Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: JOGOS COMBINATÓRIOS E A CONJECTURA DA VIZINHANÇA
Autor: HANDEL SCHOLZE MARQUES
Colaborador(es): SIMON RICHARD GRIFFITHS - Orientador
Catalogação: 22/JUN/2021 Língua(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=53376&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=53376&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.53376
Resumo:
A teoria dos Jogos Combinatórios é o estudo de jogos com informação completa. Isso é, todos os jogadores conhecem todos os possíveis movimentos, além disso, temos que não há sorte ou a habilidade de realizar um movimento, então, em teoria jogar perfeitamente é possível. Exemplos de jogos assim são jogo da velha, xadrez, damas, Nim... a lista continua. Nessa dissertação focamos no jogo Maker-Breaker. Ele tem dois jogadores que sequencialmente escolhem um vértice de um hipergrafo. O objetivo de Maker é escolher todos os vértices de uma aresta e o objetivo de Breaker é prevenir isso. Para entender em quais tipos de hipergrafos Maker ou Breaker ganha e quais são as estratégias de vitória utilizamos SAT, probabilidade, teoria dos grafos em geral e mais.
Descrição: Arquivo:   
NA ÍNTEGRA PDF