Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: SOBRE A MEDIDA DE MÁXIMA ENTROPIA E FOLIAÇÕES HORÓSFERICAS DE FLUXOS GEODÉSICOS EM VARIEDADES SEM PONTOS CONJUGADOS
Autor: EDHIN FRANKLIN MAMANI CASTILLO
Colaborador(es): RAFAEL OSWALDO RUGGIERO RODRIGUEZ - Orientador
Catalogação: 04/NOV/2022 Língua(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=61079&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=61079&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.61079
Resumo:
Nesta tese, estudamos algumas propriedades dinâmicas e geométricas do fluxo geodésico de certas variedades compactas sem pontos conjugados. A tese tem duas partes principais. Primeiro estendemos o trabalho de Gelfert-Ruggiero sobre a existência de um fator expansivo para o fluxo geodésico ao caso de superfícies compactas sem pontos conjugados e gênero maior que um. A idéia principal é definir uma relação de equivalência que colapsa as órbitas bi-asintóticas do fluxo geodésico. Isto induz um fator que preserva o tempo e é semi-conjugado ao fluxo geodésico sob o mapa do quociente. Além disso, o fator é expansivo, topologicamente misto e tem uma estrutura de produto local. Estas propriedades implicam que o fator tem uma única medida de máxima entropia. Levantamos esta medida para o fibrado tangente unitário e nos certificamos de que é a única medida de máxima entropia para o fluxo geodésico. Isto fornece uma prova alternativa do teorema de Climenhaga-Knieper-War para o resultado de unicidade. Na última parte da tese, estendemos alguns resultados de Gelfert e Ruggiero de superfícies compactas do gênero superior e sem pontos conjugados para n-variedades compactas sem pontos conjugados e recobrimento universal Gromov hiperbólico. Assumindo que os fibrados de Green são contínuos e a existência de uma geodésica fechada hiperbólica, mostramos que os fibrados de Green são tangentes às foliações horósfericas. Além disso, as foliações horósfericas são as únicas foliações contínuas do fibrado tangente unitário, invariantes pelo fluxo geodésico e que satisfazem uma condição de transversalidade local. Este fato só foi conhecido para superfícies compactas sem pontos conjugados pelo trabalho de Barbosa-Ruggiero, e em dimensões mais elevadas assumindo a condição mais forte de assíntota limitada pelo trabalho de Eschenburg.
Descrição: Arquivo:   
NA ÍNTEGRA PDF