale, caused by the inorganic
deposition on the pipelines due to the exceeded solubility limit of one or more
components, and the solution becomes saturated. That condition can be
achieved by a change in the ionic composition, pH, pressure, temperature,
partial pressure of CO2, and other factors. The most common kinds of scales
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found in the oilfield are calcium carbonate (CaCO3), calcium sulfate, barium
sulfate, and strontium sulfate. To prevent scale formation, it can also be used
chemicals inhibitors. (OLAJIRE, 2015; DYER and GRAHAM, 2002; KUMAR
et al., 2018).

The CaCOg can be used as an example to show the effects of pressure
variation and pH on their formation. For that, it is important to analyze the
equilibrium equation of the CO: solubilization on water, Eg. 2.1, and the
equilibrium dissociation equation of its species, Egs.2.2-3. The presence of the
different species is directly related to the pH conditions, in which the low values
favor the CO-, and high pH values increase the predominance of the CO3%. The
relation between the presence of the species is dependent on the temperature
conditions (KARTNALLER, 2018).

C0,(9) 2 CO0z(aq) (2.1)
C0,(aq) + H,0 2 H,C03(aq) 2 H*(aq) + HCO3 (aq) (2.2)
HCO;3 (aq) 2 C0% (aq) + H*(aq) (2.3)
Ca**(aq) + CO%™ (aq) 2 CaCO0;(s) (2.4)

Another variable that has a significant influence on the equilibria is
pressure. During the production of the fluids that come from the reservoir to the
surface, there is a decrease in its pressure, which results in a reduction in the
CO:. solubility due to the Le Chatelier principle. This change results in the exit
of CO: from the solution, which leads to an increase in pH and a rise in the
COs? relative concentration, which can lead to the system reaching the
supersaturation condition for the CaCOs, Eq. 2.4 (KARTNALLER, 2018).

A concern with using the chemical formulation as an inhibitor for
different fouling problems is how they affect the formation of the other types
of fouling and the performance of other products. For example, this happens
with gas hydrate chemical inhibitors, such as MEG, and how their interaction
with the water molecules affects the equilibrium of the other system species.
The direct effect is the increase in the activity of the ions that elevates the
supersaturation ratio favoring the scale formation. However, the works of
Kartnaller et al. (2018b) and Chao et al. (2020) show that the use of MEG as

hydrate inhibitor results in an increase in the scaling time. The opposite
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expected result because it minimizes the CaCOs accumulation in the system.
That shows the complexity of using these chemical products and why they need
to be tested to verify their effect in real situations.

Specifically for scale management, a typical methodology to evaluate a
commercial inhibitor before its application during production is the dynamic
tube blocking test (TBT), Figure 2.3. It allows not only to verify if the product
works but also to determine an inhibitor's minimum inhibitor concentration
(MIC). These experiments can also be modified to study the inorganic salt
morphologies. Also, these experiments result in an extensive data set that can
be applied to modeling the scale formation, which is a complicated task since it
happens in a complex system (SANTOS et al., 2017; PAZ et al., 2017; RAMZI
et al., 2016). An example of this kind of study is the works of Kartnaller et al.
(2018) and Chao et al. (2020), which study the effect of the MEG, a hydrate
inhibitor, on scale formation, using the CaCO3 as a model of the salts.

- Differential PSV Valve
J Pressure Sensor
Temperature -

Computer Controller

Accumulator

(/ .\!/.“\J

S <
E HPLC Pump 1
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| 2<% /}
- >—<

i i HPLC Pump 2

Figure 2.3: Scheme of a Dynamic Scale Loop (DSL) system used ina TBT
experiment (adapted from KARTNALLER et al., 2018).

Waste

Organic fouling is another serious flow assurance problem. Paraffin wax
deposition tends to occur peripherally of the flow, like the walls of the pipelines,
progressively decreasing the sectional area and blocking the pipelines
completely. This question is more preoccupancy in subsea pipelines due to the

low-temperature conditions once the wax formation happens when the
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operational conditions are below the wax appearance temperature (WAT)
(MAHIR et al., 2019; De SOUZA et al., 2019; ZHENG et al., 2017). To
remediate wax fouling, several kinds of treatments can be adopted, such as
thermal, mechanical, chemical, and biological methods (ALADE et al., 2020).
An example of a chemical treatment used is the Nitrogen Generated Systems
(NGSs) application, which can also be applied to solve gas hydrates problems
(DE OLIVEIRA, 2019).

NGS consists of a highly exothermic reaction with nitrogen gas (N2) and
water (H20) as products. A reaction that can be classified as NGS happens
between ammonium chloride (NH4Cl) and the sodium nitrite (NaNOz) (AHrx =
-79.95 kcal-mol?), Eqg. 2.5. This kind of reaction has its kinetics strongly
influenced by the pH value, as shown in Figure 2.4, in which the rate constant
(k) has an exponential increase for pH values below 4 (NGUYEN et al., 2001;
NGUYEN et al., 2003; and DE OLIVEIRA, 2019).

NaNO, + NH,Cl = NaCl + H,0 + NJ (2.5)

0014
T=25°C

0.012 4

G010

.00R

0006

(.004

Rate constante (k) [(dm3 molt)*€.51]

0.002

0.000

pH
Figure 2.4: Reaction rate constant as a function of pH (adapted from
NGUYEN et al., 2001).
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2.2
Modeling in the oil and gas industry

The day-by-day monitoring and controlling of tests and experiments to
solve flow assurance issues or other sources of problems have been generating
a massive amount of datasets that only tends to rise with the introduction of the
new technologies in oil and gas production (MOHAMMADPPOR and
TORABI, 2020). However, the digitalization of most companies and their
deepening entry into the "Oil and Gas 4.0" phase has been slow (LU et al.,
2019). This digitalization process demands a rigorous use of the Big Data (BD)
analysis, but that could lead to an improvement in operational efficiency
(NGUYEN et al., 2020). That represents a promising field for applying
different types of Artificial Intelligence (Al) strategies to solve some of the

problems and challenges of this industry sector, Figure 2.5.

Oil & Gas 4.0
Upstream Midstream Downstream
Intelligent oilfield Intelligent pipeline Intelligent refinery
Seismic exploration Equipment maintainance Oil and gas trade
Intelligent completion Intelligent detection Sales
Research and decision- Intelligent metering Intelligent management
making platform and forecasting

Figure 2.5: Scenarios with good application potential in the context of the "Oil
and Gas 4.0" era (adapted from LU et al., 2020).

Following this necessity of the industry, many works have been published
applying different kinds of Al to use those datasets and develop models that
help to solve some issues or to facilitate the integration of the equipment and
the control strategies. For example, creating digital twins, Figure 2.6, and soft
sensors to be applied in all three big areas of the oil and gas industry
(WANASINGHE et al., 2020; LU et al., 2019; RAHMANIFARD and
PLAKSINA, 2018).
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Interactive
optimization )
\--.

Figure 2.6: Scheme of physical and virtual space using a digital twin
framework with five components (physical space, virtual space, connection
between them, data, and service) (adapted from WANASINGHE et al., 2020).

Some examples of the application of Al in the oil and gas industry are
Multilayer Perceptron (MLP) for wax deposition (AMAR et al., 2021), MLP
for prediction of volume fraction in a three-phase flow meter (ISLAMI RAD
and PEYVANDI, 2019), MLP to model the asphaltene precipitation (ZAREI
and BAGHBAN, 2017), CNN to predict oil and gas flow rate of a two-phase
flow (XU et al., 2020), CNN to predict the volume flow rates of the individual
phases in a three-phase mixture (LI et al., 2021), LS-SVM to determine the
stability region in crude oil (CHAMKALANI et al., 2012).

2.3
pH meter techniques

The pH measurement is essential to be monitored in several kinds of
processes associated with the chemical industry. Its control can be used to
regulate the solubility of chemicals or biomolecules, avoid undesired side
reactions or promote the mechanism for the desired product and influence the
kinetics of the chemical reactions. There are several kinds of techniques to

gauge the pH value, using the classical chemical indicators, glass electrodes to
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optical fiber, fluorometric, and lon sensitive FET (field effect transistor) pH
sensors (KHAN et al., 2017). The pH glass electrodes are the most commonly
used type of pH measurement. Still, they usually do not perform well under
extreme conditions like extremes of the pH scales, high pressure, or high
temperature. (GOTOR et al., 2017 and BYCHKOV et al., 2020).

The in situ measurement for this kind of environmental condition does
not have a wide range of equipment available in the market. Some of that, for
the high pressurized system, are shown in Table 1, although it has been studied
through the last decades using different approaches (BYCHKOV et al., 2020
CROLET and BONIS, 1983). For example, Samaranayake and Sastry (2013)
used a high pressure pH sensor based on electrical signals to measure the
properties under hydrostatic pressure up to 800 MPa. This study also reported
the use of different methods to develop high pressure pH sensors, such as glass
electrodes, electrical conductivity, reaction volume, and spectrophotometry in
the period between 1959 and 2010.

Table 1: pH meter electrodes for pressurized system (Hanna Instruments,
2021; Ato, 2021; Winn-Marion Companies, 2021).

Electrodes Companies Maximum Price (Dollars)
pressure
(bar)

ﬂ Hanna Instruments 6 261.16
'. Ato 10 351.75

Winn-Marion 13.8 890.41

Companies
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2.3.1
pH sensors using image processing

As an exciting alternative to be applied in extreme conditions, the optical
pH sensors, using fluorescence or absorbance, or image-based pH sensors, have
been developed for in situ and laboratory analysis. These techniques have the
disadvantage of the use of optically active molecules to act as indicators. The
fluorescence methods have been used to determine the pH values in the
extremes of the traditional pH scale, using ANN models to interpret the
spectrophotometer signal (SAFAVI and BAGHERI, 2003), smartphone apps to
predict the pH value through a picture of the sensor under a UV light (GOTOR
etal., 2017) or picture of a pH sensor stipes using Least Squares-Support Vector
Machine (LS-SVM) to classify the pH values (MUTLU et al., 2017).

De Oliveira et al. (2019) proposed a method to measure the pH values
in a pressurized system for real-time application through image analysis, Figure
2.7. In the study, a webcam was used to collect an image of the pressurized
reactor in the RGB color system, where software pre-developed by the research
group processed the RGB values. Then the RGB was converted to the HSV
system to be applied in the proposed equation that correlated the hue value with
the pH. The method was developed to work on the pH range of 2 to 10, using
as an indicator a mix of buffer solution known as the Korthoff indicator, being
tested on the pressure range of 0 to 6.0 MPa.

Air outlet i
\ Free Yolume !
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‘ \ N /,é
2 z Solution
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Cooling/Heating i
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(PT100)
Pressure Gauge
(Analog and

Digital)

PSV Security
Valve

Viewing Windows Stirrer
Light R
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+—— Cooling/Heating Fluid Hose (In/Out)
Figure 2.7: Experimental setup scheme (adapted from DE OLIVEIRA et al.,
2019)
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Although the good performance obtained in that work, a solution using
only one software, with the possibility of a future wireless application
developed in open-source software are interesting reasons to develop studies in
this area. For that, different deep learning strategies can be used to create
models to classify and predict the pH values through image analysis.

2.4
Soft sensors

Soft sensors are usually predictive models for a variable of interest, using
the information of other available variables and process parameters. This
characteristic allows the estimation and monitoring, in real-time, of operational
parameters that before needed to be sent to the laboratory to be analyzed. Also,
software tools are not subject to mechanical problems and have easier to
maintain than a conventional sensor, given an economy for the process manager
(KADLEC et al., 2009; POERIO and BROWN, 2018). Some of the challenges
that could be found during their development are presented in Figure 2.8.

Flow of soft sensor

analysis Problems

- 1\ —p *» Reliability of data, dataselection
[ Data collection |
|
|

Outilier detection, noise treatment
| Data preprocessmg_ll/' Which is an appropriate regression method?
Overfitting
Nonlinearity among process variables

Modellng H/ * Variable selection

@ | * Dynamics in a process

I
[ Model analysis H\> © Modelinterpretation
I
@ 1 * Model validation
| Model operation |___|\_. * Applicability domain and predictive accuracy
/] * Model degradation

N ¥e * Maintenance of a model
* Detection and diagnosis of abnormal data

- mm mm mm mm o Em Em mm mm Em o E—

Figure 2.8: Flow of soft sensor analysis and problems involved at each stage
(adapted from FUNATSU, 2018).

They can be divided into three main types: First Principles Models (FPM),
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data-driven models, and mixed models. The FPM models (white-box models)
are built mainly from the mechanical knowledge of the process, which can be
hard or complex to determine and demand a significant computation effort and
time. In turn, the data-driven models (black-box models) are created using only
the process dataset, making them a more popular strategy for developing soft
sensors. For that, several kinds of Al methods can be used, such as Acrtificial
Neural Network (ANN), fuzzy logic, Support Vector Machine (SVM), Decision
Tree (DT), Principal Component Analysis (PCA), hybrid methods, and others
(YAN et al., 2017; SHANG et al., 2014).

ANN are mathematical models developed based on the biological neural
systems, initially presented in the work of MacCulloh and Pitts (1943)
(KUMAR et al., 2013). ANN models are one of the most common strategies
explored due to their advantages as training and adaptive structure (LI et al.,
2017). ANNSs represent a large class of model structures, and one of the most
popular ones is the Multi-Layer Perceptrons (MLP). However, the MLP could
present some optimization problems with more deep structures with more than
two hidden layers (SHANG et al., 2014).

In this case, the model needs a bigger number of hidden layers or even
more complex structures. They are known as Deep Learning (DL) techniques
(SUN and GE, 2021) and are very present in the chemical engineering field,
Figure 2.9. Among the ANN techniques that could be classified as DL, one can
be pointed out the Convolutional Neural Network (CNN), traditionally used in
image classification (MADHAN et al., 2021).

15.8%
53%
5.3%
1.8%
1.8%

E 1.8% Environmental Monitoring

1.8% Agriculture Production

Chemical Industry
Power Industry

Machinery Manufacturing

Aerospace Engineening
O Transportation Industry

66.7% O Bioprocess Industry

Figure 2.9: Statistics on exiting relevant work applications in different fields
(adapted from SUN and GE, 2021).
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24.1
Multi-Layer Perceptron (MLP)

MLPs are usually formed by three layers: input layer, hidden layer, and
output layer, Figure 2.10. In some cases, more than one hidden layer can be
used. The input layer has the same number of neurons as the model's input
variables, and the output one has the number of neurons equal to the number of
target variables. The number of neurons in the hidden layers is one of the
parameters adapted during the development of the model (CHOJACZYK et al.,
2015; Ll et al., 2017).

Input layer

Data flow

Figure 2.10: Multi-Layer Neural Network scheme (adapted from
CHOJACZYK et al., 2015).

The information flow through the interconnected neurons from the input
to the output layer. When the neuron receives the information, input (xi), the
information is processed according to Eq. 2.6, in which the input is multiplied
by a factor called weight (wj;), related to the importance of the variable, and is

added to a constant named bias (bj). This constant is responsible for avoiding


DBD
PUC-Rio - Certificação Digital Nº 2012332/CA


PUC-Rio- CertificacaoDigital N° 2012332/CA

42

the resultant value (a;) from assuming negative values before it was passed to
the activation function (f)) (LI et al., 2017; HAMMOUDI et al., 2019).

aj = 211'1=1 Wij "X + b] (26)

where j and i, respectively, represent the identification of the origin and the
destination neuron.

The activation functions’ process is responsible for calculating the
information that leaves the neuron to the next layer or as the model's output.
The most common types of activation functions used on MLP are the sigmoid
functions and the linear function ( Eq.2.7), Figure 2.11. The first type is usually
represented by the logsigmoid function and the hyperbolic tangent, Egs. 2.8-9
(SOLEIMANI et al., 2013; CHOJACZYK et al., 2015 and VALIM et al.,
2017).

fam) =x (2.7)

1
fam) = THem (2.8)

2
f(am) = (1+e-2%) 1 (2.9)

f {am) JF (am) f (am)

Hf————
1 7’_;_ /
= ——4

(a) (b) (c)

Figure 2.11: Activation functions: (a) logsigmoid, (b) hyperbolic tangent, (c)
linear (adapted from SOLEIMANI et al., 2013).

An essential part of the application of the MLP models is the training
algorithm, being the backpropagation (BP) is one of the most common kinds
applied to the MLPs. They belong to the supervised classification of the training

algorithms, in which the model outputs are compared to a corresponding target
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data using an error function, such as mean-squared error (MSE), and the
weights and bias of the parameters are modified to minimize the evaluation
parameter (SOLEIMANI et al., 2013; HAYKIN, 2001).

Modifications of the BP algorithm have been proposed aiming to
improve the method. The Bayesian Regularization BP algorithm uses a
Bayesian regulation to enhance efficiency. The Levenberg-Marquardt BP and
gradient descent with momentum and adaptive learning rate BP use a quasi-
Newton method to make the convergence faster and with a smaller computation
effort due to the use of an approximation of the Hessian matrix (PLUMB et al.,
2005; FORESEE and HAGAN, 1997; HAGAN and MEHAJ, 1994; HAYKIN,
2001).

2.4.2
Convolutional Neural Network (CNN)

CNNs are a type of DL architecture based on the animal visual cortex,
and it has been successfully used to extract features through image analysis.
The first ones were proposed by LeCun et al. (1989), but they became more
popular after overcoming some technological challenges at the beginning of the
last decade (MARQUES, 2018; BOUWMANS, 2019; YUAN et al., 2020). As
a DL method, the CNN models have some advantages compared to more
traditional Al strategies (ZAN et al., 2020):

e Use of the raw data directly in the training and test in many cases,
avoiding the pre-processing data necessity;

e Being able to be applied in more complex tasks;

e Learn the most appropriate features from the classification problems.

The structure of the CNN, Figure 2.12, similarly to the MLP, can be
described in three parts: input layer, hidden layers, and output layer. However,
in these cases, there are multiple hidden layers, which can be split into three
classes: convolutional, pooling (or subsampling), and fully connected (YAO et
al., 2019).
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Figure 2.12: Typical CNN structure (adapted from ZAN et al., 2020).

The most significant component of a CNN is the convolutional layers.

The weights and biases are organized in a series of convolutional filters (or

kernels). The filter coefficients are optimized during the model training, where

each filter learns to extract specific features or patterns from its input layer. As

the convolution process, Figure 2.13, is a linear operation, this non-linearity in

the signal is granted by the activation function, which in the case of the CNN,
the ReLU function (Rectified Linear Unit), Eq. 2.10, is usually chosen to be
used (SHEN et al., 2021; ZAN et al., 2020; CASTANEDA, 2017).

ReLU(x) = max(0,x) (2.10)

1[572+6] S -

74 12, "2t T T-o_--—_|20[28|18|26|20
819/5/[7, 3T irel \“\\/22 19(25(12]22
3(8[210] 4l 70 1o | 7 28 (28]10]27 16
2|4|5|6, st |1 o177 [18]21]25]14]20
s/0[4)8 3L-7T T ——Tlarhirfae |19 2
51291, 6l -

Input Convolution kernel Output

(3x3)

Figure 2.13: Convolutional operation with a 3 x 3 convolutional kernel

(adapted from YUAN et al., 2020).
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The pooling layer, Figure 2.14, is completed by downsampling the
feature maps resulting from the convolutional operations. Unlike the
convolutional layer, the subsampling layer has no specific value or parameters
to represent the compositive features of the receptive field. It can quickly reduce
the scale of the feature maps but also the sensitivity of similar light features.
The most common kinds of strategies applied are max pooling and average
pooling (YUAN et al., 2020; ZAN et al., 2020; MARQUES, 2018).

max{8,21,25,12}=25

2x2 max pooling

2
1

A9 | 7\ 12[26|  (stide)

\14 | 18/ 13 | 15

In
Ut (19.7.14.181=19

Figure 2.14: Max pooling operation with 2 x 2 size (adapted from YUAN et
al., 2020).

Fully connected layers (or dense layers) are the last ones of the hidden
layers. They have all their neurons fully connected with the previous layer, such
as the hidden layer in the MLP structure (ZAN et al., 2020). The last layer of
the CNN, the output layer, is also a dense layer, which in the case of a regression
model, has the number of the output variables. For classification models, the
number of neurons is equal to the number of classes, having as output in each
neuron the probability of the belongs to each class. Usually, the function
softmax is used for this last case (MARQUES, 2018; ZAN et al., 2020).

2.4.3
Support Vector Machine (SVM)

SVM is a Machine Learning technique to create supervised learning
models, which could be used for classification and regression problems. It was

presented in the work of Cortes and Vapnik (1995), based on a statistical
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learning theory and structural risk minimization, for binary classification (WU
et al.,, 2018). SVM is based on the geometric distance class interval
maximization strategy, giving the model a strong generalization ability (PENG
et al., 2020).

The first applications of the SVM were developed for binary
classification with linearly separable data, in which the classes can be split by
a straight line, as shown in Figure 2.15. (NOGUEIRA, 2021).

A
A
A A A A | Class1
A A @
Class 2
Feature 2 A O O

Feature 1

Figure 2.15: Linearly separable data with two dimensions and two classes
(solid line — hyperplane separating the classes; dashed lines — margins of the
hyperplane) (adapted from NOGUEIRA, 2021).

In the following years, the SVM models were evolving, allowing them
to be used for non-linearly separable data problems and multi-class problems.
The first challenge was solved using kernels, which are mathematical functions
(p) that transform the data from a given space (Input space) to a new high-
dimensional one (Feature Space), where the classes can be separated by a linear
surface (hyperplane), Figure 2.16 (CHAUHAN et al., 2019).
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Figure 2.16: Representation of the input transformation from the Input space

(right) to the Feature space (left) by the use of the kernels (adapted from

CHAUHAN et al., 2019).

The most often used kernel functions, Figure 2.17, are: linear (Eq. 2.11),
polynomial (Eq. 2.12), RBF (Radial-Basis Function, Eq. 2.13), and sigmoid

(Eq. 2.14) (CHAUHAN et al., 2019; GONG et al., 2019).

degreee
¢ = KernelPOlY(xi'xj) = (gamma(xi,xj) + coef)
2

px) = Kernelsigmoid(xi,xj) = tanh(gamma(xi,xj) + coef)

(2.11)
(2.12)

(2.13)
(2.14)
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Figure 2.17: Kernel functions behavior in classification with SVM (adapted
from NOGUEIRA, 2021).

The gamma and degree are hyperparameters that could be modified to
adjust the model fit. The gamma represents the influence of each data in training
in general and in the surface position. In turn, the degree is the parameter
associated with the polynomial level. The coef is an independent term of each
function (RHYS et al., 2020; SCIKIT-LEARN, 2022 and NOGUEIRA, 2021).

The application of the SVM models to the multi-class problem was
allowed by the implementation of strategies such as One-versus-One (OvO) and
One-versus-Rest (OVR or One-versus-All (OvA)). OvVR is probably one of the
first techniques applied for the multi-class classification problem. Its class is
separated from the others by a hyperplane, reducing the situation to a group of
binary classification problems. For the OvO technique, the classification is
realized between each pair of classes, usually resulting in a higher number of

hyperplanes, although it could demand less from the computer (CHAUHAN et
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al., 2019; DING et al., 2019; RHYS et al., 2020 and NOGUEIRA, 2021). Figure
2.18 shows an example of OvR and OvO approaches with a three-class

situation.
L]
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Figure 2.18: Multi-class SVM approaches (a) OvVR (One-versus-Rest) and (b)
OvO (One-versus-One) (dashed lines — hyperplanes) (adapted from
NOGUEIRA, 2021).

2.4.4
Decision tree (DT)

The decision tree is another Al technique with supervised learning
algorithms and is commonly used for classification problems. DT has a simple
form that combines several binary tests in its structure (GEURTS et al., 2009
TANGIRALA, 2020). It is structured as a tree, Figure 2.19, hierarchically
structured with a group of interconnected nodes. The process starts in the root
node where the input is inserted, then it and each internal node of the tree are
responsible for a test, and each terminal node (or leaf node) is labeled with a
class (PRIYAM et al., 2013; GEURTS et al., 2009; ARAUJO, 2017).
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Figure 2.19: Example of a general decision tree for classification (adapted
from BARROS, 2014).

Other important concepts are depth and breadth. The first one is related
to the number of levels (layers) that DT has from the root node to the terminal
node. The breadth refers to the number of internal nodes in each level of the
tree (BARROS, 2014).

For the training process of the DT, models have used some functions to
measure the impurity level of a node, in which the lower this parameter, the
better the prediction. This helps to decide the necessity to split the node. In the
case of classification problems, the most common functions are the Gini
impurity (gini) and the cross-entropy (entropy) (HASTIE et. al., 2009; BARROS,
2014).
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Development of Artificial Neural Networks models for the
simulation of CaCOs scale formation process in the
presence of monoethylene glycol (MEG) in Dynamic Tube

Blocking Test equipment

In the first part of this study, the target goal was to model the scale
formation process caused by inorganic salts (scale). As presented in the
previous section, they are formed by the deposition of salts in the pipeline
wall caused by the variation of operation conditions (temperature, pressure,
pH, and others) encountered during the production process. Monitoring this
deposition process and being able to understand and predict how the other
chemicals used during the process, such as inhibitors for other sources of
incrustation, affects these dynamics is very important to the operation of the
exploration and to avoid product losses.

In this scenario, the current section presents the development of
models for the simulation of the scale formation in the presence of MEG, a
hydrate inhibitor, using data from the Dynamic Tube Blocking Test (TBT).
The results presented here were already published at Energy & Fuels
(https://doi.org/10.1021/acs.energyfuels.1c03364), presented in Appendix
A. The appendix published together with the main file of the article is
presented in Appendix B.

This section contains the full version of the article (as found online),
and the Supporting Information available with the published article is

presented in Appendix C.
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3.1

Development of artificial neural network
models for the simulation of CaCOs scale
formation process in the presence of
monoethylene glycol (MEG) in a dynamic
tube blocking test (TBT) equipment
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ABSTRACT: The precipitation of gas hydrate and inorganic salts (scale) during
oil and gas production represents a significant flow assurance hindrance for the
industry. Chemical inhibitors can prevent the fouling process, but specific inhibitors
to address a problem could result in synergistic or adverse effects. Simulations in
tubes and pipelines are necessary to understand these behaviors by assessing the
scaling tendency of the water. The primary objective of this study was to create
models using an Artificial Neural Network (ANN) of the Multi-Layer Perceptron
(MLP) type for the simulation of the calcium carbonate scaling formation process
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in the presence of monoethylene glycol (MEG), a typical gas hydrate inhibitor. A
database was obtained from 38 Tube Blocking Test (TBT) experiments with
different conditions. The models were developed using MATLAB R2020a, splitting
the database into two groups on the ratio of 70:30, respectively, train and test ones,
preserving the time-dependency of the differential pressure (AP) data. The ANNs
were created using six inputs (temperature, pressure, calcium and bicarbonate
concentration, MEG concentration, and the AP measured at a selected time) and
one output (the AP measured at a later time). The goal was to explore how
monitoring the conditions in a pipeline can predict the evolution of the scaling
process. We investigated two scenarios for the AP prediction: a near future (1 step
ahead) and a far future (5 steps ahead). The MLP models demonstrated high
performance, with an R? higher than 92.9% for both training and test groups for
both prediction horizons. Then the models were tested with a second data group to
evaluate their applicability to control systems. The best models showed good
scaling prediction, with R2? ranging from 80.0 to 99.9%. The results represent a
promising step towards applying machine learning techniques to simulate and

predict scaling tendencies in controlled pipelines.

3.1.1
Introduction

Flow assurance is a significant concern during oil and gas production and is
achieved by guaranteeing that hydrocarbon production from wells is maintained
without loss over time due to flow restrictions. During production, the oil-gas—
water mixture undergoes drastic variations in operating conditions, such as
temperature and pressure, so the solubility of certain compounds can decrease,
leading to the formation of deposits (fouling). Fouling may occur in pipelines and
equipment and is generally caused by the formation of wax, gas hydrate, and scale
(inorganic salts). This scenario can require expensive and complex remediation
processes and, in severe cases, production stoppage and well shutdown (SOUZA et
al., 2019; KHORMALI et al., 2018; NGUYEN et al., 2003). This problem is of
great concern, especially for wells in the Brazilian pre-salt region located in
ultradeep waters with mainly carbonaceous reservoir rocks, and can result in
potential issues such as calcium carbonate and gas hydrates fouling (DE
OLIVEIRA and GONCALVES, 2012).
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Gas hydrate originates from the crystallization of water molecules
encapsulating small and light gas molecules (e.g., CO2, methane, and propane)
under operating conditions with high pressure and low temperature, such as those
found in deep and ultradeep water (KIM et al., 2020; NASIR et al., 2020). The most
practical and economical method for preventing hydrate formation or others kinds
of obstructions in lines (e.g., scales) is using chemical inhibitors (KUMAR et.
al.,2018; DE ROSA et. al., 2019; AHMED et. al., 2020). Thermodynamic Hydrate
Inhibitors (THIS) are typically injected into the production line to prevent the
formation of gas hydrates. THIs consist of alcohols or glycols, such as methanol,
triethylene glycol (TEG), and monoethylene glycol (MEG), and function by
moving the equilibrium curve envelope towards lower temperature and higher
pressure (KAN et al., 2002; LIM et al.i, 2002).

Scale forms as a result of the deposition of inorganic salts precipitating from
the supersaturated water. Their formation depends on several factors such as
temperature, pressure, ion concentration, pH, and others (OLAJIRE, 2015). Barium
sulfate, strontium sulfate, and calcium carbonate are the most common types of
scale found during oil and gas production (DYER and GRAHAM, 2002; ODDO
and TOMSON, 1994). However, calcium carbonate (CaCO3) formation is of greater
concern since the water may be in equilibrium with carbonaceous rocks in the
reservoir, leading to a significant number of bicarbonate ions dissolved in the water
phase (Eq. B1-B3, in the Appendix B). The precipitation of CaCOz occurs as this
fluid is produced and faces a pressure drop, which decreases the CO> solubility and
increases pH, leading to precipitation (Eq. B4, in the Appendix B).

There are dozens of different inhibitor types used for typical inorganic scale.
There are three main classes of inhibitors: phosphate esters, phosphonates, and
polymers. The first two classes act as chelators, sequestering the metals from
solution, while the polymeric class achieves scale control through crystal distortion.
In 2002, the average cost due to scale formation was more than 1.4 billion dollars
(FRENIER and ZIAUDDIN, 2008). As a result, the market for scale inhibitors for
the oil and gas industry continues to grow and currently represents millions of
dollars annually. Market analyses predict further increases in the expenditures with
a CAGRs (Compound Annual Growth Rates) of 5.5% and 6.9% for the scale and
hydrate inhibitors markets, respectively (Global Oilfield Scale Inhibitor Market,
2021; Hydrate Inhibitors Market Analysis, 2021; Oilfield Scale Inhibitor Market,
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2021).

A concern with the use of inhibitors for production is the compatibility
between the different inhibitors and other chemicals. Several studies have
investigated these compatibilities, including the effects of the Enhanced Oil
Recovery (EOR) chemicals on scale inhibitors (WANG et al., 2018) and the
interaction between scale inhibitors and hydrate inhibitors(CHAO et al., 2020). For
example, Seiersten and Kundu (2018) and Kartnaller et al. (2018) studied the
impact of MEG as a gas hydrate scale inhibitor, concluding that MEG serves as an
inhibitor by increasing the scaling time. This result was unexpected because the
presence of MEG in water increases ion activities. That behavior has been proposed
to be connected to the high-energy bond between -OH groups and the CaCOs
surface; this indicates that thermodynamic hydrate inhibitors can also benefit wells
experiencing calcium carbonate scale formation.

Understanding the interactions between inhibitors, water, and ions is
essential for predicting the phase behavior during production and estimating the
solid accumulation tendency in production lines. A common and well-known
methodology to evaluate inhibitor efficiency is the Dynamic Tube Blocking Test
(TBT). It is usually applied to verify a product’s performance and Minimum
Inhibitor Concentration (MIC), allowing comparison with other commercially
available products (RAMZI et. al., 2016; MACEDO et al., 2019; FERNANDES et
al., 2021). TBT experiments are also used to study inorganic salt morphologies (DE
MORAIS et al., 2020; SANNI et al., 2019) and develop scale formation models.
However, it is difficult to predict how the scaling process will develop using flow
and phase behavior models due to the system's complexity, the large number of
variables, and some stochastic behavior. A previous work has attempted to model
the scale formation in pipelines, specifically in TBT experiments, but only using
physical models (SANTOS et al., 2017). These models, based on Darcy Weisbach
equation for pressure loss in pipes and on a growth rate scale formation model, were
successful in fitting the TBT experiments curves, enabling an estimation on how
fast the process was happening. However, the model was learning only the
information regarding that specific experiment and not acquiring information for
predicting the behavior of the system.

Other studies have explored the use of Artificial Neural Networks (ANNS)

and other machine learning algorithms to create new models since they do not
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demand an understanding of the scale formation mechanism, only requiring a
“black-box” model. These models were able to predict the thermodynamics related
to the calcium carbonate precipitation (saturation ratio of the solution) and its
dissolution capacity (PAZ et al., 2017; AHMADI et al., 2015). However, literature
still lacks kinetic modeling related to the scale formation process. Recently, Wang
et al. (2019) have developed an Elman Neural Network (ENN) with genetic
algorithm (GA\) to predict calcium carbonate scale formation in shell and tube heat
exchangers over time. They were able to successfully predict the fouling resistance
as a function of conductivity, pH and dissolved oxygen. Still, as far as the author’s
knowledge, no study relating scale formation and variables to simulate conditions
during oil and gas production has been previously assessed.

In recent decades, different types of Artificial Intelligence (Al), such as
ANN, GA, Support Vector Machines (SVMs), Adaptive Neuro-Fuzzy Inference
System (ANFIS), Least Square Support Vector Machine (LSSVM), Principal
Component Analysis (PCA), Committee Machine Intelligent System (CMIS) have
been applied to solve problems and challenges in several fields like nanofluids
properties (BAGHBAN et al., 2018a; BAGHBAN et al., 2018b; BAGHBAN et al.,
2019), systems efficiency (AHMADI et al., 2020; ZAMEN et al., 2019) and in the
oil and gas industry, from the reservoir to production (ALKINANI et al., 2019;
OTCHERE etal., 2021; RAHMANIFARD and PLAKSINA, 2019). The ANN was
inspired by the neural arrangement of the human brain. It is easy to train and has
tunable parameters and an adaptive structure, making it one of the most widely used
machine learning techniques (LI et al., 2017). One of the most common classes of
the ANN is the Feedforward Neural Network (FFNN) with MLP (Multi-Layer
Perceptron) topologies, which can model complex systems (HEIDARI et al., 2020).
The usual structure of the MLP consists of an input layer, where the number of
neurons is equal to the number of model inputs, and an output layer. In addition,
there is at least one hidden layer between them with several neurons to be selected
by the user (LI et al., 2021; HAMMOUDI et al., 2019). This structure has been
used to predict different parameters for the oil and gas industry, such as the gas-oil
ratio (SEFIDI and AJORKARAN, 2019), the volume fraction percentage in three-
phase systems (ISLAMI RAD and PEYVANDI, 2019), and the deposition process
of asphaltene (ZAREI et al., 2017) and wax (AMAR et al., 2021).

Knowing the importance of digital transformation, Al, and process


DBD
PUC-Rio - Certificação Digital Nº 2012332/CA


PUC-Rio- CertificacaoDigital N° 2012332/CA

65

monitoring in the oil and gas industries, this work intends to model the scale
formation process using the MLP to predict the differential pressure (AP) one and
five steps ahead in time. The goal is to explore how monitoring the conditions in a
pipeline (i.e., temperature, pressure, ion concentrations, and differential pressure)
can predict the evolution of the scaling process. This study may lead to deeper
investigations into applications in monitoring systems and fault detection. TBT
differential pressures were monitored over time for different temperatures,
pressures, calcium and bicarbonate concentrations, and MEG concentrations. MEG
concentration was used as a variable since many scale inhibitor products are
solutions of the active molecule in a mixture of water and MEG. Also, MEG can be
directly injected in high amounts as thermodynamic gas hydrate inhibitors. Even
further, MEG can change the viscosity of the solution and can influence the
crystallization of calcium carbonate, which would lead to different effects to be
modeled in order to best simulate the scale formation process. Two scenarios were
considered: a near future time (differential pressure measured 1 step ahead) and a
far future time (differential pressure measured 5 steps ahead). The models showed
good scaling prediction for both time horizons, showing a promising step towards

simulating and predicting scaling tendencies in controlled pipes in production lines.

3.1.2
Methodology

3.2.1
Experimental details

Experiments were performed in a TBT equipment, in which two solutions
containing incompatible cations and anions are pumped into tubes inside an oven,
conditioned to the test temperature, mixed in a micro-chamber, and then flown into
a capillary tube called loop test. The apparatus consisted of two high performance
liquid chromatography (HPLC) pumps pushing newly prepared calcium chloride
and sodium bicarbonate solutions, with pH ranging from 7.0-7.5 depending on the
salts concentration, into a thermostat-regulated oven through 1.8 m long stainless-
steel tubes with 1 mm inner diameters (i.e., two conditioning loops, one for each

solution).
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- Differential PSV Valve
i Pressure Sensor
Temperature .

Computer Controller

Accumulator
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Figure 3.1: Scheme of a Dynamic Scale Loop (DSL) system used ina TBT
experiment (adapted from KARTNALLER et al., 2018).

Waste

These loops ensured the solutions reached the mixture chamber at the
correct temperature for the experiments. After mixing, the combined solution
flowed through a third tube (loop test) with the same dimensions as the other tubes.
This process resulted in a supersaturated solution leading to calcium carbonate
formation and deposition. When deposition occurred, the inlet pressure became
higher than the outlet pressure, generating a differential pressure. This differential
pressure was measured using a model EJA 130A high-static differential pressure
transmitter (Yokogawa, Musashino, Tokyo, Japan). The data were acquired at 1 s
intervals using a LabView-based software program. The injection flow rate was
10.0 mL min~! (5.00 mL min~! for each solution, leading to a 1:1 mixture ratio of
the two solutions). The pressure of the system was regulated using a PSV valve

connected outside the oven.

3.1.2.2
ANN database preparation

The experimental data used in this study are the results from 38 TBT
experiments previously presented in Kartnaller et al. (2018), which used a modeling
approach with experiments from a central composite design of experiment and

multivariate linear regression (MLR). In the previous work, MLR was applied to
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model the scaling time to reach several differential pressure levels (1 to 25 psi, in
intervals of 1 psi). For each pressure, a different model had to be made, totaling 25
different models to predict a single scaling tendency. These experiments varied the
pressure, temperature, concentration of MEG (Cweg) (V/V %), and concentration of
the carbonate (Crcos-) (ppm) and calcium (Cca2+) (ppm) ions over the operating

ranges shown in Table 3.1. The experiments measure the AP every second as the

monitored variable.

Table 3.1: Range of the experimental variables.

Variable Unit Minimum value  Maximum value
Pressure bar 0 170
Temperature °C 40 110

CmEec vIiv % 0 80

Cca2+ ppm 1000 6000

Chcos ppm 1000 6000

The goal for the ANN modeling in the present work was to improve the
prediction of the scale formation process, in which the differential pressure was also
an input for the modeling. The measurement of the differential pressure at a moment
in time, plus the experimental variables, was used to estimate the differential
pressure in a later time. Hence, experimental data were first preprocessed to adjust
the signal baseline and create the differential pressure variables one step ahead,
(AP+1)) and five steps ahead (AP(s5) (one second and five seconds ahead
respectively) to be used in the prediction models. The database was then split into
two parts. The first database consisted of 32 experiments, totaling 46,698 data
points. This database was separated into two groups, train (70%) and test (30%),
and was used to train the MLP models. To preserve the time information about the
scale formation associated with the pressure differential, this division was
accomplished by selecting 7 data points for the train group and 3 for the test group
from every 10 data points.

The second database consisted of 6 experiments, totaling 7,705 data points.

Those experiments were conducted with fixed values of pressure, temperature,

Chcos- and Cca2+ in their central values of the design of experiments, and varying
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Cwmec (10, 20, 30, 50, 60, and 70 v/v %). This database was used to separately
validate the models constructed by the ANN for each experiment.

3.1.2.3
Artificial Neural Network optimization

For this study, MLP type ANN models with one output neuron were
developed using Matlab R2020a (developed by Mathworks, Inc) to predict AP t+1)

and APs5). Six input variables were chosen for the input layer: the five independent
variables (pressure, temperature, Chcos- and Cca2+, and Cwmec) and the differential

pressure at the selected time t (AP(y). The proposed MLP structure had one hidden
layer, in which the number of neurons is one of the hyperparameters to be
optimized. The search was started with the same number of neurons as the input
layer.

The activation function, applied to the connection between the input and
hidden layers, was the second hyperparameter studied, and the hyperbolic tangent
(tansig) and log sigmoid (logsig) functions were used. Both functions are
commonly used due to their sigmoidal form. The linear activation function (purelin)
was used between the hidden layer and the output layer (CHOJACZYK et al., 2015;
SOLEIMANI et. al., 2013; HAYKIN, 2001).

The last hyperparameter optimized for the MLP models was the training
algorithm. The Gradient Descent with Momentum and Adaptive Learning Rate
Backpropagation (traingdx), Levenberg-Marquardt Backpropagation (trainlm), and
Bayesian Regularization Backpropagation (trainbr) functions were selected for
testing. The first of these algorithms improves upon traditional backpropagation
with a combination of an adaptive learning rate and momentum training, while the
others apply a quasi-Newton method for faster convergence (MATHWORKS, 2020
a;, MATHWORKS, 2020b; MATHWORKS, 2020c).

3.1.2.4
Statistical performance evaluation

To evaluate the performance of the ANN models, the coefficient of
determination parameter (R?, Eq. B5), Sum of Squared Errors (SSE, Eq. B1), Mean
Squared Error (MSE, Eqg. B2), and Root Mean Squared Error (RMSE, Eq. B3), were
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chosen. For R?, the goal was to achieve a value close to one, while the goal for the
others was to achieve the lowest value possible, indicating the best fit between the
experimental data and the predicted data from the ANN models. To calculate R?, it
is also necessary to calculate the Total Sum of Squares (TSS, Eg. B4). The
equations are available in the Appendix B.

Figure 3.2 shows a schematic for the process adopted in this study, from the

data acquisition on the experiments to the determination of the best MLP model.

TBT experiments

Data
pretreatment

First database Second database

Choose the best MLP
Training Test group model
group (70 %) (30 %)

Evaluation of the Evaluation of the

Creation of the MLP MLP models external

models ustlol validation sdlal
(R?, SSE, MSE, RMSE) (R2, SSE, MSE, RMSE)

Figure 3.2: Flowchart of the methodology.

3.1.25
Sensitivity analysis

The “black-box” group of models, in which the ANN models are often
included, present some difficult to extract information about the process from their
parameters. However, the evaluation of the input variables effects over the output
variable can be determined by a sensitivity analysis.

For that, in this study two approaches were explored. First, it was used the
relevancy factor (r, Eq. 3.1), which can be applied to quantify these effects, with
values on the range from -1 to +1. The highest absolute value of r indicates the
variables that most affect the target variable, in which the positive values indicate
an elevation on the output variable whereas the negative ones designate a decrease
on the target variable (BAGHBAN, 2019b; AHMADI et. al., 2020b).

TN (Xpei— X)) vi—y)
- : 3.1
T (Xki— X5)” N (i-9)? (3.1)
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where N is the total number of data points, Xk is the ith input value of the kth
parameter, y; is ith output value, X, is the average value of the kth input parameter
and y is the mean value of the output parameter.

The second parameter adopted was the Relative Importance (RI), in which
the methodology proposed by Garson (1991) (Eg. 3.2) was chosen to obtain the RI
values, varying between 0 and 1, which is based on the connection weights between
the ANN layers (DE ONA and GARRIDO, 2014; XU et al., 2013; PENTOS, 2016).

p il
— el (3.2)
s we it '
1=14j=1 Z{V=1 lel

RIU =

where RIjj is the parameters RI of the variable xi concerning the output neuron j, wi;
is the weight parameter of the connection between the input xi and the jth hidden
neuron, wik is the weight parameter of the connection between the jth hidden neuron

and the kth output variable.

3.1.3
Results and Discussion

The data were selected, processed, and separated into two groups for training
and testing to optimize the ANN model. The training data were used to construct
the model and calculate the estimated parameters. Once the model was constructed,
it was applied to the testing data to predict the output and compare it to the known
values. Different types of models were tested by changing the hyperparameters of

the ANN and were compared to indicate the best ones.

3.1.3.1
Evaluation of the ANN models

MLP topologies developed to predict AP¢+1) and AP(+s5) are shown in Table B1
in the Appendix B, along with the optimized hyperparameters of the trained models
and the performance parameters from the train and test groups, for models having
6-8 neurons in the hidden layer. These results show that the best performance for

the AP(+1) was achieved with seven neurons in the hidden layer using the tansig
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activation function and the trainlm training algorithm. This topology had an R?
equal to 99.88% for the test set and the lowest values for error. However, only three
trained topologies had an R2 lower than 99%, showing that the models have very
similar accuracy.

For the topologies built to predict AP(t+s5), the model with the best results had the
same hidden layer configuration as the best model for AP+1) but used the trainbr as
the training algorithm. Its performance had an R? equal to 98.93% and the lowest
values for the other error parameters as well. However, as observed in the
predictions for the AP(+1) case, most of the models had very similar figures of merit,
indicating that the accuracy was largely independent of the activation function and
training algorithm used (trainlm and trainbr). It is also interesting to point out that
the worst results, in both cases, were obtained when using the traingdx training
algorithm.

This investigation optimizing the hyperparameters of the MLP model for
each output, primarily the number of neurons and the transfer function on the hidden
layer, is an important step toward achieving the best models. Another essential
phase in the model development is to validate them with new experimental data,
verifying the model's prediction capability before using it in real applications.

3.1.3.2
Validation of the MLP models

Since the MLP models demonstrated similar accuracy for both time
horizons, all were used in this validation phase. This evaluation used the second
database in which the MEG concentration was changed from 10% to 70%, while
all other variables were unchanged. This series of experiments tested the behavior
of the scaling process in the presence of the glycol molecule. In a previously
published article (KARTNALLER et al., 2018), our research group has shown that
MEG can act as a calcium carbonate inhibitor at concentrations above 30%.

The correct mechanism to explain how MEG acts in the calcium carbonate
crystallization is still not completely known. The interaction of alcohols (and
therefore polyols) have been studied by several works in the past years, and
simulations have shown that the -OH group can bind to specific faces of the calcite
polymorph, which can lead to control of the crystal growth (SAND et. al., 2010;
BOVET et al., 2015; ZHANG et al., 2008). Okhrimenko et al. (2013) showed that
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this adsorption could also happen for aragonite and vaterite (other calcium
carbonate polymorphs), although the binding energy in these cases is lower than for
calcite. This adsorption comes from the fact that the Ca—COs ion pair (note that this
is just a representation of pairs, not chemical bond) delocalizes charges by ordering
the —OH group of the organic molecules. Thus, the O of this group is associated
with Ca, while the H is associated with CO3 (Okhrimenko et al., 2013). This causes
a highly organized monolayer structure to form on the surface of the crystal, in
which the hydrophobic part of the chains face away from the surface. Many other
types of organic molecules have also been studied on the calcium carbonate
crystallization, specifically related to biomineralization.

Biomineralization is the process in which living organisms produce hard
minerals that act as support, protection or nourishment structures. A wide variety
of minerals can be synthesized by these organisms, such as silica, calcium
phosphate and calcium carbonate. The calcite polymorph synthesized in pure
solution in a laboratory has a large crystalline difference from that synthesized by
mineralization (YANG et al., 2008). This control of crystal growth is generally
attributed to complex organic molecules known as coccolith-associated
polysaccharides (CAPs). These are large polymeric carbohydrate molecules
containing a variety of functional groups, such as -COOH and —OH. Hence, since
MEG contains 3 hydroxyl groups in its structure, it is possible to suppose an
association that there is an interaction of this molecule with the surface of the
particles being formed, controlling crystal growth, which would also explain how
it controls inhibition. Also, changing its concentration changes the viscosity of the
solution (affecting the flow dynamics inside the tube).

The performance parameters for all MLP models for each new experiment
are presented in the Appendix C in Tables C1-6. The models are validated by
observing how they predict the scaling process under conditions different from the
training or testing. Although the models showed very high accuracy for both
training and test sets, their application to the new data was not completely
successful. Some of the models’ prediction of the scaling process over time was
unsatisfactory for a few experiments, which showed that certain regions in the
modeled response did not fit the actual expected experimental values. For the APt+1)
scenario, the logsig_7_purelin_1_trainbr model (values of the weights and bias are
available in the Appendix C, Table C7) was the best with an R? over 99.3% for all
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new experiments. Figure 3.3 shows the predicted differential pressure from this
MLP model and the experimental data for all six experiments. In addition, four

other topologies had an Rz higher than 97% showing that they are also very accurate

models.
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Figure 3.3: Representation of the behavior of the experimental data of the six
experiments of the second database and the respective predicted data for the output

AP+1) by the MLP model logsig_7_purelin_1_trainbr.

The lack of fit of parts of the predicted region was mainly observed for the
AP+s5) case. For example, the best model for this case could not predict the scaling

tendency for MEG concentrations between 20 — 50%. For some of the experiments,
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the R2 of the fit was actually negative, indicating that the scaling process was not
being accurately modeled (or that the residues of the regression in that region did
not follow a normal distribution with a mean equal to zero).

While most models did not present a good prediction performance for the
new experiments, some were still very accurate. For the APw+s5) time horizon, the
logsig_6_purelin_1_trainlm model (values of the weights and bias are available in
the Appendix C, Table C8) was the most accurate, with an R2 ranging from 79.7%
t0 96.4%. Figure 3.4 shows the predicted differential pressure from this MLP model
and the experimental data for all six experiments. These results are important
because they show that even though accurate predictions can be made for some
regions of the studied response, continuous validation of the best models is

necessary as new data is obtained.


DBD
PUC-Rio - Certificação Digital Nº 2012332/CA


PUC-Rio- CertificacaoDigital N° 2012332/CA

75

25 25

T
10% MEG < 20% MEG
R?=0.9033 5 R?=0.9446
20 . o 20+ .
z —— Experimental ol “;’ —— Experimental
2 0 Calculated g el 0 Calculated
[ 8 [
2 2
2 2 or
o o
< 4
[ a
= £ 0}
< c
g g
] ]
& £
[=] Q st
T S S TR TS S N
0 50 100 150 200 250 300 350 400 450 500 550 600 650 0 50 100 150 200 250 300 350 400 450 500 550 600 650
Time (s) Time (s)
25 25
30% MEG 50% MEG
R?=0.9609 R?=0.7974
20+ . 20+ :
Z Experimental Zz Experimental
2 o Calculated o o Calculated
g g
2 5F 2 15+
w w
2 <
a a
2 w0} 2 w0}
c €
] @
1 <
] ]
£ £
8 st o st
0 1 1 1 1 I i 1 1 1 0
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 0 200 400 600 800 1000 1200
Time (s) Time (s)
45 35
. 60% MEG 70% MEG
R?=0.8318 30 R?=0.9639 1
z Br Experimental = o Experimental
2 o Calculated a2 Calculated
o 30F o
< <
2 2 2
§ ot £
2 <4
[ a
] 20+ B 15+
s =
c c
% Br § 10
£ £
a Of a
sk 2§
0 0
0 200 400 600 800 1000 1200 1400 1600 1800 0 400 800 1200 1600 2000 2400 2800
Time (s) Time (s)

Figure 3.4. Representation of the behavior of the experimental data of the six
experiments of the second database and the respective predicted data for the

output AP+5) by the MLP model logsig_6_purelin_1_trainim.

For the best models chosen for each output variable, AP+1) and APs5), @
deeper evaluation was performed, starting for a comparison between the
experimental and predicted values for the training and test datasets, shown on
Figure S1A-B respectively for the variables AP(+1) and AP+5). These results also
show that the model chosen to predict the AP(t+1y has the best prediction power.

Another investigation adopted was to evaluate the behavior of the normalized

residuals according to the AP values, comparing the response for the both output
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variables AP¢+1) and APs) for the training and test datasets, respectively, Figure
S2A-B. From that could be extract that the MLP model for the APs5) variable has
a tendency to predict higher values than the experimental measures, what is worsen
in higher values of AP. However, it is important to highlight that the amount of data
points with absolute normalized residuals higher than 0.1 is less than 1 % for the
analyzed datasets for both output variables.

3.1.3.3
Sensitivity analysis

For the sensitivity analysis, the best models for each output variable, AP t+1)
and AP.s), were chosen, which had the topologies logsig_7_purelin_1_trainbr and
logsig_6_purelin_1 trainlm. The first sensitivity evaluation was made for the
relevancy factor (r), Figures 3.5A-B show the values of r of each input variable for
both target variables, respectively, AP+1) and APw+s). They indicate that the AP
are by far the most influential parameter for the two prediction horizons with a r
close to 1, indicating expected strong correlation between the measure of the AP

and its prediction for future horizons.
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Figure 3.5. Relevancy factor of both output variables AP(t+1) (A) and APs) (B).

Then, these MLP models were analyzed for the Relative Importance (RI)
parameter, which the values are presented on Figures 3.6A-B for the output

variables AP(+1) and APg+s) respectively. For the best AP¢+1) model, the inputs
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pressure, temperature, Cvec and Chcos- presented an RI varying between 14 % and

19 %, and the input variable Cca2+ was the most relevant one for the AP+

prediction. In turn, the input with less impact was the AP .
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Figure 3.6. Relative Importance (RI) of both output variables AP¢+1)(A) and
AP+5)(B) calculated by the Garson method (GARSON, 1991).

Conversely, for the best AP+5) model the most significant variables were
the Cwiec followed for the APy, respectively with the values of 34.7 % and 22.5 %,
while the other inputs variables presented Rl values lower than 15 %. This
difference on the influence hierarchy of the input variables is interesting, since it
shows an increase on the importance of the AP for the prediction of the future.
Also, for the AP¢+5 model, the high RI value of the variable Cmec indicates a reason
for this MLP model presenting the best performance against the validation data
group. This may indicate a strong implication that MEG has in impacting the
development of the scale formation process due to its inhibitor effect.

The two analyzed parameters, r and R, led to different levels of influence
for each input in the target variables. While the parameter r indicates the effect of
the input values on the target variable, the RI parameter shows how the model
attributes the importance for these inputs. Although, the AP variable has a huge
absolute value for the parameter r, a model that only uses this variable as input
probably could predict the tendency of the AP curve but it would not be able to

distinguish between the different scenarios. That way, the combination of these
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results indicates that maybe a hybrid model could be a better approach for this
problem, applying the MLP to lead with the AP curve behavior and another kind of
model to handle the environment conditions information. However, this premise is
outside of the scope of this work.

Finally, the modeling results indicated that ANN could be applied to predict the
differential pressure and to understand the evolution of the scaling process at earlier
as well as later times. For process monitoring, this appears to be a promising tool
for transforming digital data acquired during production to establish the scaling
tendency of a well over time, by relating the scale formation process with
operational variables as a start to develop a model that could simulate the conditions

during oil and gas production.

3.1.4
Conclusions

This study showed that using an MLP-type ANN enabled the modeling of the
scaling process in a tube with a dynamic flow containing precipitated calcium
carbonate. Even though the scaling process is a very complex system with
stochastic behavior, this machine learning technique permitted its prediction over
different time horizons: a “near future”, or one step ahead (AP¢+1)), and a “far
future”, or five steps ahead (AP5)). The generated models were highly accurate for
both training and test data sets and for both time horizons, regardless of the
activation function and the training algorithm used (trainlm and trainbr). However,
using traingdx as a training algorithm gave poorer results. When using the models
to predict a different series of experiments that simulated various viscosities with
calcium carbonate inhibition, most models did not show the same initial high
accuracy. In fact, only a few models were very accurate for all the experiments.
Overall, for the AP¢+1) time horizon, the logsigs_7_purelin_1_trainbr was the best
model, with an R2? over 99.3% for the additional experiments. The
logsig 6 purelin_1_trainlm model was the best model for the APt+s) time horizon,
with an R2 ranging from 79.7% to 96.4%. These results show that ANN can predict
the differential pressure in a tube to understand the evolution of the scaling process
in the near time as well as its development in the future. This strategy represents an
important application of digital transformation to oil and gas production to establish

the scaling tendency during the lifetime of a well based on differential pressure
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process monitoring.
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Machine learning models for measurement of pH using a low-

cost image analysis strategy

The second part of this work is indirectly connected with the other
type of fouling that may occur during production and has its origin in the
organic components from the oil and gas. They are also caused by the
different conditions (mainly pressure and temperature) that the three-
phase mixture (oil-gas-water) is exposed to during the extraction
process. This problem can be avoided using inhibitors, but once the
fouling is formed, there are some strategies that can be used to unplug
the pipes and valves. One of these alternatives has been used extensively
in the last decades, known as Nitrogen Generating System (NGS). This
system releases a great amount of heat and N2 gas that act to redissolve
the wax precipitates and gas hydrates.

As presented in Section 2, this system has its Kinetics very
dependent on the pH conditions, which is a complex parameter to
measure and monitor under high-pressure conditions. That motivates the
development of a model to determine the pH in a pressurized system that
could be applied to monitor the NGS in future applications.

This section contains the manuscript version of the article that presents
the results of the development of the model. Supporting Information, which
will be available with the manuscript during the submission process, is

presented in Appendix B.
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ABSTRACT:

One difficult measurement to be performed is the pH values in a pressurized system,
requiring specialized equipment. With this problem as a goal, this work aims to
develop models to determine the pH in pressurized systems (up to 6 MPa) as an
initial step to create an applicable soft sensor. For that, classification and prediction
models were created using image analysis and different Machine Learning
techniques: Convolution Neural Networks (CNN), Support Vector Machines, and
Decision Trees. All of them were explored in the classification models, but CNN
was the only used for the regression ones. The best models for each technique were
tested in two study cases: titration curve and CO2-H-O equilibrium systems. The
best classification models were the CNN ones, but the model with the best
performance was the predictive CNN using the reduce RGB images with 30 neurons

in the last dense layer, which presents R? values higher than 80%.
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4.1.1
Introduction

Industrial processes demand the use of a large number of sensors to control
and monitor the operational conditions for several different variables, such as
temperature, pressure, liquid level, and concentration. However, some of these
parameters are hard to measure in real time because of technical difficulties,
elevated costs, and other factors (KADLEC et al., 2009; FUNATSU, 2018). One
special process variable is the pH, which is present in several types of chemical
industries, from the control of the Kinetics of a reaction to the monitoring of the
quality of the product or reagents (KHAN et al., 2017).

Inside the pH measurement context, monitoring the pH values in the high-
pressure system is challenging due to the difficulty of producing the equipment,
even though there have been published studies in this field since the middle of the
last century. Usually, the standard pH sensors, such as glass electrode ones, are
available for pressures up to 16 bar. Making that suitable equipment available in
the market has high prices. That makes the development of indirect methods to
measure or predict pH-value in high pressure conditions an interest subject to be
explored, as highlighted by Lemmer et al. (2017) (DE OLIVEIRA et al., 2019;
BYCHKOV et al., 2020; CROLET and BONI, 1983; SAMARAYAKE and
SASTRY, 2013).

As an alternative to physical sensors, the development and application of
the called soft sensors are becoming more common in the industrial scenario, with
an emphasis on the chemical industry (POERIO and BROWN, 2018; Sun and GE,
2021; YAN et al., 2017). Soft sensors are predictive models, which are usually
created using two main strategies: using first-principal models (white-box models)
or using the available database store from the past measurements (data-driven or
black-box models) (SHANG et al., 2014; KADLEC et al., 2009). Data-driven
models are a very popular strategy adopted to develop soft sensors since they do
not require extensive knowledge about the system but a sufficient amount of

information with enough quality to estimate the process's properties properly. That
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makes this strategy very attractive to complex processes found in the industry. For
that, conventionally, the modeling process uses a variety of statistical inference and
Machine Learning (ML) techniques (SUN and GE, 2021; SANSANA et al., 2021).
Due to the huge importance of pH for the industry, many soft sensors were
created to measure the pH values in different specific industrial processes, applying
different modeling strategies. For example, Dixit et al. (2021) have used
Convolution Neural Network (CNN) models to predict the pH in red meat using
hyperspectral images intended to monitor this important quality parameter. Also,
the work of Capel-cuevas et al. (2011) developed a Multi-layer Perceptron (MLP)
model to predict the pH value in a solution through image analysis for that using
the hue value (h) of a picture with 11 immobilized sensing elements, covering the
pH values on the range 0-14.
This study aimed to develop classification and prediction models to determine
the pH in pressurized systems, using image analysis and different ML strategies.
The models will be developed using known buffer solutions. Then the best model

will be tested in two other scenarios (study cases) to evaluate their performance.

4.1.1.1
Modeling Strategies

41.1.1.1
Convolution Neural Networks (CNNs)

Considered a subtype of deep discriminative architecture, the CNN is
inspired by the animal visual cortex organization and has its concept based on a
Time-delay Neural Network (TDNN). In the CNN, the convolution process
replaced the general matrix multiplication presented in others Artificial Neural
Networks (ANN). CNN has been demonstrated to be suitable for processing two-
dimensional data with grid-like topologies, like images and videos. Additionally,
the use of CNN requires minimal pre-processing, allowing end-to-end solutions.
With the rapid development of computation, the use of GPU-accelerated computing
has improved the CNNs train efficiency (BOUWMANS et al., 2019; LIU et al.,
2017). CNN has been applied in several fields, such as sea surface temperature
prediction (HAGHBIN et al., 2021), detection of fracture in coal (KARIMPOULI
et al., 2020), identification of superheat situations (LEI et al., 2020), and to predict
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soil properties (WADOUX et al., 2019).

CNN structure, Figure 4.1, consists of an input layer, an output layer, and
multiple hidden layers. The hidden layers are divided into three classes:
convolutional, pooling, and fully connected. In the convolutional layers, the most
important part of the CNNs, are applied the convolution operations, the addition of
the bias as the input data, and the transference of the results to the activation
functions, so the result can be directed to the next layer. The weights and biases of
this layer are organized into a series of kernels (or filters) responsible for the local
feature extractions (YAO et al., 2019; ZAN et al., 2020; SHEN et al., 2021). The
most common type of activation functions used for the CNN is the sigmoid function
(sigmoid) and rectified linear units (ReLU) (ZAN et al., 2020), but other kinds, such
as hyperbolic tangents (tanh), can be used (RIZKIN et al., 2019).

Input signal Convolution layer
(RyxCyx3)

Convolution layer

Fully connected
layers

Figure 4.1: CNN schematic representation.

In the polling layers (or subsampling layer), the downsampling is completed,
reducing the dimension of feature maps. Commonly, the strategies used in this layer
are maximum pooling (max pooling) (used in this study) and average pooling.
These layers are used after one or two convolutional layers. Finally, the last hidden
layer type is the fully connected layer (or dense layer), where all the neurons are
connected with active ones from the previous layer. Then the last dense layers are
connected with the output layer that aims to integrate the highly abstract features
for classification or regression tasks. In this type, all the neurons are connected with
active ones from the previous layer (YAO et al., 2019; ZAN et al., 2020; YUAN et
al., 2020).
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41.1.1.2
Support Vector Machines (SVMs)

Support vector machine, Figure 4.2, is a ML method that was first developed
for binary linear classification problems proposed by Cortes and Vapnik (1995).
The technique separates the classes with the largest gap (optimal margin) between
the borderline instances (Support Vectors), which leads to the method being known
as an optimal margin classifier. SVM is widely used in classification problems due
to its simplicity, strong generalization ability, and computational efficiency
(ASGHER et al., 2020; PENG et al., 2020). The method evolution allows it to be
applied to multi-class problems, using techniques like One-versus-One (OvO) and
One-versus-Rest (OVR), and to be used for non-linearly separable data using
kernels (CHAUHAN et al., 2019; DING et al., 2019).

O =
\\ - O ) |class1
NG A |Class2
N
Feature 2 \\ O O Class 3

./ O @

Feature 1

Figure 4.2: SVM schematic representation, with a three classes problem using

linear kernels (dashed lines)

Kernels are mathematical functions that transform the data from a given
space (input space) to a new one with more dimensions (feature space), where this
data can be separated with the linear surfaces (hyperplanes) (CHAUHAN et al.,
2019). The most common kinds of a kernel are linear (Eq. 4.1), polynomial (Eqg.
4.2), RBF (Radial-Basis Function, Eq. 4.3), and sigmoid (Eq. 4.4).

Kernellinear(xi,xj) = (gamma(xi,xj) + coef) 4.2)

degreee

Kernelpoly(xl-,xj) = (gamma(xi,xj) + coef) (4.2)
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Kernelgpr(xi, %) = exp(9ammallxi=x;l|*) (4.3)

Kernelg;gmoia(xi, x;) = tanh(gammal(x;, x;) + coef) (4.4)

They depend on the hyperparameters degree and gamma, which can be
optimized. The first one is related to the degree of the polynomial function, being
present only in Eq. 4.2. The hyperparameter gamma represents the influence of each
data in the training database in the optimal decision surface position, which then
can be a function of only the numbers of the variable or also the variance of the
normalized dataset matrix. Another important hyperparameter is the C, which
represents a regularization cost of the misclassification and the influence on the
margin width and hardness of the SVM models (LORENA et al., 2007; RHYS et
al., 2020 and SCIKIT-LEARN, 2022a).

4.1.1.3
Decision Trees (DTs)

Decision Tree (DT) is another very widely used ML technique for
classification problems due to the easy implementation and understanding of its
step. DT structure, Figure 4.3, is composed of several binary tests along the tree,
where the tests start in the root node of the DT and progress through the different
nodes, still reaching one of the leaf nodes the determine the class of the data
(GEURTS et al., 2009; TANGIRALA, 2020; PRIYAM et al., 2013 and SCIKIT-
LEARN, 2022b).

---------------- Root node ============-==  depth0

------------- m-=m=m=msmsmsmsmsmsmsm-oDecision node [=-====mmmmmm-mms depth 1

------------------------------- | Leaf node |———--| Leaf node |-- depth 3

Figure 4.3: DT schematic representation.

Some of the hyperparameters which can be explored during the

development of the models are the depth of the tree that is determined by the
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number of layers from the root node to the leaf node, the maximum number of
leaves in the last layer of DT, and the criteria applied to evaluate the quality of the
split during the training process. To evaluate the quality of the split can be used
different metrics parameters the measure the purity of the nodes along the DT. In
this study, the two ones tested were the Gini impurity (gini) and the cross-entropy
(entropy) (HASTIE et al., 2009 and SCIKIT-LEARN, 2022b).

4.1.2.
Methodology

4.1.2.1
Case study: Pressurized reactor

The experiments were conducted on a midiclave reactor apparatus
(Buchiglasuster, Gschwaderstrasse 12, Uster, Switzerland) with a double-walled
reaction vessel constructed on AISI 316 stainless steel, Figure 4.4. It had two
borosilicate windows disposed at a 180° angle horizontally, temperature and
pressure transducers, mechanical stirring, and data acquisition controlled by Biichi
software bls2 2.7e. In one window, a light source was adapted, provided by a LED
lamp dimmer GU 10 5 W, dual voltage, with a luminous flux of 280 Im, coupled
with a polymer circular polarizer filter (with a diameter of 40 mm) and with the
light intensity controlled using a dimmer shield together with an Arduino Uno. On
the second window was connected to a Microsoft LifeCam Cinema HD. The image
acquisition occurred at the rate of 20 images of 32 bits per second with a resolution
of 1280 x 800 pixels.
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Figure 4.4: Experimental setup scheme (adapted from DE OLIVEIRA et al.,
2019)

The Korthoff indicator was prepared by mixing different pH indicators,
previously diluted to 0.1 %, and more details can be found in De Oliveira et al.
(2019). It was added to the proportion of 1 % v/v of the liquid phase for all
experiments. The nine buffer solutions in the pH range 2-10 were prepared in a
concentration of 0.1 mol L™ with deionized water in the final volume of 500 mL,
according to the procedure described in De Oliveira et al. (2019). All the buffer
solutions had their exact pH value at atmospheric pressure determined using a
previously calibrated pH meter (Mettler-Toledo SevenMulti™ S47, Columbus,
USA).

To construct the calibration curve, the batch reactor was loaded with 200 mL of
the buffer solution containing the Kortthoff indicator for each pH value. The
experiments were maintained at 298.15 K, 200 rpm stirring rate and using different
working pressure (0.0, 0.5, 1.0, 2.0, 4.0, 6.0 MPa with N2), waiting around 10
minutes to stabilize the signal at each pressure.

Aiming to test the developed models with the different strategies, they were
applied to predict the pH values in two situations. First, an acid-base titration curve
was performed using a strong base (NaOH 0.04724 mol L) and a strong acid (HCI
0.01789 mol L1). The reactor, at 298.15 K, 200 rpm, and atmospheric pressure, was
filled with 200 mL of HCI solution with the Kortthoff indicator, and the NaOH
solution was added to 150 mL at the flow rate of 2.00 mL min? using an HPLC
pump (Shimadzu model LC-20AR, Kyoto, Japan). In some experiments, the system

was pressurized with N2 at 6 MPa. The pH values obtained through the models were
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compared with the values calculated using the concentrations of the solutions for
the theoretical titration curve. The second case was the pH measurement in the
pressurized CO2-H20 systems. For that, first, the system was pressurized with CO2
at the desired pressures (0.1, 0.3, 0.5, 1.0, 2.0, and 5.0 MPa). Then, 200 mL of
distilled water containing the Korthoff indicator was added to the reactor using an
HPLC pump, waiting around 2 h for the stabilization of the system. The system
pressure raised with the addition of water, but then it decreased due to the
dissolution of the COz in the water until it reached the system equilibrium. The pH
values measured in the equilibrium condition were compared with obtained data in

the literature.

4.1.2.2
Database preparation

The experimental data used in this work were previously presented by De
Oliveira et al. (2019). For the development of the model, a dataset with 386 images
on the RGB color system with 1280 x 800 pixels of resolution was selected,
composed of images for all the nine pH categories in the amount shown in Table
4.1. Figure 4.5 shows examples of images for each pH category. The pH values
were verified using the equation presented on the based work and using, when
necessary, the function round (NUMPY, 2022). This database was split into three
groups, train (70%), validation (15%), and test (15%) to develop the models.

Table 4.1. Number of images for each pH category in the training database

pH categories Number of images
40
49
45
45
39
24
50
43
51

© 0O N o o B~ wDN

[EN
o
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pH=8

pH=9 pH =10
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Figure 4.5: Examples of the images presented in the dataset for each pH category.

To build the models, different kinds of input were tested. For that, the

reactor images pass for some simple pre-processing steps, such as changing the

color system from RGB to HSV and reducing their resolution by cropping the center

region of the images. Thus, resulting in the input types presented in Table 4.2.

Table 4.2. Types of input tested in the different models developed.

Code Color system  Input information Resolution
Input 1 RGB RGB components 1280 x 800
Input 2 RGB RGB components 280 x 280
Input 3 HSV HSV components 280 x 280
Input 4 HSV hue 280 x 280
Input 5 HSV saturation 280 x 280
Input 6 HSV value 280 x 280

A second image dataset was also obtained from the application test of the

models developed on the acid-base titration curve and the pressurized CO2-H20

systems cases for those following the same procedures to determine the pH values

or classes applied for the first database.

41.2.3

Modeling strategies

This work explored three methodologies to build a soft sensor to determine the

pH value as a class: CNN, SVM, and DT. The CNN models also developed a sensor

to predict the pH value with one decimal case of accuracy. All the models were
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built and tested using Python v3.6 as a programming language on the Google

Colaboratory Pro environment.

41231
CNN

The proposed architecture for the CNNs had two dense layers using
Rectified Linear Units (ReLU) as activation functions. For the classifier models,
the output layer had nine neurons, one for each class that gives the probability of
the image belong to each class, using the softmax as an activation function. The
regression models had only one neuron in this layer that gives a value for the pH in
the range of 2-10, in which linear activation function was used. The other
parameters of the architecture were explored as hyperparameters and summarized
with their options or search regions on Tab. 4.3. For the CNNs models, all six types
of inputs were tested.

Table 4.3: Hyperparameters tested in the CNN models

Hyperparameters Search region or Options
Number epochs for training [80 2000]

Batch size 4,8, 16, 32, 64,128

Number of convolution layer [2 8]

Activation functions ‘linear', 'ReLU", 'sigmoid’, 'tanh’
Filter size 8, 16,32, 64

filter kernel 13,5

Optimizer ‘adam’, 'SGD', 'Adadelta’

Dropout layer percentage 0.05,0.1, 0.15,0.2,0.25, 0.3
Learning rate 0.01, 0.005, 0.001, 0.0005, 0.0001

Number of neurons - first dense layer 40, 50, 60, 70, 80, 90, 100, 120
Number of neurons - second dense layer 10, 20, 30, 40, 50, 60

The results of the training and initial tests of both types of CNN models
were compiled in the Weight and Biases (wandb) platform (Weight and Bias, 2022).
This platform developed in Python gives an alternative to organize the machine
learning results using different kinds of frameworks and libraries (such as PyTorch,
Keras, and Scikit-learn) on a regular computer or using cloud-hosted ones (such as


DBD
PUC-Rio - Certificação Digital Nº 2012332/CA


PUC-Rio- CertificagaoDigital N°2012332/CA

98

Azure, Google Cloud, and AWS). It also gives an iterative way to compare the
performance of the models and the influence of each hyperparameter, using, for

example, the parallel coordinate plot.

4.1.2.3.2
SVM

The SVM classifier models were developed using the Input 2 kind. The
scikit-learn library 1.0.2 (Scikit-learn, 2022a; Pedregosa et al., 2011) is used to
create, train and test the models, and permits the implementation of two different
approaches for the multi-class cases. The first one, known as OVR, creates a binary
classification for each class versus the rest of the dataset, and the second one is
called OvO, which also builds a binary classification for each class but against every
other class. This was explored as a hyperparameter (Dec_func_shape). The other
four hyperparameters investigated, Tab. 4.4, are related to the type of kernel applied
and their parameters.

Table 4.4. Hyperparameters tested in SVM

Hyperparameters Search region or options
Dec_func_shape ‘OvO', 'OvR'

C [0.001; 0.1; 0.5; 1; 2; 5]
kernel ‘linear’, 'poly’, 'rbf', 'sigmoid’
degree 1,2,3,45,6

gamma ‘scale’, 'auto’

4231
Decision Tree (DT)

The classifier models were developed using Input 2 and using the scikit-
learn library 1.0.2 (Scikit-learn, 2022b; Pedregosa et al., 2011) to train and test
them. Table 4.5 shows the four hyperparameters explored during the development
of the models.

Table 4.5: Hyperparameters tested in DT

Hyperparameters Search region or options

Crit ‘gini', 'entropy’
max_depth 5,7,9, 11, None
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max_leaf _nodes 10, 20, None
min_samples_leaf 1,5,7,10

4.1.2.4
Statistical Performance Evaluation

To evaluate the performance of the classifiers of the models, with the
different hyperparameters and architecture, the metrics were obtained using the
python library sklearn.metrics 1.0.2 (SCIKIT-LEARN, 2022c; PEDREGOSA et
al., 2011). A very common metric is accuracy (ACC, Eq. 4.6), which is calculated
by the ratio of the number of correct predictions to the total number of them
(NAMUDURI et al., 2020). Another two parameters used were the precision (PR,
Eq. 4.7), a measure of the quantity of the prediction for a class is correct, and the
recall (RC, Eq. 4.8) (or sensitivity), which represents the models' ability to correctly
detect the objects that belong to the class. For the case of these three parameters,

the results are in the range [0 1], being the best values closer to 1.

ACC = —B*TN (4.6)
TP+TN+FP+FN
PR= 2 (4.7)
TP+FP
RC = 2 (4.8)
TP+FN

where TP was the number of true positives, TN was the number of true negatives,
FP was the number of false positives, and FN was the number of false negatives.

Another common technique to evaluate the performance of a classifier is the
Confusion Matrix (CM), which allows visualization of the classification results, and
was also applied in this study. In a binary case, it is a square matrix, a 2x2 matrix
(Figure 4.6), where the number of rows and columns is equal to the number of
classes. CM presents information about how often a certain behavior is detected
correctly or not, in which the values for parameters TP, TN, FP, and FN are reported
(CAELEN, 2017; RUUSKA et al., 2018; HASNAIN et al., 2020).
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Predicted Class

Class A | Class B

True Class

Figure 4.6: Scheme of a confusion matrix (2x2) in a binary case

For the regression CNN models, the evaluation parameters chosen were
Sum of Squared Errors (SSE, Eg. 4.9), Root Mean Squared Error (RMSE, Eq. 4.10),
and coefficient of determination parameter (R?, Eq. 4.12). To calculate R?, it was
also necessary to calculate the Total Sum of Squares (TSS, Eq. 4.11). For the errors
criteria adopted, the goal was to achieve the lowest values, and for the R? the best

results were indicated for values closer to 1.

SSE = Ty (xi — %2 (4.9)

RMSE = |[Hatiof) (4.10)
TSS = ™, (x; — )? (4.12)
R*=1->= (4.12)

where variables n, x;, X, and x represent the total number of data points, the
observed value, the predicted value, and the mean value of the samples,
respectively.

Figure 4.7 shows a schematic representation of the proposed methodology,
from the dataset pre-processing up to the choice of the best models, which are then
tested with the data from the system pressurized with CO2and the acid-base titration

curve.
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Figure 4.7: Flowchart of the methodology

4.1.3
Results and Discussion

Once the results were determined and processed into the database, they were
split into training, validation, and test groups to build and optimize the models. The
training data of the first two groups were directly used in the development of the
models, and the test group was used as the first validation step. The different
classificatory and prediction models were explored with their respective
hyperparameters to compare them and find the best ones to be tested in specific

applied situations.

4131
Evaluation of the classification models

413.11
CNN classification models

Table 4.6 shows the hypermeters and the performance parameters for the
best five models for Inputs 1, 2, and 3, in which the activation function used was
ReLU for all models. Table 4.7 also show the same kind of information but referent
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to Inputs 4, 5, and 6, which had the different types of activation function used. The
results indicated that the best option for input was the image with 280 x 280 pixels
using the RGB color system (Input 2) since these models presented the highest ACC
values, greater than 96% for the validation and test groups, with the highest ACC
value equal to 97.87% for the test group, and they also had a small number of
neurons on the dense layers, making the models lighter. The better performance of
the models using Input 2 is probably due to the section of the image selected

containing the most important part of the information.
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Table 4.6: CNN classification models topologies for the best models — Part |

models ID Input Hyperparameters? training time (s) Validation group Test group
1 2 3 4 5 6 7 8 9 10 11 ACC ACC

CNN_class_1 Input 1 12 139 8 8 1 3 0.001 4 0.2 120 30 578 0.9772 0.9575
CNN_class_2 12 157 4 8 3 5 0.0005 3 015 100 40 688 0.9635 0.95745
CNN_class_3 8 156 8 8 3 5 0.0005 3 0.2 120 20 724 0.9635 0.95745
CNN_class_4 12 137 4 8 3 5 00005 3 025 120 60 610 0.9543 0.95745
CNN_class_5 12 137 8 8 3 1 00005 3 02 100 50 580 0.9543 0.95745
CNN_class_6 Input2 4 128 8 8 3 5 00001 4 005 100 60 98 0.9817 0.97872
CNN_class_7 12 140 8 8 3 3 00005 3 01 70 30 84 0.9817 0.97872
CNN_class_8 8 132 8 8 5 5 0.0001 4 005 90 60 143 0.9772 0.97872
CNN_class_9 12 123 8 8 5 5 00005 4 015 80 10 95 0.9635 0.97872
CNN_class_10 4 118 8 8 3 5 0.0001 4 0.1 120 60 99 0.9635 0.97872
CNN_class_11 Input3 12 145 8 8 5 5 0.005 4 01 70 60 112 0.9178 0.85106
CNN_class_12 8 153 8 8 5 3 0.005 4 005 40 50 129 0.8950 0.85106
CNN_class_13 12 152 8 8 3 5 0.005 4 005 50 40 105 0.9452 0.80851
CNN_class_14 12 148 8 8 5 3 0.005 4 005 40 30 113 0.8356 0.78723
CNN_class_15 8 152 4 8 3 5 001 2 005 120 40 100 0.8721 0.78723

a - hyperparameters: 1 — batch_size; 2- epochs; 3 — filter_size 1; 4 —filter_size_2; 5 - kernel_size_1; 6 - kernel_size_2; 7 - learning rate, 8 - n_layers; 9 — p_dropout; 10 - size_dense_1; 11 —size_sense_2
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Table 4.7: CNN classification models topologies for the best models — Part |1

models ID Input Hyperparameters? training  Validation Test
time (s) group group

1 2 3 4 56 7 8 9 10 11 12 13 ACC ACC
CNN_class_16 Input4 8 261 4 8 1 3 00001 2 025 90 40 linear sigmoid 154 0.1598 0.1064
CNN_class_17 12 146 8 8 5 5 00001 4 02 40 60 sigmoid linear 98 0.1507 0.1489
CNN_class_18 12 130 8 4 5 3 001 3 03 40 30 sigmoid linear 83 0.1461 0.1489
CNN_class_19 12 163 8 4 5 5 0.005 4 0.05 50 40 relu relu 104 0.1461 0.1489
CNN_class_20 4 134 4 8 5 5 001 4 015 50 30 relu linear 100 0.1461 0.1489
CNN_class_21 Input5 4 261 4 8 5 5 00005 4 02 80 60 tanh relu 180 0.6347 0.6596
CNN_class_22 4 615 4 8 3 3 0001 3 015 100 20 relu sigmoid 345 0.5890 0.6596
CNN_class_23 4 257 8 8 5 5 0.001 3 015 40 50 tanh relu 246 0.7580 0.6596
CNN_class_24 8 455 4 8 31 00 4 01 100 50 tanh relu 196 0.6621 0.6596
CNN_class_25 12 683 8 4 5 5 0.005 2 02 50 20 relu sigmoid 221 0.6667 0.6596
CNN_class_26 Input6 8 222 4 4 5 3 0.005 4 0.05 40 30 linear relu 146 0.9224 0.8723
CNN_class_27 12 416 8 8 3 5 0.005 4 03 120 60 relu relu 247 0.9909 0.8723
CNN_class 28 12 447 8 8 3 3 0.005 4 025 90 60 linear relu 253 0.9909 0.8723
CNN_class_29 8 446 8 8 5 5 0.001 4 02 90 30 relu relu 437 0.8904 0.8085
CNN_class_30 8 549 8 8 5 5 0.001 3 015 120 30 linear tanh 355 0.9315 0.7872

a - hyperparameters: 1 — batch_size; 2- epochs; 3 —filter_size 1; 4 —filter_size_2;5 - kernel_size_1; 6 - kernel_size_2; 7 - learning rate, 8 - n_layers; 9 — p_dropout; 10 - size_dense_1; 11 —size_sense_2;

12 — activation_function_1; 13 — activation_function_2
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The performance of the models can also be analyzed using the CM, which
allows an examination of the models’ performance for each class. To exemplify
that, Figure 4.8A-B shows the CMs from the CNN_class_10 for the training and
test datasets, respectively. The images confirm the good classification results
presented in Table 6 but also show that the misclassification happens between the
pH classes 2, 3, and 4, presenting the class that the models could find more difficult

to classify in other tests.

[A]

True label

pH_2 pH_3 pH_ 4 pH 5 pH_6 pH_7 pH_8 pH_9 pH_10 pH_2 pH_3 pH_4 pH 5 pH 6 pH_7 pH_8 pH_9 pH_10
Predicted label Predicted label

0 o]

Figure 4.8: Confusion matrix (CM) of the CNN_class_10 for the training (A) and
test (B) datasets.

The results also showed that the models using the RGB values had a better
performance compared to the ones using the HSV information. This behavior was
not expected since prediction models for the pH value presented in the works of
Capel-Cuevas et al. (2011), and De Oliveira et al. (2019) had good results using the
component hue of the HSV system to predict the pH value. Thus, indicating that
the convolution process could extract the representative information without the
need to swap the color system.

For the models using as input the RGB information and all the components
of the HSV, the hyperparameters of the activation_functions were optimized in an
initial exploratory step, in which it was found that the best activation function for
the convolution layer was the ReLU, being applied in all the models shown on Table
6. Another hyperparameter optimized in the initial search was the optimization
algorithm, in which the “adam” had the best results and was the one used to build
all the CNN models.
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Since the CNN models created using the individual components of the HSV
did not present the expected performance, other kinds of activation functions were
explored for the convolution layers. Still, no significant improvements were
noticed, being the ReLU type the most common one applied in the best models, as
presented in Table 4.7.

The hyperparameter filtr_size for these best models was commonly equal to
eight, one of the lowest values tested, reducing the number of parameters of the
models. Another interesting result was the number of layers of the best models
(n_layers) indicates that the best ones are formed by three or four convolution
layers. The fact that the CNNs were not too deep also gives a small number of

parameters for the models.

4.1.3.1.2
SVM models

The hyperparameters of the five best models are shown in Table 4.8, along
with the performance parameters for the validation and test groups, since all of them
presented accuracy equal to 1 for the training group. The results for all trained SVM
models are available in Appendix D in Table D1. It was observed that the best
performance was obtained using the kernel of the polynomial form with the lowest
degrees. The best way to determine the parameter gamma was by using their
dependency on the number of classes. Also, the best methodology to approach this
multiclass problem was the OvO, present in the three best models.

All five models presented high values for all the performance parameters,
higher than 90% for all groups. However, the values for the test group were higher
than the ones for the validation group, which could indicate that models could have
a problem with overfitting or that the division of the unbalanced dataset could result

in a problem during the training process.
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Table 4.8. SVM topologies for the best models

Model ID Hyperparameters Validation group Test group
Dec_func_shape C Kernel degree gamma trainingtime (s) PR RC ACC PR RC ACC
SVM_1 OvO 0.01 poly 1 Auto 73.63 0.9434 0.9471 0.9362 0.9815 0.9630 0.9787
SVM 2  OvO 0.02 poly 2 Auto 67.54 0.9352 0.9378 0.9362 0.9815 0.9630 0.9787
SVM_3 OvO 0.03 poly 3 Auto 65.69 0.9352 0.9378 0.9362 0.9815 0.9630 0.9787
SVM_4  OvR 0.04 poly 1 Auto 78.13 0.9434 0.9471 0.9362 0.9815 0.9630 0.9787
SVM 5  OvR 0.05 poly 2 Auto 68.44 0.9352 0.9378 0.9362 0.9815 0.9630 0.9787
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4,1.3.1.3
DT models

Table 4.9 shows the results of the five best models according to the
performance parameters and their respective hyperparameters. The results for all
trained DT models are available in Appendix D in Table D2. From the results, it
was possible to observe that the “entropy” were the best criteria to measure the split’
quality, being applied in all five models. The other hyperparameter that can be
noticed is the max_leaf nodes equal to 10, which appears in three of the five models
shown that is concordant with the number of pH classes, which are equal to 9.
Another interesting result is that the DT models demanded a longer training time
than the SVM ones, even though they were simple models. Analyzing the
performance parameters can be observed the same problems that were pointed out
for the SVM models, and the ACC values are lower than the ones obtained for those
models.
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Model ID Hyperparameters Validation group Test group

Crit max_depth max_leaf nodes min_samples leaf trainingtime(s) PR RC ACC PR RC ACC
DT 1 entropy  None 10 7 198.70 0.8977 0.8479 0.8723 0.9397 0.9434 0.9362
DT 2 entropy 7 None 1 224.67 0.8825 0.8405 0.8511 0.9139 0.9249 0.9149
DT_3 entropy  None 20 1 222.43 0.8726 0.8442 0.8511 0.9212 0.9063 0.9149
DT 4 entropy 11 10 10 188.88 0.8636 0.8479 0.8511 0.9212 0.9063 0.9149
DT 5 entropy  None 10 5 206.46 0.8852 0.8442 0.8511 0.9119 0.9249 0.9149
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4.3.2
Evaluation of the prediction models

43.2.1
CNN prediction models

Table 4.10 shows the performance values, and the hyperparameters of the
best five models of each kind of input tested. These models had R? and RMSE as
the performance parameters evaluated, where the lowest value indicated the best
response for all of them. As observed in the classification models, the best results
were obtained with the Input 2 type. The results also showed that these models also
had a low number of convolutional layers and neurons in the dense layers.

Different from the strategy for the classification of CNN models, the
prediction models have only one neuron in the output layer, given the predicted pH
value. In the hyperparameters, exploration for the prediction models tested different
types of activation functions for all input types. Although the ReLU function type
was present in several topologies, it did not have the same predominance observed
in the classificatory models. The batch size use to train the all best models of the
Input 1 was equal to 12, while for the models using Input 2 and Input 3 the best
results were obtain with batch sizes of 8 and 4. For all the prediction models,
“adam” was also applied as the optimizer algorithm.

Also, in the prediction models case, the results for the ones using RGB
values had a better performance than those using the HSV information, and again
Input 6 showed the worst results.

For the prediction models, the best performance results were often obtained
when the CNN had three or four convolution layers in its topology. However, some

models with only two layers appeared among the best ones.
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models 1D Input variables Hyperparameters Training time RMSE (test) R? (test)
1 2 3 4 5 6 7 8 9 10 11 12 13 (©)

CNN_pred_1 Input 1 2 99 8 8 1 5 0005 3 025 100 60 relu relu 277 0.316 0.982
CNN_pred_2 12 106 8 8 1 3 0.0005 3 03 50 50 linear linear 251 0.438 0.978
CNN_pred_3 12 104 8 8 3 5 0.0005 3 025 90 50 tanh relu 359 0.481 0.971
CNN_pred_4 12 1010 8 8 3 3 0.001 4 03 120 50 relu relu 334 0.636 0.942
CNN_pred_5 12 90 4 4 1 1 001 4 025 40 20  linear relu 199 0.643 0.940
CNN_pred_6 Input 2 8 86 8 8 3 3 0.0005 4 03 60 40 tanh tanh 46 0.150 0.993
CNN_pred_7 8 102 8 8 3 1 0.0005 3 015 60 50  sigmoid relu 53 0.184 0.994
CNN_pred_8 4 113 8 4 3 1 0.005 2 025 70 40 relu linear 58 0.200 0.990
CNN_pred_9 4 118 8 8 3 1 0.001 3 015 100 30 relu linear 67 0.219 0.995
CNN_pred_10 8 104 8 8 1 5 0.0005 4 02 100 60 relu sigmoid 56 0.191 0.994
CNN_pred_11 Input 3 4 118 8 8 1 3 0.005 2 02 100 40 linear relu 78 0.480 0.979
CNN_pred_12 8 120 8 8 3 3 0.005 2 005 120 20 relu linear 58 0.486 0.971
CNN_pred_13 8 119 8 8 5 5 0.005 2 005 120 40 linear relu 68 0.463 0.971
CNN_pred_14 4 118 8 8 3 3 0.01 2 01 100 40 relu relu 77 0.499 0.966
CNN_pred_15 12 106 8 8 1 3 001 2 015 100 20 linear relu 48 0.487 0.967
CNN_pred 16  Input4 12 102 8 8 5 1 001 2 005 100 40 tanh tanh 41 2.740 -0.005
CNN_pred_17 12 116 8 8 5 1 o0.01 2 02 70 60  sigmoid sigmoid 35 2.740 -0.004
CNN_pred_18 12 93 4 8 5 1 0.0001 2 0.05 70 30 linear sigmoid 36 2.740 -0.005
CNN_pred_19 12 114 8 8 3 5 0.01 2 025 70 60  sigmoid sigmoid 43 2.740 -0.005
CNN_pred_20 12 113 8 8 3 3 o0.01 2 025 120 60  sigmoid tanh 42 2.740 -0.005
CNN_pred_21 Input 5 12 111 8 8 5 5 001 3 02 70 60 relu linear 62 0.854 0.921
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63
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0.876
0.881
0.901
0.904
0.446
0.815
0.830
0.965
0.976

0.920
0.919
0.863
0.975
0.972
0.908
0.917
0.885
0.879
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a - hyperparameters: 1 — batch_size; 2- epochs; 3 — filter_size 1; 4 — filter_size_2; 5 - kernel_size_1; 6 - kernel_size_2; 7 - learning rate, 8 - n_layers; 9 — p_dropout; 10 - size_dense_1; 11 — size_sense_2; 12 — activation_function_1; 13 —

activation_function_2
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4.1.3.3
Validation of the models

Once the best models were selected, a natural next step was to test their
applicability to determine the pH value, using the two scenarios in which they could
be exposed during their use. For that, the classification and prediction CNN models
with Input 2 images were chosen since they presented the best performance results,
respectively models CNN_class_6-10 and CNN_pred_6-10. DT and SVM models

were also tested to compare their efficiency with the classification CNN ones.

4.1.3.3.1
Case study: Titration curve of strong acid with a strong base
The first case studied was the already known strong acid — strong base
titration. For that, the images of six experiments were used (four at atmospheric
pressure and two pressurized at 6 MPa) to test the best five classification models
of each technique CNN, SVM, and DT, and the five CNN prediction models.
Figure 4.9 shows a comparison between the ACC values of each CNN
classificatory model tested, presenting the mean, low and high values of the
performance parameter. The average ACC values are very similar for all the
models, ranging from 88% to 92%. In general, the performance of the CNN models
was lower than expected, although all the models had no ACC values lower than
80%, except for the CNN_class_7.
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Figure 4.9: Accuracy values for the CNN classification models in the
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neutralization curve scenario
Figure 4.10A shows the ACC values for the SVM model tested, and Figure
4.10B shows the values for the DT models, presenting the mean, low and high
values of the performance parameter. Both strategies present a worst performance
than the CNN classification models, with average ACC values, lowers than 75%.
SVM models show a better performance than the DT models, but both strategies

had models with a big range of ACC values.

1 1
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Figure 4.10: Accuracy values in the neutralization curve scenario for the
classification models: SVM (A) and DT (B).

The performance parameters of the prediction CNN models are presented in
Figures 4.11A-B, respectively, the parameters RMSE and R2. Comparing the
parameters’ results, it is observed that the five models showed a good fit with the
experimental values, presenting R? values high than 90 %, in which the best model
was the CNN_pred_6 with the average R? and RMSE, respectively, equal to 94.96%
and 0.8198. The result indicates that the prediction models had a better performance

than the classification ones.
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Figure 4.11: RMSE (A) and R? (B) values for the CNN predict models in the

neutralization curve scenario.

4.1.3.3.2
Case study: CO2-H20 equilibrium systems

In this second study case, the analyzed scenario was the change in the pH of
the aqueous solution due to the dissolution of the CO; in the solution due to the
pressure applied in the reactor. The ten CNN models, five classificatory and five
predictions, and the DT and SVM models were evaluated using data obtained from
eight experiments, in which the CO pressure in the system varied between 0.1 MPa
and 5 MPa.

The performance parameter analyzed for the CNN classification models was
the ACC, shown in Figure 4.12. As observed in the first case study, the models
presented similar average ACC values in the range of 81% to 85%. Although these
values were not distant from those found in the previous case, when the lowest
values obtained were analyzed, ACC values were lower than 71% for all models,
indicating that they could classify with a lower precision in some of the
experimental situations. This worsening in the results was expected since the CO»-
H20 equilibrium leads to low pH values with the increase of the pressure, and the
differentiation between the pH classes 2, 3, and 4 was one of the challenges during

the models' development.
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The ACC values for the SVM and DT models are shown in Figure 4.13A-

B, presenting the mean, low and high values of the performance parameter. Again,

the models of both strategies had a worse performance than the CNN models.

However, for this case study, the average ACC values were lower than 50%,

indicating that these models are not to be applied in this experimental condition.
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Figure 4.13: Accuracy values in the equilibrium CO,-H,0O system scenario for the
classification models: SVM (A) and DT (B).
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Figure 14A-B shows the results of the performance parameters RMSE and
R?, respectively, for the prediction CNN models. As observed with the classification
models, the prediction models also presented a significant worsening in their
performance. However, the models had different behaviors, with the average R?
values varying between 63% and 87%. The model CNN_pred_8 presented the worst
performance with a low R? value equal to 37.87%. Otherwise, the model
CNN_pred_9 showed the most promising one, with its lowest R? value equaling
80.13%.
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Figure 4.14: RMSE (A) and R? (B) values for the CNN predict models in the

equilibrium CO2-H20 system scenario

In this work was developed different types of classification and regression
models to determine the pH values in the range of 2-10 using different ML
techniques. It is the first step in developing a soft sensor to be applied for real-time
monitoring situation with pressurized system, such as the NGS (Nitrogen

generation system) process using a submersion probe to acquire the images.

4.1.4.
Conclusions

This study developed models to determine the pH values in atmospheric and
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pressurized systems (up to 6 MPa) using images from the reactor vessel acquired
using low-cost methods. For that purpose, it was explored three different types of
ML strategies (CNN, SVM, and DT) for the development of the classification
models, which classify the aqueous solution pH into one of the nine classes. Also,
regression models using the CNN strategy were developed to predict the pH values
in the range of 2-10. The best five models of explored strategies were tested in two
scenarios to verify their application in other operational situations. The best
classification model was the CNN one, with both the buffer solutions and the cases
of study datasets. Although, the best performance was obtained by the prediction
CNN models, highlighting the model CNN_pred_9, which presents R? values
higher than 80% for all tested datasets. Thus, the regression CNN models are the
most interesting strategy to continue developing the soft sensor to determine the pH

values in high pressure systems.

ASSOCIATED CONTENT
Supplementary materials
The performance results of all DT and SVM classification models are available in

the supplementary material in Appendix D, respectively in Table D1 and Table D2.
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5
Conclusions

In this work, several models were developed using Al, intended to be
applied directly or indirectly to oil and gas production problems related to flow
assurance. In the first part of the study, it was possible to develop MLP models
to predict the scaling process in a tube with a dynamic flow using the
differential pressure (AP) to monitor this process. The models were created
using the six process variables as inputs. The prediction of the AP in two-time
horizons (one step ahead (AP(+1)) and five steps ahead (AP+5))) was explored
as output variable individually. The best model for variable AP¢+1) was the
one with the topology logsig_7 purelin_1_trainbr, with R? over 99.3%.
Otherwise, for the APt+s5) the best model with the best overall performance has
the topology logsig_6_purelin_1_trianlm, presenting an R? between 79.7%
and 96.4%.

In the second part, the creation of classification and prediction models,
using different Al techniques (CNN, SVM, and DT), to determine the pH
values in the atmospheric and pressurized system from image analysis was
accomplished. The best classification model was
CNN_clas_ RGB_crop_model 4 presenting accuracy values equal to 97.87 %
for the test group. The  best prediction model  was
CNN_pred_RGB_crop_model_4, which also uses Input 2, having an R? value
higher than 80% in all tested scenarios.

In conclusion, the models developed during this study presented high levels
in their respective performance parameters, indicating that they are exciting
candidates that keep being studied and developed to be applied for the tasks of
monitoring and controlling in the oil and gas industry.
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6
Suggestions for future works

As a first suggestion, it would be interesting to start by the suggestion
that the MLP models developed to predict AP of the tubes in both time horizons
(AP(+1) and AP(t+5)) were tested on real-time experiments as validation of their
performance and their applicability. Also another interesting path is to use this
concept and create new models to predict the AP during the scale formation
using a more extensive database that could amplify the application range or
include more variables to create a more robust model that could be applied in
several scenarios.

Regarding the models developed to determine the pH base in imagining
analysis, the first suggestion is to test the performance in real-time
experiments. These tests could also be used to evaluate the full time to
determine the pH value, from the image capture to the models' response, which
could be an important parameter in case this was used in a controlling strategy
in future works. Also, it would be possible to develop a control loop based on
this soft sensor. Another point to be explored is to test the viability of using
this form of detection on the NGS due to the bubbles obtained during the
process that could disturb the results.
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BSTRACT: The precipitation of gas hydrate and inorganic salts (scale) during oil and gas production represents a significant flow

ssurance hindrance for the industry. Chemical inhibitors can prevent the fouling process, but specific inhibitors to address a

roblem could result in synergistic or adverse effects. Simulations in tubes and pipelines are necessary to understand these behaviors

y assessing the scaling tendency of the water. The primary objective of this study was to create models using an artificial neural
network (ANN) of the multilayer perceptron (MLP) type for the simulation of the calcium carbonate scaling formation process in
the presence of monoethylene glycol (MEG), a typical gas hydrate inhibitor. A database was obtained from 38 tube blocking test
(TBT) experiments with different conditions. The models were developed using MATLAB R2020a, splitting the database into two
groups on the ratio of 70:30, respectively, train and test ones, preserving the time dependency of the differential pressure (AP) data.
The ANNs were created using six inputs (temperature, pressure, calcium and bicarbonate concentrations, MEG concentration, and
AP measured at a selected time) and one output (AP measured at a later time). The goal was to explore how monitoring the
conditions in a pipeline can predict the evolution of the scaling process. We investigated two scenarios for the AP prediction: a near
future (one step ahead) and a far future (five steps ahead). The MLP models demonstrated high performance, with an R higher
than 92.9% for both training and test groups for both prediction horizons. Then, these models were tested with a second data group
to evaluate their applicability to control the systems. The best models showed good scaling prediction, with R* ranging from 80.0%
to 99.9%. These results represent a promising step toward applying machine learning techniques to simulate and predict scaling
tendencies in controlled pipelines.
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1. INTRODUCTION

Flow assurance is a significant concern during oil and gas
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production and is achieved by guaranteeing that hydrocarbon Revised:  January 16, 2022 .

production from wells is maintained without loss over time due Published: January 31, 2022
to flow restrictions. During production, the oil—gas—water

mixture undergoes drastic variations in operating conditions,
such as temperature and pressure, so that the solubility of
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certain compounds can decrease, leading to the formation of
deposits (fouling). This fouling may occur in pipelines and
equipment and is generally caused by the formation of wax, gas
hydrate, and scale (inorganic salts). These can require
expensive and complex remediation processes and, in severe
cases, production stoppage and well shutdown.'™ This
problem is of great concern, especially for wells in the
Brazilian presalt region located in ultradeep waters with mainly
carbonaceous reservoir rocks, and can result in potential issues
such as calcium carbonate and gas hydrate fouling. ™’

Gas hydrate originates from the crystallization of water
molecules encapsulating small and light gas molecules (e.g.,
CO,, methane, and propane) under operating conditions with
high pressure and low temperature, such as those found in
deep and ultradeep water.”” The most practical and
economical method for preventing hydrate formation or others
kinds of obstructions in lines (e.g., scales) is using chemical
inhibitors.*~'” Thermodynamic hydrate inhibitors (THIs) are
typically injected into the production line to prevent the
formation of gas hydrates. THIs consist of alcohols or glycols,
such as methanol, triethylene glycol (TEG), and monoethylene
glycol (MEG), and function by moving the equilibrium curve
envelope toward lower temperature and higher pressure.'"”"

Scale forms as a result of the deposition of inorganic salts
recipitating from the supersaturated water. Their formation
epends on several factors such as temperature, pressure, ion
oncentration, pH, and others."”® Barium sulfate, strontium
ilfate, and calcium carbonate are the most common types of
:ale found during oil and gas production.'”"> However,
alcium carbonate (CaCO;) formation is of greater concern
nce the water may be in equilibrium with carbonaceous rocks
1 the reservoir, leading to a significant number of bicarbonate
s dissolved in the water phase (eqs S1—S3, Supporting
1formation). The precipitation of CaCOj occurs as this fluid

produced and faces a pressure drop, which decreases the
'O, solubility and increases pH, leading to precipitation (eq
4, Supporting Information).

There are dozens of different inhibitor types used for typical
1organic scale. There are three main classes of inhibitors:
hosphate esters, phosphonates, and polymers. The first two
classes act as chelators, sequestering the metals from solution,
while the polymeric class achieves scale control through crystal
distortion.

In 2002, the average cost due to scale formation was more
than 1.4 billion dollars.'® As a result, the market for scale
inhibitors for the oil and gas industry continues to grow and
currently represents millions of dollars annually. Market
analyses predict further increases in these expenditures with
a CAGRs (compound annual growth rates) of 5.5% and 6.9%
for the scale and hydrate inhibitors markets, respectively.'” ™"

A concern with the use of inhibitors for production is the
compatibility between the different inhibitors and other
chemicals. Several studies have investigated these compatibil-
ities, including the effects of the enhanced oil recovery (EOR)
chemicals on scale inhibitors’® and the interaction between
scale inhibitors and hydrate inhibitors.”’ For example,
Seiersten and Kundu®” and Kartnaller et al.”’ studied the
impact of MEG as a gas hydrate scale inhibitor, concluding
that MEG serves as an inhibitor by increasing the scaling time.
This result was unexpected because the presence of MEG in
water increases ion activities. That behavior has been proposed
to be connected to the high-energy bond between —OH
groups and the CaCOj; surface; this indicates that thermody-
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namic hydrate inhibitors can also benefit wells experiencing
calcium carbonate scale formation.

Understanding the interactions between inhibitors, water,
and ions is essential for predicting the phase behavior during
production and estimating the solid accumulation tendency in
production lines. A common and well-known methodology to
evaluate inhibitor efficiency is the dynamic tube blocking test
(TBT). It is usually applied to verify a product’s performance
and minimum inhibitor concentration (MIC), allowin
comparisona with other commercially available products.”*™*
TBT experiments are also used to study inorganic salt
morphologies’”*® and develop scale formation models.
However, it is difficult to predict how the scaling process
will develop using flow and phase behavior models due to the
system’s complexity, the large number of variables, and some
stochastic behavior. A previous work has attempted to model
the scale formation in pipelines, specifically in TBT experi-
ments, but only using physical models.”” These models, based
on the Darcy Weisbach equation for pressure loss in pipes and
on a growth rate scale formation model, were successful in
fitting the TBT experiments curves, enabling an estimation on
how fast the process was happening. However, the model was
learning only the information regarding that specific experi-
ment and not acquiring information for predicting the behavior
of the system.

Other studies have explored the use of artificial neural
networks (ANNs) and other machine learning algorithms to
create new models since they do not demand an understanding
of the scale formation mechanism, only requiring a “black-box”
model. These models were able to predict the thermodynamics
related to the calcium carbonate precipitation (saturation ratio
of the solution) and its dissolution capacity.’”*" However,
literature still lacks kinetic modeling related to the scale
formation process. Recently, Wang et al.>* have developed an
Elman neural network (ENN) with a genetic algorithm (GA)
to predict calcium carbonate scale formation in shell and tube
heat exchangers over time. They were able to successfully
predict the fouling resistance as a function of conductivity, pH,
and dissolved oxygen. Still, as far as the author’s knowledge, no
study relating scale formation and variables to simulate
conditions during oil and gas production has been previously
assessed.

In recent decades, different types of artificial intelligence
(AI), such as ANN, GA, support vector machines (SVMs), the
adaptive neuro-fuzzy inference system (ANFIS), least square
support vector machine (LSSVM), principal component
analysis (PCA), and the committee machine intelligent system
(CMIS) have been applied to solve problems and challenges in
several fields like nanofluids properties> > and systems
efficiency’®’ and in the oil and gas industry, from the
reservoir to production.’* ** ANN was inspired by the neural
arrangement of the human brain. It is easy to train and has
tunable parameters and an adaptive structure, makin§ it one of
the most widely used machine learning techniques.”’ One of
the most common classes of ANN is the feedforward neural
network (FFNN) with MLP (multilayer perceptron) top-
ologies, which can model complex systems.”” The usual
structure of MLP consists of an input layer, where the number
of neurons is equal to the number of model inputs, and an
output layer. In addition, there is at least one hidden layer
between them with several neurons to be selected by the
user.””** This structure has been used to predict different
parameters for the oil and gas industry, such as the gas—oil
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ratio,”” volume fraction percentage in three-phase systems, ?

and deposition process of asphaltene®” and wax."

Knowing the importance of digital transformation, Al, and
process monitoring in the oil and gas industries, this work
intends to model the scale formation process using MLP to
predict the differential pressure (AP) one and five steps ahead
in time. The goal is to explore how monitoring the conditions
in a pipeline (i.e., temperature, pressure, ion concentrations,
and differential pressure) can predict the evolution of the
scaling process. This study may lead to deeper investigations
into applications in monitoring systems and fault detection.
TBT differential pressures were monitored over time for
different temperatures, pressures, calcium and bicarbonate
concentrations, and MEG concentrations. MEG concentration
was used as a variable since many scale inhibitor products are
solutions of the active molecule in a mixture of water and
MEG. Also, MEG can be directly injected in high amounts as
thermodynamic gas hydrate inhibitors. Even further, MEG can
change the viscosity of the solution and can influence the
crystallization of calcium carbonate, which would lead to
different effects to be modeled in order to best simulate the
scale formation process. Two scenarios were considered: a near
future time (differential pressure measured one step ahead)
nd a far future time (differential pressure measured five steps
head). The models showed good scaling prediction for both
me horizons, showing a promising step toward simulating and
redicting scaling tendencies in controlled pipes in production
nes.

. METHODOLOGY

2.1. Experimental Details. Experiments were performed
1 TBT equipment, in which two solutions containing
icompatible cations and anions are pumped into tubes inside
n oven, conditioned to the test temperature, mixed in a
ricrochamber, and then flown into a capillary tube called a
»op test. The apparatus consisted of two high performance
quid chromatography (HPLC) pumps pushing newly
repared calcium chloride and sodium bicarbonate solutions,
ith pH ranging from 7.0 to 7.5 depending on the salts
oncentration, into a thermostat-regulated oven through 1.8 m
long stainless-steel tubes with 1 mm inner diameters (ie., two
conditioning loops, one for each solution). These loops
ensured that the solutions reached the mixture chamber at the
correct temperature for the experiments. After mixing, the
combined solution flowed through a third tube (loop test)
with the same dimensions as the other tubes. This process
resulted in a supersaturated solution leading to calcium
carbonate formation and deposition. When deposition
occurred, the inlet pressure became higher than the outlet
pressure, generating a differential pressure. This differential
pressure was measured using a model EJA 130A high-static
differential pressure transmitter (Yokogawa, Musashino,
Tokyo, Japan). The data were acquired at 1 s intervals using
a LabView-based software program. The injection flow rate
was 10.0 mL min~" (5.00 mL min™" for each solution, leading
to a 1:1 mixture ratio of the two solutions). The pressure of the
system was regulated using a PSV valve connected outside the
oven.

2.2. ANN Database Preparation. The experimental data
used in this study are the results from 38 TBT experiments
previously presented in Kartnaller et al,*® which used a
modeling approach with experiments from a central composite
design of the experiment and multivariate linear regression
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(MLR). In the previous work, MLR was applied to model the
scaling time to reach several differential pressure levels (1-25
psi, in intervals of 1 psi). For each pressure, a different model
had to be made, totaling 25 different models to predict a single
scaling tendency. These experiments varied the pressure,
temperature, concentration of MEG (Cyygg) (v/v %), and
concentration of the carbonate (Cyco,”) (ppm) and calcium
(Cc) (ppm) ions over the operating ranges shown in Table

1. The experiments measure the AP every second as the
monitored variable.

Table 1. Range of Experimental Variables

Variable Unit Minimum value Maximum value
Pressure bar 0 170
Temperature °C 40 110
Cuig v/v % 0 80
Ce ppm 1000 6000
Chco, ppm 1000 6000

The goal for the ANN modeling in the present work was to
improve the prediction of the scale formation process, in which
the differential pressure was also an input for the modeling.
The measurement of the differential pressure at a moment in
time, plus the experimental variables, was used to estimate the
differential pressure in a later time. Hence, experimental data
were first preprocessed to adjust the signal baseline and create
the differential pressure variables one step ahead (AP(y,;)) and
five steps ahead (AP(HS)) to be used in the prediction models.
The database was then split into two parts. The first database
consisted of 32 experiments, totaling 46,698 data points. This
database was separated into two groups, train (70%) and test
(30%), and was used to train the MLP models. To preserve the
time information about the scale formation associated with the
pressure differential, this division was accomplished by
selecting seven data points for the train group and three for
the test group from every 10 data points.

The second database consisted of six experiments, totaling
770S data points. Those experiments were conducted with
fixed values of pressure, temperature, Cyyco,~ and Cc,, and

varying Cyg (10, 20, 30, S0, 60, and 70 v/v %). This database
was used to separately validate the models constructed by the
ANN for each experiment.

2.3. Artificial Neural Network Optimization. For this
study, MLP type ANN models with one output neuron were
developed using Matlab R2020a (developed by Mathworks,
Inc.) to predict AP,y and AP(,s). The inputs chosen were
the five independent variables (pressure, temperature, Cyco, -

and Cc», and Cypg) plus the differential pressure at the
selected time t (AP(y), resulting in six neurons on the input
layer. The proposed MLP structure had one hidden layer, in
which the number of neurons is one of the hyperparameters to
be optimized. The search was started with the same number of
neurons as the input layer.

The activation function, applied to the connection between
the input and hidden layers, was the second hyperparameter
studied, and the hyperbolic tangent (tansig) and log sigmoid
(logsig) functions were used. Both functions are commonly
used due to their sigmoidal form. The linear activation
function (purelin) was used between the hidden layer and the
output layer.”’ ™"
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Figure 1. Flowchart of the methodology.
The last hyperparameter optimized for the MLP models was Zl\i (X =X - 7)
1e training algorithm. The gradient descent with momentum r= =5 = — 3 N’ —
nd adaptive learning rate backpropagation (traingdx), X (X = X)X, ()? -7) (1)

evenberg—Marquardt backpropagation (trainlm), and Baye-
an regularization backpropagation (trainbr) functions were
slected for testing. The first of these algorithms improves
pon traditional backpropagation with a combination of an
daptive learning rate and momentum training, while the

where N is the total number of data points, X;; the ith input
value of the kth parameter, y; the ith output value, X the
average value of the kth input parameter, and y the mean value
of the output parameter.

The second parameter adopted was the relative importance

PUC-Rio- CertificagcaoDigital N°2012332/CA

thersszifs’gly a quasi-Newton method for faster conver- (RI), in which the methodology proposed by Garson’’ (eq 2)
ence. o . was chosen to obtain the RI values, varying between 0 and 1,
2.4, Statistical Performance Evaluation. To evaluate which are based on the connection weights between the ANN
1e performance of the ANN models, the coefficient of layers.ss_60
etermination parameter (R?% eq AS), sum of squared errors P gl
SSE, eq Al), mean squared error (MSE, eq A2), and root Z,-=1 S
1ean squared error (RMSE, eq A3) were chosen. For R? the RI; = ’=? ;’l ]
: . N P hwylhy
goal was to achieve a value close to one, while the goal for the z,-zl zjz LSV @)
others was to achieve the lowest value possible, indicating the =
best fit between the experimental data and the predicted data where RI;; is the parameters RI of the variable x; concerning the
from the ANN models. To calculate R?, it is also necessary to output neuron j, w;; the weight parameter of the connection
calculate the total sum of squares (TSS, eq A4). The equations between the input x; and the jth hidden neuron, and wy the
are available in Appendix A. weight parameter of the connection between the jth hidden

Figure 1 shows a schematic for the process adopted in this neuron and the kth output variable.

study, .fron'l the data acquisition on the experiments to the 3. RESULTS AND DISCUSSION
determination of the best MLP model.

2.5. Sensitivity Analysis. The “black-box” group of The data were selected, processed, and separated into two
models, in which the ANN models are often included, present groups for training and testing to optimize the ANN model.

some difficult to extract information about the process from The training datg were used to construct the model and
. . . calculate the estimated parameters. Once the model was
their parameters. However, the evaluation of the input ; ) . .
. ) . constructed, it was applied to the testing data to predict the
variables effects over the output variable can be determined ; .
. : output and compare it to the known values. Different types of
by a sensitivity analysis.

hat. in this stud h lored. First. i models were tested by changing the hyperparameters of ANN
For that, in this study two approaches were explored. First, it and were compared to indicate the best ones.
was used the relevancy factor (r, eq 1), which can be applied to 3.1. Evaluation of ANN Models. MLP topologies

quantify these effects, with values on the range from —1 to +1. developed to predict AP, ;) and AP, are shown in Table

The highest absolute value of r indicates the variables that Bl in Appendix B, along with the optimized hyperparameters
most affect the target variable, in which the positive values of the trained models and the performance parameters from
indicate an elevation on the output variable, whereas the the train and test groups, for models having six—eight neurons

55,56

negative ones designate a decrease on the target variable. in the hidden layer. These results show that the best
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Figure 2. Representation of the behavior of the experimental data of the six experiments of the second database and the respective predicted data

for the output AP,y by the MLP model logsig_7_purelin_1_trainbr.

performance for AP, ;) was achieved with seven neurons in
the hidden layer using the tansig activation function and the
trainlm training algorithm. This topology had an R” equal to
99.88% for the test set and the lowest values for error.
However, only three trained topologies had an R* lower than
99%, showing that the models have very similar accuracy.
For the topologies built to predict AP(,,s), the model with
the best results had the same hidden layer configuration as the
best model for AP,y but used the trainbr as the training
algorithm. Its performance had an R* equal to 98.93% and the
lowest values for the other error parameters as well. However,

2292

as observed in the predictions for the AP,y case, most of the
models had very similar figures of merit, indicating that the
accuracy was largely independent of the activation function
and training algorithm used (trainlm and trainbr). It is also
interesting to point out that the worst results, in both cases,
were obtained when using the traingdx training algorithm.
This investigation optimizing the hyperparameters of the
MLP model for each output, primarily the number of neurons
and the transfer function on the hidden layer, is an important
step toward achieving the best models. Another essential phase
in the model development is to validate them with new

https://doi.org/10.1021/acs.energyfuels.1c03364
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Figure 3. Representation of the behavior of the experimental data of the six experiments of the second database and the respective predicted data
for the output AP,,sy by the MLP model logsig_6_purelin_1_trainlm.

experimental data, verifying the model’s prediction capability
before using it in real applications.

3.2. Validation of MLP Models. Since the MLP models
demonstrated similar accuracy for both time horizons, all were
used in this validation phase. This evaluation used the second
database in which the MEG concentration was changed from
10% to 70%, while all other variables were unchanged. This
series of experiments tested the behavior of the scaling process
in the presence of the glycol molecule. In a previously

published article,”® our research group has shown that MEG
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can act as a calcium carbonate inhibitor at concentrations
above 30%.

The correct mechanism to explain how MEG acts in the
calcium carbonate crystallization is still not completely known.
The interactions of alcohols (and therefore polyols) have been
studied by several works in the past years, and simulations have
shown that the —OH group can bind to specific faces of the
calcite polymorph, which can lead to control of crystal
growth.”' ~** Okhrimenko et al.>* showed that this adsorption
could also happen for aragonite and vaterite (other calcium
carbonate polymorphs), although the binding energy in these

https://doi.org/10.1021/acs.energyfuels.1c03364
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Figure 4. Relevancy factor of both output variables AP,y (A) and AP.,s) (B).

cases is lower than for calcite. This adsorption comes from the
fact that the Ca—COj; ion pair (note that this is just a
:presentation of pairs, not chemical bond) delocalizes charges
y ordering the —OH group of the organic molecules. Thus,
1e O of this group is associated with Ca, while the H is
ssociated with CO,;.°* This causes a highly organized
10nolayer structure to form on the surface of the crystal, in
‘hich the hydrophobic parts of the chains face away from the
arface. Many other types of organic molecules have also been
udied on the calcium carbonate crystallization, specifically
slated to biomineralization.

Biomineralization is the process in which living organisms
roduce hard minerals that act as support, protection, or
ourishment structures. A wide variety of minerals can be
/nthesized by these organisms, such as silica, calcium
hosphate, and calcium carbonate. The calcite polymorph
/mthesized in pure solution in a laboratory has a large
cystalline difference from that synthesized by mineralization.*®
his control of crystal growth is generally attributed to
complex organic molecules known as coccolith-associated
polysaccharides (CAPs). These are large polymeric carbohy-
drate molecules containing a variety of functional groups, such
as —COOH and —OH. Hence, since MEG contains three
hydroxyl groups in its structure, it is possible to suppose an
association that there is an interaction of this molecule with the
surface of the particles being formed, controlling crystal
growth, which would also explain how it controls inhibition.
Also, changing its concentration changes the viscosity of the
solution (affecting the flow dynamics inside the tube).

The performance parameters for all MLP models for each
new experiment are presented in the Supporting Information
in Tables S3—S8. The models are validated by observing how
they predict the scaling process under conditions different
from the training or testing. Although the models showed very
high accuracy for both training and test sets, their application
to the new data was not completely successful. Some of the
models’ predictions of the scaling process over time were
unsatisfactory for a few experiments, which showed that certain
regions in the modeled response did not fit the actual expected
experimental values. For the AP(,,) scenario, the logsig_7_-
purelin_1_trainbr model (values of the weights and bias are
available in the Supporting Information, Table S1) was the

PUC-Rio- CertificagcaoDigital N°2012332/CA
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best with an R? over 99.3% for all new experiments. Figure 2
shows the predicted differential pressure from this MLP model
and the experimental data for all six experiments. In addition,
four other topologies had an R* higher than 97% showing that
they are also very accurate models.

The lack of fit of parts of the predicted region was mainly
observed for the AP, ) case. For example, the best model for
this case could not predict the scaling tendency for MEG
concentrations between 20%—50%. For some of the experi-
ments, the R* of the fit was actually negative, indicating that
the scaling process was not being accurately modeled (or that
the residues of the regression in that region did not follow a
normal distribution with a mean equal to zero).

While most models did not present a good prediction
performance for the new experiments, some were still very
accurate. For the AP,s) time horizon, the logsig 6 pur-
elin_1 trainlm model (values of the weights and bias are
available in the Supporting Information, Table S2) was the
most accurate, with an R* ranging from 79.7% to 96.4%. Figure
3 shows the predicted differential pressure from this MLP
model and the experimental data for all six experiments. These
results are important because they show that even though
accurate predictions can be made for some regions of the
studied response continuous validation of the best models is
necessary as new data are obtained.

For the best models chosen for each output variable, AP,
and AP(.s), a deeper evaluation was performed, starting for a
comparison between the experimental and predicted values for
the training and test data sets, shown on Figure S1A and B,
respectively, for the variables AP,y and APy,s). These results
also show that the model chosen to predict the APy, has the
best prediction power.

Another investigation adopted was to evaluate the behavior
of the normalized residuals according to the AP wvalues,
comparing the response for the both output variables AP,
and AP(,;) for the training and test data sets, respectively
(Figure S2A, B). From that could be extract that the MLP
model for the APy, variable has a tendency to predict higher
values than the experimental measures, which is worse in
higher values of AP. However, it is important to highlight that
the amount of data points with absolute normalized residuals
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Figure 5. Relative importance (RI) of both output variables AP, (A) and AP, (B) calculated by the Garson method.”’

higher than 0.1 is less than 1% for the analyzed data sets for
both output variables.

3.3. Sensitivity Analysis. For the sensitivity analysis, the
est models for each output variable, AP,,;) and APy,,s), were
hosen, which had the topologies logsig 7 purelin_1_trainbr
nd logsig_ 6_purelin_1_trainlm. The first sensitivity evalua-
on was made for the relevancy factor (r); Figure 4A and B
10ws the values of r of each input variable for both target
ariables, respectively, AP,y and APy,s). They indicate that
\P(y is by far the most influential parameter for the two
rediction horizons with a r close to 1, indicating expected
rong correlation between the measure of the AP and its
rediction for future horizons.

Then, these MLP models were analyzed for the relative
nportance (RI) parameter, where the values are presented in
igure SA and B for the output variables AP,y and AP (s,
sspectively. For the best AP(,,;) model, the inputs pressure,
:mperature, Cypg, and Cycos- presented an RI varying
etween 14% and 19%, and the input variable C;>* was the
most relevant one for the AP,y prediction. In turn, the input
with the less impact was AP,.

Conversely, for the best AP(.,5) model, the most significant
variables were Cygg followed for AP, respectively with the
values of 34.7% and 22.5%, while the other inputs variables
presented RI values lower than 15%. This difference on the
influence hierarchy of the input variables is interesting, since it
shows an increase on the importance of APy for the
prediction of the future. Also, for the AP(.s) model, the
high RI value of the variable Cy¢ indicates a reason for this
MLP model presenting the best performance against the
validation data group. This may indicate a strong implication
that MEG has in impacting the development of the scale
formation process due to its inhibitor effect.

The two analyzed parameters, r and R, led to different levels
of influence for each input in the target variables. While the
parameter r indicates the effect of the input values on the target
variable, the RI parameter shows how the model attributes the
importance for these inputs. Although, the AP,y variable has a
huge absolute value for the parameter r, a model that only uses
this variable as input probably could predict the tendency of
the AP curve, but it would not be able to distinguish between
the different scenarios. That way, the combination of these

PUC-Rio- CertificagcaoDigital N°2012332/CA
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results indicates that maybe a hybrid model could be a better
approach for this problem, applying the MLP to lead with the
AP curve behavior and another kind of model to handle the
environment conditions information. However, this premise is
outside of the scope of this work.

Finally, the modeling results indicated that ANN could be
applied to predict the differential pressure and to understand
the evolution of the scaling process at earlier as well as later
times. For process monitoring, this appears to be a promising
tool for transforming digital data acquired during production
to establish the scaling tendency of a well over time, by relating
the scale formation process with operational variables as a start
to develop a model that could simulate the conditions during
oil and gas production.

4. CONCLUSIONS

This study showed that using an MLP-type ANN enabled
modeling of the scaling process in a tube with a dynamic flow
containing precipitated calcium carbonate. Even though the
scaling process is a very complex system with stochastic
behavior, this machine learning technique permitted its
prediction over different time horizons: a “near future” or
one step ahead (AP,,,)) and a “far future” or five steps ahead
(AP(y,s)). The generated models were highly accurate for both
training and test data sets and for both time horizons,
regardless of the activation function and the training algorithm
used (trainlm and trainbr). However, using traingdx as a
training algorithm gave poorer results. When using the models
to predict a different series of experiments that simulated
various viscosities with calcium carbonate inhibition, most
models did not show the same initial high accuracy. In fact,
only a few models were very accurate for all the experiments.
Overall, for the AP, time horizon, the logsigs 7_pur-
elin_1_trainbr was the best model, with an R* over 99.3% for
the additional experiments. The logsig_ 6_purelin_1_trainlm
model was the best model for the AP, time horizon, with an
R? ranging from 79.7% to 96.4%. These results show that ANN
can predict the differential pressure in a tube to understand the
evolution of the scaling process in the near time as well as its
development in the future. This strategy represents an
important application of digital transformation to oil and gas
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Table B1. MLP Topology Models for the Variables AP,,;) and AP,s)

Hidden Layer

Number of Activation Training

Variables neurons function algorithm R? (train) R (test)
AP (1) 7 tansig trainlm 0.99938  0.99883
8 tansig trainbr 0.99941 0.99879

7 logsig trainbr 0.99937  0.99877

7 tansig trainbr 0.99939 0.99877

6 logsig trainbr 0.99934 0.99875

6 tansig trainbr 0.99920 0.99869

7 logsig trainlm 0.99876  0.99861

6 tansig trainlm 0.99921 0.99859

8 tansig trainlm 0.99934 0.99848

8 tansig traingdx 0.97068 097227

8 logsig traingdx 0.93977 0.94472

7 tansig traingdx 093472 0.93567

AP (.5 7 tansig trainbr 0.99049 0.98927
8 logsig trainbr 0.99087  0.98886

7 logsig trainlm 0.99105 0.98884

8 tansig trainbr 0.99099  0.98846

7 tansig trainlm 0.98958 0.98834

7 logsig trainbr 0.98940 0.98584

6 logsig trainbr 0.98860  0.98570

6 tansig trainbr 0.98828 0.98411

6 tansig trainlm 098192 0.97995

6 logsig trainlm 0.98435 0.97816

6 logsig traingdx 0.94447  0.93134

6 tansig traingdx 0.93674 0.92913

Using normalized data.

SSE SSE MSE MSE RMSE RMSE
(train)® (test)” (train)“ (test)” (train)® (test)”
0.1830 0.1532 0.0045 0.0087 0.0669 0.0935
0.1754 0.1575 0.0043 0.0090 0.0655 0.0948
0.1862 0.1606 0.0046 0.0092 0.0675 0.0958
0.1810 0.1616 0.0044 0.0092 0.0665 0.0960
0.1954 0.1638 0.0048 0.0093 0.0691 0.0967
0.2373 0.1706 0.0058 0.0097 0.0762 0.0987
0.3679 0.1809 0.0090 0.0103 0.0949 0.1016
0.2332 0.1843 0.0057 0.0105 0.0755 0.1026
0.1950 0.1983 0.0048 0.0113 0.0691 0.1064
8.4319 3.5668 0.2062 0.2036 0.4541 0.4512
16.9728 6.9699 0.4151 0.3978 0.6443 0.6307
18.4571 7.9237 0.4514 0.4522 0.6719 0.6725
3.6088 1.8554 0.0883 0.1059 0.2971 0.3254
3.4662 19151 0.0848 0.1093 0.2912 0.3306
3.3971 1.9314 0.0831 0.1102 0.2882 0.3320
3.4214 1.9797 0.0837 0.1130 0.2893 0.3361
3.9501 2.0475 0.0966 0.1169 0.3108 0.3418
4.0165 24110 0.0982 0.1376 0.3134 0.3709
43171 24271 0.1056 0.1385 0.3249 0.3722
4.4384 2.7042 0.1085 0.1543 0.3295 0.3929
6.8011 3.4036 0.1663 0.1943 0.4078 0.4407
5.9041 3.6896 0.1444 0.2106 0.3800 0.4589
16.4750 8.970S5 0.4029 0.5120 0.6348 0.7155
22.7857 11.3463 0.5573 0.6476 0.7465 0.8047

roduction to establish the scaling tendency during the lifetime
f a well based on differential pressure process monitoring.

I APPENDIX A

erformance Evaluation Equations
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SSE= Y (x,— §)
i=1

(A1)

1 n

MSE = — ) (x— &)
n ; (A2)
(A3)
(A4)
2l _ SSE

O TSS (AS)

In the above equations, variables n, x; ¥;, and X represent the
total number of data points, the observed value, the predicted
value, and the mean value of the samples, respectively.

B APPENDIX B

MLP Topologies Performances
MLP topologies performances are presented in Table BI.
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lgorithm; —OH, hydroxyl group; HPLC, high performance
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LSSVM, least square support vector machine; MEG, mono-
ethylene glycol; MIC, minimum inhibitor concentration; MLP,
multilayer perceptron; MLR, multivariate linear regression;
MSE, mean squared error; PCA, principal component analysis;
purelin, linear (activation function); R, relative importance; r,
relevancy factor; R% coefficient of determination; RMSE, root
mean squared error; SSE, sum of squared errors; SVM, support
vector machine; tansig, hyperbolic tangent (activation
function); trainbr, training algorithm Bayesian regularization
backpropagation; traingdx, training algorithm gradient descent
with momentum and adaptive learning rate backpropagation;
trainlm, training algorithm Levenberg—Marquardt backpropa-
gation; TBT, tube blocking test; TEG, triethylene glycol; THI,
thermodynamic hydrate inhibitors; TSS, total sum of squares
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Appendix of the article: Development of MLP artificial neural

network models for the simulation of CaCO3 scale formation
process in the presence of monoethylene glycol (MEG) in a

dynamic tube blocking test (TBT) equipment

PERFORMANCE EVALUATION EQUATIONS

SSE = ¥t (x; — £,)? (B1)
1 ~

MSE = 131, (x; - %) (82)

RMSE = w (B3)

TSS = ¥, (x; — %) (B4)

R?=1-32 (B5)

TSS

In the above equations, variables n, x;, X, and x represent the total number of data
points, the observed value, the predicted value, and the mean value of the samples,

respectively.
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Table B1. MLP topology models for the variables AP +1) and AP s).

Hidden Layer

Variables Number Activ_ation Train_ing RZ_ R? (test) SSE_ SSE MS_E MSE RM_SE RMSE
of neurons  function algorithm (train) (train)? (test)? (train)®  (test)? (train)®  (test)?
AP (t+1) 7 tansig trainlm 0.99938 0.99883 0.1830 0.1532 0.0045 0.0087 0.0669  0.0935
8 tansig trainbr 0.99941 0.99879 0.1754 0.1575 0.0043 0.0090 0.0655  0.0948
7 logsig trainbr 0.99937 0.99877 0.1862 0.1606 0.0046  0.0092 0.0675  0.0958
7 tansig trainbr 0.99939 0.99877 0.1810 0.1616 0.0044  0.0092 0.0665  0.0960
6 logsig trainbr 0.99934 0.99875 0.1954 0.1638 0.0048 0.0093 0.0691  0.0967
6 tansig trainbr 0.99920 0.99869 0.2373 0.1706 0.0058 0.0097 0.0762  0.0987
7 logsig trainlm 0.99876 0.99861 0.3679 0.1809 0.0090 0.0103 0.0949 0.1016
6 tansig trainlm 0.99921 0.99859 0.2332 0.1843 0.0057 0.0105 0.0755  0.1026
8 tansig trainlm 0.99934 0.99848 0.1950 0.1983 0.0048 0.0113 0.0691  0.1064
8 tansig traingdx 0.97068 0.97227 8.4319 3.5668 0.2062 0.2036 0.4541  0.4512
8 logsig traingdx 0.93977 0.94472 16.9728 6.9699 0.4151 0.3978 0.6443  0.6307
7 tansig traingdx 0.93472 0.93567 18.4571  7.9237 0.4514 0.4522 0.6719 0.6725
AP (t+5) 7 tansig trainbr 0.99049 0.98927 3.6088 1.8554 0.0883 0.1059 0.2971  0.3254
8 logsig trainbr 0.99087 0.98886 3.4662 1.9151 0.0848 0.1093 0.2912  0.3306
7 logsig trainlm 0.99105 0.98884 3.3971 1.9314 0.0831 0.1102 0.2882  0.3320
8 tansig trainbr 0.99099 0.98846 3.4214 1.9797 0.0837 0.1130 0.2893 0.3361
7 tansig trainlm 0.98958 0.98834 3.9501 2.0475 0.0966  0.1169 0.3108 0.3418
7 logsig trainbr 0.98940 0.98584 4.0165 2.4110 0.0982 0.1376 0.3134 0.3709
6 logsig trainbr 0.98860 0.98570 4.3171 2.4271 0.1056  0.1385 0.3249 0.3722
6 tansig trainbr 0.98828 0.98411 4.4384 2.7042 0.1085 0.1543 0.3295 0.3929
6 tansig trainlm 0.98192 0.97995 6.8011 3.4036 0.1663 0.1943 0.4078 0.4407
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6 logsig
6 logsig
6 tansig

trainlm
traingdx
traingdx

0.98435 0.97816
0.94447 0.93134
0.93674 0.92913

5.9041
16.4750
22.7857

3.6896
8.9705
11.3463

0.1444
0.4029
0.5573

0.2106
0.5120
0.6476

0.3800
0.6348
0.7465

0.4589
0.7155
0.8047

a - Using normalized data
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Supporting information of the article: Development of MLP

artificial neural network models for the simulation of CaCO3
scale formation process in the presence of monoethylene
glycol (MEG) in a dynamic tube blocking test (TBT)

equipment

Development of MLP artificial neural
network models for the simulation of
CaCOs scale formation process in the
presence of monoethylene glycol (MEG) in
a dynamic tube blocking test (TBT)

equipment
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Equilibrium equations of the calcium carbonate scale formation

C0,(g) 2 C0,(aq) (C1)
C0,(aq) + H,0 2 H,C05(aq) 2 H*(aq) + HCO3 (aq) (C2)
HCO;3 (aq) 2 €035 (aq) + H*(aq) (C3)
Ca?*(aq) + CO3~ (aq) 2 CaCO5(s) (C4)
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Figure C1. Regression plot between experimental versus the predicted values for the

variables AP+1)(A)and AP (u5)(B).
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Figure C2. Comparison between normalized residuals of the prediction of the AP 1) and

APs)variables for the training dataset (A) and test dataset(B).
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Table C1: Performance values for each MLP topology for the experiment with 10 v/v% MEG.

Hidden Layer Cwmec
10 viv %

Variables  Number of neurons  Activation function  Training algorithm  R? SSE? MSE*® RMSE?

AP (k+1) 7 tansig trainim 0.9404 1.7051 2.1569 1.4686
8 tansig trainbr 0.7485 7.9869 10.1033 3.1786
7 logsig trainbr 0.9934 0.1745 0.2208 0.4699
7 tansig trainbr 0.9932 0.1527 0.1931 0.4395
6 logsig trainbr 0.9660 1.0771 1.3625 1.1673
6 tansig trainbr 0.9877 0.3445 0.4358 0.6602
7 logsig trainlm 0.9972 0.0617 0.0780 0.2793
6 tansig trainlm 0.9829 0.4988 0.6309 0.7943
8 tansig trainlm 0.9917 0.2201 0.2784 0.5276
8 tansig traingdx 0.9712 0.4982 0.6302 0.7939
8 logsig traingdx 0.9742 0.6964 0.8810 0.9386
7 tansig traingdx 0.5967 3.5043 4.4329 2.1054

AP (k+5) 7 tansig trainbr 0.6573 41.4766 52.4490 7.2422
8 logsig trainbr -27.4508 2490.9010  3149.8582 56.1236
7 logsig trainlm -10.9546  963.4933 1218.3813  34.9053
8 tansig trainbr -11.0535  2101.0571  2656.8828  51.5450
7 tansig trainlm 0.5905 24.1539 30.5438 5.5266
7 logsig trainbr 0.5555 125.0289 158.1048 12.5740
6 logsig trainbr 0.6414 36.7254 46.4410 6.8148
6 tansig trainbr -0.0358 69.5040 87.8910 9.3750
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o OO OO O

tansig
logsig
logsig
tansig

trainim
trainim
traingdx
traingdx

0.1875
0.9033
-0.1372
0.9678

61.7697
5.0087
32.4990
0.7685

78.1105
6.3337
41.0964
0.9717

8.8380
2.5167
6.4106
0.9858

a - Using normalized data

Table C2: Performance values for each MLP topology for the experiment with 20 v/v% MEG.

Hidden Layer Cwmec
20 viv %

Variables  Number of neurons  Activation function  Training algorithm  R? SSE? MSE? RMSE?

AP (k+1) 7 tansig trainlm 0.8438 1.1654 1.4931 1.2219
8 tansig trainbr 0.5093 3.1002 3.9720 1.9930
7 logsig trainbr 0.9977 0.0156 0.0200 0.1415
7 tansig trainbr 0.9675 0.1834 0.2350 0.4848
6 logsig trainbr 0.9535 0.4052 0.5192 0.7205
6 tansig trainbr 0.9849 0.1033 0.1323 0.3638
7 logsig trainlm 0.9878 0.0694 0.0889 0.2982
6 tansig trainlm 0.9993 0.0044 0.0057 0.0755
8 tansig trainim 0.9836 0.1103 0.1413 0.3759
8 tansig traingdx 0.9942 0.0380 0.0487 0.2208
8 logsig traingdx 0.9311 0.5920 0.7585 0.8709
7 tansig traingdx 0.6628 0.8787 1.1258 1.0610

AP (k+5) 7 tansig trainbr -0.0338 72.5838 92.9622 9.6417
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o OO OO OO OO OO N N 0N ©

logsig
logsig
tansig
tansig
logsig
logsig
tansig
tansig
logsig
logsig
tansig

trainbr
trainlm
trainbr
trainlm
trainbr
trainbr
trainbr
trainlm
trainlm
traingdx
traingdx

-18.7222
-8.9682
-61.5184
-8.2588
0.5621
-3.9839
0.5886
-6.5523
0.9446
-10.5975
0.8979

1210.2739
309.1142
4641.2074
75.1440
47.5270
205.6587
10.2781
167.3544
1.2849
87.5857
0.8438

1550.0678
395.9004
5944.2628
96.2413
60.8705
263.3990
13.1638
214.3404
1.6456
112.1761
1.0808

39.3709
19.8972
77.0990
9.8103
7.8020
16.2296
3.6282
14.6404
1.2828
10.5913
1.0396

a - Using normalized data

Table C3: Performance values for each MLP topology for the experiment with 30 v/v% MEG.

Hidden Layer Cwmec
30 vIiv%
Variables  Number of neurons  Activation function  Training algorithm  R? SSE? MSE? RMSE?
AP (k+1) 7 tansig trainlm 0.9460 0.4234 0.5183 0.7200
8 tansig trainbr 0.9744 0.1796 0.2199 0.4689
7 logsig trainbr 0.9990 0.0075 0.0091 0.0956
7 tansig trainbr 0.9843 0.1061 0.1299 0.3604
6 logsig trainbr 0.9414 0.5028 0.6156 0.7846
6 tansig trainbr 0.9958 0.0305 0.0373 0.1931
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AP (k+5)
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»

logsig
tansig
tansig
tansig
logsig
tansig
tansig
logsig
logsig
tansig
tansig
logsig
logsig
tansig
tansig
logsig
logsig
tansig

trainlm
trainlm
trainlm
traingdx
traingdx
traingdx
trainbr
trainbr
trainlm
trainbr
trainlm
trainbr
trainbr
trainbr
trainlm
trainlm
traingdx
traingdx

0.9900
0.9921
0.9996
0.9877
0.9582
0.9093
-571.6200
-0.5428
-8.1633
-21.5072
-14.3092
0.3275
-5.7828
0.9467
-15.0054
0.9609
-5.8235
0.9450

0.0632
0.0588
0.0029
0.1025
0.3593
0.3842
1366.2200
59.3964
153.1347
1175.7158
122.3726
25.2963
213.8681
1.1251
357.4552
0.8400
54.0330
0.5433

0.0774
0.0720
0.0036
0.1255
0.4399
0.4703
1672.0900
72.6940
187.4183
1438.9338
149.7692
30.9597
261.7487
1.3770
437.4818
1.0280
66.1299
0.6650

0.2782
0.2683
0.0598
0.3543
0.6633
0.6858
40.8900
8.5261
13.6901
37.9333
12.2380
5.5641
16.1786
1.1735
20.9161
1.0139
8.1320
0.8155

a - Using normalized data
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Table C4: Performance values for each MLP topology for the experiment with 50 v/v% MEG.

Hidden Layer Cwmec
50 viv %

Variables  Number of neurons  Activation function  Training algorithm  R? SSE? MSE*® RMSE?

AP (k+1) 7 tansig trainim 0.9376 0.5845 0.4042 0.6358
8 tansig trainbr 0.9715 0.2954 0.2043 0.4520
7 logsig trainbr 0.9981 0.0192 0.0133 0.1152
7 tansig trainbr 0.9586 0.4245 0.2936 0.5418
6 logsig trainbr 0.9671 0.2896 0.2003 0.4475
6 tansig trainbr 0.9908 0.0901 0.0623 0.2496
7 logsig trainlm 0.9885 0.1086 0.0751 0.2740
6 tansig trainlm 0.9768 0.2241 0.1550 0.3937
8 tansig trainlm 0.9950 0.0498 0.0345 0.1856
8 tansig traingdx 0.9747 0.3215 0.2223 0.4715
8 logsig traingdx 0.9776 0.1919 0.1327 0.3643
7 tansig traingdx 0.9625 0.3940 0.2725 0.5220

AP (k+5) 7 tansig trainbr 0.0298 9.4548 6.5365 2.5567
8 logsig trainbr -3.9217 43.3274 29.9541 5.4730
7 logsig trainlm -18.7737 320.6140 221.6544 14.8881
8 tansig trainbr -484.8908  287.0268 198.4341 14.0867
7 tansig trainlm -28.9126 267.9047 185.2141 13.6093
7 logsig trainbr -1.1301 20.5066 14,1771 3.7652
6 logsig trainbr -17.8273 27985.8641  19347.8407 139.0965
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6 tansig trainbr 0.8653 2.5848 1.7870 1.3368
6 tansig trainim -1.1671 45.6665 31.5712 5.6188
6 logsig trainim 0.7974 3.3790 2.3360 1.5284
6 logsig traingdx -9.0137 93.6943 64.7749 8.0483
6 tansig traingdx 0.5214 6.2932 4.3507 2.0858
a - Using normalized data
Table C5. Performance values for each MLP topology for the experiment with 60 v/v% MEG.
Hidden Layer Cwmec
60 viv %
Variables  Number of neurons  Activation function  Training algorithm  R? SSE? MSE? RMSE?
AP (k+1) 7 tansig trainlm 0.8635 1.5935 0.7318 0.8554
8 tansig trainbr 0.8520 1.9841 0.9111 0.9545
7 logsig trainbr 0.9992 0.0109 0.0050 0.0707
7 tansig trainbr 0.8801 1.5705 0.7212 0.8492
6 logsig trainbr 0.9716 0.3115 0.1431 0.3782
6 tansig trainbr 0.9894 0.1334 0.0612 0.2475
7 logsig trainim 0.9931 0.0859 0.0394 0.1986
6 tansig trainim 0.9945 0.0672 0.0309 0.1757
8 tansig trainim 0.9298 0.8811 0.4046 0.6361
8 tansig traingdx 0.9799 0.3414 0.1568 0.3959
8 logsig traingdx 0.9442 0.5271 0.2421 0.4920
7 tansig traingdx 0.9346 1.0160 0.4665 0.6830
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AP (k+5) 7 tansig trainbr 0.7816 3.2599 1.4964 1.2233
8 logsig trainbr -62.3342 229.2742 105.2466 10.2590
7 logsig trainlm -20.8211 326.8558 150.0407 12.2491
8 tansig trainbr -577.0620 506.9002 232.6887 15.2541
7 tansig trainlm -17.8622 218.2728 100.1965 10.0098
7 logsig trainbr -3.1168 48.8241 22.4123 4.7342
6 logsig trainbr -12.0190 362993.7519  166629.5401  408.2028
6 tansig trainbr 0.8718 2.8607 1.3132 1.1459
6 tansig trainlm -1.3260 39.5380 18.1496 4.2602
6 logsig trainlm 0.8318 2.8749 1.3197 1.1488
6 logsig traingdx -17.4929 219.2948 100.6656 10.0332
6 tansig traingdx 0.8104 3.0840 1.4157 1.1898
a - Using normalized data
Table C6: Performance values for each MLP topology for the experiment with 70 v/v% MEG.
Hidden Layer Cwmec
70 viv %
Variables  Number of neurons  Activation function  Training algorithm  R? SSE? MSE? RMSE?
AP (k+1) 7 tansig trainlm 0.9579 2.0775 0.5717 0.7561
8 tansig trainbr 0.9490 2.7186 0.7482 0.8650
7 logsig trainbr 0.9992 0.0435 0.0120 0.1094
7 tansig trainbr 0.9662 1.7686 0.4867 0.6977
6 logsig trainbr 0.9498 2.3628 0.6503 0.8064
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AP (k+5)
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tansig
logsig
tansig
tansig
tansig
logsig
tansig
tansig
logsig
logsig
tansig
tansig
logsig
logsig
tansig
tansig
logsig
logsig
tansig

trainbr
trainlm
trainlm
trainlm
traingdx
traingdx
traingdx
trainbr
trainbr
trainlm
trainbr
trainlm
trainbr
trainbr
trainbr
trainlm
trainlm
traingdx
traingdx

0.9980
0.9992
0.9993
0.8533
0.9746
0.9434
0.9554
0.9884
-10.5339
0.8767
-15.9223
-0.7421
0.5290
-401.5163
0.9326
-1.1537
0.9639
-2.5397
0.9867

0.1014
0.0433
0.0340
7.2194
1.8028
1.8831
2.8289
0.7300
161.0831
5.8786
45.2201
89.2030
25.7058
40425.2866
5.1796
150.2429
2.2455
175.3307
0.8371

0.0279
0.0119
0.0093
1.9868
0.4962
0.5182
0.7785
0.2008
44.3155
1.6173
12.4405
24.5406
7.0719
11121.3776
1.4250
41.3332
0.6178
48.2351
0.2303

0.1670
0.1092
0.0967
1.4095
0.7044
0.7199
0.8823
0.4482
6.6570
1.2717
3.5271
4.9538
2.6593
105.4579
1.1937
6.4291
0.7860
6.9452
0.4799

a - Using normalized data
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Table C7: Optimized parameters (weight and bias) of the MLP logsig_7_purelin_1_trainbr used to predict the AP 1.

Parameters connecting the input and hidden neurons Parameters connecting the
hidden and output neurons

wjl (i=1) wj2 (i=2) wj3(i=3) wij4 (i=4) wj5 (i=5) wj6 (i=6) bj1 (i=1) wjl (k=1) bk (k=1)
=1 -0.0719 0.5510 -0.8545 0.9714 1.6225 0.0680 0.27177 =1 6.3578 -0.1811
j=2 0.6330 -2.0230 2.8739 -0.5121 -0.6166 -1.6893 1.421 j=2 -0.4174
j=3 1.4327 -0.9769 -0.7022 -0.7209 0.7137 -0.3642 -0.3152 j=3 -4.2264
j=4 0.8456 0.7333 0.3548 0.2277 0.2538 -0.1296 -0.7738 j=4 -7.4539
j=5 8.2765 -5.4457 -0.6467 -3.5122 5.3282 -0.9758 -1.5888 j=5 0.68132952
j=6 0.0007 -0.5577 -0.4325 0.7543 -0.8844 -0.1982 -0.263 j=6 -8.9164202
=7 1.0517 -0.6232 0.1544 0.0566 -1.4625 0.0042 -0.0744 =7 10.1681218
Table C8. Optimized parameters (weight and bias) of the MLP logsig_6_purelin_1_trainlm used to predict the AP(ts).
Parameters connecting the input and hidden neurons Parameters connecting the
hidden and output neurons
wjl (i=1)  wj2 (i=2) wj3 (i=3) wjd (i=4) wj5(i=5) wij6 (i=6) bj1 (i=1) wjl (k=1) bk (k=1)
=1 0.1772 -0.0609 4.,2388 -0.0234 0.0847 -2.8046 1.66666 =1 50.6089 -52.5521
=2 -0.3512 -0.3111 0.1776 0.2761 -0.3175 1.6985 1.42789 =2 2.6236
=3 -5.4440 -1.9806 -0.1860 8.7545 -6.9442 -3.0622 -3.1773 = -0.4000
=4 -1.8506 1.6964 1.6203 -3.4523 1.8862 3.7338 -0.0657 = 27.3521
j=5 -0.1484 0.1629 -4.2434 0.0656 -0.0813 2.8580 -1.5943 = 50.2158673
j=6 -1.8321 1.6810 1.6508 -3.4241 1.8643 3.6932 -0.0901 j=6 -27.555778
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Table D1: Performance values for all SVM models (PR = Precision, RC = Recall, ACC = Accuracy)

155

Model ID Hyperparameters Training  Training Validation Test group
time (S) group group

Dec_func_shape C Kernel degree gamma PR RC ACC PR RC ACC PR RC ACC
SVM_1 OvO 0.01 poly 1 auto 73.6327 1.000 1.000 1.000 0.943 0.947 0.936 0.981 0.963 0.979
SVM_2 OvO 0.01 poly 2 auto 67.5487 1.000 1.000 1.000 0.935 0.938 0.936 0.981 0.963 0.979
SVM_3 OvO 0.01 poly 3 auto 65.6985 1.000 1.000 1.000 0.935 0.938 0.936 0.981 0.963 0.979
SVM_4 OvR 0.01 poly 1 auto 78.1301 1.000 1.000 1.000 0.943 0.947 0936 0.981 0.963 0.979
SVM_5 OvR 0.01 poly 2 auto 68.4474 1.000 1.000 1.000 0.935 0.938 0.936 0.981 0.963 0.979
SVM_6 OvR 0.01 poly 3 auto 66.1859 1.000 1.000 1.000 0.935 0.938 0.936 0.981 0.963 0.979
SVM_7 OvO 0.01 linear - - 73.9518 1.000 1.000 1.000 0.943 0947 0.936 0.944 0.947 0.957
SVM_8 OvR 0.01 linear - - 72.3457 1.000 1.000 1.000 0.943 0.947 0.936 0.944 0.947 0.957
SVM_9 OvO 0.01 poly 4 auto 66.4678 1.000 1.000 1.000 0.916 0916 0.915 0.944 0.947 0.957
SVM_10 OvR 0.01 poly 4 auto 66.5141 1.000 1.000 1.000 0.916 0916 0.915 0.944 0.947 0.957
SVM_11 OvO 0.1 linear - - 71.9084 1.000 1.000 1.000 0.932 0.899 0.894 0.956 0.956 0.957
SVM_12 OvO 0.1 poly 1 auto 72.1042 1.000 1.000 1.000 0.932 0.899 0.894 0.956 0.956 0.957
SVM_13 OvR 0.1 linear - - 73.1657 1.000 1.000 1.000 0.932 0.899 0.894 0.956 0.956 0.957
SVM_14 OvR 0.1 poly 1 auto 71.7229 1.000 1.000 1.000 0.932 0.899 0.894 0.956 0.956 0.957
SVM_15 OvO 0.5 linear - - 20.4319 1.000 1.000 1.000 0.932 0.899 0.894 0.956 0.956 0.957
SVM_16 OvO 0.5 poly 1 auto 20.3909 1.000 1.000 1.000 0.932 0.899 0.894 0.956 0.956 0.957
SVM_17 OvR 0.5 linear - - 19.9021 1.000 1.000 1.000 0.932 0.899 0.894 0.956 0.956 0.957
SVM_18 OvR 0.5 poly 1 auto 20.2430 1.000 1.000 1.000 0.932 0.899 0.894 0.956 0.956 0.957
SVM_19 OvO 1 linear - - 19.5853 1.000 1.000 1.000 0.932 0.899 0.894 0.956 0.956 0.957
SVM_20 OvO 1 poly 1 auto 19.7388 1.000 1.000 1.000 0.932 0.899 0.894 0.956 0.956 0.957


DBD
PUC-Rio - Certificação Digital Nº 2012332/CA


PUC-Rio- CertificagaoDigital N°2012332/CA

SVM_21
SVM_22
SVM_23
SVM_24
SVM_25
SVM_26
SVM_27
SVM_28
SVM_29
SVM_30
SVM_31
SVM_32
SVM_33
SVM_34
SVM_35
SVM_36
SVM_37
SVM_38
SVM_39
SVM_40
SVM_41
SVM_42
SVM_43
SVM_44
SVM_45

OvR
OvR
OvO
OvO
OvR
OvR
OovO
OovO
OvR
OvR
OvO
OVR
OovO
OVR
OovO
OvR
OvO
OvR
OvO
OvO
OvR
OvR
OvO
OvO
OvR

o1 o1 O NN NN

o oo w
[$ 2B S

0.5

linear
poly
linear
poly
linear
poly
linear
poly
linear
poly
poly
poly
poly
poly
poly
poly
poly
poly
poly
rbf
poly
rbf
poly
poly
poly

RN

N DD NN NN DD DD DN DN -

N

w b~ W

auto

auto

auto

auto

auto
auto
auto
auto
auto
auto
auto
auto
auto
auto
scale
auto
scale
auto
auto
auto

20.7276
20.2096
20.4769
20.1835
20.1731
20.2983
19.9585
20.7580
20.2323
20.0705
68.8614
67.6416
19.0878
18.8967
18.9032
18.7249
18.8447
20.1455
18.9318
83.6070
18.7070
57.6971
67.6992
66.4869
66.4615

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
0.992
1.000
0.992
1.000
1.000
1.000

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
0.992
1.000
0.992
1.000
1.000
1.000

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
0.991
1.000
0.991
1.000
1.000
1.000

0.932
0.932
0.932
0.932
0.932
0.932
0.932
0.932
0.932
0.932
0.914
0.914
0.914
0.914
0.914
0.914
0.914
0.914
0.914
0.932
0.914
0.932
0.895
0.860
0.895

0.899
0.899
0.899
0.899
0.899
0.899
0.899
0.899
0.899
0.899
0.881
0.881
0.881
0.881
0.881
0.881
0.881
0.881
0.881
0.913
0.881
0.913
0.881
0.853
0.881

0.894
0.894
0.894
0.894
0.894
0.894
0.894
0.894
0.894
0.894
0.872
0.872
0.872
0.872
0.872
0.872
0.872
0.872
0.872
0.915
0.872
0.915
0.872
0.851
0.872

0.956
0.956
0.956
0.956
0.956
0.956
0.956
0.956
0.956
0.956
0.944
0.944
0.944
0.944
0.944
0.944
0.944
0.944
0.944
0.944
0.944
0.944
0.937
0.944
0.937

0.956
0.956
0.956
0.956
0.956
0.956
0.956
0.956
0.956
0.956
0.940
0.940
0.940
0.940
0.940
0.940
0.940
0.940
0.940
0.940
0.940
0.940
0.924
0.940
0.924

156

0.957
0.957
0.957
0.957
0.957
0.957
0.957
0.957
0.957
0.957
0.936
0.936
0.936
0.936
0.936
0.936
0.936
0.936
0.936
0.936
0.936
0.936
0.915
0.936
0.915


DBD
PUC-Rio - Certificação Digital Nº 2012332/CA


PUC-Rio- CertificagaoDigital N°2012332/CA

SVM_46
SVM_47
SVM_48
SVM_49
SVM_50
SVM_51
SVM_52
SVM_53
SVM_54
SVM_55
SVM_56
SVM_57
SVM 58
SVM_59
SVM_60
SVM_61
SVM_62
SVM_63
SVM_64
SVM_65
SVM_66
SVM_67
SVM_68
SVM_69
SVM_70

OvR
OvO
OvO
OvR
OvR
OovO
OovO
OvR
OvR
OvO
OvO
OVR
OVR
OovO
OovO
OvR
OVvR
OvO
OvO
OvR
OvR
OvO
OvR
OvO
OvR

P O oo oo
o o1 o1 o1 -

1 O O NN NN P

o w
o
=

0.01
0.01
0.01
0.1
0.1
0.5
0.5

poly
poly
poly
poly
poly
poly
poly
poly
poly
poly
poly
poly
poly
poly
poly
poly
poly
poly
poly
poly
poly
poly
poly
poly
poly

o o1 o1 o1 o Ol o O A W B~ WD WP OO OD WP O0OPS

auto
auto
auto
auto
auto
auto
auto
auto
auto
auto
auto
auto
auto
auto
auto
auto
auto
auto
auto
auto
auto
auto
auto
auto
auto

65.4905
18.8342
17.9543
18.4414
17.8248
18.3908
18.0865
18.4174
17.7328
19.3454
18.4938
18.6079
18.1854
18.3817
20.2391
19.2050
18.3742
65.9490
65.6963
66.2891
67.2551
67.5335
65.7002
18.4619
18.2668

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

0.860
0.895
0.860
0.895
0.860
0.895
0.860
0.895
0.860
0.895
0.860
0.895
0.860
0.895
0.860
0.895
0.860
0.888
0.885
0.888
0.885
0.860
0.860
0.860
0.860

0.853
0.881
0.853
0.881
0.853
0.881
0.853
0.881
0.853
0.881
0.853
0.881
0.853
0.881
0.853
0.881
0.853
0.842
0.842
0.842
0.842
0.853
0.853
0.853
0.853

0.851
0.872
0.851
0.872
0.851
0.872
0.851
0.872
0.851
0.872
0.851
0.872
0.851
0.872
0.851
0.872
0.851
0.872
0.872
0.872
0.872
0.851
0.851
0.851
0.851

0.944
0.937
0.944
0.937
0.944
0.937
0.944
0.937
0.944
0.937
0.944
0.937
0.944
0.937
0.944
0.937
0.944
0.878
0.878
0.878
0.878
0.883
0.883
0.883
0.883

0.940
0.924
0.940
0.924
0.940
0.924
0.940
0.924
0.940
0.924
0.940
0.924
0.940
0.924
0.940
0.924
0.940
0.888
0.888
0.888
0.888
0.903
0.903
0.903
0.903

157

0.936
0.915
0.936
0.915
0.936
0.915
0.936
0.915
0.936
0.915
0.936
0.915
0.936
0.915
0.936
0.915
0.936
0.894
0.894
0.894
0.894
0.894
0.894
0.894
0.894


DBD
PUC-Rio - Certificação Digital Nº 2012332/CA


PUC-Rio- CertificagaoDigital N°2012332/CA

SVM_T71
SVM_72
SVM_73
SVM_74
SVM_75
SVM_76
SVM_77
SVM_78
SVM_79
SVM_80
SVM_81
SVM_82
SVM_83
SVM_84
SVM_85
SVM_86
SVM_87
SVM_88
SVM_89
SVM_90
SVM_91
SVM_92
SVM_93
SVM_94
SVM_95

OvO
OvR
OvO
OvR
OovO
OvR
OovO
OvR
OvO
OvR
OvO
OVR
OovO
OVR
OovO
OvR
OvO
OvO
OVvR
OvR
OvO
OvR
OvO
OvR
OvO

o1 O o1 NN P

N N N O o1 01 o1 o1 O N N -

poly
poly
poly
poly
poly
poly
poly
poly
poly
poly
poly
poly
poly
poly
poly
poly
poly
poly
poly
poly
poly
poly
poly
poly
rbf

N N P P O W o W o OO0 o0 o0 O o0 o o NN oo o1 o1 o1 o

auto
auto
auto
auto
auto
auto
scale
scale
auto
auto
auto
auto
auto
auto
auto
auto
scale
auto
scale
auto
scale
scale
scale
scale
scale

18.2470
18.4467
18.6633
18.5536
18.4825
18.5648
19.5816
19.5647
66.8405
65.7677
23.6465
17.9289
18.1661
18.1014
18.2913
18.0889
19.8430
18.3918
19.4896
18.4311
20.5908
20.3333
20.8323
20.1677
82.8456

1.000
1.000
1.000
1.000
1.000
1.000
0.989
0.989
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
0.985
1.000
0.985
1.000
0.959
0.959
0.959
0.959
0.947

1.000
1.000
1.000
1.000
1.000
1.000
0.985
0.985
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
0.980
1.000
0.980
1.000
0.954
0.954
0.949
0.949
0.938

1.000
1.000
1.000
1.000
1.000
1.000
0.986
0.986
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
0.982
1.000
0.982
1.000
0.954
0.954
0.950
0.950
0.941

0.860
0.860
0.860
0.860
0.860
0.860
0.922
0.922
0.815
0.815
0.815
0.815
0.815
0.815
0.815
0.815
0.875
0.815
0.875
0.815
0.922
0.922
0.886
0.886
0.916

0.853
0.853
0.853
0.853
0.853
0.853
0.897
0.897
0.757
0.757
0.757
0.757
0.757
0.757
0.757
0.757
0.832
0.757
0.832
0.757
0.897
0.897
0.823
0.823
0.876

0.851
0.851
0.851
0.851
0.851
0.851
0.894
0.894
0.787
0.787
0.787
0.787
0.787
0.787
0.787
0.787
0.851
0.787
0.851
0.787
0.894
0.894
0.851
0.851
0.894

0.883
0.883
0.883
0.883
0.883
0.883
0.900
0.900
0.863
0.863
0.863
0.863
0.863
0.863
0.863
0.863
0.889
0.863
0.889
0.863
0.929
0.929
0.900
0.900
0.884

0.903
0.903
0.903
0.903
0.903
0.903
0.903
0.903
0.880
0.880
0.880
0.880
0.880
0.880
0.880
0.880
0.909
0.880
0.909
0.880
0.917
0.917
0.903
0.903
0.880

158

0.894
0.894
0.894
0.894
0.894
0.894
0.894
0.894
0.872
0.872
0.872
0.872
0.872
0.872
0.872
0.872
0.894
0.872
0.894
0.872
0.915
0.915
0.894
0.894
0.872


DBD
PUC-Rio - Certificação Digital Nº 2012332/CA


PUC-Rio- CertificagaoDigital N°2012332/CA

SVM_96
SVM_97
SVM_98
SVM_99
SVM_10

SVM_10
SVM_10
SVM_10
SVM_10
SVM_10
SVM_10
SVM_10
SVM_10
SVM_10
SVM_11
SVM_11
SVM_11

SVM_11

OvR
OvO
OvR
OvO
OvR

OovOo

OVvR

OovOo

OVR

OovOo

OVR

OovOo

OVR

OovOo

OVR

OovO

OVR

OovO

N N O o N

rbf

poly
poly
poly
poly

poly
poly
poly
poly
poly
poly
rbf

rbf

poly
poly
poly
poly

poly

N N

scale
scale
scale
scale
scale

scale

scale

scale

scale

scale

scale

scale

scale

scale

scale

scale

scale

scale

84.4934
20.0378
19.5585
24.6015
21.8771

20.7346

20.1369

21.5510

21.5702

20.2783

20.2763

81.6530

85.2323

20.1014

20.1531

20.9656

21.4649

21.3406

0.947
0.960
0.960
0.944
0.944

0.950

0.950

0.935

0.935

0.937

0.937

0.917

0.917

0.940

0.940

0.925

0.925

0.943

0.938
0.949
0.949
0.932
0.932

0.935

0.935

0.911

0.911

0.909

0.909

0.896

0.896

0.913

0.913

0.891

0.891

0.884

0.941
0.950
0.950
0.936
0.936

0.936

0.936

0.918

0.918

0.909

0.909

0.904

0.904

0.913

0.913

0.890

0.890

0.886

0.916
0.831
0.831
0.784
0.784

0.853

0.853

0.748

0.748

0.807

0.807

0.794

0.794

0.760

0.760

0.710

0.710

0.848

0.876
0.758
0.758
0.802
0.802

0.786

0.786

0.765

0.765

0.721

0.721

0.806

0.806

0.696

0.696

0.712

0.712

0.702

0.894
0.787
0.787
0.851
0.851

0.809

0.809

0.809

0.809

0.745

0.745

0.851

0.851

0.723

0.723

0.745

0.745

0.723

0.884
0.908
0.908
0.879
0.879

0.895

0.895

0.860

0.860

0.939

0.939

0.849

0.849

0.878

0.878

0.867

0.867

0.830

0.880
0.925
0.925
0.880
0.880

0.887

0.887

0.843

0.843

0.925

0.925

0.825

0.825

0.847

0.847

0.850

0.850

0.769

159

0.872
0.915
0.915
0.872
0.872

0.872
0.872
0.830
0.830
0.915
0.915
0.809
0.809
0.851
0.851
0.830
0.830

0.787


DBD
PUC-Rio - Certificação Digital Nº 2012332/CA


PUC-Rio- CertificagaoDigital N°2012332/CA

SVM_11
SVM_11
SVM_11
SVM_11
SVM_11
SVM_11
SVM_12
SVM_12
SVM_12
SVM_12
SVM_12
SVM_12
SVM_12
SVM_12
SVM_12
SVM_12

SVM_13

OVvR

OovOo

OVvR

OovOo

OVvR

OovOo

OVR

OovOo

OVR

OovOo

OVR

OovOo

OVR

OovO

OVR

OovO

OVR

0.5

0.5

0.5

0.5

poly
poly
poly
poly
poly
poly
poly
poly
poly
poly
poly
poly
poly
poly
poly
poly

poly

scale

scale

scale

scale

scale

scale

scale

scale

scale

scale

scale

scale

scale

scale

scale

scale

scale

20.2931

20.2130

20.4282

23.5627

24.9392

24.1426

24.0889

21.0243

21.2123

21.2567

21.1990

21.2306

31.5717

25.5722

21.3149

22.9189

25.3530

0.943

0.953

0.953

0.880

0.880

0.868

0.868

0.922

0.922

0.925

0.925

0.930

0.930

0.922

0.922

0.901

0.901

0.884

0.894

0.894

0.853

0.853

0.833

0.833

0.856

0.856

0.855

0.855

0.864

0.864

0.845

0.845

0.826

0.826

0.886

0.895

0.895

0.863

0.863

0.840

0.840

0.858

0.858

0.858

0.858

0.868

0.868

0.849

0.849

0.831

0.831

0.848

0.774

0.774

0.731

0.731

0.671

0.671

0.702

0.702

0.698

0.698

0.617

0.617

0.698

0.698

0.667

0.667

0.702

0.637

0.637

0.727

0.727

0.660

0.660

0.647

0.647

0.644

0.644

0.578

0.578

0.644

0.644

0.622

0.622

0.723

0.660

0.660

0.766

0.766

0.702

0.702

0.681

0.681

0.681

0.681

0.617

0.617

0.681

0.681

0.660

0.660

0.830

0.835

0.835

0.835

0.835

0.857

0.857

0.821

0.821

0.789

0.789

0.778

0.778

0.778

0.778

0.694

0.694

0.769

0.792

0.792

0.809

0.809

0.841

0.841

0.757

0.757

0.714

0.714

0.692

0.692

0.692

0.692

0.717

0.717

160

0.787
0.809
0.809
0.787
0.787
0.830
0.830
0.766
0.766
0.745
0.745
0.723
0.723
0.723
0.723
0.745

0.745


DBD
PUC-Rio - Certificação Digital Nº 2012332/CA


PUC-Rio- CertificagaoDigital N°2012332/CA

SVM_13
SVM_13
SVM_13
SVM_13
SVM_13
SVM_13
SVM_13
SVM_13
SVM_13
SVM_14
SVM_14
SVM_14
SVM_14
SVM_14
SVM_14
SVM_14

SVM_14

OovOo

OVvR

OovOo

OVvR

OovOo

OVR

OovOo

OVR

OovOo

OVR

OovOo

OVR

OovOo

OVR

OovO

OVR

OovO

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.1

0.1

0.1

poly
poly
poly
poly
rbf
rbf
poly
poly
rbf
rbf
rbf
rbf
rbf
rbf
poly
poly

poly

scale

scale

scale

scale

scale

scale

scale

scale

auto

auto

auto

auto

auto

auto

scale

scale

scale

23.0260

22.5973

22.7091

22.4033

59.6960

59.7815

22,7071

22.4208

118.8883

124.4400

124.8738

125.8524

124.1344

82.9192

96.6185

97.3522

99.1677

0.887

0.887

0.904

0.904

0.859

0.859

0.926

0.926

1.000

1.000

1.000

1.000

1.000

1.000

0.794

0.794

0.779

0.810

0.810

0.819

0.819

0.802

0.802

0.803

0.803

1.000

1.000

1.000

1.000

1.000

1.000

0.734

0.734

0.723

0.817

0.817

0.822

0.822

0.822

0.822

0.804

0.804

1.000

1.000

1.000

1.000

1.000

1.000

0.735

0.735

0.726

0.727

0.727

0.667

0.667

0.682

0.682

0.665

0.665

0.017

0.017

0.017

0.017

0.017

0.017

0.607

0.607

0.581

0.690

0.690

0.622

0.622

0.648

0.648

0.594

0.594

0.111

0.111

0.111

0.111

0.111

0.111

0.511

0.511

0.503

0.723

0.723

0.660

0.660

0.660

0.660

0.638

0.638

0.149

0.149

0.149

0.149

0.149

0.149

0.532

0.532

0.532

0.675

0.675

0.671

0.671

0.685

0.685

0.657

0.657

0.017

0.017

0.017

0.017

0.017

0.017

0.678

0.678

0.678

0.716

0.716

0.695

0.695

0.734

0.734

0.673

0.673

0.111

0.111

0.111

0.111

0.111

0.111

0.677

0.677

0.677

161

0.723
0.723
0.723
0.723
0.702
0.702
0.702
0.702
0.149
0.149
0.149
0.149
0.149
0.149
0.702
0.702

0.702


DBD
PUC-Rio - Certificação Digital Nº 2012332/CA


PUC-Rio- CertificagaoDigital N°2012332/CA

SVM_14
SVM_14
SVM_15
SVM_15
SVM_15
SVM_15
SVM_15
SVM_15
SVM_15
SVM_15
SVM_15
SVM_15
SVM_16
SVM_16
SVM_16
SVM_16

SVM_16

OVvR

OovOo

OVvR

OovOo

OVvR

OovOo

OVR

OovOo

OVR

OovOo

OVR

OovOo

OVR

OovO

OVR

OovO

OVR

0.1

0.5

0.5

0.1

0.1

0.1

0.1

0.1

0.1

0.5

0.5

poly
poly
poly
poly
poly
poly
poly
sigmoid
sigmoid
poly
poly
sigmoid
sigmoid
sigmoid
sigmoid
sigmoid

sigmoid

scale

scale

scale

scale

scale

scale

scale

scale

scale

scale

scale

scale

scale

scale

scale

scale

scale

99.9254

28.0745

27.4439

103.2796

102.9692

110.1472

110.0066

30.3691

29.9800

121.9873

121.8429

33.8316

34.1463

37.9933

38.5091

25.5321

25.2560

0.779

0.689

0.689

0.748

0.748

0.719

0.719

0.558

0.558

0.444

0.444

0.374

0.374

0.292

0.292

0.661

0.661

0.723

0.684

0.684

0.698

0.698

0.660

0.660

0.568

0.568

0.548

0.548

0.490

0.490

0.360

0.360

0.416

0.416

0.726

0.717

0.717

0.703

0.703

0.671

0.671

0.612

0.612

0.575

0.575

0.562

0.562

0.425

0.425

0.457

0.457

0.581

0.622

0.622

0.502

0.502

0.523

0.523

0.517

0.517

0.355

0.355

0.388

0.388

0.262

0.262

0.500

0.500

0.503

0.593

0.593

0.489

0.489

0.461

0.461

0.380

0.380

0.430

0.430

0.412

0.412

0.296

0.296

0.298

0.298

0.532

0.596

0.596

0.532

0.532

0.489

0.489

0.426

0.426

0.426

0.426

0.468

0.468

0.340

0.340

0.319

0.319

0.678

0.563

0.563

0.650

0.650

0.646

0.646

0.478

0.478

0.469

0.469

0.360

0.360

0.371

0.371

0.407

0.407

0.677

0.712

0.712

0.654

0.654

0.661

0.661

0.481

0.481

0.601

0.601

0.524

0.524

0.437

0.437

0.331

0.331

162

0.702
0.681
0.681
0.681
0.681
0.681
0.681
0.489
0.489
0.617
0.617
0.532
0.532
0.468
0.468
0.319

0.319


DBD
PUC-Rio - Certificação Digital Nº 2012332/CA


PUC-Rio- CertificagaoDigital N°2012332/CA

SVM_16
SVM_16
SVM_16
SVM_16
SVM_16
SVM_17
SVM_17
SVM_17
SVM_17
SVM_17
SVM_17
SVM_17
SVM_17
SVM_17
SVM_17
SVM_18

SVM_18

OovOo

OVvR

OovOo

OVvR

OovOo

OVR

OovOo

OVR

OovOo

OVR

OovOo

OVR

OovOo

OovO

OVR

OVR

OovO

0.01

0.01

0.1

0.1

0.01

0.01

0.1

0.1

0.01

0.01

0.1

0.1

0.01

0.01

0.01

0.01

0.01

poly
poly
rbf

rbf

poly
poly
poly
poly
poly
poly
sigmoid
sigmoid
poly
poly
poly
poly

poly

scale

scale

scale

scale

scale

scale

scale

scale

scale

scale

scale

scale

scale

scale

scale

scale

scale

124.0644

123.6579

163.5958

163.2050

128.9090

130.9366

146.0755

145.9695

135.6832

138.2390

155.6791

155.4850

149.1872

138.5773

149.3683

140.1225

154.0070

0.518

0.518

0.227

0.227

0.534

0.534

0.210

0.210

0.413

0.413

0.069

0.069

0.129

0.129

0.129

0.129

0.016

0.402

0.402

0.367

0.367

0.387

0.387

0.350

0.350

0.358

0.358

0.222

0.222

0.216

0.216

0.216

0.216

0.111

0.402

0.402

0.406

0.406

0.388

0.388

0.388

0.388

0.361

0.361

0.288

0.288

0.224

0.224

0.224

0.224

0.146

0.561

0.561

0.203

0.203

0.376

0.376

0.192

0.192

0.376

0.376

0.061

0.061

0.129

0.129

0.129

0.129

0.017

0.449

0.449

0.324

0.324

0.394

0.394

0.296

0.296

0.394

0.394

0.222

0.222

0.222

0.222

0.222

0.222

0.111

0.447

0.447

0.319

0.319

0.383

0.383

0.298

0.298

0.383

0.383

0.255

0.255

0.213

0.213

0.213

0.213

0.149

0.474

0.474

0.213

0.213

0.317

0.317

0.199

0.199

0.347

0.347

0.074

0.074

0.129

0.129

0.129

0.129

0.017

0.398

0.398

0.370

0.370

0.325

0.325

0.333

0.333

0.344

0.344

0.222

0.222

0.222

0.222

0.222

0.222

0.111

163

0.404
0.404
0.383
0.383
0.319
0.319
0.362
0.362
0.340
0.340
0.298
0.298
0.213
0.213
0.213
0.213

0.149


DBD
PUC-Rio - Certificação Digital Nº 2012332/CA


PUC-Rio- CertificagaoDigital N°2012332/CA

SVM_18
SVM_18
SVM_18
SVM_18
SVM_18
SVM_18
SVM_18
SVM_18
SVM_19
SVM_19
SVM_19
SVM_19
SVM_19
SVM_19
SVM_19
SVM_19

SVM_19

OovOo

OovOo

OovOo

OovOo

OVvR

OVR

OVR

OVR

OVR

OovOo

OovOo

OVR

OVR

OovO

OovO

OVR

OVR

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.1

0.1

0.1

0.1

0.5

0.5

0.5

0.5

rbf

rbf
sigmoid
sigmoid
poly
rbf

rbf
sigmoid
sigmoid
rbf
sigmoid
rbf
sigmoid
rbf
sigmoid
rbf

sigmoid

scale

auto

scale

auto

scale

scale

auto

scale

auto

auto

auto

auto

auto

auto

auto

auto

auto

163.4359

180.1035

155.7240

151.5917

155.6617

163.1617

176.2421

159.7846

150.0988

175.2291

150.8025

175.3881

151.5459

81.0795

42.2812

80.6303

41.7899

0.016

0.016

0.016

0.016

0.016

0.016

0.016

0.016

0.016

0.016

0.016

0.016

0.016

0.016

0.016

0.016

0.016

0.111

0.111

0.111

0.111

0.111

0.111

0.111

0.111

0.111

0.111

0.111

0.111

0.111

0.111

0.111

0.111

0.111

0.146

0.146

0.146

0.146

0.146

0.146

0.146

0.146

0.146

0.146

0.146

0.146

0.146

0.146

0.146

0.146

0.146

0.017

0.017

0.017

0.017

0.017

0.017

0.017

0.017

0.017

0.017

0.017

0.017

0.017

0.017

0.017

0.017

0.017

0.111

0.111

0.111

0.111

0.111

0.111

0.111

0.111

0.111

0.111

0.111

0.111

0.111

0.111

0.111

0.111

0.111

0.149

0.149

0.149

0.149

0.149

0.149

0.149

0.149

0.149

0.149

0.149

0.149

0.149

0.149

0.149

0.149

0.149

0.017

0.017

0.017

0.017

0.017

0.017

0.017

0.017

0.017

0.017

0.017

0.017

0.017

0.017

0.017

0.017

0.017

0.111

0.111

0.111

0.111

0.111

0.111

0.111

0.111

0.111

0.111

0.111

0.111

0.111

0.111

0.111

0.111

0.111

164

0.149
0.149
0.149
0.149
0.149
0.149
0.149
0.149
0.149
0.149
0.149
0.149
0.149
0.149
0.149
0.149

0.149


DBD
PUC-Rio - Certificação Digital Nº 2012332/CA


PUC-Rio- CertificagaoDigital N°2012332/CA

SVM_19
SVM_20
SVM_20
SVM_20
SVM_20

SVM_20

OovOo

OVvR

OovOo

OVvR

OovOo

OVR

sigmoid
sigmoid
sigmoid
sigmoid
sigmoid

sigmoid

auto

auto

auto

auto

auto

auto

42.1566

42.9797

43.2634

42.5592

43.1205

43.3328

0.016

0.016

0.016

0.016

0.016

0.016

0.111

0.111

0.111

0.111

0.111

0.111

0.146

0.146

0.146

0.146

0.146

0.146

0.017

0.017

0.017

0.017

0.017

0.017

0.111

0.111

0.111

0.111

0.111

0.111

0.149

0.149

0.149

0.149

0.149

0.149

0.017

0.017

0.017

0.017

0.017

0.017

0.111

0.111

0.111

0.111

0.111

0.111

165

0.149
0.149
0.149
0.149
0.149

0.149



DBD
PUC-Rio - Certificação Digital Nº 2012332/CA


PUC-Rio- CertificagaoDigital N°2012332/CA

Table D2: Performance values for all DT models (PR = Precision, RC = Recall, ACC = Accuracy)
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Model Hyperparameters Training  Training group Validation Test group
ID time (S) group

Crit max_depth  max_leaf_  min_samples PR RC ACC PR RC ACC PR RC ACC

nodes leaf

DT_1 entropy  None 7 10 198.6981  0.989 0.987 0986 0.898 0.848 0.872 0.940 0.943 0.936
DT_2 entropy 7 1 None 224.6720  1.000 1.000 1.000 0.883 0.840 0.851 0.914 0.925 0.915
DT_3 entropy  None 1 20 222.4325  1.000 1.000 1.000 0.873 0.844 0.851 0.921 0.906 0.915
DT_4 entropy 11 10 10 188.8843  0.989 0.987 0986 0.864 0.843 0.851 0.921 0.906 0.915
DT_5 entropy  None 5 10 206.4564  0.989 0.987 0986 0.885 0.844 0.851 0912 0925 0.915
DT_6 entropy 5 1 20 228.2701  1.000 1.000 1.000 0.813 0.728 0.745 0.915 0.925 0.915
DT_7 entropy 5 5 10 209.3055  0.989 0.987 0986 0.824 0.790 0.787 0.900 0.906 0.915
DT_8 entropy 9 7 None 199.6455  0.989 0.987 0986 0.808 0.757 0.766 0.924 0.928 0.915
DT_9 entropy 7 1 20 225.0789  1.000 1.000 1.000 0.939 0.880 0.915 0.899 0.890 0.894
DT_10 gini 11 1 None 193.8204  1.000 1.000 1.000 0.887 0.880 0.894 0.909 0.905 0.894
DT_11 entropy 7 20 201.3851  0.989 0.987 0.986 0.928 0.894 0.915 0.899 0.890 0.89%4
DT_12 entropy 10 10 190.0051  0.989 0.987 0986 0.911 0.872 0.894 0.887 0.890 0.89%4
DT_13 entropy 1 10 223.8978  0.993 0.990 0991 0.896 0.854 0.872 0.884 0.888 0.89%4
DT_14 entropy 5 10 207.9183  0.989 0.987 0986 0.914 0.885 0.894 0.895 0.906 0.894
DT_15 entropy 11 5 20 206.9108  0.989 0.987 0986 0.912 0.857 0.894 0.899 0.890 0.89%4
DT_16 entropy 9 5 None 208.1672  0.989 0.987 0.986 0.888 0.858 0.872 0.899 0.893 0.89%4
DT_17 entropy  None 1 10 222.4532  0.993 0.990 0.991 0.869 0.8483 0.851 0.880 0.888 0.89%4
DT_18 entropy  None 7 None 198.4000  0.989 0.987 0.986 0.900 0.863 0.872 0.887 0.906 0.894
DT_19 entropy 5 10 20 191.8055 0.989 0.987 0986 0.873 0.844 0.851 0.887 0.906 0.894
DT_20 entropy  None 10 None 187.5435  0.989 0.987 0986 0.878 0.844 0.851 0.878 0.888 0.894
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0.855
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0.887
0.856
0.870
0.911
0.877
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0.844
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0.880
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0.829
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0.856
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E
Graphical Abstracts from the articles
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Figure E.1: Graphical Abstract of the article: Development of artificial neural
network models for the simulation of CaCO3 scale formation process in the
presence of monoethylene glycol (MEG) in a dynamic tube blocking test (TBT)
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Figure E.2: Graphical Abstract of the article: Machine learning models for

measurement of pH using a low-cost image analysis strategy
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F
Databases and codes

The databases and the codes developed in this study are available at:
https://github.com/FerreiraBX95/Master-Thesis---Bruno-Xavier-Ferreira.
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