Título: | IMPLEMENTAÇÃO DE ELEMENTOS FINITOS HÍBRIDOS PLANOS PARA A ANÁLISE DE PLACAS E CASCAS FINAS OU MODERADAMENTE ESPESSAS | ||||||||||||
Autor: |
RENAN COSTA SALES |
||||||||||||
Colaborador(es): |
NEY AUGUSTO DUMONT - Orientador |
||||||||||||
Catalogação: | 10/DEZ/2021 | Língua(s): | PORTUGUÊS - BRASIL |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=56517&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=56517&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.56517 | ||||||||||||
Resumo: | |||||||||||||
A formulação híbrida dos elementos finitos, proposta por Pian, com
base no princípio variacional de Hellinger-Reissner, mostrou-se uma ótima
alternativa para a construção de elementos finitos eficientes que atendessem
a condições tanto de compatibilidade como de equilíbrio. O potencial de
Hellinger-Reissner consiste na aproximação de dois campos: um campo tensões
que satisfaz, a priori, as equações diferenciais homogêneas de equilíbrio
do problema, e um campo de deslocamentos que atende a compatibilidade
ao longo do contorno. O conjunto de funções não-singulares que satisfazem
as equações governantes de um problema é conhecido como soluções fundamentais
ou soluções de Trefftz, e é a base para a interpolação do campo de
tensões no método híbrido de elementos finitos. O presente trabalho apresenta
uma metodologia geral para a formulação de uma família de elementos
finitos híbridos poligonais de membrana para problemas de elasticidade bidimensional,
assim como elementos finitos híbridos simples e eficientes a para
análise numérica de problemas de placa de Kirchhoff e Mindlin-Reissner.
Algumas contribuições conceituais são introduzidas nas soluções fundamentais
para a correta concepção dos elementos híbridos em problemas de placa
espessa. O desempenho dos elementos é avaliado através de alguns exemplos
numéricos, os quais os resultados são confrontados com os de outros
elementos encontrados na literatura.
|
|||||||||||||
|