Título: | UM MÉTODO DE CONTINUAÇÃO ESTRUTURADO PARA PROBLEMAS COM MÚLTIPLAS SOLUÇÕES | ||||||||||||
Autor: |
DIEGO SOARES MONTEIRO DA SILVA |
||||||||||||
Colaborador(es): |
CARLOS TOMEI - Orientador OTAVIO KAMINSKI DE OLIVEIRA - Coorientador |
||||||||||||
Catalogação: | 07/DEZ/2021 | Língua(s): | PORTUGUÊS - BRASIL |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=56470&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=56470&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.56470 | ||||||||||||
Resumo: | |||||||||||||
Seja F uma função definida de um espaço de Banach real X para um espaço de Banach real Y e g um ponto pertencente a Y. Descrevemos um algoritmo para calcular as soluções u da equação F de u igual a g. Inicialmente, o algoritmo parte de uma curva c no domínio, a qual é escolhida de modo a interceptar substancialmente o conjunto crítico de F. Calculamos através de métodos de continuação uma componente da imagem inversa de F de c e definimos essa componente de forma abstrata: grafo completamente espelhado. Claramente, os métodos de continuação padrão têm melhores chances de sucesso em diferentes pontos iniciais. Fornecemos argumentos geométricos para a abundância ocasional de soluções e uma busca estruturada dessas. Três exemplos são considerados detalhadamente. O primeiro é uma função do plano no plano, em que podemos validar os resultados com auxílio de um software. O segundo conjunto de exemplos é obtido a partir da discretização de um problema de Sturm-Liouville não linear com um número inesperado de soluções. Por último, calculamos as seis soluções aproximadas de um problema estudado por Solimini.
|
|||||||||||||
|