Título: | UMA DEFORMAÇÃO DE ESTRUTURA POISSON EM VARIEDADE TÓRICA E CONSIDERAÇÕES COHOMOLÓGICAS | ||||||||||||
Autor: |
MARCELO SANTOS DA SILVA |
||||||||||||
Colaborador(es): |
DAVID FRANCISCO MARTINEZ TORRES - Orientador |
||||||||||||
Catalogação: | 13/JUL/2021 | Língua(s): | PORTUGUÊS - BRASIL |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=53654&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=53654&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.53654 | ||||||||||||
Resumo: | |||||||||||||
O estudo de deformações e degenerações de estruturas de Poisson
ocupa posição especial dentro do marco clássico de análise de degenerações
de estruturas geométricas. Nesta tese como resultado principal construímos
uma deformação não trivial na qual a estrutura quadrática canônica do
espaço projetivo complexo n-dimensional é limite contínuo de estruturas
Kahlerianas. Além disso, como resultado segundário de estudos de
deformações mostramos que uma estrutura Poisson invariante numa
variedade tórica com número finito de folhas não pode ser exata na
cohomologia Poisson. Nosso estudo também inclui considerações sobre
cohomologia Poisson da estrutura quadrática canônica do espaço vetorial
complexo n-dimensional.
|
|||||||||||||
|