Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: ANÁLISE EM GRASSMANNIANAS E O TEOREMA DE JOHNSON-LINDENSTRAUSS
Autor: MIGUEL ANGEL ORRILLO CUMPA
Colaborador(es): CARLOS TOMEI - Orientador
Catalogação: 11/NOV/2021 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=55839&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=55839&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.55839
Resumo:
Seja V um conjunto de n pontos no espaço euclidiano X de dimensão d. Pelo teorema de Johnson-Lindenstrauss, existe uma projeção entre X e Y, outro espaço de dimensão k bastante menor, com a propriedade que as distâncias entre imagens de pontos de V sejam mantidas dentro de um fator c arbitrariamente próximo de 1. O teorema apresenta uma relação entre d, k e c, indicando a possibilidade de dramáticas reduções de dimensão para representações fidedignas de V. A demonstração emprega as Grassmannianas, as variedades de subespaços de dimensão k em X. São construídas cartas e uma medida homogênea em relação à ação natural do grupo ortogonal na Grassmanniana. O resultado segue estimando através de gaussianas certas integrais de caráter fortemente geométrico.
Descrição: Arquivo:   
NA ÍNTEGRA PDF