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Abstract

Mamani Castillo, Edhin Franklin; Ruggiero Rodriguez, Rafael
Oswaldo (Advisor). About the measure of maximal entropy
and horospherical foliations of geodesic flows of compact
manifolds without conjugate points. Rio de Janeiro, 2022.
125p. Tese de Doutorado – Departamento de Matemática , Pon-
tifícia Universidade Católica do Rio de Janeiro.
In this thesis, we study some dynamical and geometrical properties of

the geodesic flow of certain compact manifolds without conjugate points.
The thesis has two main parts. We first extend Gelfert-Ruggiero’s work
about the existence of an expansive factor for the geodesic flow to the
case of compact surfaces without conjugate points and genus greater than
one. The main idea is to define an equivalence relation that collapses bi-
asymptotic orbits of the geodesic flow. This induces a factor time-preserving
semi-conjugate to the geodesic flow under the quotient map. Moreover, the
factor is expansive, topologically mixing and has a local product structure.
These properties imply that the factor has a unique measure of maximal
entropy. We lift this measure to the unit tangent bundle and make sure
that it is the unique measure of maximal entropy for the geodesic flow.
This provides an alternative proof of Climenhaga-Knieper-War’s theorem
for the uniqueness result. In the last part of the thesis, we extend some
results of Gelfert and Ruggiero from compact higher genus surfaces without
conjugate points to compact n-manifolds without conjugate points and
Gromov hyperbolic universal covering. Assuming that Green bundles are
continuous and the existence of a hyperbolic closed geodesic, we show
that Green bundles are tangent to the horospherical foliations. Moreover,
the horospherical foliations are the only continuous foliations of the unit
tangent bundle, invariant by the geodesic flow and satisfying a condition of
local transversality. This fact was only known for compact surfaces without
conjugate points by Barbosa-Ruggiero’s work, and in higher dimensions
assuming the stronger condition of bounded asymptote by Eschenburg’s
work.

Keywords
Geodesic flow; Measure of maximal entropy; Horospherical foliations;

Green bundles; Visibility; Manifolds without conjugate points Entropy
Gap; Gromov hyperbolic spaces.
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Resumo

Mamani Castillo, Edhin Franklin; Ruggiero Rodriguez, Rafael
Oswaldo. Sobre a medida de máxima entropia e foliações
horósfericas de fluxos geodésicos em variedades sem pon-
tos conjugados. Rio de Janeiro, 2022. 125p. Tese de Doutorado
– Departamento de Matemática , Pontifícia Universidade Católica
do Rio de Janeiro.
Nesta tese, estudamos algumas propriedades dinâmicas e geométricas

do fluxo geodésico de certas variedades compactas sem pontos conjugados.
A tese tem duas partes principais. Primeiro estendemos o trabalho de
Gelfert-Ruggiero sobre a existência de um fator expansivo para o fluxo
geodésico ao caso de superfícies compactas sem pontos conjugados e gênero
maior que um. A idéia principal é definir uma relação de equivalência que
colapsa as órbitas bi-asintóticas do fluxo geodésico. Isto induz um fator que
preserva o tempo e é semi-conjugado ao fluxo geodésico sob o mapa do
quociente. Além disso, o fator é expansivo, topologicamente misto e tem
uma estrutura de produto local. Estas propriedades implicam que o fator
tem uma única medida de máxima entropia. Levantamos esta medida para
o fibrado tangente unitário e nos certificamos de que é a única medida de
máxima entropia para o fluxo geodésico. Isto fornece uma prova alternativa
do teorema de Climenhaga-Knieper-War para o resultado de unicidade. Na
última parte da tese, estendemos alguns resultados de Gelfert e Ruggiero
de superfícies compactas do gênero superior e sem pontos conjugados para
n-variedades compactas sem pontos conjugados e recobrimento universal
Gromov hiperbólico. Assumindo que os fibrados de Green são contínuos
e a existência de uma geodésica fechada hiperbólica, mostramos que os
fibrados de Green são tangentes às foliações horósfericas. Além disso, as
foliações horósfericas são as únicas foliações contínuas do fibrado tangente
unitário, invariantes pelo fluxo geodésico e que satisfazem uma condição de
transversalidade local. Este fato só foi conhecido para superfícies compactas
sem pontos conjugados pelo trabalho de Barbosa-Ruggiero, e em dimensões
mais elevadas assumindo a condição mais forte de assíntota limitada pelo
trabalho de Eschenburg.

Palavras-chave
Fluxo geodésico; Medida de máxima entropia; Folhações horosféri-

cas; Fibrados de Green; Visibilidade; Variedade sem pontos conjugados;
Gap de entropia; Espaços Gromov hiperbólicos.
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1
Introduction

The theory of the geodesic flow on compact Riemannian manifolds with-
out conjugate points is a rich interplay between many areas in mathematics.
The study of the topological, geometric, dynamical and ergodic properties of
the geodesic flow, gives rise to a great variety of challenging problems.

The theory begins with Morse’s works [1] in the 1920s, about globally
minimizing geodesics in the universal covering of compact surfaces without
conjugate points. Then, Koebe, Lobell, Hedlund, and Hopf in the 1930s and
1940s developed a theory to study the geodesic flows of compact surfaces of
constant negative curvature [2, 3, 4, 5]. Shortly after, Hedlund, Morse and
Grant extended this theory to the case of compact surfaces of variable negative
curvature [6, 7, 8].

In the 1950s, Busemann [9] made a great contribution to the study of the
global theory of geodesics by direct variational methods. Hopf [10] and Green
[11] considered manifolds without conjugate points admitting some regions
of zero or positive curvature. In this more general context, the divergence
of geodesic rays and Morse’s shadowing play an important role in the theory.
From the classification of compact surfaces, the case of genus one, i.e., the torus
was solved by Hopf [12]. Many interesting problems of the theory of geodesic
flows on compact surfaces without conjugate points and genus greater than
one, where the curvature has variable sign, remain open.

The general objective of this thesis is to investigate some ergodic,
dynamical and geometrical properties of the geodesic flow on some families
of compact manifolds without conjugate points.

As first specific goal, we study compact surfaces without conjugate points
and genus grater than one. We intend to extend Gelfert-Ruggiero’s approach
[13] from compact surfaces without focal points to this setting. That is, build a
factor flow time-preserving semi-conjugate to the geodesic flow of the surface.
Following their strategy, we want to prove the relevant dynamical properties of
the factor flow such as: expansivity, topological mixing, local product structure,
specification property and uniqueness of the measure of maximal entropy.

DBD
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Chapter 1. Introduction 11

Finally, we attempt to use the properties of this factor flow to show the
uniqueness of the measure of maximal entropy of the geodesic flow of the
surfaces.

As second specific goal, we work with compact n-manifolds without
conjugate points and Gromov hyperbolic universal covering. Moreover, we
assume that Green bundles are continuous and there exists a hyperbolic
periodic geodesic. In this setting we intend to generalize to higher dimension
some results that holds for surfaces. We first aim for an extension of Gelfert-
Ruggiero’s Theorem [14] that holds for compact higher genus surfaces without
conjugate points and continuous Green bundles. This theorem says that Green
bundles are tangent to horospherical foliations. In 1980’s for compact n-
manifolds without conjugate points and continuous Green bundles, Knieper
[15] showed that Green bundles integrate to continuous foliations of T1M

invariant by the geodesic flow. Although he did not prove whether the Green
bundles are tangent to the horospherical leaves or whether they are uniquely
integrable. Thus, in our context we desire to show that Green bundles are
uniquely integrable. On the other hand, we seek to extend Barbosa-Ruggiero’s
result [16] that holds for compact higher genus surfaces without conjugate
points. This result asserts that the horospherical foliations are the only co-
dimension one continuous foliations of T1M invariant by the geodesic flow.
We pursue the extension of this conclusion to our higher dimensional context
under an additional local assumption given in Chapter 4. Finally, we want
to show some dynamical consequences of Ruggiero’s work [17] in our context.
Specifically, about some set closely related to Pesin set and the hyperbolic
periodic points of the geodesic flow.

The problem of the uniqueness of the measure of maximal entropy is a
difficult problem for non-uniformly hyperbolic systems. The following theorem
was proved by Climenhaga, Knieper and War in 2021 [18].

Theorem 1.1. Let M be a compact surface without conjugate points and genus
greater than one. Then the geodesic flow has a unique measure of maximal
entropy.

In fact, they proved the uniqueness of the measure of maximal entropy
for a large family of compact n-manifolds without conjugate points. Their
method uses the Climenhaga-Thompson [19] generalization of the classical
Bowen-Franco criterion [20]. In this thesis we give another proof of this theorem
that extends Gelfert-Ruggiero’s approach [13]. This approach differs from
Climenhaga-Knieper-War, giving a more direct proof of the uniqueness of the
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Chapter 1. Introduction 12

measure of maximal entropy. Moreover, Gelfert-Ruggiero’s method could give
more information because it has more control over the expansive factor.

Anosov’s work [21] on uniformly hyperbolic flows extended a great deal of
the theory of geodesic flows on the surface case. In particular, Anosov’s theory
applies to compact n-dimensional manifolds of variable negative curvature.

The theory of geodesic flows on compact manifolds of negative curvature
evolved naturally to the theory of geodesic flows in more general categories of
manifolds without conjugate points such as:

– Visibility manifolds.

– Rank-1 and higher rank manifolds.

– Manifolds of hyperbolic type.

– Manifolds with expansive geodesic flow.

– Manifolds of bounded asymptote.

– Manifolds satisfying the asymptoticity axiom.

– Gromov hyperbolic manifolds.

These categories of manifolds capture important aspects of the global geometry
of manifolds of negative curvature. Notably, the visibility manifolds introduced
by Eberlein and O’Neill [22].

Later, Thurston [23] and Gromov [24] extended the visibility condition
to more general metric spaces, not necessarily manifolds, like graphs and
simplicial complexes. Gromov introduced the notion of hyperbolic groups,
and he extended Eberlein’s work [25] about the global geometry of visibility
manifolds.

Combining Gromov’s ideas with Eberlein’s work, in [26], Ruggiero showed
that for the case of compact manifolds without conjugate points, Gromov
hyperbolic manifolds are exactly the visibility manifolds where divergence of
geodesic rays holds.

One of the main properties of hyperbolic dynamics not holding in the
context of manifolds without conjugate points is the regularity of horospheres.
Anosov [27] showed that horospheres form invariant submanifolds dynamically
defined by the hyperbolic geodesic flow. Horospheres always exist in compact
manifolds without conjugate points providing invariant sets for every point
in the phase space of the geodesic flow. However, without restrictions on the
curvature of the manifold, the regularity of horospheres might no longer hold.
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Chapter 1. Introduction 13

In certain cases like geodesic flows of compact manifolds without focal
points, horospheres induce invariant continuous foliations on the unit tan-
gent bundle of the manifold called horospherical foliations. Some regularity
of these foliations, even their continuity, proved to be useful to study global
properties of the geodesic flow, extending some features of nonpositive curva-
ture geodesics. Heintze-Imhof [28], Eschenburg [29] and Pesin [30] introduced
categories of manifolds without conjugate points where horospheres define con-
tinuous invariant foliations, categories that are more general than the category
of manifolds without focal points: manifolds of bounded asymptote [29] and
manifolds satisfying the asymptoticity axiom [30].

The second main goal of this thesis is to show the following:

Theorem 1.2. Let (M, g) be a compact, C∞, n-dimensional Riemannian
manifold without conjugate points, Gromov hyperbolic universal covering and
continuous Green bundles. If there exists a hyperbolic periodic geodesic then

1. The set where the Lyapunov exponents of all vectors transverse to the
geodesic vector field are non-zero agrees almost everywhere with an open
dense set, with respect to Liouville measure.

2. Hyperbolic periodic points are dense on the unit tangent bundle T1M .

3. The horospherical foliations are the only foliations of T1M such that:
they have C1-leaves of dimension n− 1, are continuous, invariant by the
geodesic flow, and transverse to Fu (or F s) at some hyperbolic periodic
point of T1M .

4. Green bundles are uniquely integrable, and tangent to the horospherical
foliations.

Barbosa and Ruggiero [16] proved item 3 for compact surfaces without
conjugates points and genus greater than one. Thus, item 3 is a partial
extension of their result to higher dimension.

By Katok’s work [31], the existence of a hyperbolic periodic geodesic is
guaranteed for compact surfaces without conjugate points. However, in the
higher dimensional setting of visibility manifolds, the existence of hyperbolic
periodic geodesics remains an open problem.

The so-called Green bundles were introduced by Hopf [12] for compact
surfaces without conjugate points, and later defined by Green [32] for any
manifold without conjugate points whose sectional curvatures are bounded
from below. Though Green bundles were used to get geometrical results, several
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Chapter 1. Introduction 14

authors showed their importance for the dynamics of the geodesic flow. Hopf
[12] proved that a torus without conjugate points must be flat applying the
theory of the Riccati equation associated with Green bundles. In the 1970s
Eberlein [33] showed that Green bundles provide as well information about
the hyperbolicity of the geodesic flow.

Eberlein [33] characterized Anosov flows by the linear independence of
Green bundles. This result is considered a landmark in the theory, and gave
rise to huge literature about the applications of Green bundles to the study of
the regularity of horospheres.

This thesis is organized as follows. Chapter 2 gives all basic definitions
and results of the theory. We divide the chapter into three major sections.
In Section 2.1 we introduce the geodesic flows and related objects. Section
2.2 describes the dynamical and ergodic properties of the flows we work with.
Finally, Section 2.3 states some tools used in the investigation of geodesic
flows. In particular, we restrict ourselves to the tools most closely related to the
hypotheses of the previous theorems. Chapter 3 is devoted to proving Theorem
1.1. Chapter 4 deals with the proof of Theorem 1.2. In Appendix A, we give a
proof of the well-known result: for compact manifolds without conjugate points
and visibility universal covering, the geodesic flow is topologically mixing.
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2
Preliminaries

2.1
The dynamical system under study

This section is devoted to introduce the dynamical system and related
objects, with which we shall work throughout the text. For the section, the
references are [34, 35, 36].

The dynamical system under study is a smooth flow acting on a Rieman-
nian manifold. First let us introduce the Riemannian manifold we will work
with. Let (M, g) be a C∞ compact connected Riemannian n-manifold, TM
be its tangent bundle and T1M be the associated unit tangent bundle. We
know that T1M is a compact differentiable (2n − 1)-dimensional manifold if
the Riemannian n-manifold M is also compact. We will endow T1M with a
Riemannian structure in a moment, but in the meantime we consider T1M as
our compact 2n− 1-dimensional Riemannian manifold.

Once we introduced the Riemannian manifold T1M on which we will
work, we define the smooth flow acting on T1M using the geodesics of the
manifold M . Recall that every Riemannian metric g induces in a unique way
a connection ∇ called the Levi-Civita connection. This connection provides a
way to differentiate covariantly vector fields on M . Covariant differentiation
allows us to define geodesics: a smooth curve γ ⊂ M is called a geodesic if

∇γ̇ γ̇ = 0,

that is, the covariant derivative of its velocity vector field γ̇ vanishes identically.
Some properties of geodesics are given by the theory of differential equations.
The existence and uniqueness of solutions guarantees that there exists a unique
geodesic for each given initial conditions. Thus, given the initial conditions
θ = (p, v) ∈ TM , we denote by γθ to the unique geodesic satisfying

γθ(0) = p and γ̇θ(0) = v.
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Moreover, since M is compact, Hopf-Rinow’s theorem says that geodesics are
defined for every time parameter. Therefore, we define the geodesic flow of
(M, g) as the 1-parameter family of diffeomorphisms (ϕt)t∈R acting on TM :

ϕ : R × TM → TM

(t, θ) 7→ ϕ(t, θ) = ϕt(θ) = γ̇θ(t).

Roughly speaking, the geodesic flow acting on θ is the transport of θ for a time
t, through velocity vectors of the geodesic γθ. The existence and uniqueness
of geodesics provides the composition flow property. The smooth dependence
of the geodesics with respect to initial data yields the smooth structure of the
geodesic flow. We know that the length of velocity vectors of a geodesic does
not change along the geodesic. Thus requiring that all geodesics have velocity
vectors of unit length, we can restrict the geodesic flow to T1M . Therefore

ϕ : R × T1M → T1M or ϕt : T1M → T1M

is the smooth flow we will work with and we will refer to it simply as the
geodesic flow of (M, g).

In order to give a suitable Riemannian structure to T1M , we shall
introduce the decomposition of TTM(tangent bundle of TM) into horizontal
and vertical subspaces. This decomposition will provide a natural setting for
defining the Sasaki metric on TM . We will carry out this program first for
TM and then we will move on to T1M setting.

We first define the vertical and horizontal vector subspaces. Let us recall
the canonical projection

P : TM → M θ = (p, v) 7→ P (p, v) = p.

The derivative of P at θ

dP : TTM → TM dθP : TθTM → TpM

allows us to define the vertical subspaces. The vertical subspace at θ is defined
as

V (θ) = ker(dθP ) ⊂ TθTM.

The horizontal subspace is defined in the following way. For every θ = (p, v) ∈
TM , we use the Levi-Civita connection ∇ associated to g, to define the
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Chapter 2. Preliminaries 17

connection map
Cθ : TθTM → TpM.

For every ξ ∈ TθTM there exists a curve

z : (−ϵ, ϵ) → TM such that z(0) = θ, ż(0) = ξ.

In local coordinates, this means that there exist curves, the components of z,

α : (−ϵ, ϵ) → M Z : (−ϵ, ϵ) → TM

t 7→ α(t) t 7→ Z(t) ∈ Tα(t)M,

satisfying

z(t) = (α(t), Z(t)), z(0) = (α(0), Z(0)) = (p, v) and ż(0) = (α̇(0), Ż(0)) = ξ.

From this α is a curve on M and Z is a vector field along α, hence Z can be
differentiated along α. Thus we define the connection map as

Cθ : TθTM → TpM

ξ 7→ Cθ(ξ) = (∇α̇Z)(0).

The connection map Cθ is a well-defined linear map that helps to define the
horizontal subspaces. The horizontal subspace at θ ∈ TM is defined as

H(θ) = ker(Cθ) ⊂ TθTM.

Concerning the dimensions of V (θ) and H(θ), we have the following property:
for every θ ∈ TM , the restricted maps

dθP |H(θ) : H(θ) → TpM, Cθ|V (θ) : V (θ) → TpM

are linear isomorphisms. So, if the manifold M is n-dimensional so are V (θ)
and H(θ). This, together with the fact that V (θ) and H(θ) are transverse,
gives the following decomposition for every θ ∈ TM :

TθTM = H(θ) ⊕ V (θ).

Thus every vector ξ ∈ TθTM can be decomposed into unique horizontal and
vertical components ξ1 ∈ H(θ) and ξ2 ∈ V (θ) as

ξ = ξ1 ⊕ ξ2.
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Chapter 2. Preliminaries 18

Thanks to dθP |H(θ) and Cθ|V (θ), for every θ = (p, v) the last decomposition can
be simplified by the linear isomorphism

jθ : TθTM = H(θ) ⊕ V (θ) → TpM × TpM

ξ 7→ jθ(ξ) = (dθP (ξ), Cθ(ξ)) = (ξh, ξv).

Taking into account this identification, we also call ξh and ξv the horizontal
and vertical components of ξ. The linear isomorphism jθ helps to define the
Sasaki metric in such a way that

– Sasaki metric is defined in terms of the metric g of M and

– H(θ) and V (θ) are orthogonal.

The Sasaki metric at θ = (p, v) ∈ TM is defined by

⟨, ⟩s : TθTM × TθTM → R

(ξ, η) 7→ ⟨ξ, η⟩s,θ = ⟨ξh, ηh⟩p + ⟨ξv, ηv⟩p.

Therefore TM with Sasaki metric, is a 2n-dimensional Riemannian manifold.

Now, moving on to T1M framework, we use the Riemannian metric of
TM and the decomposition of TTM , to induce analog structures on T1M . To
define a Riemannian metric on T1M , we first observe that T1M is a closed
submanifold of TM . This inclusion as submanifold automatically provides:

– For every θ ∈ T1M , we have the inclusion of vector subspaces TθT1M ⊂
TθTM .

– We define the Riemannian metric on T1M as the restriction of the Sasaki
metric to the subspace TθT1M ⊂ TθTM .

Thus T1M is a (2n − 1)-dimensional Riemannian manifold. To study the
dynamics of smooth flows on smooth Riemannian manifolds, a key tool is
the distance induced by the Riemannian metric. In our setting, we call ds the
Sasaki distance induced by the Sasaki metric restricted to T1M .

To carry out the decomposition of TT1M , we will define an additional
vector field and subspace: For every θ ∈ TM ,

– Let G(θ) be the vector field tangent to the geodesic flow ϕt at θ.

– The 1-dimensional subspace generated by G(θ) will be denoted by same
symbol.
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The vector field G(θ) helps to define a convenient one-form α of TM : for every
θ = (p, v) ∈ TM ,

αθ : TθTM → R

ξ 7→ αθ(ξ) = ⟨ξ,G(θ)⟩s,θ = ⟨ξh, v⟩p.

Geometrically αθ is the orthogonal projection onto G(θ) with respect to the
Sasaki metric. Analogous to the definition of vertical and horizontal subspaces,
for every θ ∈ T1M we define the subspace

S(θ) = ker(αθ) ⊂ TθT1M.

From the geometric interpretation of αθ, S(θ) is the orthogonal complement
to G(θ) with respect to the Sasaki metric. From this and the dimensions of
T1M and G(θ), we conclude that S(θ) has dimension 2n − 2. Recalling that
TθT1M ⊂ TθTM , we define the following subspaces: for every θ ∈ T1M

H(θ) = H(θ) ∩ S(θ) V(θ) = V (θ) ∩ S(θ).

It can be shown that these subspaces have dimension n− 1, and therefore we
have the orthogonal decomposition

S(θ) = H(θ) ⊕ V(θ).

Moreover, the decomposition of TθTM immediately gives the following orthog-
onal decomposition of TθT1M :

TθT1M = H(θ) ⊕ V(θ) ⊕G(θ).

Mimicking the same ideas for the case of TθTM , any vector ξ ∈ TθT1M can
be expressed as

ξ = (jθ(ξ), ξg) = (ξh, ξv, ξg) with ξh, ξv ∈ TpM, ξg ∈ G(θ).

In this work we will almost always deal with vectors in S(θ), therefore for every
θ ∈ T1M and every ξ ∈ TθT1M we can express ξ as

ξ = (ξh, ξv),

where ξh and ξv are the horizontal and vertical components of ξ.

For the geodesic flow (T1M,ϕt), we shall see that the Riemannian
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structure of T1M provides a natural volume measure that turns the geodesic
flow into a conservative smooth dynamical system. We first observe that the
compactness of T1M , implies that the Riemannian volume form dΩ of T1M

has finite integral over all T1M . This property induces a finite volume measure
µ on the Borel σ-algebra of T1M . The measure µ assigns to every Borel set
U ⊂ T1M , the integral of dΩ over U . Normalizing the measure µ we get
a probability Borel measure on T1M (denoted by same symbol) called the
Liouville measure ofM . It can be shown that Liouville measure µ is invariant
by the geodesic flow. Therefore the geodesic flow ϕ : R × T1M → T1M is a
smooth flow acting by diffeomorphisms that preserves measure: a conservative
smooth dynamical system.

Furthermore, all the structures related to (T1M,ϕt) are totally deter-
mined by the Riemannian manifold (M, g). Indeed the differential structure
of M furnishes the tangent bundle TM , i.e., the tangent vectors to M . While
to define T1M we need the Riemannian metric g because g determines the
length of vectors. We also observe that g through its Levi-Civita connection
∇ furnishes the equation governing the geodesics of M . Recalling that the
geodesic flow is the transport of vectors along velocity vectors of geodesics, g
totally determines the geodesic flow. In the last paragraph we saw that the g
specifies the Liouville measure µ of M . Putting it all together, we can see that
the system (T1M,ϕt) and µ are totally defined by the Riemannian manifold
(M, g).

In order to extend the families of geodesic flows determined by manifolds
of nonpositive sectional curvature, we shall introduce Riemannian manifolds
without focal points and without conjugate points. One way to define these
manifolds is through the exponential map associated to the metric. Thus, let
(M, g) be a compact Riemannian manifold with exponential map expp for every
p ∈ M .

– (M, g) has no focal points if the restriction of expp to v⊥ ⊂ TpM , is
nonsingular for every (p, v) ∈ TM , v ̸= 0 and v⊥ the orthogonal subspace
of v.

– (M, g) has no conjugate points if expp is nonsingular at every p ∈ M .
Equivalently, the exponential map expp is a covering map at every p ∈ M .

It follows from the definitions that manifolds without focal points are a
subfamily of manifolds without conjugate points. With respect to sectional
curvature, these manifolds may have some regions of positive curvature.
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Therefore, these manifolds are a certain type of generalization of the compact
manifolds of non-positive curvature.

In this work we always work with geodesic flows (T1M,ϕt) of compact
Riemannian manifolds (M, g) without conjugate points.

2.1.1
The universal covering

Let ϕt be the geodesic flow of a compact manifold M without conjugate
points. To prove relevant properties of ϕt, we rely on related dynamical systems.
One such system is the geodesic flow of the associated universal covering space.
Proofs in this system are often simpler than in M . This is useful because we
can translate some results to M . Thus, we introduce the universal covering,
its geodesic flow, and related objects.

Since we built geodesic flows from smooth manifolds, we review some
results on covering spaces of these manifolds. A first basic result says that
every connected compact smooth manifold M has a universal covering M̃ and
a covering map

π : M̃ → M.

Moreover, the covering map π has an associated group of covering transforma-
tions Γ. We say that a homeomorphism T : M̃ → M̃ is a covering transfor-
mation if T preserves the covering map:

π ◦ T = π. (2.1)

The set Γ of all covering transformations forms a group with the compo-
sition of maps. The group Γ has an important connection with the topology
of M . In the special case of the universal covering: Γ is isomorphic to the
fundamental group π1(M) of M . Thus, we say that π1(M) acts on M̃ by
homeomorphisms. Noting that we are in the smooth setting, we have:

– The universal covering M̃ is a simple connected smooth manifold.

– the covering map π is a smooth covering map.

– Every covering transformation is a diffeomorphism. Hence, π1(M) acts
on M by diffeomorphisms.

If we add a metric to the smooth manifold M , we get more structure in
the universal covering and related objects. So, consider a Riemannian metric
g without conjugate points defined on M . Using π, we lift the metric g to
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M̃ and thus get a Riemannian metric g̃ = π∗g on M̃ , called the pullback
metric. This definition of g̃ guarantees that π is a local isometry and hence a
Riemannian covering map. Moreover, (M̃, g̃) becomes a complete Riemannian
manifold without conjugate points. As for the covering transformations, taking
derivatives in Equation (2.1) we see that T is a local isometry, hence a global
isometry. So, from now on, every T ∈ Γ is called a covering isometry.
Updating some properties to the current setting we have:

– The universal covering (M̃, g̃) is a simple connected complete Rieman-
nian manifold without conjugate points.

– the covering map π is a Riemannian covering map.

– Every covering transformation is an isometry. Hence, π1(M) acts on M

by isometries called covering isometries.

There is another important relation between M and its universal covering
M̃ : we can obtain M as a quotient space of M̃ by Γ. Note that we can
interpret Γ as a group action on M̃ . Thus, we get a quotient space M̃/Γ
by the group action. The quotient M̃/Γ is a topological space endowed with
quotient topology. From the construction of Γ, we see that Γ is a discrete
subgroup of isometries of (M̃, g̃). Moreover, the action of Γ is free and properly
discontinuous. Under these conditions, the quotient M̃/Γ is a Riemannian
manifold with quotient metric π∗g̃. Furthermore, (M̃/Γ, π∗g̃) is isometric to
(M, g). Thus, (M, g) is isometric to the quotient of the universal covering
(M̃, g̃) by the group action Γ ≃ π1(M).

We now define the smooth dynamical system related to the geodesic flow
of M . Recall that every Riemannian manifold induces a smooth dynamical
system preserving volume: its geodesic flow. So, let us consider the universal
covering (M̃, g̃) and denote by:

– (T1M̃, ϕ̃t) its geodesic flow.

– µ̃ its Liouville measure.

Similar to the last section, in this case the Liouville measure µ̃ is defined
on a compact fundamental domain and then defined on T1M̃ using covering
isometries. Just as in the case of M and M̃ , their corresponding objects are also
related. For example: their geodesic flows, isometry groups, Liouville measures,
and so on. We first extend the covering property of π : M̃ → M to the setting
of unit tangent bundles:
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– T1M̃ is a covering space of T1M .

– The derivative dπ : T1M̃ → T1M is a Riemannian covering map.

The covering map immediately yields a time-preserving semi-conjugacy be-
tween the geodesic flows ϕ̃t and ϕt. That is, for every θ ∈ T1M̃ and every
t ∈ R

ϕt(dπ(θ)) = dπ(ϕ̃t(θ)),
T1M̃ T1M̃

T1M T1M

ϕ̃t

dπ dπ

ϕt

.

The canonical projections of M̃ and M give a relation between the covering
maps. For every θ ∈ T1M̃ ,

π(P̃ (θ)) = P (dπ(θ)),
T1M̃ M̃

T1M M

P̃

dπ π

P

.

Furthermore, P̃ provides a relation between the covering isometries of π
and dπ. For every covering isometry T of π there is a unique covering isometry
T ′ of dπ such that for each θ ∈ T1M̃

P̃ (T ′(θ)) = T (P̃ (θ)),
T1M̃ T1M̃

M̃ M̃

T ′

P̃ P̃

T

.

On the other hand, the Liouville measure of (M, g) is the push-forward
of the Liouville measure of (M̃, g̃):

µ = (dπ)∗µ̃.

Since M is compact, there exist special isometries acting on M̃ : the axial
isometries. Let T ∈ Γ be a covering isometry and

η : R → M̃

be a geodesic. We say that T translates η if there exists τ ̸= 0 such that for
every t ∈ R,

T (η(t)) = η(t+ τ).
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In this case, we say that T has axis η and η is invariant by T . A covering
isometry T ∈ Γ is axial if T has no fixed points and T has an axis.

In the compact case we see that every covering isometry T different from
the identity is axial, i.e., there is always a geodesic that is invariant by T [34].
Indeed, let T ∈ Γ be a covering isometry. The isomorphism between Γ and
π1(M) provides a nontrivial free homotopy class on M associated to T . In this
homotopy class, Birkhoff’s Theorem ensures the existence of a closed geodesic

β : [0, τ ] → M

of minimum length τ . We choose any lift β̃ : [0, τ ] → M̃ of β under the covering
map π. Since M̃ is complete, we extend β̃ to a geodesic β′ ⊂ M̃ defined on
all R. This geodesic β′ is an axis for T (see Chapter 12 of [34]). Therefore,
for compact M , every covering isometry different from the identity has an
invariant geodesic.

Besides the above, there is another reason why M̃ is important. The
universal covering (M̃, g̃) is the framework of the so-called global geometry
of M . This framework offers a variety of tools that have no analogy in M

such as: asymptoticity of geodesics, ideal boundary, covering isometries, axial
isometries, axis, strips, flats, etc.

The tools in M̃ allow a better understanding of ϕt through the dynamics
of ϕ̃t. Roughly speaking, the geodesic flow ϕ̃t on M̃ unwinds the geodesic flow
ϕt on M . So, we can analyze ϕ̃t and then transfer some results to ϕt under
certain conditions. The transfer is through the relations mentioned above.

Therefore, the geodesic flow ϕ̃ is an important tool to study the geodesic
flow of compact manifolds without conjugate points. We discuss some concepts
and results on global geometry in Subsection 2.3.9.

2.2
Some dynamical and ergodic properties of dynamical systems related to
the geodesic flow of compact manifolds without conjugate points

Once we defined the dynamical system under study, we show that the
system has relevant dynamical properties. We will also see that there are
other dynamical systems related to the geodesic flows that are useful to show
important results. Thus, we introduce some dynamical and ergodic properties
related to the dynamical systems involved in our work. These properties
are important in the study of geodesic flows of compact manifolds without
conjugate points. We do not describe all the properties, but only the most
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relevant to our work. We use these books [37, 38] as main references for this
section.

2.2.1
Dynamical properties

We start with properties of topological nature. More precisely, we deal
with dynamical properties defined for continuous flows acting on compact
metric spaces. For the remainder of this part we will assume a continuous
flow ϕt : X → X acting on the compact metric space X. We say that

– ϕt is topologically transitive if there exists a dense orbit.
– ϕt is topologically mixing if for every nonempty open sets A,B ⊂ X

there exists t0 > 0 such that ϕt(A) ∩B ̸= ∅ for |t| ≥ t0.

We now define the strong sets associated to the flow. For every x ∈ X, the
points y ∈ Y such that the orbit of y tends to the orbit of x in the future or
the past, form the strong sets.

Strong stable set of x: W ss(x) = {y ∈ X : d(ϕt(x), ϕt(y)) → 0 as t → ∞}.

Strong unstable set of x: W uu(x) = {y ∈ X : d(ϕt(x), ϕt(y)) → 0 as t → −∞}.

Note that a priori, the above strong stable and unstable sets are only topolog-
ical spaces with the subspace topology and have no further regularity. We also
see that the elements of W ss(x) (or W uu(x)) may be far from x. To consider
points close to x, for every ϵ > 0, we define the ϵ-strong stable and ϵ-strong
unstable set.

W ss
ϵ (x) = {y ∈ W ss(x) : d(ϕt(x), ϕt(y)) ≤ ϵ, for every t ≥ 0}

W uu
ϵ (x) = {y ∈ W uu(x) : d(ϕt(x), ϕt(y)) ≤ ϵ, for every t ≤ 0}

These ϵ-strong sets allow us to define the so-called local product structure for
a continuous flow ϕt : X → X acting on a compact metric space. We say that
ϕt has a local product structure if for every ϵ > 0 there exists δ(ϵ) > 0 such
that if x, y ∈ X satisfies d(x, y) ≤ δ then there exists a unique τ ∈ R with
|τ | ≤ ϵ and

W ss
ϵ (x) ∩W uu

ϵ (ϕτ (y)) ̸= ∅.

We observe that the intersection point accompanies x in the future and y in
the past.
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In the context of smooth flows, Anosov’s closing lemma is quite related to
two important concepts: tracing and specification. We note that for discrete-
time dynamical systems, these concepts have simple definitions. In contrast, for
continuous flows, the rigorous analogous definitions are complicated. Since we
do not deal directly with these definitions, we give sketches of these properties
for continuous flows. For the technical definitions of these properties the reader
is referred to section 6.1 of [13].

We begin with pseudo orbits. Let us consider a sequence of points
x1, . . . , xn ∈ X and a sequence of positive numbers τ1, . . . , τn ∈ R+. These
numbers τk help to mimic the discrete setting. Given δ, a > 0, we say that the
pair (xk, τk) is a (δ, a)-pseudo orbit for ϕt if for k = 1, . . . n− 1 τk ≥ a and

d(ϕτk
(xk), xk + 1) ≤ δ.

Note that the numbers τk give time intervals that allow to mimic the iterates
of a diffeomorphism on X. Moreover, the intervals τk may be nonuniform but
are always greater than a. So, analogous to the discrete case, the image of xk
by ϕ during τk time is δ close to xk+1.

Pseudo orbits are interesting because we can trace them by orbits under
certain conditions. For simplicity, we first give a restricted definition of tracing
by orbits and then we explain the extension. We refer to any orbit (ϕt(y))t∈R

as y-orbit. For k = 1, . . . n, let (xk, τk) be a (δ, a)-pseudo orbit for ϕt. Given
ϵ > 0, we say that (xk, τk) is ϵ-traced by a y-orbit if

d(ϕt(y), ϕt(x1)) ≤ ϵ for every t ∈ [0, τ1),

d(ϕt(y), ϕt−τ1(x2)) ≤ ϵ for every t ∈ [τ1, τ1 + τ2),

d(ϕt(y), ϕt−τ1−τ2(x3)) ≤ ϵ for every t ∈ [τ1 + τ2, τ1 + τ2 + τ3)

and so on for the remaining points. This means that y-orbit only accompanies
xk-orbit during a time interval τk. Note that xk-orbits start at xk and we only
follow the orbits for one time interval τk. In contrast, the y-orbit start at y and
we follow the orbit for a time interval τ1 + . . . + τn. The general definition of
tracing allows a reparametrization of the y-orbit. A time reparametrization is
an increasing homeomorphism α : R → R with α(0) = 0. Thus, we replace the
time t of y by a new time α(t). For example the first formula says

d(ϕα(t)(y), ϕt(x1)) ≤ ϵ for every t ∈ [0, τ1).

We now state the tracing property of a flow. Given a > 0, we say that a
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continuous flow ϕt have the tracing property with respect to a if for every
ϵ > 0 there exists δ > 0 such that every (δ, a)-pseudo orbit is ϵ-traced by an
orbit of ϕt.

A generalization of the tracing property deals with a collection of pieces
of orbits instead of a collection of points: the specification property. Consider
the points x1, . . . , xn ∈ X, the positive numbers τ1, . . . , τn ∈ R+ and define for
every k = 1, . . . , n

Jk = {ϕt(xk) : t ∈ [0, τk]} ⊂ X.

We see that each Jk is a piece of orbit starting at xk for a time τk. Thus,
we call J1, . . . , Jn a sequence of orbit pieces. We use this sequence by over-
understanding as implicit information xk and τk. As above, we first give
a restricted definition and then sketch the complete one. We say that a
continuous flow ϕt has the specification property if for every ϵ > 0 there
exists T > 0 such that for every sequence of orbit pieces J1, . . . , Jn there exist
a sequence t1, . . . , tn ∈ R and a periodic point y ∈ X of period b > 0 such that
setting sk = tk + τk for every k we have

– For every k = 1, . . . , n,

d(ϕt(y), ϕt−tk(xk)) ≤ ϵ for t ∈ [tk, sk].

– |tk+1 − sk| ≥ T for k = 1, . . . , n− 1.

Roughly speaking, the y-orbit shadows all orbit pieces Jk at certain time
intervals [tk, sk]. For every k, the time interval [tk, sk] has a duration of τk.
Thus, we can consider tk and sk as the start and end time, of the Jk-shadowing
by the y-orbit. The second condition states that the time intervals between
consecutive shadowings are always greater than T . The general definition
allows small tolerances or errors in the shadowing times of the y-orbit. Thus,
we can rephrase a part of the definition: for every sequence of orbit pieces
J1, . . . , Jn, satisfying the above conditions, there exist a sequence of positive
numbers r1, . . . , rn such that for every k = 1, . . . , n,

d(ϕt+rk
(y), ϕt−tk(xk)) ≤ ϵ for t ∈ [tk, sk].

The tolerances rk satisfy additional technical conditions, we refer to section
6.1 of [13] for details.

We conclude the subsection by defining a characteristic property of the
systems studied by Anosov. Let ϕt : X → X be a continuous flow acting on a
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compact metric space. We say that ϕt is expansive if there exists ϵ > 0 such
that if x, y ∈ X satisfy

d(ϕt(x), ϕρ(t)(y)) ≤ ϵ for every t ∈ R and some reparametrization ρ,

then there exists τ ∈ [−ϵ, ϵ] with y = ϕτ (x). We call ϵ the constant of
expansivity of ϕt. Roughly speaking, if x, y ∈ X have ϵ-close orbits then both
orbits agree and x is ϵ-close to y in the same orbit. In the context of continuous
flows without singularities acting on compact manifolds, the above definition
is equivalent to Bowen-Walters expansivity definition (see [39]).

2.2.2
Ergodic properties

We now introduce properties of a more ergodic nature. We restrict
ourselves to the case of continuous flows ϕt : X → X acting on compact
metric spaces. To deal with ergodic properties we add to the metric space
X, a natural σ-algebra to X: the Borel σ-algebra B(X). For further analysis,
we set up the following measurable system (X,B(X), ϕt). We also consider a
probability measure µ defined on B(X). In this case, µ is called a probability
Borel measure on X. From now on, all measures considered will be Borel
probability measures. Ergodic properties require that µ be invariant by the
flow ϕt, i.e., for every measurable set A ⊂ X and every t ∈ R,

µ(ϕt(A)) = µ(A).

We denote by M(ϕ) the set of all invariant measures on X. We know that
M(ϕ) is a compact set in the weak∗ topology.

We mention the most relevant properties for our work. We start with the
invariant sets. A measurable set A ⊂ X is called flow-invariant if for every
t ∈ R

ϕt(A) ⊂ A.

An invariant measure µ is ergodic with respect to ϕt if for every invariant set
A, either

µ(A) = 0 or µ(A) = 1.

There is an equivalent characterization in terms of invariant functions. We say
that a function f : X → R is invariant by the flow ϕt if for every t ∈ R

f ◦ ϕt = f.
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This implies that f is constant on each orbit of the flow ϕt. We say that the
measure µ is ergodic with respect to ϕt if every invariant integrable function f
is constant µ-almost everywhere. Thus, we can interpret ergodicity as follows:
µ is ergodic if every integrable function which is constant on orbits, implies
that f is constant µ-almost everywhere. In this case, we say that the system
(X,B(X), ϕt, µ) is ergodic.

2.2.2.1
Topological and metric entropies

Another important concept of ergodic theory is the so-called Kolmogorov
metric entropy. The classical Kolmogorov entropy has an equivalent definition
in the context of diffeomorphisms acting on compact Riemannian manifolds.
This definition is due to Katok [31] and simplifies the definition by the use of
the distances. We give Katok’s definition of metric entropy. Let f : M → M

be a C1 diffeomorphism on a compact Riemannian manifold M and d be the
Riemannian distance. There is a convenient concept that underlies the metric
entropy and its topological analog: the dynamic balls. Given ϵ > 0, n ∈ N and
p ∈ M , we define the dynamic ball centered at p of radius ϵ and length n by

B(p, ϵ, n) = {q ∈ M : d(fk1 (q), fk1 (p)) < ϵ, for every k = 0, . . . , n− 1}.

Thus, B(p, ϵ, n) is the set of points q that accompanies p by a n-iterates. We can
associate a metric entropy to every invariant set with an invariant measure.
So, consider an invariant measurable set Y ⊂ M and an invariant measure
µ ∈ M(f) supported on Y . Given ϵ > 0, n ∈ N and δ ∈ (0, 1), a finite set
K ⊂ M is called a (Y, n, ϵ, δ)-covering set of Y if

µ

 ⋃
p∈K

B(p, ϵ, n)
 ≥ δ.

Denote by N(Y, n, ϵ, δ) the smallest cardinality of (n, ϵ, δ)-covering sets of Y .
We define the metric entropy of µ on Y by

hµ(Y, f) = lim
δ→1

lim
ϵ→0

lim inf
n→∞

1
n

logN(Y, n, ϵ, δ).

When Y = X and µ is a f -invariant measure on X, we denote by hµ(f) the
metric entropy of µ.

Regarding a smooth flow ϕt : M → M on a compact Riemannian
manifold M . Let µ ∈ M(ϕ), i.e., µ is invariant by ϕt for every t ∈ R. Choosing
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t = 1, we obtain a smooth map ϕ1 : M → M , which is called the time-1 map
of the flow ϕ. In particular, from above we have µ ∈ M(ϕ1). We define the
metric entropy of µ with respect to the flow ϕ as the metric entropy of its
time-1 map:

hµ(ϕ) = hµ(ϕ1).

We now deal with the topological counterpart of the metric entropy: the
topological entropy. Though the original definition is purely topological, we
use Bowen definition of topological entropy [40]. This definition is equivalent
to the general one in the context of homeomorphisms (continuous flows) acting
on compact metric spaces. We first give the definition for the discrete case. Let
f : X → X be a homeomorphism on a compact metric space. We define the
topological entropy for every compact subset Y ⊂ X. Given ϵ, n > 0, denote
by M(Y, n, ϵ, f) the smallest cardinality of a cover of Y by dynamical balls
B(x, ϵ, n) with x ∈ X. We define the topological entropy of Y by

h(Y, f) = lim
ϵ→0

lim sup
n→∞

1
n

logM(Y, n, ϵ, f).

When Y = X, we denote by h(ϕ) the topological entropy of X.

Let ϕt : X → X be a continuous flow on a compact metric space. For
every ϵ, T > 0 and x ∈ X, the dynamic ball centered at x of radius ϵ and
length T is defined by

B(x, ϵ, T ) = {y ∈ X : d(ϕs(x), ϕs(y)) < ϵ, for every s ∈ [0, T ]}.

Let Y ⊂ X be a compact subset and M(Y, T, ϵ) be the smallest cardinality
of a cover of Y by dynamical balls B(x, ϵ, T ) with x ∈ X. We define the
topological entropy of Y with respect to the flow ϕ by

h(Y, ϕ) = lim
ϵ→0

lim sup
T→∞

1
T

logM(Y, T, ϵ, ϕ).

When Y = X, we denote by h(ϕ) the topological entropy of X.

Both topological and metric entropy are related through the so-called
variational principle for entropy. We first state this principle for the discrete
case.

Theorem 2.1 ([41, 40]). Let f : X → X be a homeomorphism acting on a
compact metric space X. Then

h(f) = sup
µ∈M(f)

hµ(f).
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We now consider a continuous flow ϕt : X → X on a compact metric
space. It follows from the definitions that the topological entropy of the
continuous flow and the time-1 map agree:

h(ϕ) = h(ϕ1).

Furthermore, Dinaburg [41] shows that for every measure µ invariant by ϕ1

there exists a measure ν invariant by the flow ϕ such that

hµ(ϕ1) < hν(ϕ1).

From this, applying Theorem 2.1 to ϕ1, we see that h(ϕ1) is also the supremum
of entropies hµ(ϕ1) when µ varies over all measures invariant by the flow ϕ.
From these considerations, we get the variational principle for entropy, for the
continuous case.

Theorem 2.2. Let ϕt : X → X be a continuous flow acting on a compact
metric space X. Then

h(ϕ1) = h(ϕ) = sup
µ∈M(ϕ)

hµ(ϕ) = sup
µ∈M(ϕ)

hµ(ϕ1)

Therefore, it suffices to consider the time-1 map ϕ1 when dealing with
continuous flows. We only have to keep in mind that the measures considered
must be invariant by the flow and not only invariant by time-1 map ϕ1.

The variational principle is one of the greatest achievements of ergodic
theory. This principle also holds for certain subsets of X. Recall that we can
define metric entropy for all measures supported on a flow-invariant measurable
subset of X. On the other hand, we can define the topological entropy for any
compact subset of X. Joining these restrictions, we consider a compact flow-
invariant subset Y ⊂ X. Thus, the variational principle for entropy for Y
reads:

h(Y, ϕ1) = sup
µ
hµ(Y, ϕ1),

where µ varies over all probability measures supported on Y and invariant by
the flow ϕ.

We now introduce the beginnings of the so-called thermodynamic for-
malism. The variational principle for a continuous flow ϕt : X → X, raises the
following natural questions:

– Does exist a measure µ ∈ M(ϕ) that attains the supremum?, that is,
the metric entropy hµ(ϕ1) is equal to the topological entropy h(ϕ1).
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– If so, is this measure unique?

The answers to these questions define one of the central concepts of the
thermodynamic formalism. A measure µ ∈ M(ϕ) is called measure of
maximal entropy if its metric entropy hµ(ϕ1) achieves the supremum in the
variational principle. If µ is also the only measure that satisfies this definition,
we say that µ is the unique measure of maximal entropy for the flow
ϕt. Given a continuous flow ϕt, an important problem in the thermodynamic
formalism, is to show the existence and uniqueness of the measure of maximal
entropy ϕt. In Chapter 3, we show this property for geodesic flows of compact
surfaces without conjugate points and genus greater than one.

2.2.2.2
Lyapunov exponents

Lyapunov exponents are an important tool for understanding the dy-
namics of smooth systems. Let ϕt : M → M be a smooth flow acting on a
Riemannian manifold M and µ be a measure on M , invariant by the flow ϕ.
In this context, we can study the flow ϕt through its linear approximation: the
derivative dϕt. This is done through the Lyapunov exponents of the system
(M,ϕt). For every p ∈ M and every nonzero vector v ∈ TpM , we define the
Lyapunov exponent by

χ(p, v) = lim sup
t→∞

1
t

log ∥dpϕt(v)∥.

These exponents represent the exponential growth rate of dϕt at point p in
direction v. The exponents give an idea of the asymptotic behavior of orbits
near to p in direction v. A natural question arise on these exponents: are
Lyapunov exponents true limits for every p and every v?. The answer is given
by Oseledets theorem. Among other things, this theorem says that Lyapunov
exponents are true limits for µ-almost every p with respect to any invariant
measure µ on M . We recall that a subset A ⊂ M has total measure if µ(A) = 1
for every invariant measure µ on M .

Theorem 2.3 ([42]). Let ϕt : M → M be a smooth flow acting on a compact
Riemannian manifold M , and µ be a probability measure on M invariant by
ϕt. Then, for µ-almost every p ∈ M , there exist

1. numbers χ1(p) > . . . > χk(p)(p),
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2. and a filtration of vector subspaces

TpM ⊃ F1(p) ⊃ . . . Fk(p)(p) ⊃ {0},

such that for every v ∈ Fi \ Fi+1, i = 1, . . . , k(p),

lim
t→∞

1
t

log |dpϕt(v)| = χi(p).

Moreover, k, χi and Fi are measurable functions on M , invariant by ϕt and

dpϕt(Fi(p)) = Fi(ϕt(p)).

Observe that Lyapunov exponents are µ-integrable functions, and also
constant on the orbits of the flow. Thus, if the measure µ is ergodic then the
Lyapunov exponents are constant µ-almost everywhere. Continuing the above
interpretation, for q close to p in direction v,

– If χ(p, v) > 0 then the orbits of p and q eventually diverge exponentially
with rate χ(p, v) > 0.

– If χ(p, v) < 0 then the orbits of p and q eventually converge exponentially
with rate χ(p, v) > 0.

If χ(p, v) = 0, the exponent does not give precise asymptotic behavior of the
orbits of p and q. For every smooth flow ϕt : M → M , the Lyapunov exponent
is always zero, for every p ∈ M in the flow direction.

There is an important identity relating the Lyapunov exponents and the
metric entropy of an invariant measure: Ruelle’s inequality.

Theorem 2.4 ([43]). Let M be a smooth compact manifold and f : M → M

be a C1 map. For every Borel probability measure µ on M , invariant by f ,

hµ(f) ≤
∫
M
χ+(p)dµ(p) where χ+(p) =

∑
r:χr(p)>0

mr
pχ

r(p) > 0,

and mr
p being the multiplicity of χr(p).

Note that χ+(p) is the sum of positive Lyapunov exponents of the system
at p.

Nonzero Lyapunov exponents are related to the so-called Pesin set [30].
Let us introduce a set closely related to Pesin set.
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Definition 2.2.1. Let ϕt : M → M be a smooth flow acting on a compact
manifold M . The set Λ is the collection of all points p ∈ M such that

– There exists a subspace Sp ⊂ TpM transverse to ϕt at p.
– The Lyapunov exponents are nonzero on Sp, i.e., χ(p, v) ̸= 0 for every
v ∈ Sp.

Oseledets’ Theorem ensures that the definition does not depend on the
chosen transverse subspace Sp. Note that for each p ∈ Λ, for each close point
q ∈ M in any direction different to the flow direction, the orbit of q: either
converges to the orbit of p eventually at an exponential rate or diverges from
the orbit of p eventually at an exponential rate.

For geodesic flows, several of the above properties are satisfied under
certain conditions, but not in general. Roughly speaking, there is a pattern in
varying the Riemannian metric g: the more general g is, the weaker are the
dynamical and ergodic properties of its geodesic flow. In fact, some concepts
and results of the theory were motivated by trying to obtain some of these
properties. We mention some of these motivations in the following sections.

2.3
Some results about geodesic flows of compact manifolds without conju-
gate points

This section introduces some concepts and results used in the study of
geodesic flows of certain subfamilies of compact manifolds without conjugate
points. These results relate the local and global geometry of the manifold
with the dynamical and ergodic properties of the geodesic flow of the compact
manifold without conjugate points.

2.3.1
Compact surfaces of constant negative curvature

To motivate some important concepts we give a brief historical account
of some transitivity properties of geodesic flows of compact surfaces without
conjugate points. In the 1920s, Morse, Hedlund and Hopf studied the transi-
tivity properties of geodesic flows of surfaces of constant negative curvature.
In the following we introduce some of these properties in the general context
of compact manifolds without conjugate points.

– Topological transitivity: For any A,B open subsets of T1M , there exists
t ∈ R such that ϕt(A) ∩B ̸= ∅.
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– Metric transitivity(Ergodicity): For any A,B measurable subsets of T1M ,
with positive measure, there exists t ∈ R such that ϕt(A) ∩B ̸= ∅.

– Topological Mixing: For any A,B open subsets of T1M , there exists
t0 > 0 such that ϕt(A) ∩B ̸= ∅ for |t| ≥ t0.

– Permanent metric transitivity: For any A,B measurable subsets of T1M ,
with positive measure, there exists t0 > 0 such that ϕt(A) ∩ B ̸= ∅ for
|t| ≥ t0.

– Mixing with respect to a measure m: For any A,B,C measurable subsets
of T1M , with positive measure,

lim
t→±∞

m(ϕt(A) ∩B)
m(ϕt(A) ∩ C) = m(A)

m(B)

For locally compact Hausdorff spaces, we know that topological transitivity
is equivalent to the existence of a dense orbit in T1M . Metric Transitivity is
equivalent to ergodicity of the geodesic flow ϕt with respect to the Liouville
measurem. Clearly, topological mixing implies topological transitivity and per-
manent metric transitivity implies metric transitivity. Also, metric transitivity
implies topological transitivity and the same happens with permanent met-
ric transitivity and topological mixing. Moreover, mixing implies permanent
metric transitivity and hence all the properties listed before.

The first family of surfaces where the above transitivity properties
were obtained were surfaces of constant negative curvature. To prove these
properties, the following conclusion was useful.

Theorem 2.5. Let M be a compact surface of constant negative curvature.
Then the set of periodic orbits is dense in T1M .

This result is better known as the density of periodic geodesics. It was
proved in full generality for Koebe [2] and Lobell [3] in 1929. Using this
property, these authors obtained topological transitivity.

Theorem 2.6. Let M be a compact surface of constant negative curvature.
Then the geodesic flow is topologically transitive.

For topological mixing, Hedlund introduced horocycles and studied their
transitivity properties. Thus, in 1936 Hedlund obtained the following inter-
esting property of the horocycles. We give the precise definition of horocycles
later in Subsection 2.3.2.

Theorem 2.7. Let M be a compact surface of constant negative curvature.
Then every stable and unstable horocycle is dense in T1M .
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This property is also known as the minimality of the horocycle flow. The
proof of this theorem depends on the density of periodic geodesics. Using this
minimality, Hedlund [4] proved the topological mixing.

Theorem 2.8. Let M be a compact surface of constant negative curvature.
Then the geodesic flow is topologically mixing.

In the same year, Hopf [5] proved ergodicity of the geodesic flow by
different methods. Using Hopf’s result and the minimality of the horocycle
flow, in 1939 Hedlund [44] showed a stronger transitivity property.

Theorem 2.9. Let M be a compact surface of constant negative curvature.
Then the geodesic flow is mixing with respect to the Liouville measure m.

2.3.2
Horospheres and Busemann functions

Horocycles can be defined not only for surfaces but, more generally, for
any compact manifold without conjugate points. In this general framework,
they are called horospheres in some references. The definition can be done
through the so-called Busemann functions (see [29]). Let us note that these
concepts are naturally defined in the universal covering of the manifold. Then,
we can transfer these concepts to the manifold through the covering map. Let
M be a compact manifold without conjugate points, and M̃ be its universal
covering. Consider θ ∈ T1M̃ and the geodesic γθ induced by θ. For every θ, we
define the forward Busemann function

bθ : M̃ → R

p 7→ bθ(p) = lim
t→∞

d(p, γθ(t)) − t.

The level sets of Busemann functions allows us to define the stable and unstable
horospheres associated to θ by

H+(θ) = b−1
θ (0) H−(θ) = H+(−θ).

These horospheres can be lifted to corresponding sets associated to θ, in
the unit tangent bundle T1M̃ ,

F̃ s(θ) = {(p,−∇pbθ) : p ∈ H+(θ)} F̃u(θ) = −F̃ s(−θ),

where ∇bθ is the gradient vector field.
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Figure 2.1: Stable and unstable horospheres

Figure 2.2: Lifts of stable and unstable horospheres

These sets have names related to their foliation property that is fulfilled
in certain families of manifolds. We will return to this issue in Subsection 2.3.6.
Until then we will only refer to these sets as lift of the horospheres associated
to θ. Note that the horospheres are projections of the sets F̃ s(θ) and F̃u(θ)
under the canonical projection map P̃ . This relation implies some analogous
properties between horospheres and their lifts.

Theorem 2.10 ([29, 30]). Let M be a compact manifold without conjugate
points and M̃ be its universal covering. Then

– All Busemann functions bθ are C1,L with L-Lipschitz unitary gradient
vector fields ∇bθ where L > 0 is an uniform constant depending on
curvature bounds.

– All horospheres H+(θ), H−(θ) ⊂ M̃ and F̃ s(θ), F̃u(θ) ⊂ T1M̃ are
embedded submanifolds of dimension n− 1.
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– Horospheres are equidistant: for every q ∈ H+(γθ(t)),

d(q,H+(γθ(s))) = |t− s|.

The regularity of Busemann functions is related to the existence of
tangent spaces to the sets F̃ s(θ), F̃u(θ). Busemann functions have the same
type of regularity as horospheres. From the definitions of horospheres, we see
that regularity of F̃ s(θ), F̃u(θ) decreases by one: they are only topological
manifolds. Therefore, in general, we cannot guarantee the existence of tangent
spaces to F̃ s(θ) and F̃u(θ). However, for several special cases, Busemann
functions are C2 hence F̃ s(θ), F̃u(θ) are C1, and they have tangent spaces.
The regularity is an important problem in the theory of manifolds without
conjugate points. We will come back to this problem in Chapter 4.

For every θ ∈ T1M , the integral flow σθt of the gradient vector field ∇pbθ,
is called the Busemann flow associated to θ. The integral curves of σθt are
called the Busemann asymptotes of γθ. Busemann asymptotes of γθ are
geodesics orthogonal to the horospheres associated to θ. In particular, γθ is
a Busemann asymptote. We highlight that Busemann asymptotes to γθ are
related to the family of geodesics asymptotic to γθ. We will return to this
topic in Subsection 2.3.9.

For θ ∈ T1M , consider geodesic flow orbits starting at F̃ s(θ). Their
projection through the projection P̃ are the Busemann asymptotes associated
to θ, starting at H+(θ) with initial velocity in F̃ s(θ). Conversely, we can
lift these Busemann asymptotes to corresponding geodesic flow orbits. This
property provides some analog relations between, on the one hand horospheres
and Busemann asymptotes, and on the other hand F̃ s(θ), F̃u(θ) and geodesic
flow orbits.

Proposition 2.3.1 ([29, 30]). Let M be a compact manifold without conjugate
points and θ ∈ T1M̃ . Then,

1. Horospheres are invariant by the integral flow σθt : for every t ∈ R,

σθt (H+(θ)) = H+(ϕt(θ)).

2. The sets F̃ s(θ), F̃u(θ) are invariant by the geodesic flow:

ϕt(F̃ s(θ)) = F̃ s(ϕt(θ)).
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We can see these some ideas of the proposition in the following commut-
ing diagram

F̃ s(θ) F̃ s(ϕt(θ))

H+(θ) H+(ϕt(θ)).

ϕt

P̃ P̃

σθ
t

For every θ ∈ T1M , there are several important collections of sets related to the
sets F̃ s(θ), F̃u(θ). The collections of lifts of stable and unstable horospheres
are denoted by

F̃ s = {F̃ s(θ)}θ∈T1M̃
F̃u = {F̃u(θ)}θ∈T1M̃

.

We define the center stable and center unstable sets associated to θ by

F̃ cs(θ) =
⋃
t∈R

F̃ s(ϕt(θ)) F̃ cu(θ) =
⋃
t∈R

F̃u(ϕt(θ)).

Note that we describe all ideas in the covering spaces M̃ and T1M̃ .
However, we are interested in the properties and results in the manifolds M
and T1M . Thus, we transfer some relevant objects from T1M̃ to T1M . To do
this, we use the derivative of the covering map

dπ : TM̃ → TM.

Recall that dπ is a smooth covering map. For every θ ∈ T1M and every lift
θ̃ ∈ T1M̃ of θ, we define the sets

F s(θ) = dπ(F̃ s(θ̃)) Fu(θ) = dπ(F̃u(θ̃)).

We define the center stable and center unstable sets of θ, by

F cs(θ) = dπ(F̃ cs(θ̃)) F cu(θ) = dπ(F̃ cu(θ̃)).

Similarly, we define the collections

F s = dπ(F̃ s) Fu = dπ(F̃u)

Finally, the notation ‘s’ and ‘u’ of F s(θ) and Fu(θ) is inspired by the
Anosov setting. Recall that when the manifold M is a compact manifold of
negative curvature, the geodesic flow ϕt : T1M → T1M is Anosov. A significant
property of Anosov flows is the existence of stable and unstable invariant
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submanifolds. For Anosov geodesic flows, these invariant submanifolds locally
agree with the sets F s(θ) and Fu(θ) respectively. Thus, all associated objects
inherited the stable and unstable notation even though this property is only
satisfied in particular cases. Although in the general case F s(θ) and Fu(θ) do
not exhibit hyperbolic behavior, under certain hypotheses they have a weak
hyperbolic behavior. We will review this observation in Subsection 2.3.6.

2.3.3
Compact surfaces of variable negative curvature and Morse’s shadowing

Surfaces of variable negative curvature were the next case where transi-
tivity properties were studied. One of the first approaches was made by Morse.
In 1924, Morse [1] studied a fundamental class of geodesics in the universal
covering of any closed surface of genus greater than one, i.e., surfaces that al-
ways admit a metric of negative curvature called hyperbolic metric. In this
case, geodesics on the surface are called hyperbolic geodesics.

Theorem 2.11. Let (M, g) be a compact surface without conjugate points of
genus greater than one, M̃ be its universal covering and g′ be a hyperbolic
metric on M . Then, there exists R(g, g′) > 0 satisfying: for every g-geodesic
γ ⊂ M̃ there exists a hyperbolic geodesic γ′ ⊂ M̃ such that the Hausdorff
distance between γ and γ′ is bounded above by R.

This theorem is sometimes called Morse’s shadowing. Thus, in the
universal covering both types of geodesics are bi-asymptotic with respect to
the hyperbolic distance. One of the implications is the existence of a uniform
bound for the distance between bi-asymptotic geodesics.

Theorem 2.12. Let (M, g) be a compact surface without conjugate points and
genus greater than one. Then, there exists a universal constant Q(M) > 0 such
that the Hausdorff distance between any two bi-asymptotic geodesics is bounded
above by Q.

Furthermore, for every hyperbolic geodesic γ, there exists a geodesic of
(M, g) bi-asymptotic to γ. This leads to the following useful notion. Let (M, g)
be a closed surface without conjugate points, genus greater than one and
universal covering M̃ . In Morse’s terminology [7], the surface M satisfy unicity
if for every hyperbolic geodesic β ⊂ M̃ there exists a unique g-geodesic bi-
asymptotic to β. In this case there exists an injective correspondence between
hyperbolic geodesics and g-geodesics of closed surfaces of genus greater than
one. The unicity is satisfied by closed surfaces of variable negative curvature.
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The importance of unicity lies in the fact that many dynamical properties are
preserved by this correspondence. In this way, in 1935 Morse [7] proved the
topological transitivity for compact surfaces of variable negative curvature.

On the other hand, in 1937 Grant extended Hedlund’s horocycles and
minimality of the horocycle flow to surfaces of variable negative curvature.
Thus, Grant [8] proved the topological mixing for geodesic flows of compact
surfaces of variable negative curvature.

2.3.4
Compact surfaces without conjugate points and divergence of geodesic
rays

To go beyond the case of surfaces of negative curvature, i.e., where regions
with positive or zero curvature may exist, some hypotheses of instability were
considered. In 1935 Morse [7] proved for closed orientable surfaces of genus
greater than one that the geodesic flow is topologically transitive assuming
a condition called uniform instability. In particular, he showed that uniform
instability implies unicity. In 1936 Hedlund [6] weakened uniform instability to
a condition called ray instability. The uniform and ray instability conditions
independently imply that the compact surface has no conjugate points. This
means that the surfaces considered by Morse and Hedlund are subfamilies
of compact surfaces without conjugate points. In 1942 Morse and Hedlund
[45] proved the topological transitivity of geodesic flows of compact surfaces
without conjugate points and genus greater than one.

The dynamics of the geodesic flow of a torus (closed surface of genus
one) was better understood when Hopf [12] proved the following remarkable
theorem.

Theorem 2.13. Let M be a closed surface without conjugate points. If the
genus of M is one then the sectional curvature vanishes everywhere.

In 1954 Green [11] identified a purely geometric instability property that
was sufficient to prove topological transitivity by the method of Morse and
Hedlund. Green called this property, divergence of geodesic rays. We say
that a geodesic β ⊂ M̃ has base point p ∈ M̃ if β(0) = p.

Definition 2.3.1. Let (M, g) be a compact manifold without conjugate points
and M̃ be its universal covering. Geodesics rays diverge in M̃ if for every p ∈ M̃ ,
every ϵ, A > 0, there exists T (p, ϵ, A) such that for every geodesics γ, β ⊂ M̃

with same base point p and ∠(γ′(0), β′(0)) ≥ ϵ, then d(γ(t), β(t)) ≥ A for
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every t ≥ T (p, ϵ, A). We say that geodesic rays diverge uniformly if T (p, ϵ, A)
does not depend on p.

Although, Morse and Hedlund essentially proved this divergence for
a large family of compact surfaces without conjugate points, the result is
generally attributed to Green [11].

Theorem 2.14. Let M be a compact surface without conjugate points, genus
greater than one and universal covering M̃ . Then, geodesic rays diverge
uniformly in M̃ .

In 1973 Eberlein [33] extended the divergence of geodesic rays to higher
dimension, i.e., compact manifolds without conjugate points. However, he
pointed out that the divergence is not uniform in general. In the previous cases,
a lower bound on the curvature is always guaranteed by compactness. In 1978
Goto [46] removed this restriction and proved the divergence of geodesic rays,
topological transitivity and density of periodic orbits for non-compact complete
manifolds without focal points with no lower bound on the curvature.

2.3.5
Transitivity properties in higher dimension and visibility manifolds

Although in 1940 Hopf [10] proved the ergodicity of the geodesic flow for
compact manifolds of constant negative curvature, new and abundant results
came with Anosov’s theory. For this, we recall the definition of a hyperbolic
set in the context of geodesic flows.

Definition 2.3.2. Let M be a compact manifold and ϕt be its geodesic flow.
A compact ϕt-invariant subset X ⊂ T1M is called hyperbolic if there exist
C, λ > 0 and dϕt-invariant subspaces Es(θ), Eu(θ) ⊂ TθT1M for every θ ∈ X

such that

1. TθT1M = Es(θ) ⊕ Eu(θ) ⊕G(θ).

2. ∥dθϕt(ξs)∥ ≤ C exp−λt for every ξs ∈ Es(θ) and every t ≥ 0.

3. ∥dθϕt(ξu)∥ ≤ C expλt for every ξu ∈ Eu(θ) and every t ≤ 0.

If X = T1M the geodesic flow ϕt is called Anosov. We call Es(θ) and Eu(θ)
the stable and unstable dynamical subspaces at θ respectively.

In 1967, for a compact n-manifold M of variable negative curvature,
Anosov [21] showed that its geodesic flow is Anosov. Moreover, in this context
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Anosov and Sinai [21, 27] proved, among other results, that periodic orbits are
dense in T1M and that the geodesic flow is ergodic.

For compact manifolds that admit regions of positive or zero curvature,
there were several generalization directions. In 1971 Klingenberg [47] intro-
duced the so-called manifolds of hyperbolic type: compact Riemannian
manifolds that admit some Riemannian metric of negative curvature. For this
family of manifolds, he [47] showed the density of periodic orbits and the topo-
logical transitivity of the geodesic flow. Furthermore, for compact manifolds
with Anosov geodesic flow, in 1974 Klingenberg [48] extended the density of
periodic orbits and proved the ergodicity of the geodesic flow.

On the other hand, for compact manifolds of nonpositive curvature, in
1972 Eberlein [49] proved the density of periodic orbits, the minimality of
horospheres, and the topological mixing assuming a condition called visibility.
Eberlein [25] later generalized this condition to manifolds without conjugate
points. Visibility condition says that the farther you move a geodesic segment
away from a point, the smaller the angle from the point to the ends of the
geodesic.

Definition 2.3.3. A complete simply connected Riemannian manifold M is
called a visibility manifold if it has no conjugate points and for every p ∈ M

and every ϵ > 0 there exists R(ϵ, p) > 0 such that for every x, y ∈ M , the
angle at p formed by the geodesic segments [p, x] and [p, y] is less than ϵ if
the distance from p to the geodesic segment [x, y] is greater than R(ϵ, p). In
addition M is called a uniform visibility manifold if R(ϵ, p) does not depend
on p.

In this context, in 1973 Eberlein [25] extended some transitive properties
previously proved in the case of manifolds of nonpositive curvature. Recall that
a foliation is minimal if any of its leaves is dense.

Theorem 2.15 ([49, 25]). Let M be a compact manifold without conjugate
points and visibility universal covering M̃ . Then

1. The families of sets F s and Fu are minimal.

2. The geodesic flow ϕt is topologically mixing.

Actually, the topological mixture was proved for the case of visibility
manifolds of non-positive curvature. However, the argument can be extended
to visibility manifolds without conjugate points, as we do in Appendix A.
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We highlight that Eberlein extended Hedlund’s work on surfaces to
higher dimensions to obtain the transitivity properties. For this, the topology
of the ideal boundary of the universal covering is important because the
arguments are made in the compactification of the universal covering. This
compactification is homeomorphic to the closed unit n-ball of Rn. We review
these concepts below.

We say that geodesics γ, β ⊂ M̃ are asymptotic if d(γ(t), β(t)) ≤ C for
every t ≥ 0 and some C > 0. Note that we do not require that the distance
goes to zero as happens in manifolds of negative curvature. Asymptoticity is
a equivalence relation on the set of geodesics of M̃ . We denote by γ(∞) the
equivalence class of any γ ⊂ T1M̃ . The set of equivalence classes is denoted
by M̃(∞). This set is called the set of points at infinity or the ideal
boundary of M̃ . The visibility condition implies the existence and uniqueness
of a geodesic asymptotic to any other given geodesic.

Proposition 2.3.2 ([25]). Let M be a uniform visibility manifold. For every
geodesic β ⊂ M̃ and every p ∈ M̃ there exists a unique geodesic γ asymptotic
to β passing through p.

In this case, we say that γ joins p to β(∞) because we can choose
γ(0) = p and γ(∞) = β(∞). Moreover, we can find a geodesic joining two
points in M̃(∞). Given a geodesic γ ⊂ M̃ , we denote by γ(−∞) the equivalence
class of the geodesic t 7→ γ(−t).

Proposition 2.3.3 ([25]). Let M be a uniform visibility manifold. For every
distinct x, y ∈ M̃(∞) there exists a geodesic γ such that γ(−∞) = x and
γ(∞) = y.

In this setting, we say that γ joins x to y. Given distinct p, q ∈
M̃ ∪ M̃(∞), we denote by V (p, q) the initial vector of the unique geodesic
joining p to q. We now define the open sets of the cone topology on M̃∪M̃(∞).
Let R > 0, δ ∈ (0, π), p ∈ p̃ and v ∈ TpM̃ , the truncated cone Tp,v,R,ϵ with
vertex p, axis v, angle δ and radius R is the set

Tp,v,R,ϵ = {q ∈ M̃ ∪ M̃(∞) : ∠p(v, V (p, q)) ≤ δ, d(p, q) ≥ R},

with the convention that d(p, q) = ∞ whenever q ∈ M̃(∞). This truncated
cones are the neighborhoods of the points in the ideal boundary of the universal
covering.

Proposition 2.3.4 ([25]). Let M be a uniform visibility manifold. Then
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1. The open sets of M̃ and truncated cones form a basis for a topology on
M̃ ∪ M̃(∞), called cone topology. The space M̃ ∪ M̃(∞) is compact
endowed with this topology.

2. For every x ∈ M̃(∞), the set of truncated cones with vertex p ∈ M̃ and
containing x, is a local basis for the cone topology at x.

3. M̃ ∪ M̃(∞) with the cone topology is homeomorphic to the closed unit
n-ball of Rn.

2.3.6
More properties of horospheres

In Section 2.3.1, we introduced horospheres and their lifts F̃ s and
F̃u, together with their basic properties. The present subsection deals with
additional important properties of horospheres and F̃ s, F̃u: foliation structure,
intersections between F̃ s and F̃u and their weak hyperbolic behavior. For the
first part, we assume a compact surface without conjugate points and genus
greater than one.

Let us start with the foliation structure of the sets F̃ s and F̃u. For com-
pact manifolds of negative curvature, Anosov [21] showed that F̃ s and F̃u give
rise to continuous foliations invariant by the geodesic flow. This is because F̃ s

and F̃u agree with the invariant stable and unstable submanifolds given the
hyperbolic structure. Green’s divergence of geodesic rays and Morse’s shad-
owing allows to extend this property to compact surfaces without conjugate
points and genus greater than one.

Theorem 2.16. Let M be a compact surface without conjugate points and
genus greater than one. Then, the collection of sets

(F̃ s(θ))θ∈T1M̃
and (F̃u(θ))θ∈T1M̃

are continuous foliations invariant by the geodesic flow.

Moreover, this theorem can be generalized to higher dimension through
manifolds satisfying the visibility condition.

Theorem 2.17 ([25]). Let M be a compact manifold without conjugate points
and visibility universal covering M̃ . Then, the collection of sets

(F̃ s(θ))θ∈T1M̃
and (F̃u(θ))θ∈T1M̃
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are continuous foliations invariant by the geodesic flow.

We highlight that for general compact manifolds without conjugate
points, it is not known whether horospheres provide invariant foliations.

We use this foliation structure to name the relevant sets involved in the
above theorem. Recall that every compact surface without conjugate points
and genus greater than one, has a visibility universal covering. Therefore, in
the visibility context, we call F̃ s and F̃u the stable and unstable horospherical
foliations of T1M̃ . Also, for every θ ∈ T1M̃ , F̃ s(θ) and F̃u(θ) are called the
stable and unstable horospherical leaves associated to θ. Similarly, we
call F s and Fu the stable and unstable horospherical foliations of T1M and
F s(θ) and Fu(θ) their corresponding leaves for every θ ∈ T1M . So, from now
on we use these names to refer to these sets.

Let us clarify about the topology in which the continuity of the foliations
is fulfilled. To do this, we first recall the Hausdorff distance. For every
A,B ⊂ T1M̃ ,

dH(A,B) = max
(

sup
a∈A

ds(a,B), sup
b∈B

ds(A, b)
)
.

In addition we consider the horospherical foliations as the maps

θ ∈ T1M̃ 7→ F̃ s(θ) and θ ∈ T1M̃ 7→ F̃u(θ).

The stable horospherical foliation is continuous with respect to the open-
compact topology, if for every ϵ > 0 there exists δ > 0 such that for any
compact set K ⊂ T1M̃ ,

dH(K ∩ F̃ s(θ), K ∩ F̃ s(η)) ≤ ϵ whenever ds(θ, η) ≤ δ.

An analogous statement holds for the unstable horospherical foliation.

We now deal with the question of intersections of stable and unstable
horospherical leaves in T1M̃ . We first address the intersection of the stable and
unstable horospherical leaves associated to the same point. To do this, consider
a compact manifold M without conjugate points and universal covering M̃ .
We denote the intersections as follows: for every θ ∈ M̃ ,

I(θ) = H+(θ) ∩H−(θ) I(θ) = F̃ s(θ) ∩ F̃u(θ).

We call I(θ) a class of θ ∈ T1M̃ or simply a class. Note that P̃ (Ĩ) = I(θ)
hence I(θ) is a lift of I(θ) ⊂ M̃ to T1M̃ where P̃ : TM̃ → M̃ is the canonical
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projection.

The topological structure of the intersections is simple if we restrict
ourselves to the case of surfaces. Recall that if M is a surface then horospheres
and horospherical leaves are just curves in the surface M̃ and the 3-manifold
T1M̃ respectively. For surfaces, Morse’s Theorem 2.12 about shadowing and
Green’s Theorem 2.14 about divergence of geodesic rays provide the following
behavior of the intersections.

Proposition 2.3.5. Let M be a compact surface without conjugate points and
genus greater than one. For every θ ∈ T1M̃ ,

1. I(θ) and I(θ) are compact connected curves of M̃ and T1M̃ respectively.

2. Diam(I(θ)) ≤ Q and Diam(I(θ)) ≤ Q̃ for some universal constants
Q, Q̃ > 0 depending only on M .

From above we see that given θ ∈ T1M̃ , I(θ) is either a single point or a
curve with a fixed maximum length. Thus,

– If I(θ) is a single point, we say that θ is an expansive point and I(θ)
is a trivial class.

– If I(θ) is a curve of nonzero length, we say that θ is a non expansive
point and I(θ) is a non trivial class.

The set of expansive points is called the expansive set and is denoted by

R0 = {θ ∈ T1M : F s(θ) ∩ Fu(θ) = {θ}}.

The complement of R0 is called the non expansive set. In addition, observe
that any non trivial class I(θ) has two boundary points.

Non expansive points induce strips of bi-asymptotic orbits and geodesics.
For any non expansive point θ ∈ T1M̃ , the action of the geodetic flow produces
the non-trivial strip of orbits

⋃
t∈R

ϕt(I(θ)) =
⋃
t∈R

I(ϕtθ).

The last equality follows from the invariance of F̃ s(θ) and F̃u(θ) by ϕt. If θ was
an expansive point then ⋃

t∈R ϕt(I(θ)) = ⋃
t∈R ϕt(θ) would be a trivial strip,

i.e., a single orbit. We project this non-trivial strip of orbits onto a non-trivial
strip of bi-asymptotic geodesics

P̃ (
⋃
t∈R

ϕt(I(θ))) =
⋃
t∈R

σt(I(θ)) =
⋃
t∈R

I(σtθ) =
⋃

η∈I(θ)

⋃
t∈R

γη(t).
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If θ was an expansive point then P̃ (⋃t∈R ϕt(I(θ))) = ⋃
t∈R γθ(t) would be a

trivial strip, i.e., a single geodesic.

Strips of bi-asymptotic geodesics and orbits have special properties in
certain cases. Consider a non-expansive point θ ∈ T1M̃ . Eschenburg [29]
showed that the non-trivial strip of bi-asymptotic geodesics

⋃
η∈I(θ)

⋃
t∈R

γθ(t)

K is a flat strip if M has no focal points. A flat strip is an isometric and totally
geodesic embedded copy of an infinite strip of nonzero length of the Euclidean
plane. This result is true in higher dimension and it is called the flat strip
theorem.

Theorem 2.18 ([29]). Let M be a simply connected manifold with no focal
points. Then any two bi-asymptotic geodesics bound a flat strip. Furthermore,
for every θ ∈ T1M , the set I(θ) is a convex set.

If we lift this flat strip to a strip S ⊂ T1M̃ of bi-asymptotic orbits, then
S is just the place where the geodesic flow has no hyperbolic behavior. Though
the flat strip theorem is false for general compact manifolds without conjugate
points [50], the non-hyperbolic behavior of the geodesic flow happens in these
strips of bi-asymptotic orbits. We will return to this intersection question in
higher dimension in Subsection 2.3.9.

We now consider the intersection of stable and unstable horospherical
leaves associated to different points. We first recall that in higher dimensions,
visibility condition provides a special property for geodesics in the universal
covering. Proposition 2.3.3 says that for any two different geodesics γ, β ⊂ M̃

satisfying the hypothesis, there exists a (non necessarily unique) geodesic with
the same past as γ and the same future as β. We lift this property to T1M̃ ,
i.e., from geodesics to orbits of of the geodesic flow ϕt. Thus, we get a bit
weaker type of intersections between the stable horospherical leaves and central
unstable sets.

Proposition 2.3.6 ([25]). Let M be a compact manifold without conjugate and
visibility universal covering M̃ . Then for every θ, ξ ∈ T1M̃ such that θ ̸∈ F̃ cu(ξ)
and ξ ̸∈ F̃ s(θ), there exists η1, η2 ∈ T1M̃ satisfying

F̃ s(θ) ∩ F̃ cu(ξ) = I(η1) F̃ s(ξ) ∩ F̃ cu(θ) = I(η2).

It is straightforward to transform these intersections into intersections
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of unstable horospherical leaves and central stable sets. More precisely, there
exist t1, t2 ∈ R such that

F̃ cs(θ) ∩ F̃u(ξ) = I(ϕt1(η1)) F̃ cs(ξ) ∩ F̃u(θ) = I(ϕt2(η2)).

From now on, we will refer to all the above intersections as heteroclinic
connections. Although the heteroclinic connections looks very much like a local
product, this is not generally true. Since the intersections are classes I(η). For
a non-expansive η ∈ T1M̃ , I(η) is a non-trivial class hence the intersection is
not unique. To obtain a true local product, in Chapter 3 we collapse non-trivial
classes onto single points.

We finish the section by looking at the weak hyperbolic behavior of the
horospherical leaves. Recall that for a compact manifold of negative curvature,
its geodesic flow is uniformly hyperbolic. This provides invariant submanifolds
with hyperbolic behavior. Moreover, these invariant submanifolds agree with
the horospherical leaves. However, for a general compact manifold without
conjugate points, its geodesic flow may not be uniformly hyperbolic because
there may be regions with no hyperbolic behavior. Despite this, the horo-
spherical leaves still have some weak hyperbolic properties: for points starting
in the same stable horospherical leaf, the distance between their future orbits
is bounded.

Proposition 2.3.7 ([25]). Let M be a compact manifold without conjugate
points and visibility universal covering M̃ . Then, there exists A,B > 0 such
that for every θ ∈ T1M̃ and every η ∈ F̃ s(θ),

ds(ϕt(θ), ϕt(η)) ≤ Ads(θ, η) +B, for every t ≥ 0.

A similar statement holds for η ∈ F̃u(θ) considering t ≤ 0.

2.3.7
Jacobi fields

Jacobi fields are one of the most important local objects for the study of
geodesic flows. Their importance lies in the fact that these fields are directly
related to the derivative of the geodesic flow. In this section we introduce
Jacobi fields and their basic properties. The references of the section are [33]
and [36].

Let (M, g) be a compact Riemannian n-manifold without conjugate
points and ∇ be its Levi-Civita connection. Recall that ∇ provides a covariant
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derivative of vector fields along curves. Let β ⊂ M be a curve and X be a
vector field along β. We denote by

X ′ = ∇β̇X

the covariant derivative of X along β. Given θ ∈ T1M , let γθ be the geodesic
induced by θ. A vector field J along γθ is called a Jacobi field if J satisfies
the Jacobi equation

J ′′(t) +R(γ̇θ(t), J(t))γ̇θ(t) = 0,

where R is the curvature tensor induced by g. The Jacobi fields have a close
relationship with the tangent bundle of TM and T1M . From Section 2.1, recall
the decomposition of TM into horizontal and vertical subspaces. Thus, let
θ = (p, v) ∈ TM and γθ be the geodesic induced by θ. For every ξ ∈ TθTM ,
its decomposition into horizontal and vertical components reads

ξ = (ξh, ξv) ∈ TpM × TpM.

Using this decomposition, we denote by Jξ the unique Jacobi field along γθ

with initial conditions

Jξ(0) = ξh and J ′
ξ(0) = ξv.

From linearity of the Jacobi equation, the assignation

ξ 7→ Jξ

is linear. Conversely, for every Jacobi field J along γθ, we assign linearly to J ,
the unique vector ξ ∈ TθTM such that

ξ = (J(0), J ′(0)).

The above maps are inverses of each other. Moreover, the map ξ 7→ Jξ is a
linear isomorphism between TθTM and Jθ.

The linear isomorphism between TθTM and Jθ can be restricted to T1M .
The image of T1M under this isomorphism is the family of orthogonal Jacobi
fields along γθ. We first observe that for every θ ∈ T1M , γ̇θ is a trivial solution
of the Jacobi equation. Since we are not interested in this solution, we eliminate
all Jacobi fields with parallel component along γ̇θ. A Jacobi field J on γθ is
called orthogonal if J(t) is orthogonal to γ̇θ(t) for every t ∈ R. A direct
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calculation shows that a Jacobi field J is orthogonal if and only if

⟨J(0), θ⟩ = ⟨J ′(0), θ⟩ = 0.

This means that both J(0) and J ′(0) are orthogonal to γ̇θ(0) = θ. Thus the
set of orthogonal Jacobi fields J ⊥

θ is a vector subspace of dimension 2n − 2.
This characterization is related with a vector subspace of TθTM . If ξ ∈ TθTM ,
then ξ ∈ S(θ) ⊂ TθT1M if and only if

⟨Jξ(0), θ⟩ = ⟨J ′
ξ(0), θ⟩ = 0,

where S(θ) ⊂ TθT1M is the orthogonal complement of the vector subspace
G(θ). We put all together in the following proposition.

Proposition 2.3.8 ([36]). Let M be a compact manifold without conjugate
points. Then

1. For every θ ∈ TθTM , the map ξ 7→ Jξ is a linear isomorphism between
the 2n-dimensional vector spaces TθTM and Jθ.

2. For every θ ∈ TθT1M , the map ξ 7→ Jξ is a linear isomorphism between
the (2n− 2)-dimensional vector spaces S(θ) ⊂ TθTM and J ⊥

θ .

From now on, we only consider orthogonal Jacobi fields.

The correspondence given by the above linear isomorphism can be
extended to Jacobi fields evolving in time, with the help of the geodesic flow.
Let θ ∈ T1M and ξ ∈ S(θ) ⊂ TθT1M . Note that for every t ∈ R, the Jacobi
field Jξ defines a unique tangent vector

ξ(t) = (Jξ(t), J ′
ξ(t)) ∈ S(ϕt(θ)) ⊂ Tϕt(θ)T1M.

This correspondence uses the above linear isomorphisms at each point ϕt(θ)
for every t ∈ R. Thus, while Jacobi equation evolves Jξ(t) and J ′

ξ(t) over the
time, the following questions arise:

– is there any mechanism that evolves ξ(t) over the time through the
tangent spaces Tϕt(θ)T1M?

– In addition, is this mechanism compatible with the linear isomorphisms
at each point ϕt(θ)?

The following proposition answers the questions: the counterpart mechanism
to the Jacobi equation is the geodesic flow derivative.
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Proposition 2.3.9 ([36]). Let M be a compact manifold without conjugate
points and θ ∈ T1M . For every ξ ∈ S(θ) ⊂ TθT1M and every t ∈ R,

dθϕt(ξ) = (Jξ(t), J ′
ξ(t)).

We see the correspondence in the diagram

TθT1M̃ Tϕt(θ)T1M̃

J ⊥
θ J ⊥

ϕt(θ)

dθϕt

Jacobi equation

ξ = (Jξ(0), J ′
ξ(0)) dθϕt(ξ) = (Jξ(t), J ′

ξ(t))

Jξ J tξ

dθϕt

shift by a time t

,

where J tξ is the Jacobi field Jξ shifted by a time t: for every s ∈ R,

J tξ(s) = Jξ(s+ t).

Thus Jξ starts at θ while J tξ starts at ϕt(θ).

An important consequence of the proposition arises from the use of Sasaki
metric:

∥dθϕt(ξ)∥2
s,v = ∥Jξ(t)∥2

p + ∥J ′
ξ(t)∥2

p (2.2)
While Jacobi equation states that a Jacobi field is related to the infinitesimal
variation of geodesics, this equation says that a Jacobi field and its derivative is
related to the infinitesimal variation of orbits of the geodesic flow. This result
allows relating the geometry of the manifold to the dynamical properties of the
geodesic flow. One approach to the dynamics of the geodesic flow analyzes the
asymptotic behavior of the derivative of the geodesic flow. Equation (2.2) says
that this analysis can be done through Jacobi Fields. The asymptotic behavior
of the derivative is related to dynamical properties such as hyperbolicity and
Lyapunov exponents.

To end the section, we see that Jacobi fields provide an alternative
characterization of manifolds without focal points and manifolds without
conjugate points. We note that these manifolds admit regions of curvature
positive. Let M be a compact manifold, we say that

– M has no focal points if for every Jacobi field J with J(0) = 0, |J(t)|
is increasing for t ≥ 0.

– M has no conjugate points if for every Jacobi field J with J(0) = 0,
|J(t)| does not vanish for t ̸= 0.

We see that the definitions are based on the asymptotic behavior of certain
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Jacobi fields. In Subsection 2.3.10, we will review the asymptotic behavior of
certain Jacobi fields, for different types of manifolds.

2.3.8
Green bundles

In this section we introduce the Green bundles, their properties and some
relationships with other concepts.

Green bundles were first used by Hopf [12] in 1948 to show that a torus
without conjugate points is flat. To extend this result to higher dimensions, in
1958 Green [32] defined the Green bundles in full generality. For compact
manifolds without conjugate points, in 1973 Eberlein [33] showed that a
geodesic flow is Anosov if and only if the Green bundles are transverse
everywhere. In 1977 Eberlein, Heintze-Imhof and Eschenburg used Green
bundles to prove some regularity of horospheres in several classes of manifolds.
From these results, a new family of manifolds defined through Green bundles
emerged: the manifolds of bounded asymptote. In 1982, Freire and Mañé [51]
related the unstable Green bundle to the metric entropy of Liouville measure
for compact manifolds without conjugate points. Based on this work, in 1986
Knieper [15] connected the positive metric entropy of the Liouville measure to
the linear independence of Green bundles. In several papers, Ruggiero and
his collaborators used the continuity of Green bundles to obtain stronger
conclusions on the dynamics and geometry of geodesic flows. All these works
make clear the importance of Green bundles in the study of the geodesic flows.

We first define the stable and unstable Jacobi fields. These objects arise
as asymptotic limit fields of Jacobi fields with same initial condition. Let M
be a compact n-manifold without conjugate points, θ = (p, v) ∈ T1M and γθ

be the geodesic induced by θ. For every w ∈ v⊥ ⊂ TpM and every T ∈ R,
consider the Jacobi field JT ∈ Jθ with boundary conditions

JT (0) = w and JT (T ) = 0.

Hopf [12] and Green [32] showed that the limits when T → ±∞ always exist.
Thus, we call

Js = lim
T→∞

JT and Ju = lim
T→−∞

JT ,

the stable and unstable Jacobi fields with initial condition w, because Js(0) =
Ju(0) = w. These Jacobi fields never vanish. Moreover, every stable and
unstable Jacobi field is always orthogonal to γθ.
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We now introduce the Green bundles. Denote by J s
θ and J u

θ the vector
subspaces of stable and unstable Jacobi fields along γθ. Since stable and
unstable Jacobi fields are defined for every vector orthogonal to v, J s

θ and
J u
θ are (n − 1)-dimensional vector subspaces of Jθ. Proposition 2.3.8 allows

us to lift J s
θ and J u

θ to (n− 1)-dimensional vector subspaces Gs(θ) and Gu(θ)
of TθT1M . The collection of these vector subspaces give rise to the stable and
unstable Green bundles Gs and Gu:

θ 7→ Gs(θ) and θ 7→ Gu(θ).

We call Gs(θ) and Gu(θ) the stable and unstable Green subspaces at θ.

These notations are inspired by the Anosov geodesic flow of compact
manifolds of negative curvature. More precisely, consider a hyperbolic set
X ⊂ T1M . For every θ ∈ X, Gs(θ) and Gu(θ) agree with the stable and
unstable dynamical subspaces Es(θ) and Eu(θ) respectively. Furthermore,
Gs(θ) and Gu(θ) are tangent to the stable and unstable horospherical leaves
F s(θ) and Fu(θ). However, in general Green bundles may not be tangent to
horospherical leaves as Ballmann-Brin-Burns showed [52].

We now discuss some properties of Green bundles. In 1972, Eberlein [33]
formalized the basic properties of Green bundles.

Proposition 2.3.10. Let M be a compact n-manifold without conjugate
points. Then, the Green bundles are (n − 1)-dimensional measurable bundles
on TTM , invariant by the derivative of the geodesic flow.

We say that Green bundles are continuous if Gs(θ) and Gu(θ) depend
continuously on θ ∈ T1M in the open-compact topology of T1M . This property
holds for manifolds of non-positive curvature and manifolds without focal
points. However, Ballman-Brin-Eberlein [52] constructed examples of high
genus compact surfaces without conjugate points whose Green bundles are
not continuous.

Eberlein [33] gave a useful criteria to identify stable and unstable Jacobi
fields. This criteria says that every nonzero Jacobi field that is bounded in the
future(past) is actually a stable(unstable) Jacobi field.

Proposition 2.3.11. Let M be a compact manifold without conjugate points.
Then, every Jacobi field J with ∥J(t)∥ ≤ C for every t ≥ 0 (t ≤ 0) and some
C > 0, is a stable (unstable) Jacobi field.

In fact, for a large family of manifolds, Eberlein [33] characterized all
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stable and unstable Jacobi fields by this criteria. This family includes manifolds
of non-positive curvature and manifolds without focal points.

Green bundles are related to the derivative of geodesic flow. Let θ ∈ T1M

and ξ ∈ S(θ) ⊂ TθT1M . From Equation (2.2) of Subsection 2.3.7, it follows
that for every t ∈ R,

∥Jξ(t)∥ ≤ ∥dθϕt(ξ)∥.

Eberlein showed that if we restrict ourselves to vectors in Green bundles, the
induced stable and unstable Jacobi fields are comparable to the derivative of
the geodesic flow.

Proposition 2.3.12 ([33]). Let M be a compact manifold without conjugate
points. Then, there exists K > 0 such that for every vector ξ ∈ Gs ∪ Gu and
every t ∈ R,

∥Jξ(t)∥ ≤ ∥dϕt(ξ)∥ ≤ K∥Jξ(t)∥.

Thus, we can work with stable and unstable Jacobi fields instead of the
derivative of the geodesic flow. Knowing the behavior of these fields, one could
know the asymptotic behavior of the derivative of the geodesic flow. Thus, it is
natural to wonder about the asymptotic behavior of stable and unstable Jacobi
fields. These have different behavior depending on the manifolds considered.
We will see this in the next section.

We now mention some relations of Green bundles to important objects
defined above. In connection with the expansive set R0 of Subsection 2.3.6, we
define

R1 = {θ ∈ T1M : Gs(θ) ∩Gu(θ) = {0}},

that is, the set where Green bundles are linearly independent or transverse.
From the literature, it is known that

R1 ⊂ R0

in special cases: manifolds of negative curvature [27], manifolds of non-positive
curvature [28] and manifolds without focal points [29]. This is because, in
these cases, Green bundles are tangent to horospherical leaves everywhere. We
explain this property below.

Let X ⊂ T1M be a set where the horospherical foliations have tangent
spaces. We say that Green bundles are tangent to horospherical foli-
ations on X if for every η ∈ X, Gs(η) and Gu(η) are tangent to F s(η) and
Fu(η) respectively.
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If Green bundles are tangent to horospherical foliations on R1, then
R1 ⊂ R0. Indeed, suppose that for every θ ∈ R1, Gs(θ) and Gu(θ) are tangent
to F s(θ) and Fu(θ). Since Gs(θ) and Gu(θ) are transverse at θ, so are F s(θ)
and Fu(θ). Thus, F s(θ)∩Fu(θ) = {θ}. By definition given in Subsection 2.3.6,
θ ∈ R0. We will return to this topic in Chapter 4.

2.3.9
Uniform global properties of the universal covering of compact manifolds
without conjugate points

This subsection introduces some uniform global properties of the univer-
sal covering, i.e., the global geometry of compact manifolds without conjugate
points. We also see some consequences of these properties.

The global geometry of compact manifolds without conjugate points
deals with the geometric properties in the universal covering of the manifold.
Poincaré and Hadamard were among the first to study the global properties
of geodesics in the universal covering. Some examples of geometric properties
in the universal covering are:

– Morse’s shadowing.

– Divergence of geodesic rays.

– Horospheres and horospherical leaves.

– Visibility condition.

– The cone topology for the boundary of the universal covering.

– Gromov hyperbolic groups.

– Quasi convexity.

From previous subsections, we know that some of these properties allows to
obtain dynamical properties of the geodesic flow.

Before mentioning some consequences of the divergence of geodesic rays,
we will see that divergence is implied by the continuity of Green bundles. We
first define radial Jacobi fields. LetM be a compact manifold without conjugate
points and γ ⊂ M be a geodesic. A Jacobi field J along γ is called radial if
J vanishes at a single point. We say that radial Jacobi fields diverge if
for every θ ∈ T1M̃ , every A > 0, and every radial Jacobi field J on γθ there
exists T (θ, A) > 0 such that ∥J(t)∥ ≥ A for every t ≥ T . If T (θ, A) does
not depend on θ, we say that radial Jacobi fields diverge uniformly. We next
restate Theorem 3.1 of Ruggiero’s work [17].
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Theorem 2.19. Let M be a compact manifold without conjugate points whose
Green bundles are continuous. Then, radial Jacobi fields diverge uniformly.

Eberlein [33] pointed out that this property yields the divergence of
geodesic rays. Thus, uniform divergence of radial Jacobi fields implies uniform
divergence of geodesic rays. This is proposition 3.6 of [17].

Proposition 2.3.13. Let M be a compact manifold without conjugate points
and M̃ be its universal covering. If Green bundles are continuous then geodesics
rays diverge uniformly in M̃ .

Since Green bundles are continuous for manifolds of non-positive cur-
vature and manifolds without focal points, geodesic rays diverge uniformly
in these manifolds. Recall that Green [11] proved the uniform divergence
of geodesic rays for compact surfaces without conjugate points and genus
greater than one. Eberlein [33] showed the divergence of geodesic rays for
n-dimensional visibility manifolds, although this divergence is not uniform in
general. In the family of compact manifolds without conjugate points, Rug-
giero [53] found a useful characterization of uniform divergence of geodesic
rays from the continuity of horospherical foliations.

Proposition 2.3.14. Let M be a compact manifold without conjugate points
and M̃ be its universal covering. Then geodesic rays diverge uniformly in M̃ if
and only if F̃ s and F̃u are continuous foliations by Lipschitz leaves, invariant
by the geodesic flow.

Thus F̃ s and F̃u are continuous invariant foliations for manifolds of
non-positive curvature, manifolds without focal points and compact surfaces
without conjugate points and genus greater than one.

We now see a characterization of visibility manifolds in terms of uniform
divergence of geodesic rays and Gromov hyperbolic manifolds. We first intro-
duce Gromov hyperbolic spaces. Let (X, d) be a metric space. Let p, q ∈ X, a
geodesic segment joining p to q is defined as an isometry γ : [0, d(p, q)] → X

with γ(0) = p and γ(d(p, q)) = q. We say that (X, d) is a geodesic space
if for every two points in X there exists a geodesic segment joining them. A
geodesic triangle with vertices x, y, z ∈ X is a union of three geodesic segments
joining respectively x to y, y to z and z to x. A complete geodesic space (X, d)
is called Gromov hyperbolic if there exists δ > 0 such that every geodesic
triangle T satisfies: for every point x in a given side of T , the distance from x

to the union of the other two sides is at most δ.
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Clearly Gromov hyperbolic spaces are fairly general metric spaces. They
characterize δ-uniformly the geodesic triangles of the space. We know that
some Riemannian manifolds may be complete geodesic spaces when considered
as metric spaces with the Riemannian distance. So, although it is not neces-
sary that Gromov hyperbolic spaces have an underlying Riemannian metric,
Riemannian manifolds may be Gromov hyperbolic spaces. In fact, Gromov
hyperbolic spaces are inspired by the properties of geodesic triangles of hyper-
bolic geometry. Thus, the universal covering of compact manifolds of negative
curvature are Gromov hyperbolic spaces. Another example is the universal
covering of compact surfaces without conjugate points and genus greater than
one. Another source of Gromov hyperbolic spaces that come from Riemannian
manifolds is given by Ruggiero’s characterization of visibility manifolds.

Theorem 2.20 ([54, 26]). Let M be a compact manifold without conjugate
points and M̃ be its universal covering. Then, M̃ is a visibility manifold if and
only if M̃ is Gromov hyperbolic and geodesic rays diverge uniformly in M̃ .

So, every complete visibility manifold is automatically a Gromov hyper-
bolic space. This is the case of the universal covering of compact manifolds
without conjugate points and expansive geodesic flow [54].

For a better understanding of the strips of bi-asymptotic geodesics
defined in Subsection 2.3.6, we introduce the quasi-convexity property. This
property says that the distance between geodesic segments is controlled by the
distance between the ends of the segments. Let M be a compact manifold
without conjugate points. We say that M is quasi-convex if there exist
constants A,B > 0 such that for every two geodesics

γ : [t1, t2] → M̃, β : [s1, s2] → M̃,

the Hausdorff distance is defined by

dH(γ, β) ≤ A sup{d(γ(t1), β(s1)), d(γ(t2), β(s2))} +B.

This property holds for the universal covering of several manifolds: manifolds of
non-positive curvature, manifolds without focal points and compact surfaces
without conjugate points of genus greater than one. Moreover, it holds for
Gromov hyperbolic spaces that come from Riemannian manifolds.

Proposition 2.3.15 ([25, 24]). Let M be a compact manifold without conju-
gate points and Gromov hyperbolic universal covering M̃ . Then M̃ is quasi-
convex.
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The combination of quasi-convexity with uniform divergence of geodesic
rays, provides a general framework for establishing some asymptotic properties
of geodesics. The following proposition of Rifford and Ruggiero [55] says that
strips of bi-asymptotic geodesics have a good topological decomposition as a
product of sets.

Proposition 2.3.16. Let M be a compact manifold without conjugate points
and M̃ be its universal covering. If M̃ is quasi-convex and geodesic rays diverge
uniformly, then for every θ ∈ T1M̃ ,

1. The set I(θ) is a compact, connected set.

2. There exists L > 0 such that the diameter of I(γ̇θ(t)) is bounded above
by L for every t ∈ R.

3. S(γθ) is homeomorphic to the product I(θ) × R.

This proposition is a topological generalization of the flat strip theorem,
that in the case of compact manifolds without focal points yields that S(γθ) is
isometric to a flat strip of R2.

In particular, this result also implies that Ĩ(θ) is a compact connected
set for every θ ∈ T1M̃ . So, this proposition tell us more about the intersec-
tion of horospheres and horospherical leaves. For general compact manifolds
without conjugate points, these intersections in higher dimension may have a
complicated behavior.

Finally, we highlight that these general hypothesis imply that asymp-
toticity and Busemann asymptoticity are equivalent. Indeed, if M̃ is quasi-
convex then Busemann asymptoticity implies asymptoticity. The reverse im-
plication holds if we assume divergence of geodesic rays.

Theorem 2.21 (Lemma 2.9 of [55]). Let M be a compact manifold without
conjugate points and M̃ be its universal covering. If M̃ is quasi-convex and
geodesic rays diverge uniformly, then for every θ ∈ T1M̃ , a geodesic β is
asymptotic to γθ if and only if β is a Busemann asymptote of γθ.

This equivalence has important consequences in the intersection of the
stable and unstable horospherical leaves. This is because asymptoticity con-
cepts help to characterize the intersection of horospherical leaves. Indeed, if a
geodesic β starts at H+θ and β is bi-asymptotic to γθ, then β(0) must belong
to I(θ). We can lift this relationship between asymptoticity and intersection,
to T1M̃ .
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Corollary 2.3.1 ([55]). Let M be a compact manifold without conjugate points
and M̃ be its universal covering. Assume that M̃ is quasi-convex and geodesic
rays diverge uniformly. For every θ ∈ T1M̃ , if η = (q, w) ∈ F̃ s(θ) and γη is
bi-asymptotic to γθ, then

η ∈ I(θ) = F̃ s(θ) ∩ F̃u(θ) and q ∈ I(θ) = H+(θ) ∩H−(θ).

This result simplifies several arguments because it allows to find points
in the intersection of horospherical leaves using bi-asymptoticity of orbits.

2.3.10
The behavior of stable Jacobi fields for manifolds without conjugate points

In this subsection we mention the behavior of stable Jacobi fields for
different subfamilies of compact manifolds without conjugate points.

We first recall the definition of manifolds without focal points and
manifolds without conjugate points, in terms of Jacobi fields. Let M be a
compact manifold, let γ ⊂ M be a geodesic and J be a radial Jacobi field
along γ with J(0) = 0.

– M has no focal points if and only if |J | is a convex function and |J | is
non-decreasing for t ≥ 0.

– M has no conjugate points if and only if |J | does not vanish for t ̸= 0.

Clearly, there is inclusion among these families of manifolds. Gulliver [56]
constructed explicit examples showing that the inclusion is strict.

From Subsection 2.3.8, stable and unstable Jacobi fields always exist in
compact manifold without conjugate points. Furthermore, for a large family of
manifolds, the stable and unstable Jacobi fields are exactly the fields that are
bounded in the future or in the past. But for certain subfamilies of manifolds
we know more about the behavior of the stable and unstable Jacobi fields.

Let M be a compact manifold. Considering the Riemannian metric of
M , we have the following chain of inclusions: M has

Negative curvature ⊂ no focal points ⊂ no conjugate points.

Let γ ⊂ M be a geodesic and J be a stable Jacobi field along γ. The behavior
of stable Jacobi fields for these manifolds is as follows.

– M has negative Curvature: |J(t)| is exponentially decreasing as t → ∞.
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– M has no focal points: |J(t)| is a convex non-increasing function as
t → ∞.

– M has bounded asymptote: there exists an universal constant C > 0
such that for any stable Jacobi field J , |J(t)| ≤ C|J(0)| for every t ≥ 0,
i.e., stable Jacobi fields are uniformly bounded in the future.

– M has no conjugate points: |J(t)| never vanishes on t ∈ R (the most
general behavior obtained by Eberlein [33]).

Analogous behaviors exist for unstable Jacobi fields when t ≤ 0. The second-
last item introduces an important family of manifolds. These manifolds are
widely studied due to the good asymptotic behavior of their stable Jacobi
fields. Recall that Eberlein [33] showed that the first three families are included
in the family of manifolds with continuous Green bundles.

Note that the more general the family, the less controlled is the asymp-
totic behavior of the Jacobi stable fields. For general compact manifolds with-
out conjugate points, the asymptotic behavior of Jacobi stable fields can be
very complicated.
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3
Existence of a unique measure of maximal entropy for com-
pact surfaces

In this chapter we give another proof of the following result in the ergodic
theory of geodesic flows on compact surfaces.

Theorem 3.1. Let M be a compact surface without conjugate points of genus
greater than one and ϕt be its geodesic flow. Then ϕt has a unique measure of
maximal entropy.

The existence and uniqueness of the measure of maximal entropy is a
problem that appeared in the 1960s. In 1964, Parry [57] gave the formula for
the unique measure of maximal measure entropy for irreducible subshifts of
finite type. For compact manifolds of negative curvature, in 1969 Margulis
[58] constructed an invariant measure using the stable and unstable invariant
submanifolds provided by Anosov-Sinai’s development of the theory of hyper-
bolic flows. Later, Bowen showed that this measure is actually the measure
of maximal entropy for the geodesic flow. Moreover, using symbolic dynamics
Bowen [59, 60] proved the existence and uniqueness of the measure of maxi-
mal entropy for hyperbolic flows which includes the case of Margulis. Later,
in 1977 Bowen and Franco [20], proved the existence and uniqueness of the
measure of maximal entropy for continuous flows satisfying expansivity and
the specification property. In 1985, Katok [61] conjectured the existence and
uniqueness of the measure of maximal entropy for compact rank-1 manifolds of
non-positive curvature. This conjecture was proved by Knieper [62] in 1998, us-
ing Patterson-Sullivan measures. In 2015, Bosche [63] extended the conclusion
to compact manifolds without conjugate points but assuming the expansiv-
ity of the geodesic flow. In 2016, Climenhaga and Thompson [19] extended
Bowen-Franco’s criteria to show the existence and uniqueness of the measure
of maximal entropy for continuous flows. They proved the theorem assuming
non-uniform generalized versions of expansivity and specification. Using this
criterion, in 2018 Burns-Climenhaga-Fisher-Thompson [64] showed the exis-
tence and uniqueness of equilibrium states for compact rank-1 manifolds of
non-positive curvature. In 2018, Gelfert and Ruggiero [13] proved the exis-
tence of a unique measure of maximal entropy for compact surfaces without

DBD
PUC-Rio - Certificação Digital Nº 1812631/CA



Chapter 3. Existence of a unique measure of maximal entropy for compact
surfaces 63

focal points and genus greater than one. They used another approach based
on the study of an expansive flow semi-conjugate to the geodesic flow. Shortly
after, they extended the conclusion to compact surfaces without conjugate
points and genus greater than one, by assuming a geometrical hypothesis:
the continuity of Green bundles [14]. Following Climenhaga-Thompson’s cri-
terion, in 2020 Chen-Kao-Park [65] recovered Gelfert-Ruggiero theorem for
closed surfaces without focal points. On the other hand, following Knieper’s
approach, in 2020 Liu-Wang [66] proved the existence of a unique measure
of maximal entropy for compact rank-1 manifolds without focal points. In
2021, Climenhaga-Knieper-War [18] extended the result to a large family of
compact manifolds without conjugate points, which includes the case of com-
pact surfaces without conjugate points and genus greater than one. They also
used Climenhaga-Thompson’s criterion to show the theorem. We give another
proof of Theorem 3.1 based on an extension of Gelfert-Ruggiero’s strategy to
the case of compact surfaces without conjugate points and genus greater than
one. Gelfert-Ruggiero’s approach differs from Climenhaga-Knieper-War’s one,
giving a more direct proof of the statement.

To prove Theorem 3.1, we define a quotient flow on a compact metric
space, i.e., the quotient model. We prove some dynamical properties for this
quotient model.

Theorem 3.2. Let M be a compact surface without conjugate points and genus
greater than one, and ϕt be its geodesic flow. Then, there exists a continuous
flow ψt acting on a compact metric space X such that

1. ψt is time-preserving semi-conjugate to ϕt.

2. X has topological dimension at least two.

3. ψt is topologically mixing, expansive and has a local product. Moreover
ϕt has the pseudo-orbit tracing and specification properties.

This theorem extends analogous results obtained in Gelfert-Ruggiero’s
work [13, 14] for a compact higher genus surface S in two cases:

– S has no focal points.

– S has no conjugate points and the Green bundles are continuous.

We highlight that we deal with compact surfaces without conjugate points of
genus greater than one and no further hypothesis. The proof of Theorem 3.2
follows Gelfert-Ruggiero’s strategy.

DBD
PUC-Rio - Certificação Digital Nº 1812631/CA



Chapter 3. Existence of a unique measure of maximal entropy for compact
surfaces 64

We organize the chapter as follows. Section 3.1 discusses the problems
that arise when we try to extend Gelfer-Ruggiero’s approach to our setting.
In Section 3.2, we introduce all the elements of the quotient model from an
equivalence relation in T1M . In addition we prove item 1 of Theorem 3.2.
Section 3.3 builds a basis for the topology of X and shows that X is a compact
metrizable space. Section 3.5 is devoted to estimate the topological dimension
of X. Section 3.4 constructs a covering space for X. Section 3.6 is concerned
with the dynamical properties of the quotient model. Furthermore, we prove
item 3 of Theorem 3.2. Section 3.7 shows the uniqueness of the measure of
maximal entropy for the geodesic flow.

3.1
Some problems that arise when Green bundles are not continuous

In this section we assume a compact surface without conjugate points
and genus greater than one. We discuss some problems that appear when
Green bundles are not continuous. That is, when trying to extend Gelfert-
Ruggiero’s work [13, 14] to our setting. We also mention how we deal with
these problems. In this way we highlight the new contributions of this work
regarding the previous articles by Gelfert and Ruggiero.

The continuity of Green bundles mainly provides the following conse-
quences:

1. The set R1 is open and dense in T1M .

2. Green bundles are tangent to the horospherical foliations hence R1 ⊂ R0.

We first mention the loss of global methods that use the covering space
Π : X̃ → X. From items 1 and 2, it follows that there exists θ ∈ T1M

such that F s(θ) and Fu(θ) are included in R0. That is, F s(θ) and Fu(θ)
are composed only of expansive points. This condition allows us to show that
the quotient spaces X and X̃ are topological 3-manifolds. Moreover, in this
setting X and X̃ are smooth 3-manifolds by [67]. Thus, we can endow X with
a Riemannian metric g. Using the covering map Π : X̃ → X, the pullback
metric Π∗g is a Riemannian metric on X̃. In particular, the map Π would be
a local isometry hence a Riemannian covering map satisfying the following
commutative diagram

T1M̃ T1M

X̃ X

dπ

χ̃ χ

Π

. (3.1)

DBD
PUC-Rio - Certificação Digital Nº 1812631/CA



Chapter 3. Existence of a unique measure of maximal entropy for compact
surfaces 65

We provide X̃ and X with Riemannian distances called quotient distances. So,
we can state asymptotic relationships between Sasaki and quotient distance
on the covering spaces T1M̃ and X̃. Global methods refer to the use of
relationships between covering spaces T1M̃ and X̃ as tools to prove relevant
results. In this way, we can show some properties of the quotient flow ψt such
as:

– Expansivity.

– For every θ ∈ T1M , χ(F s(θ)) and χ(Fu(θ)) are the strong stable and
strong unstable sets of [θ] with respect to the quotient flow ψt.

Local methods deal with the relationships between the base spaces T1M and
X. The local approach lacks some important tools. For example, we cannot
talk about the divergence of the distance between orbits in the future (or in
the past).

Without assuming the continuity of Green bundles, the quotient spaces
X̃ and X are not necessarily topological 3-manifolds. Thus, we cannot give
Riemannian metrics to X̃ and X such that Π is a Riemannian covering map.
Therefore we do not dispose of global methods in our setting.

To deal with this problem, we rely on local methods. In Section 3.3
we show that the quotient spaces X̃ and X are metric spaces and hence have
lower regularity than in Gelfert-Ruggiero’s work. Despite this, we show that the
quotient spaces have topological dimension at least 2 in Section 3.5. Although
we do not have global methods, we show that Π is still a covering map satisfying
the above diagram 3.1 in Section 3.4. Section 3.6 deals with the dynamical
properties of the quotient flow ψt. There, we use local arguments in X and
T1M to prove the expansivity and local product structure of ψt. In particular,
we show that for every θ ∈ T1M , χ(F s(θ)) and the strong stable set of [θ] ∈ X

agree when restricted to the closed ball B([θ], r0). An analogous statement is
true for the strong unstable set. The value r0 comes from a local estimate.
In Gelfert-Ruggiero’s work [13], they used global methods to prove the full
coincidence of the above sets.

Another important consequence of the above items 1 and 2 guarantees
that T1M \ R1 is a compact set containing the non-expansive set T1M \ R0.
In previous works, Gelfert and Ruggiero used this property to estimate the
topological entropy of T1M \ R1. The estimate was performed using the
variational principle for entropy. Indeed, they used Ruelle’s inequality to show
that the metric entropy vanishes, for every flow-invariant measure supported
on T1M \ R1. Hence, applying the variational principle to the flow-invariant
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compact metric space T1M \ R1, they obtained that T1M \ R1 has zero
topological entropy. This property is fundamental to apply Buzzi-Fisher-
Sambarino-Vasquez’s Theorem [68]. This result grants the uniqueness of the
measure of maximal entropy of the geodesic flow of the surface.

In our case, to apply Buzzi-Fisher-Sambarino-Vasquez’s Theorem we rely
on a classical Katok’s argument for an ergodic measure µ with positive met-
ric entropy. Indeed, Ruelle’s inequality implies that µ has non-zero Lyapunov
exponents. Thus, we can apply Pesin’s theory to build transverse local sub-
manifolds with weak hyperbolic behavior. This fact entails that the expansive
set R0 has positive µ-measure. This conclusion helps to fulfill Buzzi-Fisher-
Sambarino-Vasquez’s hypotheses and so guarantees the uniqueness of the mea-
sure of maximal entropy in our setting. This is done in more detail in Section
3.7.

3.2
The quotient model

In the remainder of this chapter we will assume that (M, g) is a com-
pact surface without conjugate points and genus greater than one. This section
introduces quotient models for the geodesic flows acting on T1M̃ and T1M re-
spectively. We give some basic properties of the quotient models. Furthermore,
we show how the quotient models are related to the corresponding geodesic
flows. The relationships between the geodesic flows on T1M̃ and T1M will
induce analogous relationships in the corresponding quotient models.

For general geodesic flows, a basic problem is to dealing with strips of
bi-asymptotic orbits. These strips are regions where there is no hyperbolicity.
Moreover, the geodesic flows are not expansive in these strips. This is clear for
the case of compact manifolds without focal points. In these manifolds, the
strips of bi-asymptotic geodesics are flat strips hence their lifts are strips with
a rigid behavior. Therefore, the strips of bi-asymptotic orbits are a kind of
obstructions for the flow to have better dynamical properties.

To deal with strips of bi-asymptotic orbits, we introduce a quotient model
related to the geodesic flow. This model consists of a quotient space and a
quotient flow: a continuous flow on a compact metric space. The quotient space
is induced by a special equivalence relation on T1M , while the quotient flow is
induced by the geodesic flow. The equivalence relation collapses the strips of
bi-asymptotic orbits into single orbits of the quotient flow. Thus, by collapsing
the obstructions, we hope to obtain new properties such as expansivity. Inherit
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some properties and improve some other properties of the geodesic flow.

We introduce the quotient model for the geodesic flows on T1M and T1M̃ .
The constructions follow the same ideas of Section 4 of [13]. We start with the
quotient model for the geodesic flow on T1M . Let us define the equivalence
relation on T1M . Two points θ, η ∈ T1M are equivalent θ ∼ η if, and only if,

– η ∈ F s(θ).

– if θ̃, η̃ ∈ T1M̃ are lifts of θ, η ∈ T1M respectively with η̃ ∈ F̃ s(θ̃), then
γθ̃ and γη̃ are bi-asymptotic.

Figure 3.1: The equivalence relation

To deal with this relation, we rely on the properties of the horospherical
leaves given in Section 2.3. In particular, the equivalence relation has a simpler
characterization in terms of intersections of stable and unstable horospherical
leaves. Indeed, Theorem 2.3.5 shows that these intersections are connected
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compact curves. Recall that for every η ∈ T1M ,

I(η) = F s(η) ∩ Fu(η).

Lemma 3.2.1. For every η, θ ∈ T1M , η ∼ θ if and only if η ∈ I(θ).

Proof. If η ∼ θ then there exist lifts η̃, θ̃ ∈ T1M̃ of η and θ such that η̃ ∈ F̃ s(θ̃),
and γη̃ and γθ̃ are bi-asymptotic. By Corollary 2.3.1, η̃ ∈ Ĩ(θ̃). Projecting
through dπ we get that η ∈ I(θ). Conversely, if η ∈ I(θ), for every lift η̃ of η,
there exists a lift θ̃ of θ so that θ̃ ∈ Ĩ(η̃). Thus there exist lifts η̃, θ̃ ∈ T1M̃ of
η and θ respectively such that η̃ ∈ F̃ s(θ̃), and the induced geodesics γη̃ and γθ̃
are bi-asymptotic. ■

With this characterization, we show that the relation ∼ on T1M is
actually an equivalence relation on T1M .

Lemma 3.2.2. The above relation ∼ on T1M is an equivalence relation.

Proof. We will use the alternative characterization of the relation given by
Lemma 3.2.1. Clearly, the relation is reflexive, so we deal with the property of
symmetry and transitivity. We see that η ∼ θ if

η ∈ I(θ) = F s(θ) ∩ Fu(θ).

Recall that for any F s(θ1) and Fu(θ2), if η1 ∈ F s(θ1) and η2 ∈ Fu(θ2), we
have

F s(η1) = F s(θ1) and Fu(η2) = Fu(θ2).

For the symmetry, if η ∼ θ then

F s(η) = F s(θ) and Fu(η) = Fu(θ).

So, θ ∈ F s(η) ∩ Fu(η) hence θ ∼ η. Finally, for the transitivity, if η ∼ θ and
θ ∼ ξ we see that

F s(η) = F s(θ) = F s(ξ) and Fu(η) = Fu(θ) = Fu(ξ).

Thus, η ∈ F s(ξ) ∩ Fu(ξ) hence η ∼ ξ. ■

This equivalence relation induces a quotient space X and a quotient map

χ : T1M → X

θ 7→ χ(θ) = [θ],
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where [θ] is the equivalence class of θ. While the geodesic flow and the quotient
map induce a quotient flow

ψ : R ×X → X

(t, [θ]) 7→ ψ(t, [θ]) = ϕt[θ] = [ϕt(θ)].

Thus, we have a quotient flow ϕt acting on a quotient space X, and related
to the geodesic flow through the quotient map χ. These elements form the
quotient model of the geodesic flow ϕt.

We now verify some basic properties of the quotient model. We endow
the quotient space X with the quotient topology. An immediate consequence
follows: the quotient map χ is continuous. Seeing that T1M is compact, the
continuity of χ provides that X is also compact.

Lemma 3.2.3. Let ψt be the quotient flow on the quotient space X, χ be the
quotient map, and ϕt be the geodesic flow on T1M . Then,

1. The quotient flow ψt is a well-defined continuous flow.

2. The quotient map χ is a semi-conjugacy between ϕt and ψt, which
preserves time: for every t ∈ R,

χ ◦ ϕt = ψt ◦ χ,
T1M T1M

X X.

ϕt

χ χ

ψt

Proof. Let η, ξ ∈ T1M with η ∼ ξ, hence [η] = [ξ] and η ∈ I(ξ). By the
invariance of the horospherical foliations, for every t ∈ R we have

ϕt(I(ξ)) = ϕt(F s(ξ) ∩ Fu(ξ)) = F s(ϕt(ξ)) ∩ Fu(ϕt(ξ)) = I(ϕt(ξ)).

Thus, ϕt(η) ∈ I(ϕt(ξ)) and hence ψt is well defined:

ψt[η] = [ϕt(η)] = [ϕt(ξ)] = ψt[ξ].

To show that ψt is continuous, let U be an open set in X. For every t ∈ R, we
must show that ψ−1

t (U) is an open set in X. We know that ψ−1
t (U) is open if,

and only if, χ−1(ψ−1
t (U)) is open in T1M . However, by definition of ψt we have

χ−1 ◦ ψ−1
t (U) = ϕ−1

t ◦ χ−1(U).

DBD
PUC-Rio - Certificação Digital Nº 1812631/CA



Chapter 3. Existence of a unique measure of maximal entropy for compact
surfaces 70

Since U is open and ϕt is a homeomorphism, χ−1 ◦ ψ−1
t (U) is open and hence

ψ−1
t (U) is open. Thus ψt is continuous for every t ∈ R. ■

An equivalent restatement of item 2 is to say that the quotient flow ψt

is a time-preserving factor of the geodesic flow ϕt.

Regarding the quotient map χ : T1M → X, the concept of saturation of
sets is useful for the arguments. Let A be a subset of T1M , we say that A is
saturated with respect to χ, or simply saturated, if

χ−1χ(A) = A.

This concept has an interpretation through the equivalence relation. Indeed,
observe that for every η ∈ T1M , the equivalence class of η, seen as subset of
T1M , satisfies

{ξ ∈ T1M : ξ ∼ η} = I(η).

Thus, a set A ⊂ T1M is saturated if and only if A satisfies the condition:

if η ∈ A then I(η) ⊂ A.

We mention two useful consequences of this characterization. If U is a saturated
open set of T1M then its image χ(U) is an open set ofX. The other consequence
deals with the action ϕt on saturated sets. If A ⊂ T1M is saturated then so
is ϕt(A) for every t ∈ R. This is because ϕt carries the classes I(η) ⊂ A onto
I(ϕt(η)) ⊂ ϕt(A).

We introduce the corresponding quotient model for the geodesic flow ϕ̃t

on T1M̃ . Following the equivalent definition of the relation on T1M , we say
that η, θ ∈ T1M̃ are equivalent η ∼ θ if, and only if, η ∈ Ĩ(θ). As above the
relation induces a quotient space X̃ and quotient map

χ̃ : T1M̃ → X̃

θ 7→ χ̃(θ) = [θ],

where [θ] is the equivalence class of θ. While the geodesic flow ϕ̃t induces a
quotient flow

ψ̃ : R × X̃ → X̃

(t, [θ]) 7→ ψ̃(t, [θ]) = ϕ̃t[θ] = [ϕ̃t(θ)].

Lemma 3.2.4. Let ψ̃t be the quotient flow on the quotient space X̃, χ̃ be the
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quotient map, and ϕ̃t be the geodesic flow on T1M̃ . Then,

1. The quotient flow ψ̃t is a well-defined continuous flow.

2. The quotient map χ̃ is a semi-conjugacy between ϕ̃t and ψ̃t, which
preserves time: for every t ∈ R,

χ̃ ◦ ϕ̃t = ψ̃t ◦ χ̃,
T1M̃ T1M̃

X̃ X̃.

ϕ̃t

χ̃ χ̃

ψ̃t

As above we can say that the quotient flow ψ̃t is a time-preserving factor
of the geodesic flow ϕ̃t. Thus, we have a quotient flow ψ̃t acting on a quotient
space X̃. This flow is semi-conjugate to the geodesic flow ϕ̃t through the
quotient map χ̃. Thus we have described the quotient model of the geodesic
flow ϕ̃t.

In summary, we introduced the quotient models ψ̃ and ψ of the geodesic
flows ϕ̃ and ϕ. These models are time-preserving semi-conjugate to the geodesic
flows through the quotient maps χ̃ and χ. Furthermore, similar to the case of
ϕ̃ and ϕ, the quotient models ψ̃ and ψ are time-preserving semi-conjugate
through the covering map Π. In the following sections we will study other
properties of the quotient models. We will see how improved properties of
these models can help in the study of geodesic flows.

3.3
Some basic topological properties of the quotient model

In this section we build a special basis for the quotient topology of X̃ and
X. The construction is a natural extension of the work done by Gelfert and
Ruggiero for higher genus compact surfaces without focal points (see Section
4 of [13]). As application, we show that X is a compact metrizable space.

We first build a topological basis for T1M̃ and then for T1M . Before we
start with the construction of the topological basis, we give some preparatory
remarks. Note that horospherical leaves F̃ s(η) and F̃u(η) can be identified
with R. Recall that F̃ s(η) and F̃u(η) are continuous connected 1-dimensional
sub-manifolds of T1M̃ . So, given any arc-length parametrization of F̃ s(η),
we see that F̃ s(η) is homeomorphic to R. Thus, every connected subset of
F̃ s(η) is homeomorphic to an interval of R. To simplify notation, we always
choose some arc-length parametrizations for F̃ s(η) and F̃u(η). This choice gives
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us homeomorphisms from F̃ s(η) and F̃u(η) onto R. In this way, we identify
connected subsets of F̃ s(η) and F̃u(η) with their images (intervals) through
these homeomorphisms.

We next show another ingredient for the construction: expansive points
accumulate around boundary points of nontrivial classes. In the context that
identifies connected subsets of horospherical leaves with intervals of R, the
following lemma is useful.

Lemma 3.3.1. Every interval I ⊂ R cannot be the union of disjoint closed
intervals.

The following result says that we can always find expansive points in
F̃ s(η), as close as we want, to any nontrivial class in F̃ s(η). A similar conclusion
is valid for F̃u(η).

Lemma 3.3.2. Let Ĩ(θ) be a nontrivial class for some θ ∈ T1M̃ . Then the
boundary points of Ĩ(θ) are accumulated by expansive points.

Proof. Let c : R → F̃ s(θ) be an arc-length parametrization of F̃ s(θ). Since
Ĩ(θ) is non-trivial there exist a, b ∈ R with a < b such that Ĩ(θ) = c([a, b]).
We will identify connected compact subsets of F̃ s(θ) with real intervals to
simplify notation. By contradiction suppose that the boundary point b is not
accumulated by expansive points. Thus, there exists δ > 0 such that (b, b+ δ)
does not contain expansive points. From the equivalence relation properties,
either (b, b+ δ) is a single class or it is a disjoint union of distinct classes. By
Lemma 3.3.1, (b, b + δ) must be a subset of a single class. Since classes are
closed sets we also obtain that [b, b + δ] is a subset of a single class. Thus b
is a common point of both classes hence [a, b + δ] must be a single class, a
contradiction because b is a boundary point. ■

For compact higher genus surfaces without focal points, Gelfert-Ruggiero
[13] built a basis for the quotient topology of X. Following the same procedure,
we build a similar topological basis of X̃, for compact higher genus surfaces
without conjugate points. For every θ ∈ T1M̃ , the idea is to define special
neighborhoods Ai of Ĩ(θ) such that χ̃(Ai) are even neighborhoods of [θ] ∈ X̃.
These neighborhoods χ̃(Ai) ⊂ X̃ will form the desired basis. We construct the
neighborhoods Ai in several steps:

1. We define local cross sections to the geodesic flow, containing Ĩ(θ). Thus
the action of ϕ̃t on the sections provides suitable neighborhoods of Ĩ(θ).
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2. In these cross sections, we define special intersections between stable and
unstable horospherical leaves.

3. Using these intersections we build saturated smaller cross sections con-
taining Ĩ(θ). Again the action of ϕ̃t on these sections gives saturated
neighborhoods of Ĩ(θ).

For step 1, we will see that a homeomorphism gives the desired cross section.
To build the homeomorphism for every θ ∈ T1M̃ , we rely on its vertical fiber
Vθ. Roughly speaking, we join all the stable horospherical leaves of points in
Vθ. More precisely, for every δ0, ϵ0 > 0, there exist a, b ∈ R and a map

R : (a− ϵ, b+ ϵ) × (−δ, δ) → T1M̃

satisfying the conditions:

1. For s ∈ (−δ, δ), consider a δ0-neighborhood of θ in V (θ). We denote by
R(0, s) the arc-length parametrization of this neighborhood with respect
to Sasaki metric.

2. For fixed s ∈ (−δ, δ), for every r ∈ (a−ϵ, b+ϵ) consider a ϵ-neighborhood
of R(0, s) in F̃ s(θ). We denote by R(r, s) the arc-length parametrization
of this neighborhood.

3. We require
R([a, b], 0) = Ĩ(θ) and R(0, 0) = θ.

We denote by

Σ = Σ(θ, ϵ, δ) = R((a− ϵ, b+ ϵ) × (−δ, δ))

the image of R.

The continuity of the horospherical foliations ensures that R is a homeo-
morphism. Therefore, Σ is a 2-dimensional section containing Ĩ(θ). Note that
Σ is foliated by stable horospherical leaves of points in V (θ). Since these leaves
are topologically transverse to the geodesic flow, Σ is a cross section. Finally,
for τ > 0, Brower’s open mapping theorem provides that

B = B(θ, ϵ, δ, τ) =
⋃

|t|<τ
ϕ̃t(Σ)

is an open 3-dimensional neighborhood of Ĩ(θ).
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Figure 3.2: The parametrization through the homeomorphism R

To begin step 2, note that for every η ∈ Σ, Σ contains an interval of F̃ s(η)
containing η. However, the unstable horospherical leaf F̃u(η) may intersect Σ
only at η. Since we need intervals related to F̃u(η) included in Σ, we define a
projection map

Pr : B → Σ.

For every η ∈ B, Pr(η) is the projection of η through the geodesic flow ϕ̃t.
From the properties of ϕ̃t, we see that Pr is continuous and surjective. Using
Pr, for every η ∈ Σ, we define the stable and unstable intervals in Σ,

W s(η) = F̃ s(η) ∩ Σ and W u(η) = Pr(F̃u(η) ∩B).

We can think of W s(η) and W u(η) as the projections of F̃ s(η) and F̃u(η) to
Σ. Using these intervals we define the special intersections mentioned above.
For every ξ, η ∈ Σ, we define the intersection

[ξ, η] = W s(ξ) ∩W u(η).

Lemma 3.3.3. For every ξ, η ∈ Σ, the intersection [ξ, η] = Pr(Ĩ(ζ)) is
nonempty and belongs to Σ.

Proof. Proposition 2.3.6 says that, in particular, for every ξ, η ∈ Σ,

F̃ s(ξ) ∩ F̃ cu(η) = Ĩ(ζ) for some ζ ∈ T1M̃.

If δ is small enough then Ĩ(ζ) belongs to Σ. Thus, applying the projection map
Pr to the above intersection we have

W s(ξ) ∩W u(η) = Ĩ(ζ) ∈ Σ.
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■

For step 3, we will choose four expansive points θ1, θ2, η1, η2 ∈ Σ that will
serve as vertices of the new cross section. We choose the first two. For Ĩ(θ) ∈ Σ,
Lemma 3.3.2 says that expansive points accumulate around the boundary
points of Ĩ(θ). This means that for ϵ > 0 there exists c ∈ (a−ϵ, a), d ∈ (b, b+ϵ)
such that

θ1 = R(c, 0) and θ2 = R(d, 0)

are expansive points in W s(θ).

Figure 3.3: The new cross section

To choose the last two expansive points, we define the upper and lower
region of Σ by

Σ+ = {R(r, s) : r ∈ (a−ϵ, b+ϵ), s > 0} and Σ− = {R(r, s) : r ∈ (a−ϵ, b+ϵ), s < 0}.

Pick some expansive points

η1 ∈ W u(θ1) ∩ Σ+ and η2 ∈ W u(θ2) ∩ Σ−.

Thus, the new cross section

U = U(θ, ϵ, δ, θ1, θ2, η1, η2) ⊂ Σ

is the open 2-dimensional region in Σ, bounded by W u(θ1), W u(θ2), W s(η1)
and W s(η2).

Clearly, since θ1, θ2 ∈ W s(θ) are around Ĩ(θ), we have that U contains
Ĩ(θ). Since U is bounded by stable and unstable intervals W s and W u, it
follows that if η ∈ U then Ĩ(η) ⊂ U . This means that U is saturated. As
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above, for τ > 0 Brouwer’s open mapping theorem provides that

A = A(θ, ϵ, δ, τ, θ1, θ2, η1, η2) =
⋃

|t|<τ
ϕ̃t(U)

is an open 3-dimensional neighborhood of Ĩ(θ). Since U is saturated so is A.

Thus, for every θ ∈ T1M̃ , we have built a family

{A(θ, ϵ, δ, τ, θ1, θ2, η1, η2) : ϵ, δ, τ > 0, θ1, θ2 ∈ W s(θ), η1 ∈ W u(θ1), η2 ∈ W u(θ2)}

of saturated neighborhoods of Ĩ(θ). Therefore we obtain a corresponding family

{χ̃(A(θ, ϵ, δ, τ, θ1, θ2, η1, η2)) : ϵ, δ, τ > 0, θ1, θ2 ∈ W s(θ), η1 ∈ W u(θ1), η2 ∈ W u(θ2)}

of neighborhoods of [θ] ∈ X̃. We now show that this family induces a basis for
the quotient topology of X̃.

Lemma 3.3.4. For every θ ∈ T1M̃ , the family

Aθ = {χ̃(A(θ, ϵl, δm, τn)) : ϵl = 1/l, δm = 1/m, τn = 1/n with l,m, n ∈ N}

is a countable basis of neighborhoods of [θ] ∈ X̃. Hence X̃ is first countable
and

{Aθ : θ ∈ T1M̃}

is a basis for the quotient topology of X̃.

Proof. For every θ ∈ T1M̃ , the above construction shows that

{χ̃(A(θ, ϵ, δ, τ, θ1, θ2, η1, η2))}

is a family of neighborhoods of [θ] ∈ X. Note that by choosing parame-
ters ϵ, δ, τ > 0 small enough, every neighborhood V of Ĩ(θ) contains some
A(θ, ϵ, δ, τ, θ1, θ2, η1, η2). Thus, given an open set U ⊂ X containing [θ], χ̃−1(U)
is an open neighborhood of Ĩ(θ). So, there exists

A(θ, ϵ, δ, τ, θ1, θ2, η1, η2) ⊂ χ̃−1(U) hence χ̃(A(θ, ϵ, δ, τ, θ1, θ2, η1, η2)) ⊂ U.

Therefore the collection

{χ̃(A(θ, ϵ, δ, τ, θ1, θ2, η1, η2))}

is a basis of neighborhoods of [θ] ∈ X. This property is not affected by specific

DBD
PUC-Rio - Certificação Digital Nº 1812631/CA



Chapter 3. Existence of a unique measure of maximal entropy for compact
surfaces 77

choices of parameters θ1, θ2, η1, η2 ∈ Σ, but by the parameters ϵ, δ, τ > 0. By
choosing ϵl = 1/l, δm = 1/m, τn = 1/n with l,m.n ∈ N, we still have that

Aθ = {χ̃(A(θ, ϵl, δm, τn)) : l,m, n ∈ N}

is a basis of neighborhoods of [θ]. Therefore Aθ is a countable basis of
neighborhoods of [θ]. ■

This basis is important because it provides an explicit description of
special basic sets for the quotient topology. Thus, we can prove some results
about the quotient topology with simpler arguments. The metrization of the
quotient space, below exemplifies this claim.

So, we have a family of neighborhoods of every Ĩ(θ) in T1M̃ and a basis
of neighborhoods of [θ] in X̃. Projecting through the covering maps Π and
dπ we get a family of neighborhoods of every I(θ) in T1M and a basis of
neighborhoods of [θ] in X. Thus, X is first countable and

{Π(Aθ) : θ ∈ T1M̃}

is a basis for the quotient topology of X. This illustrates the use of the covering
spaces M̃ , T1M̃ and X̃ to get results and then transfer them to M , T1M and
X.

We next show that the quotient space X is metrizable. Observe that
many arguments are easier if there exists some distance compatible with the
quotient topology. Moreover, there are strong theorems that hold for metric
spaces but not for topological spaces. So, although we have suitable open basic
sets for X, it is convenient to have a metric distance for X. We first recall a
basic result about metrizability of topological spaces [69].

Proposition 3.3.1. If f : X → Y is a continuous surjection from a compact
metric space onto a Hausdorff space, then Y is metrizable.

We now prove the metric structure of the quotient space.

Lemma 3.3.5. Let M be a compact surface without conjugate points and genus
greater than one. Then, the quotient space X is a compact metrizable space.

Proof. Since χ is continuous and surjective, we see that X is compact. We
next show that X is Hausdorff. Choose two different points [θ], [η] ∈ X and
suppose that F s(θ) ∩ F s(η) = ∅. By choosing δ small enough in Lemma 3.3.4,
we can build disjoint basic open sets because F s is a foliation of T1M . Now,
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consider the case F s(θ) ∩ F s(η) ̸= ∅ hence F s(θ) = F s(η). Choosing ϵ small
enough in Lemma 3.3.4, the basic open sets of θ and η are disjoint because
Fu is a foliation of T1M . Therefore, X is Hausdorff. Since χ : T1M → X is
a continuous surjection from a compact metric space onto a Hausdorff space,
Proposition 3.3.1 asserts that X is metrizable. ■

This lemma ensures the existence of a distance inducing the quotient
topology, but the lemma does not give an explicit formula to do calculations.

3.4
The covering space of the quotient space

The goal of the section is to show that X̃ is a covering space of X.

Similar to the relationships between the geodesic flows ϕ̃t and ϕt, there
are relationships between the corresponding quotient models. Since T1M̃ is a
covering space of T1M with covering map dπ, we see that X̃ is a covering
space of X through a covering map induced by dπ. Moreover, the Deck
transformations of both covering maps are related through the quotient map
χ̃. We define the induced covering map by

Π : X̃ → X

[θ] 7→ Π[θ] = χ ◦ dπ(θ).

While for the induced Deck transformations: for every covering isometry T of
dπ, we define the induced map by

T ′ : X̃ → X̃

[θ] 7→ T ′[θ] = χ̃ ◦ T (θ).

Lemma 3.4.1. Let Π and T ′ be the above defined maps. Then

1. The maps Π and T ′ are well-defined.

2. The set X̃ is a covering space of X and Π is a covering map satisfying

T1M̃ X̃

T1M X.

χ̃

dπ Π

χ
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3. For every covering isometry T of dπ, T ′ is a Deck transformation of Π
satisfying

T1M̃ T1M̃

X̃ X̃.

T

χ̃ χ̃

T ′

Proof. For 1, let η, θ ∈ T1M̃ such that η ∼ θ. Then η ∈ Ĩ(θ) and projecting
through dπ, we get dπ(η) ∈ I(dπ(θ)): dπ(η) ∼ dπ(θ). Therefore,

Π[η] = χ ◦ dπ(η) = χ ◦ dπ(θ) = Π[θ].

To verify the well definition of T ′, pick η ∼ θ hence η ∈ Ĩ(θ). Since T is a
covering isometry, T (η) ∈ T (Ĩ(θ)) = Ĩ(T (θ)). This means that T (η) ∼ T (θ)
and so

T ′[η] = χ̃ ◦ T (η) = χ̃ ◦ T (θ) = T ′[θ].

For 2, the definition of Π provides that Π is a continuous surjection. We will
verify that every [η] ∈ X has a neighborhood evenly covered. Let η̃ ∈ T1M̃

be some lift of η. Since F s and Fu are minimal foliations by Theorem 2.15,
we know that dπ maps homeomorphically Ĩ(η̃) onto I(η). Now, we choose a
tubular neighborhood V of Ĩ(η̃) such that

– dπ|V is still a homeomorphism onto its image.
– If ξ ∈ V then Ĩ(ξ) ⊂ V .

We can generate all the preimages of dπ(V ) with the action of the covering
isometries:

(dπ)−1(dπ(V )) =
⊔

S∈π1(M)
S(V ).

The union is disjoint because by above condition 3, every preimage S(V )
belongs to a different fundamental domain S(K). By condition 2, χ(dπ(V )) ⊂
X is an open set containing [η]. Thus, by the definition of Π we have

Π−1(χ(dπ(V ))) =
⊔

S∈π1(M)
χ̃(S(V )).

Since dπ maps homeomorphically every preimage S(V ) onto dπ(V ), Π maps
homeomorphically every preimage χ̃(S(V )) onto χ(dπ(V )). Therefore, every
[η] ∈ X has a neighborhood evenly covered. This shows that Π is a covering
map with covering space X̃. The diagram follows from the definition of Π.

For item 3, from the definition of T ′, we see that T ′ is continuous and
surjective. For the injectivity, consider [η], [θ] ∈ X̃ with [η] ̸= [θ]. This means
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that η and θ are not equivalent and hence I(η) and I(θ) are disjoint classes.
Since T is a homeomorphism, T (I(η)) = I(T (η)) and T (I(θ)) = I(T (θ)) are
disjoint classes as well. Therefore, T (η) and T (θ) are not equivalent and

T ′([η]) = χ̃ ◦ T (η) ̸= χ̃ ◦ T (θ) = T ′([θ]).

This proves the injectivity of T ′ and thus T ′ is a continuous bijection. Applying
the same argument to T−1 provides a continuous inverse to T ′, so T ′ is a
homeomorphism. Finally, for every [η] ∈ X̃, T ′ preserves the covering map Π:

Π ◦ T ′[η] = Π ◦ χ̃ ◦ T (η) = χ ◦ dπ ◦ T (η) = χ ◦ dπ(η) = Π ◦ χ̃(η) = Π[η].

Thus, T ′ is a Deck transformation of Π. Note that T and T ′ satisfy the above
diagram by the definition of T ′. ■

With this information, we can write the relationship between the quotient
models of both geodesic flows. The covering map Π provides a time-preserving
semi-conjugacy between ψ̃ and ψ: for every t ∈ R,

Π̃ ◦ ψ̃t = ψt ◦ Π̃,
X̃ X̃

X X.

ψ̃t

Π̃ Π̃
ψt

Therefore we transferred the relationships between geodesic flows to analog
relationships between their corresponding quotient models.

3.5
Topological dimension of the quotient space

This section is devoted to show that the topological dimension of the
quotient space is at least two.

We first define the topological dimension [35]. Let X be a topological
space and Ui be any open cover of X. The order of Ui is the smallest integer
n such that every x ∈ X belongs to at most n sets of Ui. An open refinement
of Ui is another open cover, each of whose sets is a subset of a set in Ui. The
Lebesgue covering dimension or topological dimension of X is the minimum
n such that any Ui has an open refinement of order n + 1 or less. If no such
minimal n exists, X has infinite topological dimension.

We have as standard examples the open sets of Rn. For every open set
U ⊂ Rn, the topological dimension of U is n.
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The following theorem says that topological dimension is a topological
invariant. That is, the topological dimension is preserved by homeomorphisms.

Theorem 3.3 ([69]). Let f : X → Y be a homeomorphism between topological
spaces. Then, the topological dimension of X and Y are equal.

Let X be a topological space and f : X → R2 be a continuous map
and U ⊂ X be an open set. We say that U is a topological surface if the
restriction of f to U is a homeomorphism. The above theorem implies that
every topological surface has topological dimension 2.

Let X̃ and X be the quotient spaces defined in Section 3.2. To show that
X̃ has topological dimension at least two, for every [θ] ∈ X̃, we will find a
topological surface passing through [θ].

Lemma 3.5.1. Let M be a compact surface without conjugate points and genus
greater than one, and M̃ be its universal covering. If X̃ and X are the quotient
spaces defined in Section 3.2 then

1. For every [θ] ∈ X̃ there exists a topological surface S[θ] containing [θ].

2. X̃ and X have topological dimension at least two.

Proof. Let θ ∈ T1M̃ and Vθ be the vertical fiber of θ. Using the geodesic flow
we define the set

Wθ =
⋃
t∈R

ϕt(Vθ).

Since Vθ is homeomorphic to the circle S1, we conclude that Wθ is homeomor-
phic to a cylinder, i.e., Wθ ⊂ T1M̃ is a topological surface. We next show that
for every θ ∈ T1M̃ , χ̃ maps Wθ bijectively. The divergence of geodesic rays
guarantees that for every η, ξ ∈ Vθ,

η ̸∈ Ĩ(ξ).

So, the restriction of χ̃ to Wθ is injective, hence bijective onto its image. This
implies that χ̃(Wθ) ⊂ X̃ is homeomorphic to a cylinder. Thus, for every
θ ∈ T1M̃ , there exists a topological surface χ̃(Wθ) containing [θ]. It follows
that the topological dimension of X̃ is at least two. This conclusion extends
to X because X̃ and X are locally homeomorphic. ■

In [13, 14], Gelfert-Ruggiero showed that X and X̃ are topological 3-
manifolds for:

– Compact surfaces without focal points and genus greater than one.
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– Compact surfaces without conjugate points, genus greater than one and
continuous Green bundles.

These cases are included in our context: compact surfaces without conjugate
points and genus greater than one. Thus, the above lemma is a weaker result
than the one obtained by Gelfert and Ruggiero. It remains as an open problem
to know exactly when the quotient space is a compact 3-manifold.

3.6
Topological dynamics of the quotient flow

We continue supposing a compact surface M without conjugate points
and genus greater than one. In Section 2, we defined a quotient model: a
continuous flow ψt : X → X time-preserving semi-conjugate to the geodesic
flow. In this section, we want to show some dynamical properties for the
quotient model. These properties are somehow induced by corresponding weak
properties of ϕt through the semi-conjugacy χ. Indeed, ϕt is not expansive and
does not have a local product in the general case. Instead, ϕt has geometrical
properties related to expansiveness and the local product. These geometrical
properties are exactly expansiveness and local product in particular cases:
manifolds of negative curvature and manifolds with Anosov geodesic flow. The
main impediment for this to happen in the general case is the existence of
strips of bi-asymptotic orbits. Since the quotient collapses these strips into
single orbits, we expect these properties for the quotient flow. We summarize
the main dynamical properties that we prove in the section.

Theorem 3.4. Let M be a compact surface without conjugate points of genus
greater than one and ψt : X → X be the quotient flow. Then, ψt is topologically
mixing, expansive and has a local product structure. Moreover, ψt has the
pseudo-orbit tracing and specification properties.

We prove the theorem in a series of auxiliary lemmas below. We show
the dynamical properties in the order stated in the theorem. So, we begin with
the topological mixing property. The continuity of χ allows us to project the
topological mixing property onto the quotient space.

Lemma 3.6.1. The quotient flow ψt is topologically mixing.

Proof. Let U, V ⊂ X be two open sets. Clearly, χ−1(U) and χ−1(V ) are open
sets in T1M . By Theorem 2.15, the geodesic flow is topologically transitive.
From the definition of the topological mixing property given in Subsection

DBD
PUC-Rio - Certificação Digital Nº 1812631/CA



Chapter 3. Existence of a unique measure of maximal entropy for compact
surfaces 83

2.3.1, there exists T ≥ 0 such that

ϕt(χ−1(U)) ∩ χ−1(V ) ̸= ∅, for every |t| ≥ T.

Applying the time-preserving semi-conjugacy χ we get that ψt is topologically
mixing:

ψt(U) ∩ (V ) ̸= ∅, for every |t| ≥ T.

■

We now prove a lemma relating the Sasaki and quotient distance. The
continuity of χ says that for every ϵ > 0 there exists δ > 0 such that if
η, ξ ∈ T1M with

ds(η, ξ) ≤ δ then d([η], [ξ]) ≤ ϵ.

Since χ has no inverse, we do not have a similar property in the reverse
direction. However, for every η ∈ T1M , Lemma 3.3.4 gives a relationship
between basic open sets of [η], and special neighborhoods of I(η). We use
this basic open sets to get a relationship between Sasaki and quotient distance
in a special case.

Lemma 3.6.2. There exist r0, s0 > 0 such that for every [ξ], [η] ∈ X with
d([ξ], [η]) ≤ r0 then

ds(ξ̃, η̃) ≤ Q+ s0,

for some lifts ξ̃, η̃ ∈ T1M̃ of ξ, η ∈ T1M respectively, where Q is Morse’s
constant.

Proof. We will consider the basic open sets A(η, ϵ, δ, τ) provided by Lemma
3.3.4. For every θ ∈ T1M , choose ϵ, δ, τ > 0 small enough so that A(θ, ϵ, δ, τ)
is evenly covered by dπ. Clearly, the family

A = {χ(A(θ, ϵ, δ, τ)) : θ ∈ T1M}

is an open cover of X. Since X is compact, let r0 > 0 be the Lebesgue number
of A. Thus, for every [η], [ξ] ∈ X with d([η], [ξ]) ≤ r0, there exists θ ∈ T1M

such that
[ξ] ∈ B([η], r0) ⊂ χ(A(θ, ϵ, δ, τ)) ∈ A,

where B([η], r0) is the closed ball of radius r0 centered at [η]. Seeing that
A(θ, ϵ, δ, τ) is evenly covered by dπ, for every lift θ̃ ∈ T1M̃ of θ, there exist lifts

Ã(θ̃, ϵ, δ, τ) and η̃, ξ̃ ∈ Ã(θ̃, ϵ, δ, τ)
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of A(θ, ϵ, δ, τ), η, ξ respectively. Since we chose ϵ, δ, τ small enough, there exists
s0 > 0 such that

Diam(Ã(θ̃, ϵ, δ, τ)) ≤ Q+ s0 hence ds(η̃, ξ̃) ≤ Q+ s0.

■

The following lemma relates the time parameter of the quotient flow with
the quotient distance. We use this property to bound the time parameter when
proving expansivity. Thus, for two points in the same orbit, small distance
implies small parameter time.

Lemma 3.6.3. For every ϵ > 0 there exists δ > 0 such that if [η] ∈ X, τ ∈ R
with

d([ξ], ψτ [ξ]) ≤ δ then |τ | ≤ ϵ.

Proof. By contradiction, suppose there exist δ0 > 0 and sequences [ξn] ∈
X, τn ∈ R such that for every n ≥ 1

d([ξn], ψτn [ξn]) ≤ 1
n

and |τn| ≥ ϵ0. (3.2)

By choosing subsequences, we can assume that τn → T and [ξn] → [ξ]. Since ψt
is continuous we see that ψτn [ξn] → ψT [ξ]. While on the other hand Equation
(3.2) says that [ξn] and ψτn [ξn] converge to the same limit [ξ] = ψT [ξ]. This
conclusion holds if and only if T = 0. Thus τn → 0, which contradicts Equation
(3.2) and proves the lemma. ■

We now show the expansivity of the quotient flow. We first recall the
definition given in Subsection 2.2.1. Let ϕt : X → X be a continuous flow
acting on a compact metric space. We say that ϕt is expansive if there exists
ϵ > 0 such that if x, y ∈ X satisfy

d(ϕt(x), ϕρ(t)(y)) ≤ ϵ for every t ∈ R and some reparametrization ρ,

then there exists τ ∈ [−ϵ, ϵ] with y = ϕτ (x).

We remark that ϕ might not be expansive. Indeed, for every non-
expansive point η ∈ T1M , and every ξ ∈ I(η) \ {η}, for some ϵ > 0

ds(ϕt(η), ϕt(ξ)) ≤ ϵ for every t ∈ R.
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Thus the strips of bi-asymptotic orbits

⋃
t∈R

ϕt(I(η))

obstructs expansivity. By collapsing these strips, we expect the expansivity in
the quotient model.

Lemma 3.6.4. The quotient flow ψt is expansive.

Proof. Let r0 > 0 be given by Lemma 3.6.2. We first show that if there
are two quotient orbits having Hausdorff distance bounded by r0, then the
orbits are the same. More precisely, consider [η], [ξ] ∈ X such that for some
reparametrization ρ,

d(ψt[η], ψρ(t)[ξ]) ≤ r0, for every t ∈ R.

By Lemma 3.6.2, there exist lifts η̃, ξ̃ ∈ T1M̃ of η, ξ such that

ds(ϕt(η̃), ϕρ(t)(ξ̃)) ≤ Q+ s0, for every t ∈ R.

Thus, the orbits of η̃ and ξ̃ have Hausdorff distance bounded by Q+ s0, hence
the orbits are bi-asymptotic. This implies that there exists τ ∈ R so that

ξ̃ ∈ Ĩ(ϕτ (η̃)) hence [ξ] = ψτ [η].

Now, given ϵ > 0, Lemma 3.6.3 provides δ1 > 0 satisfying its statement. Choose
δ = min(δ1, r0). If the orbits of [η] and [ξ] have Hausdorff distance bounded by
δ ≤ r0 then [ξ] = ψτ [η]. Moreover |τ | ≤ ϵ because

d([η], ψτ [η]) = d([η], [ξ]) ≤ δ ≤ δ1.

■

3.6.1
Local product structure

We now turn to the local product structure problem. We first recall some
definitions given in Subsection 2.2.1. Let ϕt : X → X be a continuous flow
acting on compact metric space. For each ϵ > 0, the ϵ-strong stable set of
x ∈ X is defined by

W ss
ϵ (x) = {y ∈ X : lim

t→∞
d(ϕt(x), ϕt(y)) = 0, d(ϕt(x), ϕt(y)) ≤ ϵ, for each t ≥ 0}.
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The ϵ-strong unstable set W uu
ϵ (x) is defined analogously considering negative

times. We say that ϕt has a local product structure if for every ϵ > 0 there
exists δ(ϵ) > 0 such that if x, y ∈ X satisfies d(x, y) ≤ δ then there exists a
unique τ ∈ R with |τ | ≤ ϵ and

W ss
ϵ (x) ∩W uu

ϵ (ϕτ (y)) ̸= ∅.

Even though ϕt has no local product in the general case, ϕ has a related prop-
erty. In fact, the strong stable and strong unstable sets of ϕt are complicated:
these sets may have low regularity or even be empty. Instead, we replace the
strong sets with the horospherical leaves, which have weak hyperbolic prop-
erties. Accordingly, the intersection between strong sets is replaced with the
heteroclinic connections of ϕ̃t: for every η, ξ ∈ T1M̃ with ξ ̸∈ F̃ cu(−η), there
exists θ ∈ T1M̃ such that

F̃ s(η) ∩ F̃ cu(ξ) = Ĩ(θ). (3.3)

Though these intersections always exist, in general they are not unique. This
is because Ĩ(θ) may be nontrivial, and also generates a strip of bi-asymptotic
orbits.

To speak properly of the local product of ψt, we need to identify of strong
sets of ψt. We see natural candidates: the images of the horospherical leaves
through χ. For every η ∈ T1M , we define

V s[η] = χ(F s(η)) and V u[η] = χ(Fu(η)),

V cs[η] = χ(F cs(η)) and V cu[η] = χ(F cu(η)).

Since χ is a time-preserving semi-conjugation, it follows that

V cs[η] =
⋃
t∈R

V s(ψt[η]) and V cu[η] =
⋃
t∈R

V u(ψt[η]).

Since χ is continuous and the horospherical foliations are minimal by Theorem
2.15, we see that for every [η] ∈ X, V s[η], V cs[η], V u[η] and V cu[η] are dense
in X.

To deal with the local product, we consider connected components of
V s[η] and V u[η]. For every [η] ∈ X and every open set U ⊂ X containing [η],
we denote by V s[η] ∩Uc the connected component of V s[η] ∩U containing [η].
Similarly, we write V u[η]∩Uc, V cs[η]∩Uc and V cu[η]∩Uc. Thus, let [η], [ξ] ∈ X

close enough. If there exists an open set U ⊂ X with [η], [ξ] ∈ U such that
V s[η] ∩ Uc and V cu[η] ∩ Uc intersect then we define
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V s[η] ∩ V cu[ξ] = (V s[η] ∩ Uc) ∩ (V cu[η] ∩ Uc). (3.4)

By the heteroclinic connections given in Equation (3.3), there exist η̃, ξ̃ ∈ T1M̃

lifts of η and ξ so that ξ̃ ̸∈ F̃ cu(−η̃). Moreover, there exist θ̃ ∈ T1M̃ and τ ∈ R
such that

F̃ s(η̃) ∩ F̃ cu(ξ̃) = F̃ s(η̃) ∩ F̃u(ϕ̃τ (ξ̃)) = Ĩ(θ̃).

Setting θ = dπ(θ̃) ∈ T1M , we have

V s[η] ∩ V cu[ξ] = V s[η] ∩ V u(ψτ [ξ]) = χ ◦ dπ(Ĩ(θ̃)) = [I(θ)] = [θ].

This equation shows that the intersection is always unique when it exists.

We always mean the definition given in Equation (3.4) when we speak
about intersection V s[η] ∩ V cu[ξ]. Roughly speaking, intersection of the con-
nected components of V s[η] and V cu[ξ] containing [η] and [ξ]. Thus, we will
build the local product of ψt from the sets V s[η] and V u[η]. The remaining
lemmas help to work out the details of the local product.

The following lemma is a useful technical result that helps in contradic-
tion arguments. For every [ξ] ∈ X and r > 0, let B([ξ], r) be the open ball of
radius r centered at [ξ].

Lemma 3.6.5. Let r0 > 0 be given by Lemma 3.6.2. There cannot exist ϵ0 > 0
and sequences [ηn], [ξn] ∈ X, tn ∈ R such that tn → ∞ and for every n ≥ 1,
[ηn] ∈ V s[ξn], [ηn] belongs to the connected component of V s[ξn] ∩ B([ξn], r0)
containing [ξn],

d([ηn], [ξn]) ≤ r0 and d(ψtn [ηn], ψtn [ξn]) ≥ ϵ0. (3.5)

An analog statement holds for the unstable case.

Proof. By contradiction, suppose there exist the objects of the statement
satisfying Equation (3.5). Lemma 3.6.2 says that there exist lifts η̃n, ξ̃n ∈ T1M̃

of ηn, ξn such that for every n ≥ 1,

ds(η̃n, ξ̃n) ≤ Q+ s0.

We claim that for every n ≥ 1, η̃n ∈ F̃ s(ξ̃n). Otherwise, for some covering
isometry T , T (η̃n) ∈ F̃ s(ξ̃n). Hence [ηn] = [dπ(T (η̃n))] does not belong to the
connected component of V s[ξn] ∩ B([ξn], r0) containing [ξn] and the claim is
proved.
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By Proposition 2.3.7 there exist A,B > 0 such that for every n ∈ N,

ds(ϕt(η̃n), ϕt(ξ̃n)) ≤ Ads(η̃n, ξ̃n) +B ≤ A(Q+ s0) +B = C, for every t ≥ 0.

This implies that for every n ∈ N,

ds(ϕt(ϕtn η̃n), ϕt(ϕtn ξ̃n)) ≤ C, for every t ≥ −tn. (3.6)

By choosing subsequences and using covering isometries we can assume that

ϕtn(η̃n) → η̃ and ϕtn(ξ̃n) → ξ̃. (3.7)

By invariance of the horospherical foliations we see that ϕtn(η̃n) ∈ F̃ s(ϕtn(ξ̃n)).
Moreover, the continuity of the horospherical foliations yields that η̃ ∈ F̃ s(ξ̃).
Now, choose any fixed t ∈ R. Since tn → ∞, t ≥ −tn for large enough n, and
hence Equation (3.6) yields

ds(ϕt(ϕtn η̃n), ϕt(ϕtn ξ̃n)) ≤ C.

By continuity we obtain

ds(ϕt(η̃), ϕt(ξ̃)) ≤ C, for every t ∈ R.

As η̃ ∈ F̃ s(ξ̃), Corollary 2.3.1 shows that η̃ ∈ I(ξ̃) hence [η] = [ξ]. Applying
the map χ ◦ dπ to the sequences in Equation (3.7), we get

χ ◦ dπ(ϕtn(η̃n)) → χ ◦ dπ(η̃) and χ ◦ dπ(ϕtn(ξ̃n)) → χ ◦ dπ(ξ̃),

ψtn [ηn] → [η] and ψtn [ξn] → [ξ].

Therefore, d(ψtn [ηn], ψtn [ξn]) → 0 as n → ∞. This contradicts Equation (3.5)
and proves the lemma. ■

An intermediate result to show the relationship between W ss[η] and
W uu[η], and V s[η] and V u[η], is the so-called uniform contraction. We prove
this contraction for V s[η] and V u[η], but only for distances smaller than r0.

Lemma 3.6.6. Let r0 > 0 be given by Lemma 3.6.2. For every ϵ > 0 and
D ∈ (0, r0] there exists T > 0 such that if [η] ∈ V s[ξ], [η] belongs to the
connected component of V s[ξ] ∩ B([ξ], r0) containing [ξ] and d([η], [ξ]) ≤ D,
then

d(ψt[η], ψt[ξ]) ≤ ϵ for every t ≥ T.

An analog result holds for the unstable case.
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Proof. By contradiction suppose there exist ϵ0 > 0, D0 ∈ (0, r0] and sequences
[ηn], [ξn] ∈ X, tn ∈ R, such that tn → ∞ and for every n ≥ 1, [ηn] ∈ V s[ξn],
[ηn] belongs to the connected component of V s[ξn]∩B([ξn], r0) containing [ξn],

d([ηn], [ξn]) ≤ D0 ≤ r0 and d(ψtn [ηn], ψtn [ξn]) ≥ ϵ0.

This contradicts Lemma 3.6.5 and proves the statement. ■

As an immediate consequence we see that V s[η] and V u[η] agree with the
strong sets of ψt locally for distances smaller than r0.

Lemma 3.6.7. Let r0 > 0 be given by Lemma 3.6.2. If [η] ∈ V s[ξ], [η]
belongs to the connected component of V s[ξ] ∩ B([ξ], r0) containing [ξ] and
d([η], [ξ]) ≤ r0 then

d(ψt[η], ψt[ξ]) → 0 as t → ∞.

In particular, [η] ∈ W ss[ξ]. An analog statement holds for the unstable case.

Proof. For every n ≥ 1, set ϵn = 1/n and D = r0 in the last lemma. So, there
exists a sequence Tn → ∞ such that

d(ψt[η], ψt[ξ]) ≤ 1
n

for every t ≥ Tn.

This implies that d(ψt[η], ψt[ξ]) → 0 as t → ∞. ■

The local product requires not only the intersection of strong sets W ss[η]
and W uu[η] but the intersection of ϵ-strong sets W ss

ϵ [η] and W uu
ϵ [η] for ϵ > 0.

The following lemma sets a criteria to identify points of W ss
ϵ [η] and W uu

ϵ [η].
Thus, close enough points in V s[η] have their future orbits in a ϵ-tubular
neighborhood.

Lemma 3.6.8. Let r0 > 0 be given by Lemma 3.6.2. For every ϵ > 0 there
exists δ ∈ (0, r0] such that if [η] ∈ V s[ξ], [η] belongs to the connected component
of V s[ξ] ∩B([ξ], r0) containing [ξ] and d([η], [ξ]) ≤ δ, then

d(ψt[η], ψt[ξ]) ≤ ϵ for every t ≥ 0.

An analog result holds for the unstable case.

Proof. By contradiction suppose there exist ϵ0 > 0 and sequences [ηn], [ξn] ∈
X, δn ∈ (0, r0] and tn ∈ R, such that δn → 0 and for every n ≥ 1, [ηn] ∈ V s[ξn],
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[ηn] belongs to the connected component of V s[ξn]∩B([ξn], r0) containing [ξn],

d([ηn], [ξn]) ≤ δn ≤ r0 and d(ψtn [ηn], ψtn [ξn]) ≥ ϵ0. (3.8)
We claim that tn → ∞. Otherwise, tn is bounded and by choosing a subse-
quence we can assume that tn → T ∈ R. By choosing subsequences, Equation
(3.8) implies that [ηn] and [ξn] converge to the same limit [η] ∈ X. Since ψt
is continuous, ψtn [ηn] and ψtn [ξn] converge to the same limit ψT [η]. This con-
tradicts Equation (3.8) and proves the claim. Having tn → ∞, Equation (3.8)
contradicts Lemma 3.6.5 and proves the lemma. ■

Combining this with Lemma 3.6.7, we get that W ss
ϵ [η] and W uu

ϵ [η] agree
with V s[η] and V u[η] locally.

Regarding the geodesic flow, if η̃, ξ̃ ∈ T1M̃ are close enough then the
intersection

Ĩ(θ̃) = F̃ s(η̃) ∩ F̃ cu(ξ̃)

is close to η̃ and ξ̃ [33]. The following lemma says that the same holds for V s[η]
and V u[η], i.e., if [η] and [ξ] are close enough then the intersection [θ] is close
to [η] and [ξ].

Lemma 3.6.9. For every ϵ > 0 there exists δ > 0 such that if [η], [ξ] ∈ X,
[θ] ∈ V s[η] ∩ V u(ψτ [ξ]) and d([η], [ξ]) ≤ δ, then

d([θ], [η]) ≤ ϵ, d([θ], ψτ [ξ]) ≤ ϵ and |τ | ≤ ϵ.

Proof. By contradiction suppose there exist ϵ0 > 0 and sequences
[ηn], [ξn], [θn] ∈ X, τn ∈ R such that for every n ≥ 1, [θn] ∈ V s[ηn]∩V u(ψτn [ξn]),
|τn| ≥ ϵ0,

d([ηn], [ξn]) ≤ 1
n
, d([θn], [ηn]) ≥ ϵ0 and d([θn], ψτn [ξn]) ≥ ϵ0. (3.9)

Given r0 > 0 from Lemma 3.6.2, for every n ≥ 1 large enough,

d([ηn], [ξn]) ≤ 1
n

≤ r0.

So, we can choose lifts η̃n, ξ̃n, θ̃n of ηn, ξn, θn such that

ds(η̃n, ξ̃n) ≤ Q+ s0

and θ̃n belongs to the fundamental domain containing η̃n and ξ̃n. We claim
that for every n ≥ 1,

θ̃n ∈ F̃ s(η̃n) ∩ F̃u(ϕτn(ξ̃n)). (3.10)
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Otherwise there exist sequences of covering isometries Tn, T ′
n such that θ̃n ∈

F̃ s(Tn(η̃n)) ∩ F̃u(ϕτn(T ′
n(ξ̃n))). Thus, there exists an open set U containing

[ηn] such that [θn] does not belong to the connected component of V s[ηn] ∩ U

containing [ηn]. Similarly, [θn] does not belong to the connected component of
V cu[ξn] ∩ U containing [ξn]. This contradicts the definition of intersection and
proves the claim.

Thus, using the same covering isometries for all sequences and choosing
suitable subsequences, we can assume that

η̃n → η̃, ξ̃n → ξ, θ̃n → θ̃ and τn → T.

Since we used the same covering isometries for the sequences, the continuity
of the horospherical foliations applied to Equation (3.10) yields

θ̃ ∈ F̃ s(η̃) ∩ F̃u(ϕT (ξ̃)). (3.11)

We claim that η̃ ∈ I(ξ̃). Otherwise d([η], [ξ]) > 0. But applying the limit to
Equation (3.9), we get d([η], [ξ]) = 0 and the claim is proved. The claim and
Equation (3.11) provide that

θ̃ ∈ F̃ s(η̃) ∩ F̃u(ϕT (η̃)).

From this, Corollary 2.3.1 shows that θ̃ ∈ I(η̃). Therefore [θn] and [ηn] converge
to the same limit [θ] = [η], which contradicts Equation (3.9). This provides
δ1 > 0 such that d([θ], [η]) ≤ ϵ. A similar reasoning provides δ2 > 0 such that
d([θ], ψτ [ξ]) ≤ ϵ. Finally, we see that

θ̃ ∈ I(η̃) ⊂ F̃u(η̃), hence θ̃ ∈ F̃u(η̃) ∩ F̃u(ϕT (η̃)).

This holds if and only if T = 0. Therefore τn → 0, contradicting |τn| ≥ ϵ0. We
thus get δ3 > 0 such that |τ | ≤ ϵ. Choosing δ = min(δ1, δ2, δ3) we obtain the
result. ■

This result is important because local product requires that close enough
points have their intersection near them. Moreover, this lemma allows us to
apply previous lemmas if we choose close enough points.

We now gather all the lemmas and show that ψt has local product.

Lemma 3.6.10. The quotient flow ψt has a local product structure.

Proof. Let r0 > 0 be given by Lemma 3.6.2 and ϵ ∈ (0, r0]. Consider [η], [ξ] ∈ X

and [θ] ∈ V s[η] ∩ V u(ψτ [ξ]). By Lemma 3.6.8 there exists δ1 > 0 such that if
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d([θ], [η]) ≤ δ1 and d([θ], ψτ [ξ]) ≤ δ1 then

d(ψt[θ], ψt[η]) ≤ ϵ and d(ψ−t[θ], ψ−tψτ [ξ]) ≤ ϵ, for t ≥ 0. (3.12)

For the same ϵ > 0, Lemma 3.6.4 provides δ2 > 0 such that expansivity holds.
Set δm = min(δ1, δ2, ϵ). By Lemma 3.6.9, for δm > 0 there exists δ > 0 such
that if [η], [ξ] ∈ X, [θ] ∈ V s[η] ∩ V u(ψτ [ξ]) and d([η], [ξ]) ≤ δ then

d([θ], [η]) ≤ δm, d([θ], ψτ [ξ]) ≤ δm and |τ | ≤ δm ≤ ϵ.

From this and δm ≤ ϵ ≤ r0, Lemma 3.6.7 implies that

[θ] ∈ W ss[η] ∩W uu(ψτ [ξ]).

Furthermore, since δm ≤ δ1, we deduce that [θ], [η], [ξ] satisfy Equation (3.12)
and hence

[θ] ∈ W ss
ϵ [η] ∩W uu

ϵ (ψτ [ξ]) and |τ | ≤ ϵ.

Since δm ≤ δ2, expansivity guarantees the above intersection is unique. Finally,
τ is unique because classes I(θ) are transverse to the geodesic flow. Therefore
ψt has a local product. ■

Finally, pseudo-orbit tracing and specification properties are conse-
quences of previous dynamical properties. More precisely,

1. By Theorem 7.1 of [70], if ψt is expansive and has local product then ψt
has the pseudo-orbit tracing property.

2. By Proposition 6.2 of [13], if ψt is expansive, topological mixing and has
the pseudo-orbit tracing property then ψt has the specification property.

3.7
Existence and uniqueness of the measure of maximal entropy for the
geodesic flow

This section deals with the problem of the existence and uniqueness of the
measure of maximal entropy for the geodesic flow. We will see that existence is
an easier problem than the uniqueness. Thus, we first show that the existence of
the measure of maximal entropy through the h-expansiveness property. Next,
we deal with uniqueness using the quotient model. This model allows to build
the unique measure of maximal entropy for the geodesic flow. This approach
is an adaptation of the procedure of Gelfert and Ruggiero [13].
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In our setting, the geodesic flow always has a measure of maximal entropy.
Indeed, the classical Newhouse’s result [71] implies that every smooth flow
acting on a compact smooth Riemannian manifold always has a measure of
maximal entropy. Since T1M and the geodesic flow are smooth, there exists at
least one measure of maximal entropy for the geodesic flow. However, in our
setting we can say more. To do this, recall that M(ϕ) is the set of all Borel
probability measures on T1M invariant by the geodesic flow. The entropy
map associated to the geodesic flow ϕt is given by

h : ϕ → R

µ 7→ hµϕ1.

By the variational principle, a measure of maximal entropy is a global max-
imum for this entropy map. In this regard, we note that M(ϕt) is compact
in the weak∗ topology because T1M is a compact metric space. Theorem 8.7
of [38] asserts that if M(ϕ) is compact and the entropy map is upper semi-
continuous then the entropy map always has a global maximum. The entropy
map is upper semi-continuous for instance if the geodesic flow is smooth [71] or
if its time-1 map ϕ1 is h-expansive [72, 73]. Thus, the existence of the measure
of maximal entropy also follows from the h-expansiveness of ϕ1.

By the variational principle, the above discussion is vacuous if the
geodesic flow has zero topological entropy. Thus, we verify that the geodesic
flow has positive topological entropy. This ensures that the existence of the
measure of maximal entropy is a nontrivial problem in our context.

Proposition 3.7.1. Let M be a compact surface without conjugate points and
genus greater than one. Then, the geodesic flow has positive topological entropy.

Proof. We will give three different proofs. We first recall that every homeo-
morphism with an expansive factor, has positive topological entropy. Applying
this conclusion to the time-1 map of the geodesic flow ϕt, Lemma 3.6.4 con-
cludes the proof. Another approach is related the growth rate of the funda-
mental group π1(M). By Morse’s theorem 2.11, for compact surfaces without
conjugate points and genus greater than one, its universal covering is Gromov
hyperbolic. From Gromov’s work [24], it follows that π1(M) has an exponential
growth rate hence the geodesic flow has positive topological entropy. For the
last method, we know that every compact surface without conjugate points of
genus greater than one admits a Riemannian metric g′ of negative curvature.
Denoting by ϕg

′

t the geodesic flow of (M, g′), we see that ϕg
′

t has positive topo-
logical entropy. By Freire-Mañe’s Theorem [51], h(ϕg

′

1 ) agrees with the volume
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growth rate of closed balls in the universal covering of (M, g′). Since M is com-
pact, this volume growth rate is the same for all Riemannian metrics without
conjugate points on M . Using Freire-Mañe’s Theorem again we conclude that
the geodesic flow of (M, g) has positive topological entropy. ■

We now show that the time-1 map of the geodesic flow is h-expansive.
We first recall the definition. Let f : X → X be a homeomorphism acting on
a metric space. For every ϵ > 0 and x ∈ X, we define

Zϵ(x, f) = {y ∈ X : d(fn(x), fn(y)) ≤ ϵ, for every n ∈ Z}.

We say that f is h-expansive if there exists ϵ > 0 such that the topological
entropy

h(f, Zϵ(x, f)) = 0 for every x ∈ X.

In [74, 75, 14], the authors proved h-expansiveness for several contexts includ-
ing our case. Note that in our case, for every η ∈ T1M̃ , the set Zϵ(η, ϕ̃1) is a
subset of Ĩ(η). We remark that h-expansiveness holds because the classes Ĩ(η)
are uniformly bounded. Thus, we next sketch Gelfert-Ruggiero’s proof of zero
topological entropy of the classes Ĩ(η) [14].

Lemma 3.7.1. For every η ∈ T1M , the topological entropy h(ϕ1, I(η)) = 0.
In particular, ϕ1 is h-expansive and the entropy map of the geodesic flow is
upper semi-continuous.

Proof. Let ϵ > 0, n ≥ 1 and E be a (n, ϵ)-separated set of I(η). For each
k = 0, . . . , n− 1 we define the set Ek ⊂ E such that if η1, η2 ∈ Ek then

ds(ϕk1(η1), ϕk1(η2)) ≥ ϵ.

Although sets Ek may have nonempty intersection between them, these sets
cover E: E = ∪n−1

k=0Ek. Recall that diameters of I(ξ) are uniformly bounded
by Morse’s constant Q. Since every I(ξ) is a connected curve, for every
k = 0, . . . , n− 1 we have

ϵ.Card(Ek) ≤ Q hence Card(E) ≤
n−1∑
k=0

Card(Ek) ≤
n−1∑
k=0

Q

ϵ
= nQ

ϵ
.

Thus, applying the entropy definition we get

h(ϕ1, I(η)) = lim
ϵ→0

lim sup
n→∞

1
n

logCard(E) ≤ lim
ϵ→0

lim sup
n→∞

1
n

log nQ
ϵ

= 0.

■
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The uniqueness of the measure of maximal entropy is a more complicated
problem. To prove the uniqueness we use the quotient model semi-conjugate to
the geodesic flow. This is one of the main motivations for the introduction of
the model. The dynamical properties of the model will ensure the existence of
a unique measure of maximal entropy. We lift this measure to T1M and then
verify that it is the unique measure of maximal entropy.

The quotient model has a unique measure of maximal entropy. Recall
the quotient model, i.e., a quotient flow ψt time-preserving semi-conjugate
to the geodesic flow ϕt. From the last section, Theorem 3.4 says that ψt is
expansive and has the specification property. Assuming these properties for
discrete systems, Bowen [40] showed the existence of a unique measure of
maximal entropy. Franco [20] extended this result to the continuous setting.

Theorem 3.5. Let ϕt : X → X be a continuous flow acting on a compact
metric space. If ϕt is expansive and has the specification property then ϕt has
a unique measure of maximal entropy.

Applying this theorem to our case implies that the quotient flow ψ has
a unique measure of maximal entropy ν.

To lift ν to T1M and verify the uniqueness property we rely on a abstract
theorem proved by Buzzi-Fisher-Sambarino-Vasquez [68] for discrete systems
and applied to certain derived from Anosov systems. They constructed a
measure of maximal entropy using a classical argument due to Ledrappier and
Walters [76]. We remark that Ures [77] also proved the existence of a unique
measure of maximal entropy for some derived from Anosov discrete systems
using geometrical methods. The following proposition establishes Buzzi-Fisher-
Sambarino-Vasquez’s theorem for continuous systems.

Proposition 3.7.2. Let ϕt : Y → Y and ψt : X → X be two continuous flows
on compact metric spaces, χ : Y → X be a time-preserving semi-conjugacy
and ν be the measure of maximal entropy of ψt. Assume that ψt is expansive,
has the specification property and

1. h(ϕ1, χ
−1(x)) = 0 for every x ∈ X.

2. ν
(

{χ(y) : χ−1 ◦ χ(y) = {y}}
)

= 1.

Then, there exists a unique measure of maximal entropy µ of ϕt with χ∗µ = ν.
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Proof. We first build the measure µ ∈ M(ϕ). Let ϵ > 0 be an expansivity
constant for ψt. For each T > 0, we define the set

Per(T, ϵ) = {χ−1(γ) ⊂ Y : γ is a periodic orbit of ψt with period in [T−ϵ, T+ϵ]}.

By expansivity this set has a finite number of elements. Note that every
χ−1(γ) ∈ Per(T, ϵ) is compact and invariant by the flow ϕt. Thus, there exists
a probability measure µγ supported on χ−1(γ) and invariant by the flow ϕt.
So, we can take the average

µT =

∑
χ−1(γ)∈Per(T,ϵ)

µγ

#Per(T, ϵ) .

Therefore, µT is a Borel probability measure on Y invariant by the flow ϕt. Let
µ ∈ M(ϕ) be an accumulation point of the set (µT )T>0 in the weak∗ topology.
So, there exists a sequence Tn → ∞ such that µTn → µ weakly.

We now show that χ∗µ = ν. Note that for every χ−1(γ) ∈ Per(T, ϵ),
χ∗µγ is a probability measure supported on γ and invariant by the flow ψt.
Since γ is a periodic orbit of ψt with period in [T − ϵ, T + ϵ], χ∗(µTn) is
a probability measure supported on the union of periodic orbits of ψt with
period in [T − ϵ, T + ϵ]. In this case, Bowen [59] showed that χ∗(µTn) → ν in
the weak∗ topology. By continuity of χ∗ and µTn → µ we get

χ∗µ = ν.

We verify that µ is a measure of maximal entropy. Since (Y, ϕt, µ) is an
extension of (X,ψt, ν), we have hν(ψ1) ≤ hµ(ϕ1). Applying Bowen’s formula
[40] and hypothesis 1, we deduce that

h(ϕ1) ≤ h(ψ1) + sup
x∈X

h(ϕ1, χ
−1(x)) = h(ψ1) hence h(ϕ1) = h(ψ1).

Since ν is a measure of maximal entropy for ψt, we obtain

h(ϕ1) = h(ψ1) = hν(ψ1) ≤ hµ(ϕ1).

Therefore h(ϕ1) = hµ(ϕ1) and µ is a measure of maximal entropy for ϕt.

So far we proved the following. Assuming hypothesis 1, every accumula-
tion point µ ∈ M(ϕ) of the set (µT )T>0 satisfies:

µ is a measure of maximal entropy for ϕt such that χ∗µ = ν. (3.13)

DBD
PUC-Rio - Certificação Digital Nº 1812631/CA



Chapter 3. Existence of a unique measure of maximal entropy for compact
surfaces 97

We will use this remark in the proof of uniqueness for the case of geodesic flow.

From here we will start using hypothesis 2 to prove some properties of µ
and then uniqueness. We first define the set

E = {y ∈ Y : χ−1 ◦ χ(y) = {y}}.

This notation translates assumption 2 into ν(χ(E)) = 1 which implies that

1 = ν(χ(E)) = χ∗µ(χ(E)) = µ(χ−1 ◦ χ(E)) = µ(E).

Thus, for every Borel set A ⊂ Y we see that

µ(Sat(A)) = µ(Sat(A) ∩ E) = µ(A ∩ E) = µ(A). (3.14)

We finally prove the uniqueness property. Let µ′ be a measure of maximal
entropy for ϕt. Applying Ledrappier-Walter’s formula [76] and hypothesis 1 we
obtain

hµ′(ϕ1) ≤ hχ∗µ′(ψ1) +
∫
Y
h(ϕ1, χ

−1(x)) dµ′(x) = hχ∗µ′(ψ1)

hence hµ′(ϕ1) = hχ∗µ′(ψ1). From this we deduce that χ∗µ
′ is a measure of

maximal entropy for ψt:

h(ψ1) = h(ϕ1) = hµ′(ϕ1) = hχ∗µ′(ψ1).

By uniqueness we conclude that χ∗µ
′ = ν = χ∗µ. Similarly, we can show that

µ′(E) = 1 and µ′(Sat(A)) = µ′(A) for every Borel set A ⊂ Y . Thus,

µ′(Sat(A)) = µ′(χ−1χ(A)) = χ∗µ
′(χ(A)) = χ∗µ(χ(A)) = µ(χ−1χ(A)) = µ(Sat(A)).

Therefore, equation 3.14 implies that µ = µ′ and so the uniqueness of the
measure of maximal entropy for ϕt. ■

We will apply this proposition to our setting to prove the uniqueness of
the measure of maximal entropy. Thus, let Y = T1M , ϕt be the geodesic flow,
X be the quotient space, ψt be the quotient flow, χ be the quotient map and ν
be the unique measure of maximal entropy of ψt. With these choices we satisfy
proposition’s assumptions except for hypothesis 1 and 2. Regarding hypothesis
1, we see that for every [η] ∈ X,

χ−1[η] = χ−1 ◦ χ(η) = I(η). (3.15)

Therefore, hypothesis 1 follows from Lemma 3.7.1. Moreover, by the remark
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given in Equation (3.13), there exists a measure of maximal entropy µ for the
geodesic flow ϕt such that χ∗µ = ν. So, to show the uniqueness it only remains
to prove hypothesis 2.

We will express hypothesis 2 of Proposition 3.7.2 in our context. By
equation 3.15, this hypothesis has the following form

{χ(y) : χ−1 ◦ χ(y) = {y}} = {χ(η) ∈ X : I(η) = {η}} = χ(R0).

In consequence, hypothesis 2 becomes

ν(χ(R0)) = 1. (3.16)

To prove this equation, we use Proposition 3.3 of Climenhaga-Knieper-War’s
work [18]. This proposition states a classical Katok’s result in the context of
geodesic flows on surfaces. The result says that the non-expansive set T1M \R0

cannot support an ergodic measure of positive metric entropy. In particular,
the non-expansive set cannot support a measure of maximal entropy.

Lemma 3.7.2. Let M be a surface without conjugate points of genus greater
than one and µ be an ergodic measure on T1M invariant by the geodesic flow.

If hµ(ϕ1) > 0 then µ(R0) = 1.

Proof. Since µ is ergodic, Ruelle’s inequality reads

0 < hµ(ϕ1) ≤
∫
T1M

χ+dµ =
∑
χi>0

χi.

Thus, at least one χi > 0 µ-almost everywhere. Using Ruelle’s inequality for
ϕ−1

1 ,

0 < hµ(ϕ1) = hµ(ϕ−1
1 ) ≤

∫
T1M

χ+(ϕ−1
1 )dµ =

∑
χj(ϕ−1

1 )>0

χj(ϕ−1
1 ),

where χj(ϕ−1
1 ) stands for the Lyapunov exponents with respect to ϕ−1

1 . Os-
eledets theorem ensures that at least one −χj(ϕ1) = χj(ϕ−1

1 ) > 0 and hence
χj < 0 µ-almost everywhere. Since we are in the surface case, except in the
direction tangent to the geodesic flow, all Lyapunov exponents are nonzero
µ-almost everywhere. Thus, for µ-almost every η ∈ T1M with nonzero Lya-
punov exponents, Pesin theory provides local transverse submanifolds Ws(η)
and Wu(η). Moreover Ws(η) ⊂ F s(η) and Wu(η) ⊂ Fu(η), so F s(η) and
Fu(η) are also transverse. Therefore F s(η) ∩ Fu(η) = {η} and η ∈ R0. Since
R0 is invariant by the geodesic flow, we conclude that µ(R0) = 1. ■
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Finally, we prove Equation (3.16) and so the uniqueness of the measure
of maximal entropy for the geodesic flow.

Proof. As remarked above, by Equation (3.13), µ is a measure of maximal
entropy and hence hµ(ϕ1) = h(ϕ1) > 0. Ergodic decomposition of µ provides
an ergodic component τ with hτ (ϕ1) > 0. Lemma 3.7.2 implies that τ(R0) = 1
hence µ(R0) > 0. So, we have

ν(χ(R0)) = χ∗µ(χ(R0)) = µ(χ−1χR0) = µ(R0) > 0.

Since ν is ergodic and χ(R0) is invariant by the flow ψt, we conclude that
ν(χ(R0)) = 1. ■
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4
Continuity of Green bundles in higher dimension and regular-
ity of horospherical foliations

This chapter studies the relationship between regularity properties of the
horospherical foliations and the continuity of Green bundles. This is done in the
context of compact manifolds without conjugate points and Gromov hyperbolic
universal covering. In [14], Gelfert and Ruggiero investigated among other
things, similar questions for compact higher genus surfaces without conjugate
points and continuous Green bundles. The results of the chapter extend to
higher dimension part of the theory of Gelfert and Ruggiero. More precisely,
we prove the following theorem.

Theorem 4.1. Let M be a compact n-manifold without conjugate points,
Gromov hyperbolic universal covering M̃ and continuous Green bundles. If
there exists a hyperbolic periodic geodesic then

1. The set where the Lyapunov exponents of all vectors transverse to the
geodesic vector field are non-zero agrees almost everywhere with an open
dense set, with respect to Liouville measure.

2. Hyperbolic periodic points are dense on T1M .

3. The horospherical foliations are the only foliations of T1M such that:
they have C1-leaves of dimension n− 1, are continuous, invariant by the
geodesic flow, and transverse to Fu (or F s) at some hyperbolic periodic
point of T1M .

4. Green bundles are uniquely integrable, and tangent to the horospherical
foliations.

While horospheres were defined by Hedlund [4] in 1936, Green bundles
were not formalized by Green [32] until 1958. For compact manifolds of
negative curvature, Anosov [21] showed that horospherical foliations agree
with the invariant foliations of the geodesic flow. Moreover, he pointed out
that Green bundles are the invariant bundles of the geodesic flow. Thus,
in this case Green bundles are tangent to horospherical foliations. Later in
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1973, in the context of compact manifolds without conjugate points, Eberlein
[33] showed this tangency for Anosov geodesic flows. Note that there are
Anosov geodesic flows associated to manifolds that do not have strictly
negative curvature. In 1977, Eberlein [22] and Heintze-Imhof [28] extended the
tangency to compact manifolds of non-positive curvature. In the same year,
Eschenburg [29] generalized this conclusion to a larger family of manifolds that
includes manifolds without focal points, manifolds of bounded asymptote and
manifolds with Anosov geodesic flow. In the above works, Eberlein, Heintze-
Imhof and Eschenburg show that horospherical leaves are C1. In 1977, Pesin
[30] showed the tangency for closed manifolds without focal points. Note that
in all of the above categories of manifolds, Green bundles are automatically
continuous. This does not necessarily hold for general compact manifolds
without conjugate points as showed by Ballmann-Brin-Burns [52] in 1987.
For general compact manifolds without conjugate points, in 1986 Knieper [15]
observed that if Green bundles are continuous, then they are integrable, but
neither necessarily tangent to horospherical leaves, nor uniquely integrable. In
2020, Gelfert-Ruggiero [14] proved that Green bundles are tangent to smooth
horospherical leaves for compact higher genus surfaces without conjugate
points and continuous Green bundles. Theorem 4.1 extends this fact to higher
dimension.

The chapter is organized as follows. Section 4.1 proves items 1 and 2
of Theorem 4.1. Moreover, we show basic consequences of the hypothesis of
Theorem 4.1. In Section 4.2, we show item 3 and 4 of Theorem 4.1. While we
devote most of the section to item 3, item 4 will be a consequence of item 3.
Throughout the chapter, we will assume the hypothesis of Theorem 4.1.

4.1
Hyperbolic periodic points

This section establishes some basic consequences of the hypothesis of
Theorem 4.1. Furthermore we prove items 1 and 2 of the same theorem.

In 1977, Pesin [30] established a theory that deals with nonzero Lyapunov
exponents. He defined an important set in his theory, which has been called
the Pesin set ever since. Pesin developed this theory to prove the ergodicity of
geodesic flows of closed surfaces without focal points. The missing theorem in
the theory was: the non-expansive set has zero Liouville measure. This is not
known even in the case of closed surfaces of nonpositive curvature and remains
as an open problem. An important ingredient of the theory is to verify that
Pesin set has positive measure. Despite we do not prove this result, we study a
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set related to the Pesin set: the set where the Lyapunov exponents of all vectors
transverse to the geodesic vector field are non-zero. We show that this set agrees
almost everywhere with an open dense set with respect to Liouville measure.
In 1985, Ballmann-Brin-Eberlein [78] proved this property for compact rank-1
manifolds of non-positive curvature. In 2003, Ruggiero and Rosas [79] extended
this conclusion to compact manifolds without conjugate points, with bounded
asymptote and expansive geodesic flow. Note that Theorem 4.1 holds for a
family of manifolds that includes the previous cases.

We first give some basic consequences of the hypothesis of Theorem 4.1.
Recall that for every θ ∈ T1M we denoted by Gs(θ) and Gu(θ) the stable and
unstable Green bundles at θ. Furthermore, R1 is the set of vectors θ ∈ T1M

where Gs(θ) and Gu(θ) are transverse.

Lemma 4.1.1. Assume the hypothesis of Theorem 4.1. Then

1. The universal covering M̃ is a uniform visibility manifold.

2. If η ∈ T1M is a hyperbolic periodic point then η ∈ R0 ∩R1. In particular,
R1 is nonempty.

3. R1 is open and dense.

4. If η ∈ T1M is a hyperbolic periodic point and ξ ∈ F̃ s(η) with ξ ̸= η then

ds(ϕt(η), ϕt(ξ)) → ∞ as t → −∞.

Proof. In item 1, since Green bundles are continuous, Proposition 2.3.13
says that geodesics rays diverge uniformly in the universal covering M̃ . This
property together with the Gromov hyperbolicity of M̃ implies that M̃ is a
visibility manifold by Theorem 2.20. Since the fundamental domains of M̃ are
compact it follows that M̃ is actually a uniform visibility manifold.

For item 2, suppose that η ∈ T1M is hyperbolic and periodic. By the
hyperbolic structure of η, Gs(η) and Gu(η) agree with the invariant subspaces
associated to η. Since the invariant subspaces are transverse at η, so are Gs(η)
and Gu(η), hence η ∈ R1. Recall that Gs(η) and Gu(η) are tangent to F̃ s(η)
and F̃u(η). From this we deduce that F̃ s(η) and F̃u(η) are transverse hence
η ∈ R0.

For item 3, the continuity of Green bundles implies that R1 is an open
set. From the above item 1, we know that M̃ is a visibility manifold. From
this, Theorem 2.15 says that ϕt is transitive. So, let U be an open set of T1M .
By transitivity there exists an orbit O of ϕt that is dense in T1M . Thus, O
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intersects U and R1. Since R1 is invariant by ϕt, we conclude that O ⊂ R1.
Therefore R1 is dense.

For item 4, by contradiction we suppose that there exists C > 0 such
that

ds(ϕt(η), ϕt(ξ)) ≤ C for every t ≤ 0.

This implies that ξ ∈ F̃ cu(η) and hence

ξ ∈ F̃ s(η) ∩ F̃ cu(η).

By Corollary 2.3.1, we conclude that ξ ∈ I(η). Since η is expansive, I(η) = {η}
and so ξ = η, a contradiction. ■

We now deal with the set closely related to the Pesin set, mentioned
in the introduction. To do this, we recall Definition 2.2.1 given in Subsection
2.2.2. Let ϕt : M → M be a smooth flow acting on a compact manifold M .
We define the set

Λϕ = {p ∈ M : for every v ∈ Sp ⊂ TpM,χ(p, v) ̸= 0},

where Sp is some subspace transverse to the flow ϕt at p.

As said in the introduction, we rely on a Ruggiero’s Theorem (Theorem
4.1 of [17]) which we restate below.

Theorem 4.2. Let M be a compact manifold without conjugate points and
continuous Green bundles. If R1 is nonempty, then for m-almost every θ ∈ R1,
for every ξs ∈ Gs(θ), ξu ∈ Gu(θ),

lim
t→∞

1
t

log ∥dθϕt(ξs)∥ < 0 and lim
t→∞

1
t

log ∥dθϕt(ξu)∥ > 0.

From this we deduce that for m-almost every θ ∈ R1, the Lyapunov
exponents are nonzero on Gs(θ) ⊕ Gu(θ). Recall that G(θ) is the vector field
tangent to the geodesic flow at θ. Since Gs(θ) and Gu(θ) are transverse on
each θ ∈ R1, we conclude that Gs(θ) and Gu(θ) span S(θ), the orthogonal
complement of G(θ). Therefore for m-almost every θ ∈ R1, the Lyapunov
exponents are nonzero on a subspace S(θ) orthogonal to G(θ), i.e., θ ∈ Λϕ. We
thus get item 1 of Theorem 4.1.

Corollary 4.1.1. The set Λϕ agrees m-almost everywhere with the open dense
set R1.
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Proof. By item 2 of Lemma 4.1.1, we know that R1 is nonempty. By hypoth-
esis, Green bundles are continuous so we can apply Theorem 4.2 to our case.
The result follows from the above discussion since R1 is open and dense by
Lemma 4.1.1(3). ■

We now state a version of Katok’s classical result [31] about measures
with non-zero Lyapunov exponents.

Theorem 4.3. Let M be a compact manifold, f : M → M be a C2

diffeomorphism and µ be a f -invariant ergodic measure on M . If µ is not
concentrated on a single periodic orbit and µ has non-zero Lyapunov exponents
then for every x ∈ Supp(µ) and every neighborhood U of x there exists a
hyperbolic periodic point in U .

Note that this theorem is intended for discrete systems. However, there
is a large consensus among specialists that the theorem extends via local cross
sections to flows without singularities. Thus there are several works that use
the result or deal with things related to it. Among them, in the context of
geodesic flows we can cite some due to Paternain [80], Barbosa-Ruggiero [81],
Ruggiero [17], Ledrappier-Lima-Sarig [82] and Araujo-Lima-Poletti [83].

Thus, to apply Theorem 4.3, let us look at Liouville measure restricted
to R1. We denote by m′ the Liouville measure m restricted and normalized to
R1. Thus, m′ is a Borel probability measure on R1 invariant by ϕt. Corollary
4.1.1 says that except for the direction tangent to the geodesic flow, m′ has
non-zero Lyapunov exponents on R1. Since R1 is open, m′ is not concentrated
on a single orbit. Meanwhile, Pesin [30] proved that the Liouville measure is
ergodic when restricted to R1, so m′ is ergodic. As a result, we can apply
Katok’s Theorem to m′. We observe that Supp(m′) = R1 up to m′-null set.
We thus get item 2 of Theorem 4.1 since R1 is open and dense by Lemma
4.1.1(3).

Corollary 4.1.2. Hyperbolic periodic points are dense on T1M .

4.2
Horospherical foliations are dynamically defined and tangent to Green
bundles

The goal of this section is to prove item 3 and 4 of Theorem 4.1. We
first show the uniqueness-type result for the horospherical foliations on T1M .
This property has as direct consequence the tangency between horospherical
foliations and Green bundles.
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For closed manifolds of negative curvature, a consequence of the Anosov’s
work [21] is the uniqueness of continuous foliations of T1M invariant by
geodesic flow. In 1993, Paternain [84] showed the uniqueness for compact
surfaces with expansive geodesic flow. In 1997, Ruggiero [85] extended this
conclusion to compact manifolds without conjugate points and expansive
geodesic flow. Note that Anosov geodesic flows are particular cases of expansive
geodesic flows. In 2007, Barbosa and Ruggiero [16] showed the uniqueness
for compact surfaces without conjugate points and genus greater than one,
but this time without assuming expansivity. The present work generalizes the
uniqueness to any dimension under the assumptions of Theorem 4.1.

We prove the uniqueness result in several steps. Let D be a ϕt-invariant
continuous foliation of T1M with C1-leaves of dimension n − 1. Moreover,
without loss of generality we assume that D is transverse to Fu at the
hyperbolic periodic point θ ∈ T1M . We first verify the coincidence of special
leaves of D and F s locally: if U is a small neighborhood of θ then

D(θ) ∩ U = F s(θ) ∩ U. (4.1)

Suppose that D(θ)∩U = F s(θ)∩U . Using the fact that we can generate F s(θ)
with discrete ϕt-iterates of F s(θ) ∩ U , we extend the coincidence to the whole
leave: for the hyperbolic periodic point θ it holds

D(θ) = F s(θ). (4.2)

From this, using the density of F s(θ) on T1M , we deduce that all the leaves
of D and F s agree and so the foliations D and F s agree.

As first step, the following lemma proves Equation (4.1). This lemma
says that D and F s agree on a neighborhood of the hyperbolic periodic point
θ. We establish a convention for the remainder of the section. Whenever we
work on T1M , intersection notations such as D(θ) ∩ U , always refer to the
connected component of D(θ) ∩ U containing θ.

Lemma 4.2.1. Let D be a ϕt-invariant continuous foliation of T1M with C1-
leaves of dimension n−1 and transverse to Fu (or F s) at the hyperbolic periodic
point θ ∈ T1M of period P > 0. If U ⊂ T1M is a small neighborhood of θ then

either D(θ) ∩ U = F s(θ) ∩ U or D(θ) ∩ U = Fu(θ) ∩ U.

Proof. Without loss of generality we assume that D is transverse to Fu at θ.
By contradiction, suppose that

D(θ) ∩ U ̸= F s(θ) ∩ U. (4.3)
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Thus, for every n ≥ 1, we define

Dn = ϕnP (D(θ)) ∩ U.

Since D is invariant by the flow ϕt and P is the period of θ, we have

ϕnP (D(θ)) = D(θ) hence Dn ⊂ D(θ) ∩ U.

Denoting by dr the Cr-distance for every r ≥ 1, we see that for every n ≥ 1,

dr(Dn,Fu(θ) ∩ U) > 0. (4.4)

On the other hand, since θ is a hyperbolic fixed point of ϕP , D(θ) ∩ U is
transverse to Fu(θ) ∩U at θ and equation (4.3), the inclination lemma implies

dr(Dn,Fu(θ) ∩ U) → 0 as n → ∞.

This contradicts Equation (4.4) and shows that D(θ) ∩ U = F s(θ) ∩ U . The
other case is analogous. ■

To prove Equation (4.2), we consider the sets

V s(θ) = F s(θ) ∩ U and V u(θ) = Fu(θ) ∩ U. (4.5)

We now generate F s(θ) and Fu(θ) with discrete ϕt iterates of V s(θ) and V u(θ)
respectively. To do this, we work in the covering space T1M̃ . Choosing some
lift θ̃ ∈ T1M̃ of θ, we obtain the following lifts.

– F̃ s(θ̃) and F̃u(θ̃) are lifts of F s(θ) and Fu(θ).

– Ṽ s(θ̃) and Ṽ u(θ̃) are lifts of V s(θ) and V u(θ).

– The lifts satisfy

Ṽ s(θ̃) ⊂ F̃ s(θ̃) and Ṽ u(θ̃) ⊂ F̃u(θ̃).

On the other hand, since θ is periodic of period P > 0, γθ is a closed geodesic
with same period P . From Subsection 2.1.1, we know that γθ has an associated
axial isometry T : M̃ → M̃ , with axis γθ̃. This means that T is a translation
along γθ̃: for every t ∈ R,

γθ̃(t+ P ) = T ◦ γθ̃(t).

Therefore the covering isometry dT : T1M̃ → T1M̃ is a translation along the
orbit of θ̃: for every t ∈ R,
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ϕt+P (θ̃) = dT ◦ ϕt(θ̃). (4.6)

The following lemma says that we can generate F̃ s(θ̃) and F̃u(θ̃), with discrete
ϕt iterates of Ṽ s(θ̃) and Ṽ u(θ̃) up to isometric images.

Lemma 4.2.2. Let θ ∈ T1M be the hyperbolic periodic point of period P > 0,
θ̃ ∈ T1 be any lift of θ and T be the axial isometry associated to γθ, having axis
γθ̃. If Ṽ s(θ̃) and Ṽ u(θ̃) are the lifts introduced in the above list then

1. For every n ∈ Z,
(dT )−nϕnP (θ̃) = θ̃.

2.

F̃ s(θ̃) =
⋃
n∈N

(dT )n◦ϕ−nP (Ṽ s(θ̃)) and F̃u(θ̃) =
⋃
n∈N

(dT )−n◦ϕnP (Ṽ u(θ̃)).

(4.7)

Proof. For item 1, from Equation (4.6), we see that for every t ∈ R and every
n ∈ Z

ϕt+nP (θ̃) = (dT )nϕt(θ̃) hence (dT )−n ◦ ϕt+nP (θ̃) = ϕt(θ̃).

The result follows setting t = 0. For item 2, since horospherical foliations are
invariant by ϕt and by the covering isometries, for every n ≥ 1 we have

(dT )n ◦ ϕ−nP (F̃ s(θ̃)) = F̃ s((dT )n ◦ ϕ−nP (θ̃)) = F̃ s(θ̃).

Since Ṽ s(θ̃) ⊂ F̃ s(θ̃), we deduce that for every n ≥ 1

(dT )n ◦ ϕ−nP (Ṽ s(θ̃)) ⊂ F̃ s(θ̃) hence
⋃
n∈N

(dT )n ◦ ϕ−nP (Ṽ s(θ̃)) ⊂ F̃ s(θ̃).

For the reverse inclusion, Lemma 4.1.1(4) states that for every η̃ ∈ Ṽ s(θ̃) ⊂
F̃ s(θ̃),

ds(ϕt(θ̃), ϕt(η̃)) → ∞ as t → −∞.

From this, setting t = −nP we get

ds(θ̃, (dT )n ◦ ϕ−nP (η̃)) = ds((dT )n ◦ ϕ−nP (θ̃), (dT )n ◦ ϕ−nP (η̃))

= ds(ϕ−nP (θ̃), ϕ−nP (η̃)) → ∞ as n → ∞.

Hence,
Diam((dT )n ◦ ϕ−nP (Ṽ s(θ̃))) → ∞ as n → ∞.
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We conclude that F̃ s(θ̃) is covered by ⋃
n∈N(dT )n ◦ ϕ−nP (Ṽ s(θ̃)) as n → ∞.

The proof for the unstable case is similar. ■

As an immediate consequence, we generate F s(θ) and Fu(θ), with
discrete ϕt-iterates of V s(θ) and V u(θ). Furthermore, we prove Equation (4.2)
and so the coincidence of the entire leaves D(θ) and F s(θ).

Lemma 4.2.3. Let D be a ϕt-invariant continuous foliation of T1M with C1-
leaves of dimension n − 1 and θ ∈ T1M be the hyperbolic periodic point of
period P > 0 where D is transverse to Fu (or F s). If V s(θ) and V u(θ) are the
sets defined in Equation (4.5) then

1.
F s(θ) =

⋃
n∈N

ϕ−nP (V s(θ)) and Fu(θ) =
⋃
n∈N

ϕnP (V u(θ)).

2. Either
D(θ) = F s(θ) or D(θ) = Fu(θ).

Proof. Item 1 follows by applying the covering map dπ to Equation (4.7) since

dπ(
⋃
n∈N

(dT )n◦ϕ−nP (Ṽ s(θ̃))) =
⋃
n∈N

dπ◦(dT )n◦ϕ−nP (Ṽ s(θ̃)) =
⋃
n∈N

ϕ−nP (Ṽ s(θ̃)).

For item 2, let η ∈ F s(θ). By the last item, η ∈ ϕ−nP (V s(θ)) for some n ≥ 1.
Without loss of generality, we suppose that D(θ) = F s(θ) on V s(θ). Since D
and F s are invariant by ϕ−nP , it follows that D(θ) = F s(θ) on ϕ−nP (V s(θ))
and so the sets agree on η. The other case is similar. ■

Now, using the density of the horospherical leaves we show item 3 of
Theorem 4.1.

Corollary 4.2.1. The horospherical foliations are the only foliations of T1M

such that: they have C1-leaves of dimension n − 1, are continuous, invariant
by the geodesic flow, and transverse to Fu (or F s) at some hyperbolic periodic
point of T1M .

Proof. Let D be a ϕt-invariant continuous foliation of T1M with C1-leaves of
dimension n − 1, ξ ∈ T1M and B be a closed ball containing ξ. Without loss
of generality, we assume that D is transverse to Fu at the hyperbolic periodic
point θ ∈ T1M . Applying Lemma 4.2.3 we obtain

D(θ) = F s(θ). (4.8)
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Furthermore, Theorem 2.15 provides that F s(θ) is dense on T1M . Thus, there
exists a sequence ξn ∈ F s(θ) with ξn → ξ. For every n ≥ 1, let Fn and Dn be
the respective connected components of F s(ξn) ∩B and D(ξn) ∩B containing
ξn. By Equation (4.8), for every n ≥ 1,

Fn = Dn.

We denote by F and D be the respective connected components of F s(ξ) ∩B

and D(ξ) ∩ B containing ξ. Since F s and D are continuous foliations in the
compact-open topology, we deduce that Fn converges to F and Fn = Dn

converges to D as n → ∞ in the compact-open topology. Thus, F = D and
hence for every ξ ∈ T1M ,

F s(ξ) ∩B = D(ξ) ∩B.

Therefore the foliations D and F s agree. A similar reasoning shows that D and
Fu agree if we assume D(θ) = Fu(θ). ■

We now turn to the problem of the tangency between horospherical
foliations and Green bundles. A related problem to this, deals with the
integrability of Green bundles. Knieper [15] studied this problem in the
context of compact manifolds without conjugate points. In the special case
of continuous Green bundles, Knieper showed that these bundles integrate to
continuous foliations invariant by ϕt. Moreover, he conjectured the tangency
between horospherical foliations and Green bundles in this context.

Theorem 4.4. Let M be a compact n-manifold without conjugate points.
If Green bundles are continuous then these bundles integrate to continuous
foliations Gs and Gu of T1M with C1-leaves of dimension n− 1. Moreover, Gs

and Gu are invariant by the geodesic flow.

Though the importance of this theorem, this does not ensure the unique
integrability of Green bundles. The following corollary solves the problems of
unique integrability and tangency. The result is a direct consequence of the
uniqueness of horospherical foliations.

Corollary 4.2.2. Green bundles are uniquely integrable and tangent to the
horospherical foliations.

Proof. By Theorem 4.4, Green bundles integrate to some ϕt-invariant con-
tinuous foliations Gs and Gu of T1M with C1-leaves of dimension n − 1. By
hypothesis there exists a hyperbolic periodic point θ ∈ T1M hence
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Gs(θ) = F s(θ) and Gu(θ) = Fu(θ). (4.9)

Thus, Lemma 4.1.1(2) implies that Gs and Gu are transverse to Fu and F s

respectively at θ. By Corollary 4.2.1, either Gs = F s or Gs = Fu. From
Equation (4.9) we conclude that Gs = F s and Gu = Fu. Therefore, the
results follow since Gs and Gu are arbitrary foliations integrated from Green
bundles. ■
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A
The topological mixing property for compact manifolds with
visibility universal covering

In this appendix we will assume a compact manifoldM without conjugate
points and visibility universal covering M̃ . Eberlein [49] showed the topological
mixing for the geodesic flow of complete manifolds of non-positive curvature.
His argument can be extended to the visibility case almost unchanged. For
completeness, we give Eberlein’s proof for the visibility case, without assuming
the non-positive curvature hypothesis. Eberlein’s works [49, 25] are the main
references for the proof.

Lemma A.1. Let M be a compact manifold without conjugate points and
visibility universal covering M̃ . Then

1. If v ∈ T1M is periodic with period a > 0 and w ∈ F cs(v), then
ϕc(w) ∈ F s(v) for some c ∈ [0, a].

2. If w ∈ F s(v) then F s(w) ⊂ F s(v).

3. If w ∈ F cs(v) then F cs(w) ⊂ F cs(v).

Proof. For item 1, let (wn) ⊂ F cs(v) with wn → w. For every n ≥ 1 there
exists cn ∈ [0, a] such that ϕcn(wn) ∈ F s(v). Passing to a subsequence cn → c

and hence there exists c ∈ [0, a] such that

ϕcn(wn) → ϕc(w) ∈ F s(v).

For item 2, let v ∈ T1M , w ∈ F s(v), u ∈ F s(w) and U ⊂ T1M be an
open neighborhood of u. We see that U ∩ F s(w) ̸= ∅. Since M̃ is a visibility
manifold, Proposition 2.3.14 shows that horospherical foliations are continuous.
Hence we can choose an open neighborhood V of w such that for every x ∈ V ,
F s(x) ∩ U ̸= ∅. Since w ∈ F s(v) there exists v′ ∈ F s(v) ∩ V hence

F s(v) ∩ U = F s(v′) ∩ U ̸= ∅.
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Therefore u ∈ F s(v) and F s(w) ⊂ F s(v). The reasoning for item 3 is
similar. ■

For every v ∈ T1M , the positive prolongational limit set of v, P+(v), is
the set of points w ∈ T1M such that for any open neighborhoods U, V of v, w
respectively, there exists a sequence tn → ∞ satisfying

ϕtn(U) ∩ V ̸= ∅ for every n ≥ 1.

The negative prolongational limit set P−(v) is defined similarly considering
sequences tn → −∞. The following basic properties are straightforward from
the definitions.

Lemma A.2. Let M be a compact manifold without conjugate points and
v ∈ T1M .

1. The sets P+(v) and P−(v) are closed and invariant by the geodesic flow.

2. P+(−v) = −P−(v) and P−(−v) = −P+(v).

3. w ∈ P+(v) if and only if there exist sequences (vn) ⊂ T1M , tn → ∞(−∞)
such that vn → v and ϕtn(vn) → w.

4. w ∈ P−(v) if and only if there exist sequences (vn) ⊂ T1M , tn → −∞
such that vn → v and ϕtn(vn) → w.

Another definition related to the prolongational sets and specially useful
for topological transitivity follows. Let (tn) ⊂ R be a sequence with tn → ∞ or
tn → −∞. For every v, w ∈ T1M , we say that v is tn related to w if for any
open neighborhoods U, V of v, w respectively, there exists N(U, V ) ≥ 1 such
that for every n ≥ N ,

ϕtn(U) ∩ V ̸= ∅.

We list some properties that follow from the definitions.

Lemma A.3. Let M be a compact manifold without conjugate points and
v, w ∈ T1M .

1. w ∈ P+(v) if and only if v is tn related to w for some sequence tn → ∞.

2. v is tn related to w if and only if w is −tn related to v.

3. v is tn related to w if and only if −w is tn related to −v.
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4. For any tn → ±∞, the set {w ∈ T1M : v is tn related to w} is closed in
T1M .

5. For any tn → ±∞, the set {v ∈ T1M : v is tn related to w} is closed in
T1M .

6. v is tn related to w if and only if there exists a sequence (vn) ⊂ T1M

such that vn → v and ϕtnvn → w.

Lemma A.4. Let M be a compact manifold without conjugate points and
visibility universal covering M̃ . For every v, w ∈ T1M such that v is tn related
to w for some sequence tn → ∞, it holds

1. If v′ ∈ F s(v) then v′ is tn related to w.

2. If w′ ∈ Fu(w) then v is tn related to w′.

Proof. For item 1, by Lemma A.3(5), it suffices to show the claim for u ∈ F s(v).
By Lemma A.3(6), there exists a sequence vn → v with ϕtnvn → w. Let
(p, u′), (q, v′), (qn, v′

n) ∈ T1M̃ be lifts of u, v, vn respectively such that u′ ∈
F̃ s(v′) and v′

n → v′. It follows that γn → γv′ where γn = γv′
n
. This implies that

γn(tn) → γv′(∞). If sn = d(p, γn(tn)) then

|sn − tn| = |d(p, γn(tn)) − d(qn, γn(tn))|

≤ |d(p, γn(tn)) − d(q, γn(tn))| + |d(q, γn(tn)) − d(qn, γn(tn))| → 0

because p, q ∈ H+(v′), γn(tn) → γv′(∞) and qn → q. For every n ≥ 1, let
u′
n ∈ T1M̃ such that γu′

n
joins p to γn(tn). Note that vectors ϕtn(v′

n) and ϕsn(u′
n)

are tangent to M̃ at γn(tn). By visibility condition, ∠γn(tn)(ϕtnv′
n, ϕsnu

′
n) → 0

because d(p, qn) is bounded.

For every n ≥ 1, let un = dπ(u′
n). Since γn(tn) → γv′(∞) = γu′(∞), we

conclude that u′
n → u′ hence un → u. Thus, the result follows from

lim
n→∞

ϕtnun = lim
n→∞

ϕsnun = lim
n→∞

ϕtnvn = w.

For item 2, if w′ ∈ Fu(w) = −F s(−w) then −w′ ∈ F s(−w). By Lemma A.3(3)
we see that −w is tn related to −vn hence −w′ is tn related to −v by (1). This
means that v is tn related to w′. ■

We next study the relationship between center stable and negative
prolongational sets.
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Lemma A.5. Let M be a compact manifold without conjugate points and
visibility universal covering M̃ . Given v, w ∈ T1M ,

1. If w ∈ P+(v) then F cu(w) ⊂ P+(v).

2. If w ∈ P−(v) then F cs(w) ⊂ P−(v).

Proof. For item 1, let w′ ∈ F cu(w). Then there exists t ∈ R with ϕt(w′) ∈
Fu(w). By hypothesis, v is tn related to w for some sequence tn → ∞. By
Lemma A.4 we see that v is tn related to ϕt(w′) hence v is (tn − t) related
to w′. This implies that w′ ∈ P+(v) and F cu(w) ⊂ P+(v). The result follows
because P+(v) is closed. Item 2 is analogous. ■

Recall that a point v ∈ T1M is called non-wandering if v ∈ P+(v)
(equivalently v ∈ P−(v)). The set of non-wandering points is denoted by Ω.
Note that Ω is closed and invariant by the geodesic flow. In particular, for a
compact manifold M , Ω = T1M . We will complete the relationship between
center stable and negative prolongational sets given in Lemma A.5, for the
case of non-wandering points.

Lemma A.6. Let M be a compact manifold without conjugate points and
visibility universal covering M̃ . For every v ∈ T1M ,

P+(v) = F cu(v) and P−(v) = F cs(v).

Proof. Let w ∈ P−(v) and (p, v′), (q, w′) ∈ T1M̃ be lifts of v, w respectively. By
Lemma 3.2 of [25], γv′(−∞) and γw′(∞) are dual relative to π1(M). Thus, there
exists a sequence of covering isometries (Tn) such that T−1

n (p) → γv′(−∞) and
Tn(p) → γw′(∞). This and Proposition 2.2 of [25] imply that

∠p(Tn(γv′(∞)), γw′(∞)) ≤ ∠p(Tn(γv′(∞)), Tn(p)) + ∠p(Tn(p), γw′(∞))

= ∠T−1
n (p)(γv′(∞), p) + ∠p(Tn(p), γw′(∞)) → 0.

Therefore Tn(γv′(∞)) → γw′(∞). For every n ≥ 1 let w′
n ∈ T1M̃ such that γw′

n

joins q to Tn(γv′(∞)). Since γw′ joins q to γw′(∞), we conclude that w′
n → w′.

We also see that γdT−1
n (w′

n) joins T−1
n (q) to γv′(∞) and hence dT−1

n w′
n ∈ F̃ cs(v′).

This implies that wn = dπ(w′
n) ∈ F cs(v), wn → w and so, P−(v) ⊂ F cs(v).

Since every v ∈ T1M is a non-wandering point, v ∈ P−(v) and Lemma A.5
together imply the reverse inclusion. For P+(v), note that

P+(v) = −P−(−v) = −F cs(−v) = F cu(v).
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■

We will show that the center stable and center unstable foliations are
minimal.

Lemma A.7. Let M be a compact manifold without conjugate points and
visibility universal covering M̃ . Assume that bτ is any Busemann function of
the geodesic τ ⊂ M̃ . If σ ⊂ M̃ is a geodesic with σ(∞) ̸= τ(∞) then

lim
t→∞

bτ (σ(t)) = ∞.

Proof. Proposition 2.3.3 provides a geodesic β ⊂ M̃ such that β(−∞) = σ(∞)
and β(∞) = τ(∞). Denote by β−1 the geodesic t 7→ β(−t). We see that
bτ (β(t)) = bτ (β(0)) − t and so

lim
t→−∞

bτ (β(t)) = lim
t→∞

bτ (β−1(t)) = ∞.

Since β−1 and σ are asymptotic, d(β−1(s), σ(s)) is bounded for s ≥ 0 and

bτ (σ(s)) = lim
t→∞

d(σ(s), τ(t)) − t ≥ lim
t→∞

d(τ(t), β−1(s)) − d(β−1(s), σ(s)) − t

≥ lim
t→∞

d(τ(t), β−1(s)) − t = bτ (β−1(s)).

The result follows letting s → ∞. ■

In geometrical terms, τ is the only geodesic starting at p ∈ M̃ , belonging
to the horoball centered at τ(∞) and bounded by the horosphere H+(τ̇(0)).

Lemma A.8. Let M be a compact manifold without conjugate points and
visibility universal covering M̃ . Then, for every open sets U, V ⊂ T1M there
exists v ∈ U such that

F s(v) ∩ V ̸= ∅.

Proof. Let (p, v), (q, w) ∈ T1M̃ be lifts of any vectors of U, V ⊂ T1M

respectively and x = γv(∞), y = γw(∞). By Proposition 2.8 of [25], x and y

are dual respect to π1(M) hence there exists a sequence of covering isometries
(Tn) such that Tn(r) → x and T−1

n (r) → y for every r ∈ M̃ . For every
n ≥ 1, let xn ∈ M̃(∞) be the center of the horosphere H+(vn) passing through
p, Tnq ∈ M̃ , for a sequence (p, vn) ⊂ T1M̃ .

We will show that xn → x. Fix any t ≥ 0, and let σn be the geodesic
joining p to Tn(q). For large enough n, we see that t ≤ d(p, Tn(q)). Since
p, Tn(q) ∈ H+(vn), we conclude that bvn(σn(t)) ≤ 0. Passing to a subsequence
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xn → z ∈ M̃(∞). Since Tn(q) → x, we deduce that σn → γv. Let bz be the
Busemann function determined by p ∈ M̃ and z ∈ M̃(∞). By continuity of
Busemann functions, bvn → bz and σn → γv. Thus, we see that bz(γv(t)) ≤ 0
hence

lim
t→∞

bz(γv(t)) → −∞.

Lemma A.7 shows that x = γv(∞) = z. Therefore xn → x because every
convergent subsequence of xn converges to x.

We next show that T−1
n (xn) → y. For 0 ≤ t ≤ d(p, Tn(q))/2, the triangle

inequality ensures that d(Tn(q), γvn(t)) ≥ d(p, Tn(q))/2. If t ≥ d(p, Tn(q))/2
then

d(Tn(q), γvn(t)) ≥ |bvn(Tn(q)) − bvn(γn(t))| ≥ |bvn(γvn(t))| = t ≥ d(p, Tn(q))/2.

Therefore, we obtain

d(q, T−1
n ◦ γvn) = d(Tn(q), γvn) ≥ d(p, Tn(q))/2 → ∞.

By visibility condition ∠q(T−1
n (p), T−1

n (xn)) → 0. Putting all together, since
T−1
n (p) → y, we have

∠q(T−1
n (xn), y) ≤ ∠q(T−1

n (xn), T−1
n (p)) + ∠q(T−1

n (p), y) → 0,

and so T−1
n (xn) → y.

For each n ≥ 1, let wn ∈ T1M̃ such that γwn joins q to T−1
n (xn). Since

xn → x and T−1
n (xn) → y, we see that vn → v, wn → w and

dTn(wn) ∈ F̃ s(vn).

For large enough n, we deduce that dπ(vn) ∈ U , dπ(wn) ∈ V and dπ(wn) ∈
F s(vn). ■

Theorem A.1. Let M be a compact manifold without conjugate points and
visibility universal covering M̃ . Then, there exists v ∈ T1M such that F s(v) is
dense in T1M .

Proof. Let (Un) be a countable basis for the topology of T1M and U be any
open set. By Lemma A.8, there exists v1 ∈ U with F s(v1) ∩U1 ̸= ∅. Choose an
open neighborhood A1 of v1 with compact closure A1 ⊂ U satisfying for every
v ∈ A1,

F s(v) ∩ U1 ̸= ∅.
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Inductively, we construct a sequence of vectors vn ∈ U , a sequence of open
neighborhoods An of vn with compact closures An ⊂ An−1 such that

F s(v) ∩ Un ̸= ∅ for any v ∈ An.

Thus, there exists w ∈ ∩nAn such that F s(w) ∩ Un ̸= ∅ for every n ≥ 1, and
the result follows. ■

Since F s(w) ⊂ F cs(w), this theorem implies that there exists w ∈ T1M

such that F cs(w) is dense in T1M . In fact, we see that every center stable set
is dense in T1M .

Lemma A.9. Let M be a compact manifold without conjugate points and
visibility universal covering M̃ . Then, for every v ∈ T1M , F cs(v) is dense in
T1M .

Proof. Let v, w, v′ ∈ T1M with F cs(v′) = T1M . Thus, there exists a sequence
(wn) ⊂ F cs(v′) such that wn → w and F cs(wn) = F cs(v′) for every n ≥ 1. By
Lemma A.6,

P−(wn) = F cs(wn) = F cs(v′) = T1M.

Therefore, for every n ≥ 1, v ∈ P−(wn) and wn ∈ P+(v). Thus w ∈ P+(v)
because P+(v) is closed. So, for any v ∈ T1M ,

F cu(v) = P+(v) = T1M.

Note that for every v ∈ T1M ,

T1M = −F cs(v) = F cu(−v).

■

Using the minimality of center foliations, we finally show the topological
mixing of the geodesic flow.

Lemma A.10. Let M be a compact manifold without conjugate points and
visibility universal covering M̃ . If v ∈ T1M is periodic with period a > 0 then
F s(v) is dense in T1M .

Proof. Theorem A.1 gives w ∈ T1M such that F s(w) = T1M . Lemma A.9
guarantees that w ∈ F cs(v). Moreover, Lemma A.1(1) shows that ϕc(w) ∈
F s(v) for some c ∈ [0, a]. By Lemma A.1(2), F s(ϕc(w)) ⊂ F s(v) and thus

T1M = ϕc(T1M) = ϕc(F s(w)) = F s(ϕcv).
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■

Theorem A.2. Let M be a compact manifold without conjugate points and
visibility universal covering M̃ . Then the geodesic flow is topologically mixing.

Proof. Let (tn) ⊂ R be a sequence with tn → ∞, and v′ ∈ T1M be a periodic
vector of period a > 0. Choose a subsequence (sn) of (tn) such that ϕsnv

′ → ϕcv
′

for some c ∈ [0, a]. Clearly v′ is sn related to ϕcv′. Since ϕ−cv
′ is periodic, we

have
Fu(ϕcv′) = −F s(−ϕcv′) = −F s(ϕ−c(−v′)) = T1M.

Lemma A.10 says that F s(v′) = T1M . Moreover, Lemma A.4 shows that v is
sn related to w for every v, w ∈ T1M . Thus for every open sets U, V ⊂ T1M

there exists A1 > 0 such that t ≥ A implies that

ϕt(U) ∩ V ̸= ∅.

Considering the open sets −U and −V , there exists A2 > 0 such that t ≥ A2

implies that

∅ ≠ ϕt(−U) ∩ (−V ) = −ϕ−t(U) ∩ (−V ) = −(ϕ−t(U) ∩ V ).

Choosing A = max(A1, A2) we get the topological mixing:

ϕt(U) ∩ V ̸= ∅ for |t| ≥ A.

■
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