
Handel Scholze Marques

Combinatorial Games and the Neighborhood
Conjecture

Dissertação de Mestrado

Dissertation presented to the Programa de Pós–graduação em
Matemática, do Departamento de Matemática da PUC-Rio in
partial fulfillment of the requirements for the degree of Mestre
em Matemática.

Advisor: Prof. Simon Griffiths

Rio de Janeiro
April 2021

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Handel Scholze Marques

Combinatorial Games and the Neighborhood
Conjecture

Dissertation presented to the Programa de Pós–graduação em
Matemática da PUC-Rio in partial fulfillment of the requirements
for the degree of Mestre em Matemática. Approved by the
Examination Committee:

Prof. Simon Griffiths
Advisor

Departamento de Matemática – PUC-Rio

Prof. Nicolau Corção Saldanha
Departamento de Matemática – PUC-Rio

Prof. Taísa Lopes Martins
Universidade Federal Fluminense – UFF

Prof. Maurício de Lemos Rodrigues Collares Neto
Universidade Federal de Minas Gerais – UFMG

Rio de Janeiro, April the 30th, 2021

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



All rights reserved.

Handel Scholze Marques

Majored in mathematics by Pontíficia Universidade Católica
do Rio de Janeiro (Rio de Janeiro, Brazil)

Bibliographic data

Scholze, Handel

Combinatorial Games and the Neighborhood Conjecture
/ Handel Scholze Marques; advisor: Simon Griffiths. – 2021.

50 f: il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro, Departamento de Matemática, 2021.

Inclui bibliografia

1. Matemática – Teses. 2. Matemática – Teses. 3. Jo-
gos Combinatórios. 4. Problema de SAT. 5. Método Pro-
babilístico. 6. Hipergrafos. I. Griffiths, Simon. II. Pontifícia
Universidade Católica do Rio de Janeiro. Departamento de
Matemática. III. Título.

CDD: 510

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



To all the really precious people that I call as friends.
In particular, to my mother, for all the love and attention.

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Acknowledgments

First, I would like to thank my advisor Simon Griffiths for all the
attention and patience. Without him this work would never go beyond the
first page.

Then, I wish to thank professor Josimar Silva, from my high school, that
made me fall in love with math.

I thank all the jury members for accepting the invitation and for the
attention they gave to this work.

Also, thanks to all my dear friends, in special Rafael Serpa that gave me
a home where I could be alone with my thoughts.

And I would like to thank my mother, that always worked so hard to
secure that I could be a happy and healthy child.

This study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, thanks for
the support.

Finally, thanks for the scholarship that PUC gave me.

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Abstract

Scholze, Handel; Griffiths, Simon (Advisor). Combinatorial Ga-
mes and the Neighborhood Conjecture. Rio de Janeiro, 2021.
50p. Dissertação de Mestrado – Departamento de Matemática, Pon-
tifícia Universidade Católica do Rio de Janeiro.

The theory of Combinatorial Games is the study of games with perfect
information. This means that all players have knowledge of all possible moves,
also there isn’t luck or skill to perform a move, so, in theory perfect play is
possible. Examples of games like these are tic-tac-toe, chess, checkers, Nim...
the list goes on. In this dissertation we focus on the Maker-Breaker game. It
has two players that pick a vertex from a hypergraph. The goal of Maker is
to claim all vertices of an edge and the goal of Breaker is to prevent it. To
understand in which types of hypergraphs does Maker or Breaker win and
what are the winning strategies, we make use of SAT, Probability, general
Graph Theory and more.

Keywords
Combinatorial Games; SAT; Probabilistic Method ; Hypergraphs.

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Resumo

Scholze, Handel; Griffiths, Simon. Jogos Combinatórios e a
Conjectura da Vizinhança. Rio de Janeiro, 2021. 50p. Disserta-
ção de Mestrado – Departamento de Matemática, Pontifícia Uni-
versidade Católica do Rio de Janeiro.

A teoria dos Jogos Combinatórios é o estudo de jogos com informação
completa. Isso é, todos os jogadores conhecem todos os possíveis movimentos,
além disso, temos que não há sorte ou a habilidade de realizar um movimento,
então, em teoria jogar perfeitamente é possível. Exemplos de jogos assim são
jogo da velha, xadrez, damas, Nim... a lista continua. Nessa dissertação focamos
no jogo Maker-Breaker. Ele tem dois jogadores que sequencialmente escolhem
um vértice de um hipergrafo. O objetivo de Maker é escolher todos os vértices
de uma aresta e o objetivo de Breaker é prevenir isso. Para entender em quais
tipos de hipergrafos Maker ou Breaker ganha e quais são as estratégias de
vitória utilizamos SAT, probabilidade, teoria dos grafos em geral e mais.

Palavras-chave
Jogos Combinatórios; Problema de SAT; Método Probabilístico; Hi-

pergrafos.

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Table of contents

1 Introduction 10
1.1 Overview of the dissertation 11

2 Some Fundamental Results 13
2.1 Tools and Basic concepts 13
2.2 Maker and Breaker 16

3 On f(3) and f(4) 19
3.1 About the f function 19
3.2 f(4) is equal to 3 20
3.2.1 The Γ graph 21
3.2.2 Γ′ from Γ 23
3.2.3 G4 from Γ′ 25

4 Lower bounds on the function f(k) 27
4.1 The lower bound of the f function 27

5 A little help from our friends (SAT and binary trees) 30
5.1 SAT 30
5.2 Trees 33
5.3 The upper bound of the f function 34

6 The upper bound on ftree 37
6.1 Preliminaries tools and definitions 37
6.2 The proof 42

Bibliography 50

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



We must know.
We shall know.

David Hilbert

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



1
Introduction

Combinatorial Game Theory is the study of sequential games with perfect
information. This means that each player has their own turn and there is no
luck or difficulty to perform a move and the skill of a player relates to knowing
which move will be better to get to a winning position. So, in theory, perfect
play is possible, and the outcome of the game can be predicted if we assume
both players play optimally.

Some games like these are chess, Go and checkers. The last is solved
by a giant amount of computations that last for 18 years, to the conclusion
that the game must be a draw if played optimally. For the other two games,
pessimists could say that we will never have the complete solution due to the
combinatorial explosion we have when analysing each. On the other hand,
chess and Go enthusiasts may be glad that some mystery remains.

Another combinatorial game is Nim, this one was the first I experienced
with a more mathematical approach. A book that grew my interest in the
subject was “Winning Ways for Your Mathematical Plays” [2].

A simpler combinatorial game, known to many people, is tic-tac-toe.
Again, if both players plays optimally the game will end in a draw. József
Beck wrote an amazing book [1] with the study of these games, with a great
focus on generalizations of the tic-tac-toe game. The book inspired many
mathematicians to look at this world of combinatorial games which contains
many challenging and interesting problems.

In this dissertation we will focus on the Maker-Breaker combinatorial
game, which is played on a k-uniform hypergraph. A hypergraph is a gener-
alization of the concept of a graph in which each edge has size k. The game
has two players, Maker and Breaker. Each player in their turn claims a vertex
of the hypergraph that will belong to that player until the end of the game.
Maker wins if he claims all the vertices of any edge. Breaker wins if he prevents
this, that is, if in the end of the game, when there are no more vertices to be
claimed, Maker’s vertices do not contain all the vertices of any edge.

In this dissertation we say that a player has a winning strategy if he has

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Chapter 1. Introduction 11

a strategy which will lead to a win whatever way his opponent plays. We say
that a Maker-Breaker game is Maker win if Maker has a winning strategy, and
we say that the game is a Breaker win if Breaker has a winning strategy. We
note that draws do not occur and so every game is Maker win or Breaker win.
Also, Maker will be the first to play unless we specify otherwise.

Something you may notice is that the Maker-Breaker game is kind
of a generalization of tic-tac-toe. Make the vertices of your Maker-Breaker
hypergraph the spaces of the 3x3 grid of the tic-tac-toe game, and the edges
of the Maker-Breaker hypergraph the winning crosses of the grid (the rows,
columns and diagonals). The difference is that a draw favors the second player
(Breaker), and that Breaker does not play to earn a winning crossing, but to
prevent Maker doing so.

In 1970, Erdős and Selfridge published a paper [3] which was one of the
origins of the Maker-Breaker game. They showed that 2k−1 is the minimum
number of edges a k-uniform hypergraph must have to be a Maker win. The
minimum is attained by a hypergraph which contains a vertex of degree 2k−1.
This inspired Beck to conjecture that this was essentially tight. He asked if
every Maker-Breaker game with maximum neighborhood less than 2k−1 should
be a Breaker win. This conjecture is known as “The Neighborhood Conjecture”
[1].

This problem remained open for a long time until Gebauer [4] disproved
it. However, this is not the end of the story. We may ask for the behaviour
of the function f(k), which is defined to be the smallest integer such that
there exists an Maker win k-uniform hypergraph with maximum degree f(k).
It is still not known whether f(k) grows linearly with k, or exponentially, or
somewhere in between.

1.1
Overview of the dissertation

In Chapter 2, we introduce some fundamental results. In particular, we
state and prove Hall’s Theorem, the Lovász Local Lemma and the Erdős-
Selfridge Theorem.

In Chapter 3, studying the results from [8] we consider f(k) for small
values of k. In particular, we show that f(3) = 2 and f(4) = 3.

In Chapter 4, we prove a general lower bound on f(k). That is, we prove
that f(k) > k/2 for all k. This result is well known due the pairing argument
that can be found in [6], an article of Hales and Jewett from 1963 that is

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Chapter 1. Introduction 12

important in the history of the combinatorial games. We also show that if
f(k′) > k′/2 + 1 for some k′ then the above bound may be improved for all
large k. As far as we know this result has not been published elsewhere.

In Chapter 5, until the end of the dissertation we study the results
of Gebauer in [5]. We prove a connection between the function f(k) and a
satisfiability (SAT) problem. The SAT problem may then be related to a
problem related to binary trees. This enables us to bound f(k) in terms of
a function ftree(k) related to the tree problem.

In Chapter 6, we prove an upper bound on ftree(k). This completes the
proof of the upper bound on f(k).

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



2
Some Fundamental Results

In this chapter we will talk about the basic theorems and lemmas that
we will use in further chapters.

2.1
Tools and Basic concepts

A set M of independent edges of a graph G is called a matching. If a
vertex v ∈ V (G) is in some edge of M then we say that v is matched by M .
Vertices that are not incident to any edge from M are unmatched vertices. We
say that M is an A-perfect matching for some A ⊂ G if every vertex of A is
matched by M .

For a vertex v ∈ G we write N(v) as the neighborhood of v. And for a
set of vertices S, we write N(S) for ⋃v∈S N(v).
Theorem 2.1.1 (Hall’s marriage theorem). Let G be a bipartite graph with
bipartition (A,B). Then G has an A-perfect matching if and only if for every
S ⊂ A we have that |S| ≤ |N(S)|.

Proof. The easy direction is that if we have an A-perfect matching then we
have for every S ⊂ A, |S| ≤ |N(S)|. Let M be such a matching, and take
any S ⊂ A. For each s ∈ S we have an edge that links s to a unique s′ ∈ B.
Therefore for each vertex in S we have a vertex in B that belongs to N(S),
giving us |S| ≤ |N(S)|.

Now we prove that if we have the basic condition that |S| ≤ |N(S)| holds
for all S ⊂ A, then we have an A-perfect matching for G.

We recall some basic concepts about graphs. Let M be an arbitrary
matching. An alternating path with respect of M is a path that begins in an
unmatched vertex a ∈ A and then continues alternating edges from E(G)rM
and M . An alternating path that ends in an unmatched vertex b ∈ B, is also
called an augmenting path. If such an augmenting path exists then we can
make a matching larger than M , since we can swap each edge of the path that
is matched with the unmatched ones, that are by construction one more.

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Chapter 2. Some Fundamental Results 14

Now, we prove the second part of the theorem by contradiction, assuming
that there is no A-perfect matching even when we have ∀S ⊂ A, |S| ≤ |N(S)|.

Let M be a maximum matching, let a0 ∈ A be a vertex that M leaves
unmatched. Let a0, b1, a1, b2, a2, ... be a maximum sequence of distinct vertices
where ai ∈ A and bi ∈ B for all i, where aibi ∈ M and bi is adjacent to some
af(i) with f(i) ∈ {0, 1, ..., i− 1}.

The sequence can not end at an ar ∈ A, because if the sequence has r
elements from A, their neighborhood must have size at least r, so it would
have an element in the neighborhood that is not in the sequence, violating the
maximality of the sequence.

So, let br ∈ B be our last vertex of the sequence. Then we have an
alternating path

P = braf(r)bf(r)af2(r)bf2(r)...afn(r)

where fn(r) = 0.

We now observe that P is an augmenting path. It is clearly an alternating
path by definition, so we just need that the two endpoints are unmatched. This
follows from the definition for one endpoint, a0. For the other endpoint, br, we
note that if br were matched we could extend M using this edge, and this
would contradict the maximality of M . Therefore M is an augmenting path.

Using the augmenting path we may produce a matchingM ′ strictly larger
than M , which gives the required contradiction.

Let B1, B2, ..., Bk be events in a probability space, we say that a digraph
D is a dependency graph for these events if for all i ∈ {1, ..., k}, Bi is
independent from the family of events {Bj : ~ij /∈ E(D)}.

Theorem 2.1.2 (Lovász Local Lemma). Let B1, B2, ..., Bk be events and D a
dependency graph for them. If there exist numbers xi ∈ [0, 1) such that

P(Bi) ≤ xi

∏
~ij∈E(D)

(1− xj) ∀i = 1, ..., k

then, the probability that all the complement events Bc
i happen is positive.

Moreover we have P
 k⋂

j=1
Bc

j

 ≥ k∏
j=1

(1− xj)

Proof. For each i = 1, ..., k, ∀S ⊂ [k] r i we have

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Chapter 2. Some Fundamental Results 15

P

Bi

∣∣∣∣∣∣
⋂
j∈S

Bc
j

 ≤ xi

We prove this by induction on the size of S.

For |S| = 0 we have trivially by the hypothesis of the theorem that
P(Bi) ≤ xi

∏
~ij∈E(D)

(1− xj) ≤ xi since (1− xj) ≤ 1 for all j.

Now we do the induction step.

For i and S, we define S1 = {j : ~ij ∈ E(D)}, the index of the events that
are dependent of Bi, and define S2 = {j : ~ij /∈ E(D)} = S r S1, the index of
the events that are independent of Bi.

Then, using conditional probability we have

P

Bi

∣∣∣∣∣ ⋂
j∈S

Bc
j

 =
P

(
Bi ∩

⋂
j∈S1

Bc
j ∩

⋂
j∈S2

Bc
j

)

P

( ⋂
j∈S1

Bc
j ∩

⋂
j∈S2

Bc
j

)

=
P

(
Bi ∩

⋂
j∈S1

Bc
j

∣∣∣∣∣ ⋂j∈S2
Bc

j

)

P

( ⋂
j∈S1

Bc
j

∣∣∣∣∣ ⋂j∈S2
Bc

j

) ×
P

( ⋂
j∈S2

Bj

)

P

( ⋂
j∈S2

Bj

) (*)

Now we analyze the numerator and denominator of (*) separately.

For the numerator, as we have Bi independent of {Bj : j ∈ S2},

P

Bi ∩
⋂

j∈S1

Bc
j

∣∣∣∣∣ ⋂
j∈S2

Bc
j

 ≤ P
Bi

∣∣∣∣∣ ⋂
j∈S2

Bc
j

 = P(Bi) ≤ xi

∏
~ij∈E(D)

(1− xj)

Since the first inequality is trivial, the equality follows from independence
and the last inequality is given by the theorem hypothesis.

For the denominator of (*) we have 1 if |S| = 0. For |S| = r ≥ 1 write
S = {j1, j2, ..., jr} then we have

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Chapter 2. Some Fundamental Results 16

P

 ⋂
j∈S1

Bc
j

∣∣∣∣∣ ⋂
j∈S2

Bc
j


= P

Bc
j1

∣∣∣∣∣ ⋂
j∈S2

Bc
j

P
 r⋂

i=2
Bc

ji

∣∣∣∣∣Bc
j1 ∩

⋂
j∈S2

Bc
j


= P

Bc
j1

∣∣∣∣∣ ⋂
j∈S2

Bc
j

P
Bc

j2

∣∣∣∣∣Bc
j1 ∩

⋂
j∈S2

Bc
j

P
 r⋂

i=i3

Bc
ji

∣∣∣∣∣Bc
j1 ∩B

c
j2 ∩

⋂
j∈S2

Bc
j


= ... =

= P

Bc
j1

∣∣∣∣∣ ⋂
j∈S2

Bc
j

P
Bc

j2

∣∣∣∣∣Bc
j1 ∩

⋂
j∈S2

Bc
j

 . . . P

Bc
jr

∣∣∣∣∣
r−1⋂
i=1

Bc
ji
∩
⋂

j∈S2

Bc
j


=
1− P

Bj1

∣∣∣∣∣ ⋂
j∈S2

Bc
j

 . . .

1− P
Bjr

∣∣∣∣∣
r−1⋂
i=1

Bc
ji
∩
⋂

j∈S2

Bc
j


≥ (1− xj1)(1− xJ2) . . . (1− xjr) =

∏
j∈S1

(1− xj),

where the inequality holds by the induction hypothesis.

We have

P

Bi|
⋂
j∈S

Bc
j

 =
P

(
Bi ∩

⋂
j∈S1

Bc
j

∣∣∣∣∣ ⋂j∈S2
Bc

j

)

P

( ⋂
j∈S1

Bc
j

∣∣∣∣∣ ⋂j∈S2
Bc

j

) ≤
xi

∏
~ij∈E(D)

(1− xj)∏
j∈S1

(1− xj)
≤ xi,

finishing the induction step.

Now,

P

 k⋂
j=1

Bc
j

 = P(Bc
1)P(Bc

2|Bc
1) . . . P

Bc
k

∣∣∣∣∣
k−1⋂
j=1

Bc
j

 ≥ k∏
j=1

(1− xj),

as desired.

2.2
Maker and Breaker

In 1970, Erdős and Selfridge published a paper [3] which was one of the
origins of the Maker-Breaker game. In the paper they do not even use the
vocabulary of graph theory, but they established a fundamental condition on
the number of edges for a game to be a Maker win. Here we replicate the result.

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Chapter 2. Some Fundamental Results 17

We require the following definition.

Definition 2.2.1. Given an positive integer k, letm∗(k) be the smallest integer
for which there is a Maker win k-uniform hypergraph with m∗(k) edges.

Theorem 2.2.2. m∗(k) = 2k−1

Proof. First we show a hypergraph H on 2k vertices with 2k−1 edges which is a
Maker win. Let V be a set of 2k vertices and partition the vertices of V in two
sets, A = {a1, a2, ..., ak} and B = {b1, b2, ..., bk}. Now we create sets recursively
that in the kth step will be our edge set, let E1 = a1 and E ′1 = b1, define
Ei+1 = (Ei + {ai+1})∪ (E ′i + {ai+1}) and E ′i+1 = (Ei + {bi+1})∪ (E ′i + {bi+1}).
Note that in each iteration we double the number of sets inside Ei, so Ek has
2k−1 sets in it. Also, in each iteration we incremented by 1 the size of each set
inside Ei, so Ek has only sets with size k.

Set Ek as the edge set of H. We claim that H is Maker win.

The winning strategy for Maker is as follows. Begin claiming ak, then
whenever Breaker claims ai, Maker claim bi, and whenever Breaker claims
bi, Maker claims ai. In each turn Breaker blocks only half of the remaining
unblocked edges, so on the kth turn Maker will have an entire edge and win
the game.

Now we must show that for any k-uniform hypergraph H with edge set
|E| < 2k−1, Breaker has a winning strategy.

We associate an integer value with each edge as follows:

(i) If Breaker has not played in this edge, and Maker has claimed j vertices
so far, then we associate value 2j with this edge,

(ii) If Breaker has played in this edge we associate value 0 with this edge.

This value can be thought of as the “danger” of an edge. And for the
vertices, give each a value equal to the sum of the danger of the edges in which
it belongs. Let D be the sum of the danger of all edges. Maker wins if he has
all the vertices of some edge. Therefore Maker can only win if D is eventually
at least 2k.

In order to show a Breaker win strategy we give a strategy for Breaker
such that the total danger D is always less than 2k. The strategy of Breaker
is to always pick one of the vertices with maximum value.

We begin with D = |E| < 2k−1, as all edges have danger equal to 1.
When Maker picks a vertex, it doubles the danger of all edges to which it

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Chapter 2. Some Fundamental Results 18

belongs. And so, in the first turn, whichever vertex Maker picks, the danger
will at most double, and so, D will still be less than 2k.

Before the next move from Maker, D will be less than 2k − R, where
R is the sum of the danger of the edges just blocked by Breaker, that is, the
value of the vertex taken by Breaker. Now on Maker’s move, he will double
the danger of the edges that contain the vertex he chooses. That is, he adds
R′ (the sum of the previous dangers of these edges) to D. However, we have
R′ ≤ R, since R was chosen to be maximum. And so, the danger in this step
the danger has changed from D to D − R + R′ which is at most D, and so is
still less than 2k.

In this way, the danger will always be less than 2k, and so Breaker wins
the game.

As we said in the Introduction, this result motivated Beck to pose his
conjecture. If we think about the maximum neighborhood of the graph that
we constructed in Theorem 2.2.2, we would notice that an edge of the vertex
a1 intersects all edges of the graph, showing that there is a neighborhood of
size 2k−1. So, Beck conjectured that any graph with maximum neighborhood
less than 2k−1 would be a Breaker win, and like we said before this was proved
wrong.

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



3
On f(3) and f(4)

It is very common in mathematics to try first to solve “small cases”
before going on to tackle the general problem. Based on [8], we will construct
examples that give us the first values for the f function. We shall see that
f(3) = 2 and f(4) = 3. With this we will really immerse ourselves in the world
of Maker and Breaker.

3.1
About the f function

In the previous chapters we discussed the Neighbourhood Conjecture.
Even though the original statement has been proved wrong, it is still natural
to study the function f(k), which is the smallest integer for which there exists
a k-uniform hypergraph H of maximum degree at most f(k) which is Maker
win.

Let us begin by analysing f for small k. As k is the size of the edges, we
may begin with k = 2. For graphs with maximum degree 1, we can think of the
graph with only two vertices linked by an edge, it is clear that Maker cannot
win this game. Other graphs with maximum degree 1 are just disconnected
copies of this one, and potentially isolated vertices that have no influence in
the game.

In the case in which the maximum degree is 2, any graph will be Maker
win. Indeed, he may just begin by claiming any vertex with degree 2, Breaker
could then block one of the neighbours of the claimed vertex, however now
Maker just picks the other one and wins. So we have f(2) = 2.

For n = 3 we also have f(3) = 2. Again it is easy to see that any 3-uniform
graph with maximum degree 1 cannot be a Maker win. With ∆(G) = 2 the
graph G3 (see Figure 3.1) is an example where Maker has a winning strategy
as follows.

We, as Maker, start claiming v1. Note that v1 splits the graph in two, so
whichever side Breaker plays, Maker claims the v vertex from the other side.

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Chapter 3. On f(3) and f(4) 20

Let us say that Breaker got some vertex from the v3 side, then we take v2 and
now Breaker has only 6 meaningful claims, choose a1, a2, a3, b1, b2 or b3. The
idea here to win is if Breaker claims ai then we will win by claiming the edge
b = {b1, b2, b3} with bi being our last claim, analogously we win by ai if Breaker
claims bi. For example, suppose Breaker claimed a1, then we claim b3, forcing
Breaker to claim a3, otherwise we win by choosing a3 for ourselves, given that
we have v2 and b3, then we take b2 forcing again Breaker to claim a2, and then
we claim b1 and win.

Figure 3.1: Graph G3. Image from [8] (slightly modified).

3.2
f(4) is equal to 3

From G3 we can construct a 4-graph with max degree 4 which Maker
wins. To do this, take each edge e ∈ G3 and create two vertices, xe and ye,
replace e by ex and ey where ex is e with xe added and ey is e with ye added
(see figure 3.2). The winning strategy is simple: use the old strategy to claim
an edge e of G3 and then claim ex or ey. If Breaker makes an early move on
the newer vertices, just take the other vertex of the pair right after.

With this, we have that f(4) ≤ 4, and by the pairing argument that we
will see in the next chapter, we have f(4) > 4/2 = 2, then the only possible
values left for f(4) are 3 or 4. So, we will show an example, that we will call
by G4, of an 4-graph with ∆ = 3 where Maker wins, implying f(4) = 3.

To construct our example we will do it in three stages, fist we create a
3-graph Γ which Maker wins, where the main structure that makes Maker win
belongs. Then we derive a Γ′ hypergraph with mixed edge sizes and from Γ′

we finally achieve G4.

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Chapter 3. On f(3) and f(4) 21

Figure 3.2: Graph G′3

3.2.1
The Γ graph

Continuing, we have the construction of Γ (figure 3.3). The vertices of Γ
are the union of three disjoint sets
W = {wi | i ∈ [5]} with size 5
X = {xij | i ∈ [5], j ∈ [3]} with size 15
T = { tij | i ∈ [5], j ∈ [3]} with size 15
so, we have V (Γ) = W ∪X ∪ T with size 35.
For the edges let ei = xi1x(i+2)2x(i+3)3 where i ∈ [5] so define
E(Γ) = {wixijtij | i ∈ [5], j ∈ [3]} ∪ {e1, e2, e3, e4, e5} giving us 20 edges
in total. Note that the vertices wi have degree 3, the vertices tij have degree 1
and the vertices xij have degree 2. So, we have that ∆(Γ) = 3, what is left is
to show how Maker wins in this graph.

Lemma 3.2.1. Maker has a winning strategy for the Maker-Breaker game on
Γ, where Breaker goes first.

Proof. The idea of Maker’s strategy is to first play on the vertices {ωi | i ∈ [5]},
by claiming a wi where tij and xij are unclaimed with j ∈ [3]. Maker threat-
ens claiming xij forcing Breaker to claim tij and this way Maker gains an
advantage in the fight on the e1, ..., e5 edges that is where he will make his win.

Case 1: Breaker claims wi for some i. Without loss of generality by the
symmetry of Γ we can assume that Breaker claims w1. Maker then claims w2.

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Chapter 3. On f(3) and f(4) 22

Figure 3.3: Graph Γ. Image from [8].

Now Maker is threatening their win by claiming e2 with the following forced
victory. Maker claims x21 forcing Breaker to claim t21, then x23 forcing t23,
then x41. Breaker now is forced to claim x12 to prevent Maker to claim e4.
Then Maker claims w4 forcing Breaker to claim t41, then claims x42 forcing t42,
then claims x53 and wins by claiming e2. So, in the second turn Breaker must
claim a vertex to prevent this strategy.

Case 1.1: Breaker claims w4 or a vertex of e4 on his second turn. In this
case Maker just do the same as before but using w5 instead of w2. The moves
are: Maker again claims x21, forcing t21, then x22 (instead of x21), forcing t22,
then x51. Breaker now is forced to claim x33 to prevent Maker to claim e5.
Then Maker can now claim w5, forcing t51, then he claims x53, forcing t53 and
then x42 claiming the edge e2 and winning.

Case 1.2: Breaker claims a vertex of e2 on his second turn. In this case
Maker will win by claiming e5, for this he will use w3 and w4. The moves are

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Chapter 3. On f(3) and f(4) 23

the following: Maker claims x22 forcing t22, then claims x23 forcing t23, then x41

forcing x12, then he claims w4 forcing t41, then x43 forcing t43, then x32 forcing
x11, to then claim w3 with Breaker being forced to claim t32, then Maker claims
x33 forcing t33 and finally wins by claiming x51 getting the edge e5.

The more careful reader must notice that we didn’t cover the case where
Breaker claims a t vertex that would help him in the above games, this is solved
by Maker using the rule that whenever Breaker claims a vertex tij that Maker
has not claimed both wi and xij, Maker plays as if Breaker had claimed wi or
xij, whichever is free (or arbitrarily if neither is free). This rule still applies to
the following cases.

Case 2: Breaker claims xi1 for some i. Without loss of generality by the
symmetry of Γ we can assume that Breaker claims x11. Maker then claims w2.
If Breaker skips his turn then Maker can do the same strategy as in Case 1,
since Breaker having x11 does not interfere.

Case 2.1: Breaker claims w4 or a vertex of e4 on his second turn. Then
Maker wins as in Case 1.1, since Breaker‘s move on x11 does not prevent this.

Case 2.2: Breaker claims a vertex of e2 on his second turn. Then Maker
claims x22, forcing t22, then x23, forcing t23 and then x12 Breaker is forced to
claim x41 or Maker wins immediately by playing there and claiming e4. Then
Maker claims w1 forcing t12, x13 forcing t13 and then x52. Breaker is forced to
claim x31 or Maker wins immediately by playing there and claiming e3. Then
Maker claims w5 forcing t52, x51 forcing t51 and then x33, claiming the edge e5

and winning.

Case 3: Breaker claims xi2 or xi3 for some i. Without loss of generality
by the symmetry of Γ we can assume that Breaker claims x32. Again we can
use the standard strategy of the Case 1.

Case 3.1 Breaker claims w4 or a vertex of e4 on his second turn. Then
Maker wins as in Case 1.1.

Case 3.2 Breaker claims a vertex of e2 on his second turn. Then Maker
wins as in Case 2.2.

3.2.2
Γ′ from Γ

Continuing to our goal, the graph G4, now we will derive a non-uniform
hypergraph with maximum degree 3 Γ′ from Γ with edges of size 3 and 4. Add

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Chapter 3. On f(3) and f(4) 24

new vertices (yijk) k ∈ [6] and (zijk) k ∈ [4] to Γ for every i ∈ [5] and j ∈ [3].
Then for every i ∈ [5] and j ∈ [3], writing w = wi , x = xij , t = tij , yk = yijk

for k ∈ [6] and zk = zijk for k ∈ [4], we replace the edge wxt by the edges

wty1y2, xty3y4, xty5y6 and y1y3y5z1, y1y3y5z2, y2y4y6z3, y2y4y6z4.

Figure 3.4: From Γ to Γ′. Image from [8].

Each 3 vertex set wtx became a set of 13 vertices, this means that for
each wtx we added 10 vertices to our graph. Since we have 15 edges of this
type then we added 150 vertices resulting in a graph of 185 vertices. For the
edges each wtx makes 7 edges, again we have 15 edges of this type, then it has
105 edges plus the 5 ei edges, resulting in a graph of 110 edges.

Note that all the edges of Γ′ has size 4 except for the ei edges with
size 3, since all other original edges were replaced to ones with size 4 that
we just added. Also, Γ′ has maximum degree 3, each edge incident to the wi

vertices were replaced by only one edge of size 4, keeping the degree of those
vertices equals 3. For the xij vertices, each had degree 2, the ei edge that was
left untouched, and the wtx edge, that became 2 edges (xty5y6 and xty3y4),
resulting in a vertex with degree equals 3. The remaining vertices to analyse
are clearly checked with the figure 3.4, the zi vertices has degree 1 and the
others has degree 3.

Lemma 3.2.2. Maker has a winning strategy for the Maker-Breaker game on
Γ′, where Breaker goes first.

Proof. Initially Maker plays on the vertices {wi | i ∈ [5]} and {xij | i ∈ [5], j ∈
[3]} and plays according to the strategy described in Lemma 3.2.1. If Breaker

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Chapter 3. On f(3) and f(4) 25

claims yijk or zijk for some i, j, k then Maker plays as if Breaker had claimed tij,
also, if Breaker has already claimed tij then we choose a free xij arbitrarily and
play as if Breaker had played there instead, let us call this the * rule. Playing
following the strategy from Lemma 3.2.1 implies that Maker will claim an edge
of Γ. If it is some ei then Maker wins because it is also an edge of Γ′, the other
option is that Maker will claim wixijtij for some i ∈ [5] and j ∈ [3]. Note
that Maker having tij implies that yijk and zijk are unclaimed, by the * rule.
Now Breaker has a turn, assume that Breaker claims y2, z3 or z4 (other choices
by Breaker are similarly covered). Then Maker claims y5 forcing y6, claims y3

forcing y4, claims y1 and Maker wins by claiming z1 or z2 and Breaker cannot
lock both.

3.2.3
G4 from Γ′

Finally the G4 graph is made as follows: Take 3 disjoint union of three
copies Γ′1, Γ′2 and Γ′3 of Γ′, let ei1, ...ei5 be the edges of size 3 of Γ′i for each
i ∈ [3]. Let v1, v2, v3, v4, s1, s2, s3 be new vertices, and replace the edges ei1 and
ei2 by ei1 ∪ vi and ei2 ∪ vi, also, replace ei3, ei4 and ei5 by ei3 ∪ si, ei4 ∪ si and
ei5 ∪ si for each i ∈ [3], and add the edge v1v2v3v4 (Figure 3.5).

G4 is a 4-uniform graph, since all 3 edges from Γ′ we make into a 4 edge,
G4 has maximum degree 3, since Γ′ has maximum degree 3 and all the vertices
that we add also has maximum degree 3. G4 has 562 vertices (185 for each Γ′

plus the 7 added vertices) and 331 edges (110 for each Γ′ plus one edge).

Theorem 3.2.1. Maker has a winning strategy for the Maker-Breaker game
on G4, where Maker goes first.

Proof. If Maker claims vi and si where Breaker has not claimed any vertex
from Γ′i then Maker just wins by following the Lemma 3.2.2 strategy where
Breaker plays first. Since claiming any eij implies Maker claiming eij ∪ vi or
eij ∪ si which are G4 edges, or instead, Maker will claim any other edge of
Γ′i and also win since it will be an G4 edge too. So if Maker begins claiming
v1, Breaker is forced to claim s1 to prevent Maker from winning, then Maker
claims v2 forcing Breaker to claim s2 for the same reason, then Maker claims
v3 forcing the s3 move from Breaker and then Maker claims v4 and wins by
having the edge v1v2v3v4.

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Chapter 3. On f(3) and f(4) 26

Figure 3.5: The Graph G4. Image from [8].

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



4
Lower bounds on the function f(k)

In this chapter we prove the lower bound f(k) > k/2. The argument is
based on a Breaker winning strategy that involves pairs, which may be found
using Hall’s Theorem.

We also show that if f(k′) > k′/2 + 1 for some k′ then the bound may
be improved for all large k. As far as we are aware this result does not appear
in any published article.

4.1
The lower bound of the f function

Theorem 4.1.1. Let H be a k-uniform hypergraph, with k ≥ 2, if the
maximum degree of H is at most k/2 then H is Breaker win.

Proof. We will explicitly show a winning strategy for Breaker. To do so, we
create a bipartite graph G = A ∪ B with vertex sets A = 2 · |E(H)| and
B = |V (H)|. This way each vertex from H will have a representative in B and
each edge of H will have two representatives in A.

The edges of G are as follows, for each u in A we connect it to a vertex
v in B if and only if v is in u in the hypergraph H.

Our goal is to find an A-perfect matchingM in G, the matching describes
the winning strategy for Breaker. Indeed, given such a matching we identify
two distinct representatives {ve, v

′
e} for each edge e. Now Breaker plays by a

simple rule: whenever Maker plays a vertex in such a pair Breaker then plays
the other. This makes it impossible for Maker to claim an entire edge.

What is left is to show that this M matching exists, we recall Hall’s
marriage theorem. Let S be a subset of A, and N(S) the neighborhood of S,
we just need to prove |N(S)| ≥ |S|. Let us begin by counting the number of

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Chapter 4. Lower bounds on the function f(k) 28

edges between S and N(S). We have

e(S,N(S)) = k · |S| ,

as each vertex of S is representing an edge of H that has size k. It follows that

k · |S| ≤
∑

v∈N(S)
d(v) .

We now observe that d(v), the degree of v in the bipartite graph is exactly
double dH(v), its degree in H. And so

k · |S| ≤ 2 ·∆(H) · |N(S)| .

By assumption ∆(H) ≤ k/2 and so we have

k · |S| ≤ k · |N(S)| .

This proves that Hall’s condition holds.

We say for an integer k and c that (k, c) is a Maker win if every k-uniform
hypergraph with maximum degree c is a Maker win. Conversely, we say that
(k, c) is a Breaker win if the same class of graphs is always a Breaker win.

We now show that if (k, c) is Breaker win for any pair (k, c) with c > k/2
then we may strengthen the above bound for all large n.

Theorem 4.1.2. If (k, c) is Breaker win, then f(n) > c · n
k

.

Proof. Let H be a n-hypergraph which maximum vertex degree is at most
c · n
k

.

The same way as above we create an auxiliary bipartite graph G = A∪B,
this time with A = k · |E(H)| and B = c · |V (H)|. The edges are defined the
same way as before.

Let S be a subset of A, counting the edges between S and its neighbor-
hood N(S) give us

e(S,N(S)) = c · n · |S|

Now we have the c factor since each vertex e from S, that must be
connected to a vertex v from N(S), will also be connected to the c copies of v.

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Chapter 4. Lower bounds on the function f(k) 29

Again it follows that

c · n · |S| ≤
∑

v∈N(S)
d(v)

We now observe that d(v), the degree of v in the bipartite graph is dH(v),
its degree in H, multiplied by k, since we made k copies of each edge. And so

c · n · |S| ≤ k ·∆(H) · |N(S)|

By assumption ∆(H) ≤ c · n/k and so we have

c · n · |S| ≤ c · n · |N(S)|

So as before, using the Hall’s marriage theorem, we have an A-matching
M . This way for each edge e from E(H) there are k vertices inside e marked
by our matching M , however, now these vertices can be the mark of another
edges as well, at most c edges to be more precise. This reveals a structure of
an (k, c) hypergraph inside our bigger H hypergraph, where Breaker can use
to win the game.

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



5
A little help from our friends (SAT and binary trees)

In this Chapter we shall relate Maker-Breaker problems to boolean
satisfiability problems. We shall see that this allows to prove upper bounds
on the function f(k).

More explicitly, we shall define a function ftree(k) related to a problem
on binary trees, and via satisfiability problems we shall show that f(k) ≤
2ftree(k − 2). In Chapter 6, we bound ftree(k).

5.1
SAT

The boolean satisfiability problem, called SAT, is to determine if a
boolean formula can have its boolean variables assigned in a way that the
result is set as true.

A CNF formula F = C1 ∧ C2 ∧ C3 ∧ ... ∧ Cn , known as Conjunctive
Normal Form, is a boolean formula which is a conjunction of clauses (Ci). A
conjunction is a statement formed by adding statements with the connector
AND ( ∧ ), and a clause C = l1 ∨ l2 ∨ l3 ∨ ... ∨ lk is a disjunction of literals,
where a disjunction is a statement formed by adding statements with the
connector OR ( ∨ ). Literals are either the affirmation of a boolean variable
(p) or the negation of the same (¬ p), called as positive literal and negative
literal respectively. One example of a CNF formula is

(¬x1∨¬x2)∧(x1∨x2)∧(x2∨¬x4)∧(x3∨¬x4)∧(¬x2∨x3∨¬x4)∧(x4).

This one is satisfiable, that is, there exists an assignment for the variables
as true or false such that the resulting value of the formula is true. A possible
assignment is to set x1 as false, x2 as true, x3 as true and x4 as true. Note
that in each clause it is only necessary to have one true literal to make the
whole clause be true, since we have an OR operation.

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Chapter 5. A little help from our friends (SAT and binary trees) 31

We use the notation xi ∈ Cj to denote the fact that either xi or ¬xi

occurs in the clause Cj.

A k-CNF formula is a CNF formula where each clause has exactly k

literals.

A (k, s)-CNF formula is a k-CNF formula where each literal appears in
at most s clauses.
Theorem 5.1.1. Every (r, r)-CNF formula is satisfiable.

Proof. Let x1, x2, x3, ..., xn be the variables and C1, C2, C3, ..., Cm be the clauses
of our (r, r)-CNF formula, where n ≤ m. We construct a bipartite graph
G = A ∪B, where one of the vertex sets, called A, corresponds to the clauses
and the other, called B, corresponds to the variables. We join by an edge a
clause Cj with a variable xi if and only if xi ∈ Cj. Now we observe that if we
take k clauses, the neighborhood of these clauses in the bipartite graph will
have at least k different variables, since each clause has r distinct variables
and each variable appears in at most r clauses. Then Hall’s condition holds,
giving us an A-perfect matching that describes which variable will be used to
set which clause as true.

Note that this implies that every (r, s)-CNF formula with r ≤ s is
satisfiable.

A natural question we may ask is for a fixed k, when does (k, s)-CNF
have unsatisfiable formulas? Define fCNF (k) as the largest number such that
all (k, fCNF (k))-CNF formulas are satisfiable, in other words, fCNF (k) is
the smallest number such that there are unsatisfiable (k, fCNF (k) + 1)-CNF
formulas.

It is natural to ask whether there are other natural properties which
imply that a k-CNF formula is satisfiable. We now show another property
which implies satisfiability.

We may associate a graph D with each k-CNF formula as follows. The
vertices of D are the clauses of the k-CNF formula, and two clauses C and C ′

are adjacent in D if they share a variable. Note that, with this definition, the
neighborhood of C is

N(C) = {C ′ : ∃i xi ∈ C and xi ∈ C ′}.

We shall see that an upper bound on neighborhood sizes may imply satisfia-
bility.

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Chapter 5. A little help from our friends (SAT and binary trees) 32

Let `CNF (k) be the largest integer ` such that the condition that all
clauses have |N(C)| ≤ ` implies satisfiability.

We now prove a lower bound of `CNF (k) using the Lovász Local Lemma,
a result that can be further studied in [7].

Proposition 5.1.1. `CNF (k) ≥
⌊2k

e

⌋
− 1

Proof. Let F =
n∧

i=1
Ci be any k-CNF formula with maximum neighborhood of

size
⌊2k

e

⌋
− 1.

Set each variables of F as true or false with probability 1/2 indepen-
dently and define Bi as the event “Ci is false”. In this way, we have P (Bi) = 2−k.
We also claim that the graph1 D defined above is a dependency graph for the
events Bi. To see this we note that revealing all the information about the
clauses not adjacent to Bi tells us nothing about the truth value of the literals
which occur in Ci.

What we must show is that there exist xi, i = 1 . . . n where

P (Bi) ≤ xi

∏
−−−→
BiBj∈E(D)

(1− xj)

Let xi = e · P (Bi) then we have

2−k ≤ e 2−k
∏

−−−→
BiBj∈E(D)

(1− e

2k
), que segue de, e(1− e

2k
) 2k

e
−1 > ee−1 = 1

So, applying the Local Lemma we have that P (
n⋂

i=1
Bc

i ) > 0, giving us
that the probability of all clauses be satisfiable is positive.

We have an easy upper bound for `CNF (k), take a k-CNF formula with
k variables and 2k clauses, where the clauses are all the possible arrangements
of the variables (the positive literal and the negative literal for each variable),
such k-CNF formula has maximum neighborhood of 2k − 1, actually, every
clause of this formula has a neighborhood of size 2k − 1. With that, we obtain
that `CNF (k) must be less than 2k − 1.

1Technically, we should relabel the vertex Ci as Bi

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Chapter 5. A little help from our friends (SAT and binary trees) 33

One thing to notice is that the lower bound of `CNF (k) gives us an
easy lower bound for fCNF (k). Take a (k, fCNF (k) + 1)-CNF formula that is
unsatisfiable (we know that it is possible because of the definition of fCNF ). In
such formula each clause has k variables, that each appears at most in fCNF (k)
more clauses, so, each clause has a neighborhood of size at most kfCNF (k), this
gives us that `CNF (k) < kfCNF (k) implying

fCNF (k) ≥
⌊
`CNF (k)

k

⌋
+ 1 ≥

⌊2k

ek

⌋
.

5.2
Trees

One tool that will help us with our upper bounds are the (k, d)-trees,
first described by H. Gebauer in [4]. These trees are proper binary trees, i.e.,
rooted trees in which all nodes (except leaves) have exactly two children.

We say for two vertices u,w that u is an ancestor of w if u appears on
the path between w and the root. We say that u,w are k-close if their graph
distance is at most k and u is an ancestor of w.

Definition 5.2.1 ((k,d)-tree). A proper binary tree is defined to be a (k, d)-
tree if it satisfies the following two properties:

(i) Every leaf has depth at least k.
(ii) For every node u of the tree, there are at most d leaves k-close to u.

For each k we consider the minimum d such that there exits a (k, d)-tree.

Theorem 5.2.2. Let ftree(k) be the smallest integer d such that a (k, d)-tree
exists. Then,

ftree(k) ≤
(

2
e

+O

(
1√
k

))
2k

k
.

This result was the main subject of [5]. We postpone its proof to Chapter
6. We remark that a lower bound

ftree(k) >
⌊ 2k+1

e(k + 1)

⌋

is also proved in the same article using the lopsided local lemma.

Given a proper binary tree T with leaves of depth at least k we can
construct a k-CNF formula Fk(T ) associated with T . For each non-leaf node

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Chapter 5. A little help from our friends (SAT and binary trees) 34

u ∈ V (T ) we know that it has two children, so we create a variable xu and
label its children with the positive literal xu and the negative literal ¬xu

respectively.

Now for every leaf w ∈ V (T ) we will create a clause Cw, defined to be
the disjunction of the literal at w and the first k− 1 literals which occur as we
walk from l towards the root. The conjunction of all the clauses Cw (for w a
leaf of T ) will be Fk(T ), our k-CNF formula.

Proposition 5.2.1. Let T be a proper binary tree with leaves of depth at least
k. Then Fk(T ) is unsatisfiable.

Proof. Let α be any truth assignment of the variables of Fk(T ). Now we will
describe a path from the root to some leaf. Beginning at the root we create the
path by selecting, at each step, the literal which is assigned “false” by α. In
other words, given the current path from the root to a vertex u we extend the
path to the child labelled xu if xu is assigned “false” by α, and we extend to
¬xu otherwise. The path halts when it arrives at a leaf l. We observe that the
clause Cl evaluates as false under α as it is a disjunction of literals assigned
as false. And so α is not a valid assignment for Fk(T ). Since α is arbitrary, it
follows that Fk(T ) is unsatisfiable.

5.3
The upper bound of the f function

For any CNF formula F we can create a hypergraph H(F ) from it. Let
the vertices of H be all the possible literals of F , and let the hyperedges be
the clauses of F .

For example, given the CNF formula (x1 ∨x2 ∨x3)∧ (x1 ∨¬x2 ∨¬x3) we
would associate with it the hypergraph with vertices {x1, x2, x3,¬x1,¬x2,¬x3}
and edges {x1, x2, x3} and {x1,¬x2,¬x3}.

Proposition 5.3.1. If F is unsatisfiable, then H(F ) is Maker win

Proof. Since going second can only harm Maker, we can assume that Maker
will be going second. Maker’s strategy will be as follows: whenever Breaker
picks a literal u, Maker picks ¬u. Once the game is complete, we may consider
the following truth assignment: all Breaker’s literals are true. Since F is
unsatisfiable, under this assignment F must be false. And so at least one of
the clauses of F is false, which means that one entire edge of H(F ) does not
have vertices from Breaker, which means that Maker has the entire edge in
question.

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Chapter 5. A little help from our friends (SAT and binary trees) 35

Theorem 5.3.1. f(k) ≤ 2ftree(k − 2) =
(
1 +O

(
1√
k

))
2k

ek

In the proof of Theorem 5.3.1 we will define a tree T and then obtain the
hypergraph H which gives us the required bound by:

(i) Considering Fk(T ), the k-CNF formula associated with the tree, and then

(ii) we obtain H as H(Fk(T )), the hypergraph associated with this k-CNF
formula.

It is clear that this is a valid strategy for creating a Maker win hyper-
graph as Proposition 5.2.1 will give us that Fk(T ) is unsatisfiable and Propo-
sition 5.3.1 will then give us that the hypergraph is Maker win.

We recall that in a (k−2, d)−tree all leaves have depths at least k−2. We
will choose T to be a (k−2, d)-tree. However, in order to apply Proposition 5.2.1
we will require that all its leaves have depth at least k, rather than k − 2.

Proof. We begin by constructing a (k − 2, ftree(k − 2))-tree T in which each
leaf has depth at least k.

Let T1, T2, T3 and T4 be four copies of an arbitrary (k − 2, ftree(k − 2))-
tree. We will construct T using these four trees and three new vertices v1, v2

and r. Attach v1 to the root vertex of T1 and also to the root vertex of T2,
attach v2 to the root vertex of T3 and to the root vertex of T4. Note that with
this we have two (k − 2, ftree(k − 2))-tree where each leaf has depth at least
k − 1, since with the addition of v1 we incremented the depth of each node
from T1 and T2 by 1, and the same holds with v2, T3 and T4. Finally, attach r
to v1 and v2. We consider r to be the root of the resulting tree T . Clearly T is
a (k − 2, ftree(k − 2))-tree in which each leaf has depth at least k.

Now that we have defined T we may follow the strategy discussed above.
We may take Fk(T ) to be the k-CNF formula associated with T , and H =
H(Fk(T )) to be the associated hypergraph. We have that Fk(T ) is unsatisfiable
by Proposition 5.2.1 and that H is Maker win by Proposition 5.3.1.

Now, all that remains is to prove that the degrees in H are all at most
2ftree(k−2). We begin by recalling that a vertex v of H corresponds to a literal
l of Fk(T ) which in turn corresponds to a node n of T . On the other hand, an
edge containing v in H, corresponds to a clause containing l in Fk(T ) which
in turn corresponds to a path of k nodes in T which ascends from some leaf w
of T . Thus, the degree of v in H is simply given by the number of k − 1-close
leaves from the corresponding node n of T .

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Chapter 5. A little help from our friends (SAT and binary trees) 36

We now complete the proof by showing that for every node n of T there
are at most 2ftree(k−2) leaves (k−1)-close to n. This is immediate for the root
r as it has distance at least k from all leaves. Let n be any other node and note
that any leaf (k−1)-close to n is (k−2)-close to one of its children. Since these
children necessarily belong to the trees Ti which are (k− 2, ftree(k− 2))-trees,
each child node is (k − 2)-close to at most ftree(k − 2) leaves. It follows that
each node n is (k − 1)-close to at most 2ftree(k − 2) leaves. This proves the
bound we need.

Using the same construction given in the proof of Theorem 5.3.1, if we
analyse how many edges intersect each other we come up with the statement

∆(L(H)) = (k − 1)ftree(k − 2) =
(
1 +O(k−1/2)

) 2k−1

e
,

where L(H) denotes the line-graph of H, so ∆(L(H)) denotes the maxi-
mum neighborhood of the hypergraph. Note that this is a counterexample to
the Neighborhood Conjecture, since the conjecture claims that any hypergraph
H with ∆(L(H)) < 2k−1 is a Breaker win.

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



6
The upper bound on ftree

We now discuss the upper bound on ftree(k), which appears in [5] and
which we stated as Theorem 5.2.2 in the previous chapter.

6.1
Preliminaries tools and definitions

The key characteristic about (k, d)-trees is their leaf distribution, more
precisely how many leaves it has at a certain depth. Hence, when constructing
one, it will be useful to introduce the concept of a leaf-vector. For a given node
v in an arbitrary tree T , a vector ~x of non-negative integers (x0, x1, ..., xk) is a
leaf-vector for v if v has at most xi leaf-descendants at distance exactly i for
each 0 ≤ i ≤ k. For example, a leaf-vector of a leaf could be (1, 0, ..., 0),
a leaf-vector for the root r of a full binary tree with height s could be
~y = (0, ..., 0︸ ︷︷ ︸

s

, 2s, 0, ..., 0), or indeed any vector ~z = (z0, z1, ..., zs, ...zk) with non-

negative entries and zs ≥ 2s. Set |~x| = ∑k
i=0 xi, so now in our previous example

we could say that ~y is the smallest leaf-vector for r, as it minimizes |~y| among
all possible leaf-vectors. Note that every node v in a (k, d)-tree has a leaf-vector
~x with |~x| ≤ d.

Definition 6.1.1 ((k, d, ~x)-tree). Given ~x ∈ Nk+1, a (k, d, ~x)-tree is a tree
where

(i) ~x is a leaf-vector for the root.

(ii) For every node u of the tree, there are at most d leaves k-close to u.

Definition 6.1.2 ((k, d)-constructible). Given ~x ∈ Nk+1, k ∈ N, d ∈ N, ~x is
(k, d)-constructible if a (k, d, ~x)-tree exists.

Now with this definition, in the discussion that we had earlier we could
say that (1, 0, ..., 0) is (k, d)-constructible for any k ≥ 1 and d ≥ 2. Also, we
have that (0, ..., 0︸ ︷︷ ︸

s

, 2s, 0, ..., 0) is (k, d)-constructible with 2s ≤ d.

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Chapter 6. The upper bound on ftree 38

Now we show the trivial link between (k, d)-trees and constructible
vectors.

Proposition 6.1.1. Given k ∈ N, d ∈ N, a (k, d)-tree exists if and only if the
vector (0, ..., 0, d) is constructible.

Proof. (0, ..., 0, d) is constructible if and only if a (k, d, (0, ..., 0, d))-tree exists.
So we must show that a (k, d)-tree and a (k, d, (0, ..., 0, d))-tree are equivalent.
We recall that both are trees with two conditions, the conditions (ii) are the
same. The condition that (0, ..., 0, d) is a leaf-vector for the root implies that
no leaf has depth less than k − 1, while a tree where every leaf has depth at
least k implies that (0, ..., 0, x) must be a leaf-vector for the root for some x,
applying (ii) for the root we have that it holds for x = d. So conditions (i) are
equivalent.

The next proposition will allow to handle how the leaf-vectors change as
we go to a child node.

Proposition 6.1.2. Let ~x = (x0, x1, ..., xk) and ~y = (y0, y1, ..., yk) be (k, d)-
constructible vectors and take ~z = (0, x0 + y0, x0 + y0, ..., xk−1 + yk−1) with
|~z| ≤ d. Then ~z is also (k, d)-constructible.

Proof. Let T ′ be a (k, d, ~x)-tree with root r′ and T ′′ be a (k, d, ~y)-tree with
root r′′, create a vertex r, and attach it to r′ and r′′, name the resulting tree
as T . The root r is not a leaf, so there are no leaves at distance 0 from r. A
leaf of T at distance i ≥ 1 is either a leaf of T ′ with distance i− 1 from r′ or a
leaf of T ′′ with distance i− 1 from r′′, this gives us that ~z is a leaf-vector for r.

Finally, let us observe that no node in T is k-close to more than d leaves.
This holds for nodes in T ′ and T ′′, by condition (ii) of the definition. For r, the
root vertex we have introduced, this is true by the assumption that |z| ≤ d.

Define the weight of a vector ~x = (x0, x1, ..., xk) as w(~x) = ∑k
i=0

xi

2i
.

Lemma 6.1.1. Let ~x ∈ Nk+1 with |~x| ≤ d. If w(~x) ≥ 1 then ~x is (k, d)-
constructible.

Proof. We will recursively construct a binary tree that is a (k, d, ~x)-tree.

Begin with only the root at step 0.

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Chapter 6. The upper bound on ftree 39

Then, given the tree after i steps, we ask whether ∑i
j=0 xj/2j < 1. If it

is the case that ∑i
j=0 xj/2j < 1 then choose xi nodes to be leaves and add two

children to all the other 2i(1−∑i
j=0 xj/2j) nodes. On the other hand, if at step

i we have ∑i
j=0 xj/2j ≥ 1 we stop and set all remaining nodes as leaves.

The fact that w(~x) ≥ 1 guarantees that our procedure stops. In fact the
tree we produce has depth k′ ≤ k where k′ is minimal such that∑k′

j=0 xj/2j ≥ 1.
The total number of leaves is ∑k′

j=0 xj ≤ |~x| ≤ d, and so condition (ii) holds.
Also the number of leaves at distance j from the root is at most xj. So, ~x is a
leaf-vector for the root. Since we have constructed a tree with the two required
conditions (i) and (ii) we have a (k, d, ~x)-tree.

For a vector ~x = (x0, x1, ..., xk) define

E ′(~x) = (x1/2, x2/2, ..., xk/2, d/2).

The idea behind the definition of E ′ is how a leaf-vector can be passed to
its children. When constructing a (k, d, ~x)-tree, we could begin with only one
node r that will have ~x as its leaf-vector in the end of our construction. So,
adding the two children of r one possibility is to split the future leaf decedents
of r evenly between the children, giving them each E ′(~x) as the promised leaf-
vector. Note if we have |~x| ≤ d then, as discussed before, condition (ii) of a
(k, d)-tree holds and also for E ′(~x).

With the same idea, let r, l ∈ N with 1 ≤ l ≤ r ≤ k define

~x′ = (xl, xl+1, ..., xr, 0, ..., 0).

~x′′ = (0, ..., 0︸ ︷︷ ︸
r−l+1

,
xr+1

2l − 1 ,
xr+2

2l − 1 , ...,
xk

2l − 1 , 0, ..., 0︸ ︷︷ ︸
l

).

Here the operation would be to include below r a complete binary tree
with height l and then we choose one leaf to set ~x′ as the promised leaf-vector
and for the 2l − 1 remaining leaves we set ~x′′ as the promised leaf-vector. The
idea is to set all the leaves in the [l, r] range to one node and for the other ones
we do a split similar with the E ′ split. Notice that with this split for each x′i
with l ≤ i ≤ r we have its weight multiplied by 2l, also for ~x′′ we have a tiny
weight gain, a factor of 2i/(2i − 1) since we shifted each xi with r + 1 ≤ i ≤ k

by l and divided by 2l − 1. The idea with this operation is to be able to use
Lemma 6.1.1.

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Chapter 6. The upper bound on ftree 40

Now we give a more precise definition for the operations discussed above.

Let d, k, l be positive fixed integers, set

d′ = d
(

1− 1
2l − 1

)

For a vector ~x = (x0, x1, ..., xk) we define

E(~x) = (bx1/2c, bx2/2c, ..., bxk/2c, bd′/2c)

And for an integer m

Em(~x) =
(⌊
xm

2m

⌋
,
⌊
xm+1

2m

⌋
, ...,

⌊
xk

2m

⌋
,
⌊
d′

2m

⌋
,
⌊
d′

2m−1

⌋
, ...,

⌊
d′

2

⌋)

is the resulting vector when we apply E m times. Note that with each E
application we left shift the coordinates by 1 and divide them by 2.

For l ≤ r ≤ k define

Cr(~x) =
(

0, ..., 0︸ ︷︷ ︸
r−l+1

,
⌊
xr+1

2l − 1

⌋
, ...,

⌊
xk

2l − 1

⌋
︸ ︷︷ ︸

k−r

,
⌊
d′

2l

⌋
,
⌊
d′

2l−1

⌋
, ...,

⌊
d′

2

⌋
︸ ︷︷ ︸

l

)

C∗r (~x) = (xl, xl+1, ..., xr︸ ︷︷ ︸
r−l+1

, 0, ..., 0︸ ︷︷ ︸
k−r+l

)

Lemma 6.1.2. Let k, d, l be positive integers and ~x ∈ Nk+1 with |~x| ≤ d then

(a) |E(~x)| ≤ d. If E(~x) is (k, d)-constructible, then ~x is (k, d)-
constructible.

(b) For l ≤ r ≤ k we have |Cr(~x)| ≤ d and |C∗r (~x)| ≤ d. Furthermore, if
Cr(~x) and C∗r (~x) are (k, d)-constructible and |C∗r (~x)| ≤ d/2l, then ~x is (k, d)-
constructible.

Proof. (a)

|E(~x)| ≤
k∑

i=1

⌊
xi

2

⌋
+ d′

2 ≤
|~x|
2 + d′

2 <
d

2 + d

2 = d.

If E(~x) is (k, d)-constructible, there exists a (k, d, E(~x)) tree T . Take two copies
of T with roots r′ and r′′. Create a vertex r and attach it to r′ and r′′, the
resulting tree is a (k, d, ~x)-tree, so ~x is (k, d)-constructible.

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Chapter 6. The upper bound on ftree 41

(b) For C∗r we have trivially that |C∗r (~x)| = ∑r
i=l xi ≤

∑k
i=0 xi = |~x| ≤ d

since xi ≥ 0 for every i. For Cr we have

|Cr(~x)| ≤
k∑

i=r+1

xi

2l − 1 +
l∑

i=1

d′

2i

using ∑k
i=r+1

xi

2l − 1 ≤
~x

2l − 1 ≤
d

2l − 1 and ∑l
i=1

d′

2i
≤ d′

∑∞
i=1

1
2i

= d′ we
have

|Cr(~x)| ≤ d

2l − 1 + d′ = d′ ≤ d.

Let T ′ be a (k, d, Cr(~x))-tree and T ∗ be a (k, d, C∗r (~x))-tree, let T be a
complete binary tree with height l, attach T ∗ to one of its leaves, and a copy
of T ′ to each of the remaining 2l − 1 leaves. We claim that the resulting tree
is a (k, d, ~x)-tree.

Now as always we need to check conditions (i) and (ii) of a (k, d, ~x)-tree
for T .

(i) Note that we do not have leaves at depth less than l, for leaves at
distance l ≤ j ≤ r we only have leaves from T ∗ and for leaves at distance
r < j ≤ k we have them all inside the 2l − 1 copies of T ′. Therefore we have

~y =
(

0, ..., 0, xl, xl+1, ..., xr, (2l − 1)
⌊
xr+1

2l − 1

⌋
, ..., (2l − 1)

⌊
xk

2l − 1

⌋)

as a leaf-vector for the root of T . Since we have yi ≤ xi for every
0 ≤ i ≤ k, ~x is also a leaf-vector for the root of T .

(ii) Since |~x| ≤ d, condition (ii) holds for the root of T .

For vertices with depth at least l, we have vertices that belong to T ∗

or to a copy of T ′, so, for them the condition (ii) follows from the equivalent
condition for the trees T ′.

Finally, for nodes at depth 0 < j < l we have two types of nodes. Nodes
with 2l−j copies of T ′ below them, or nodes with 2l−j − 1 copies of T ′ and the
one copy of T ∗ below them.

Lets say that v is a node of the first case, then the number of leaves
k-close to v is

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Chapter 6. The upper bound on ftree 42

2l−j · |Cr(~x)| = 2l−j
(
xr+1 + ...+ xk

2l − 1 + d′

2l
+ d′

2l−1 + ...+ d′

2l−j+1

)
≤ 2l−j

2l − 1 · d+ d′
(

1− 1
2j

)
= d

2l − 1

(
2l−j + (2l − 2)

(
1− 1

2j

))
≤ d

2l − 1(2l − 1)

= d .

Note that the term d′

2l−j+1 are leaves at distance k from v.

For the second case the number of leaves k-close to v is

(2l−j − 1)
(
xr+1 + ...+ xk

2l − 1 + d′

2l
+ d′

2l−1 + ...+ d′

2l−j+1

)
+ |C∗r (~x)|

≤ (2l−j − 1) d

2l−j
+ d

2l

≤ d.

6.2
The proof

Now we are prepared to prove the upper bound of the ftree. To do so
we will show the constructability of the vector (0, ..., 0) for a large enough k

and d =
(

2
e

+O
(

1√
k

))
2k

k
. This is sufficient as the constructibility of (0, ..., 0)

implies the constructibility of (0, ..., 0, d) which in turn shows that a (k, d)-tree
exists by Proposition 6.1.1.

We will prove that ~0 = (0, ..., 0) is constructible using the above lemmas,
Lemma 6.1.1 and Lemma 6.1.2. With these lemmas in mind, we show that
there exists a sequence of the operations C and E which, when applied to ~0,
produce a vector with weight at least 1. This final vector is then constructible
by Lemma 6.1.1. We use this as the start point of a backwards induction that
allows us to deduce that ~0 is constructible.

Proof. Let d = b2k+1/(ek) + 100 · 2k+1/k3/2c.

Set l = blog(k)/2c, this way we have 2l ∼
√
k.

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Chapter 6. The upper bound on ftree 43

Define recursively vectors ~x(t) = (x(t)
0 , x

(t)
1 , ..., x

(t)
k ) ∈ Nk+1 starting with

~x(0) = Ek−2l(~0), and for t ≥ 0 set

~x(t+1) = Ert−3l(Crt(~x(t)))

where rt is the the smallest integer 3l ≤ rt ≤ k with ∑rt
j=0 x

(t)
j /2j ≥ 2−l,

namely the smallest integer such that if we do the weight calculation for ~x(t)

(recall that w(~x) = ∑k
j=0 xj/2j), summing from 0 to k, rt would be the first

index where the weight becomes equal or greater than 2−l.

The more attentive reader should question if the total weight of ~x(t) could
be smaller than 2−l. In this case rt would not be defined. We will show that
this is not the case and that the ~x(t) sequence is indeed well-defined.

Some things to notice:

When applying E we shift each coordinate by 1, divide it by 2 and add
d′/2 to the last coordinate, so, ~x(0) looks like (0, ..., 0︸ ︷︷ ︸

2l+1

, bd′/2k−2lc, ..., bd′/2c),

given that for any a ∈ R and b ∈ N, (b bac
b
c = ba

b
c).

For Cr(~x), the first r− l+ 1 coordinates are set to 0, so we have that the
first rt−l+1 coordinates of Crt(~x(t)) are zeros, when we apply Ert−3l we lose the
first rt−3l coordinates due to the left shift, keeping (rt−l+1)−(rt−3l) = 2l+1
zeros in the beginning of the vector. So for all integer t ≥ 0 we have that the
first 2l + 1 coordinates of ~x(t) are zeros.

The other entries are obtained by taking an integer and dividing it by
a power of 2 or by (2l − 1) and then taking the floor, so we can write them
as b d′

2i(2l−1)c c for some non-negative integers i and c, if we think that we could
always divide by 2 and multiply by α = 2l/(2l − 1) whenever it should be a
division by (2l − 1) instead of 2 we would arrive at b d′

2i+lcα
cc.

Now for each j such that 2l < j ≤ k we may write ~x(t)
j as

~x
(t)
j =

⌊
d′

2c′(t,j)α
c(t,j)

⌋
(6.1)

our task is to determine the functions c′ and c.

So (6.1) can be written as

~x
(t)
j =

⌊
d′

2k−j+1α
c(t,j)

⌋
(6.2)

To understand c′(t, j) we note that this simply counts the total number
of leftward shifts that occurred to move from the last position to the current

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Chapter 6. The upper bound on ftree 44

position (as we divide by 2 with each shift) plus one (as the kth position is d′/2).
As ~x(t)

j is in position j and the last position is k, we have c′(t, j) = k − j + 1.

We now consider c(t, j). One factor of α is introduced for each application
of C. So c(t, j) counts the number of iterations which have been applied to the
entry ~x(t)

j .

To answer this we must think about where ~x(t)
j came from. In the last

iteration (from t − 1 to t) we shifted entries leftwards by l positions (with
the application of Crt) and further leftwards by rt − 3l positions (with the
application of Ert−3l). In this sense ~x(t)

j “comes from” the position j + rt − 2l.
We set qt = rt − 2l, which represents the distance shifted.

Since the vector ends with its kth entry, the number of iterations

involving ~x(t)
j is the largest c such that

t∑
i=t−c+1

qi ≤ k − j. And so

c(t, j) = max

c ∈ {1, . . . , t+ 1} :
t∑

i=t−c+1
qi ≤ k − j

 .

We are now ready to plan the remainder of the proof. The main steps
are

(i) Show that the sequence ~x(t) is well defined,

(ii) Show that the sequence of vectors ~x(t) converges to a vector ~x,

(iii) Show that this convergence occurs in at most d steps, so that ~x(t) = ~x

for all t ≥ d,

(iv) Show that w(~x(d)) ≥ 1, which gives us that ~x(d) is constructible, and
finally,

(v) Use this as the base case of a backwards induction which shows that ~x(t)

is constructible for each 0 ≤ t ≤ d.

We begin with task (i). That is, we must show that ~x(t) is well defined.
This requires us to show that rt exists for all t. And so it suffices to show that
w(~x(0)) ≥ 2−l and that w(~x(t)) is increasing in t. We shall in fact prove that
both x(t)

j and the sequence c(t, j) increases monotonically with t for each fixed
2l < j ≤ k and qt decreases monotonically in t.

Let us do induction on t. We have c(0, j) = 0 for all j, so c(1, j) ≥ c(0, j).
If we have that c(t + 1, j) ≥ c(t, j) for all j, then we have ~x(t+1)

j ≥ ~x
(t)
j for all

j by (6.2), note that c′(t, j) = k − j + 1 is independent of t. It follows that

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Chapter 6. The upper bound on ftree 45

rt+1 ≤ rt since we will sum up to 2−l with the same number or fewer terms.
We also have qt+1 ≤ qt, as we recall that qt = rt−2l. Since q0 ≥ q1 ≥ ... ≥ qt+1,
by the definition of c(i, j) we have c(t+ 2, j) ≥ c(t+ 1, j).

Now that ~x(t)
j is increasing in t, we do also have that the weight of ~x(t) is

increasing. We now prove that w(~x(0)) ≥ 2−l.

Calculating w(~x(0))

k∑
j=2l+1

⌊
d′

2k+1−j

⌋
2j

>
k∑

j=2l+1

d′

2k+1−j − 1
2j

=
k∑

j=2l+1

d′

2k+1 − 2−j

> (k − 2l) d′

2k+1 − 2−2l = (k − 2l)
d(1− 1

2l−1)
2k+1 − 2−2l

> (k − log k)
1− 1

2l−1
ek

− 2− log k+2 −→ 1
e

In the last inequality we used d = b2k+1/(ek) + 100 · 2k+1/k3/2c >

2k+1/(ek). Then we have for large enough k, w(~x(0)) > 2−l.

We now prove (ii), that the sequence ~x(t) converges. The sequence ~x(t) is
well-defined and monotonic increasing in each coordinate, and each vector was
obtained applying E and C many times to the zero vector ~0, so by Lemma 6.1.2
we have |~x(t)| ≤ d for all t. It follows that each coordinate of ~x(t) is increasing
and bounded above and so converges. Thus the vector ~x(t) converges.

We shall now show (iii), that the convergence is rapid. Note that, as soon
as two consecutive vectors agree on all coordinates, then all future vectors will
be the same. Since we are dealing with integers, and the sum of entries is at
most d, the sequence must converge in at most d steps. More formally, there
exists a vector ~x = (x0, x1, ..., xk) such that ~x(t) = ~x for all t ≥ d.

With this we also have that qt converges to some q, and that qt = q for
all t ≥ d. It now follows that equation (6.1) can be written for some t > d+ k

as

xj =
⌊

d′

2k+1−j
αb(k−j)/qc

⌋
(6.3)

Note that q ≥ l since q = qt = rt − 2l, where 3l ≥ rt ≥ k.

Before moving on to (iv) we prove the following claim.

Claim: q = l

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Chapter 6. The upper bound on ftree 46

Proof of Claim: We will show this by contradiction, assume q > l.

So, we have by the minimality of rt that

2−l >
rt−1∑
j=0

xj

2j

=
2l+q−1∑
j=2l+1

⌊
d′

2k+1−jα
b(k−j)/qc

⌋
2j

(the first 2l + 1 entries of xj are 0)

>
2l+q−1∑
j=2l+1

d′

2k+1−jα
k−j

q
−1 − 1

2j

=
2l+q−1∑
j=2l+1

(
d′

2k+1α
k−j

q
−1 − 2−j

)

using that j
q
≤ 2l+q

q
= 1 + 2l

q
≤ 1 + 2l

l
= 3 we have

≥ d′

2k+1α
k
q
−4

2l+q−1∑
j=2l+1

1
+

2l+q−1∑
j=2l+1

−2−j



using that
2l+q−1∑
j=2l+1

2−j <
∞∑

j=2l+1
2−j = 2 · 2−2l−1, we arrive at

2−l > (q − 1) d′

2k+1α
k
q
−4 − 2−2l

rearranging the terms we have

2−l(1 + 2−l)α4 2k+1

d′
> (q − 1)α

k
q

Now we will minimize g(q) = (q− 1)α
k
q over real numbers q > 2. Taking

the derivative dg/dq we obtain

αk/q − (q − 1)α
k/qk lnα
q2 .

And setting this equal to 0 gives

q · q

q − 1 = k ln(α).

So we have that the minimum of g(q) is obtained with k lnα − 2 ≤
q ≤ k lnα − 1, and for that minimum we have g(q) > (k lnα − 3)e. Using
α = 2l/(2l − 1) > e2−l we have k lnα ≥ k/2l, so applying our observations

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Chapter 6. The upper bound on ftree 47

2−l(1 + 2−l)α4 2k+1

d′
>
ke

2l
− 3e

Note that we arrived at this inequality by taking the lowest value possible
of (q − 1)αk/q.

Rearranging again we have

(1 + 2−l)α4 2k+1

d′
− ke+ 3e2l > 0

Now substituting d, d′ = d
(

1− 1
2l − 1

)
, α =

(
1 + 1

(2l − 1)

)
, l =

blog(k)/2c and k large enough we have that the right hand side is at most

(
1 + 2√

k

)(
1 + 4√

k

)4 2k+1

d
(
1− 4√

k

) − ek + 3e
√
k

≤
(

1 + 19√
k

)
ek(

1− 4√
k

) (
1 + 99e√

k

) − ek + 3e
√
k

≤
(

1− 200√
k

)
ek − ek + 3e

√
k

=− 200e
√
k + 3e

√
k < 0

which is a contradiction, implying q = l. This completes the proof of the
Claim.

Now we have all the tools we require complete steps (iv) and (v). As
a result, we shall prove that all ~x(t) are constructible and this completes the
proof of the theorem. We do this by downward induction on t.

Starting with t = d and using (6.3) with q = l we have

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Chapter 6. The upper bound on ftree 48

w(~x(d)) =
k∑

j=0

~x
(d)
j

2j
≥
x

(d)
2l+1

22l+1

≥ d′

2k+1α
k−2l−1

l − 1

≥ d′

2k+1α
k
2l − 1

≥ d/2
2k+1

(
1 + 1√

k

) k
log k

− 1

≥ 1
2eke

k

2
√

k
log k − 1 > 1

so by Lemma 6.1.1 ~x(d) is (k, d)-constructible.

Having completed the base case (t = d) we now prove the induction step.
Assuming that ~x(t+1) is constructible for some t ≤ d− 1, we will show that ~x(t)

is constructible.

To show this we recall that ~x(t+1) = Ert−3l(Crt(~x(t))). Using part (a) of
Lemma 6.1.2 repeatedly we conclude that Crt(~x(t)) is constructible. Now the
only thing left is to show that C∗rt

(~x(t)) is constructible and |C∗rt
(~x(t))| ≤ d/2l

to be able to apply part (b) of Lemma 6.1.2 finishing the proof.

Constructibility of C∗rt
(~x(t)) will follow from the definition of rt, which

gives us that

rt∑
j=l

~x
(t)
j

2j
=

rt∑
j=0

~x
(t)
j

2j
≥ 2−l ,

where the equality comes from the fact that ~x(t) has its first 2l+ 1 coordinates
as zeros.

And the weight of C∗rt
(~x(t)) can be written as

w(C∗rt
(~x(t))) =

rt∑
j=l

~x
(t)
j

2j−l
= 2l

rt∑
j=l

~x
(t)
j

2j
≥ 1

giving us that C∗rt
(~x(t)) is constructible by Lemma 6.1.1.

For |C∗rt
(~x(t))|, using the monotonicity of ~x(t)

j , we have that

|C∗rt
(~x(t))| =

rt∑
j=2l+1

x
(t)
j ≤

rt∑
j=2l+1

xj .

We have by the monotonicity of rt that rt ≤ r0 ≤ k/2 for large enough k,

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Chapter 6. The upper bound on ftree 49

recall that ~x(0) = (0, ..., 0, bd′/2k−2lc, ..., bd′/2c). Using q = l and (6.3) we have

|C∗rt
(~x(t))| ≤ d′

rt∑
2l+1

1
2k+1−j

α
k−j

l

≤ d
rt∑

j=2l+1

(
α

2

)k−j

≤ d
(3

4

)k−rt

· 4

≤ d
(3

4

) k
2
· 4

<
d√
k

≤ d

2l

And now being able to apply part (b) of Lemma 6.1.2 we finish our proof.

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA



Bibliography

[1] BECK, J.. Combinatorial Games: Tic-Tac-Toe Theory. Encyclopedia
of Mathematics and its Applications. Cambridge University Press, 2008.

[2] BERLEKAMP, E.; CONWAY, J. ; GUY, R.. Winning Ways for Your
Mathematical Plays. Número v. 2. Taylor & Francis, 2003.

[3] ERDŐS, P.; SELFRIDGE, J.. On a combinatorial game. Journal of
Combinatorial Theory, Series A, 14(3):298–301, 1973.

[4] GEBAUER, H.. Disproof of the neighborhood conjecture with
implications to sat, 2009.

[5] GEBAUER, H.; SZABO, T. ; TARDOS, G.. The local lemma is asymp-
totically tight for sat, 2016.

[6] HALES, A. W.; JEWETT, R. I.. Regularity and positional games.
Transactions of the American Mathematical Society, 106(2):222–229, 1963.

[7] KRATOCHVÍL, J.; SAVICKÝ, P. ; TUZA, Z.. One more occurrence of
variables makes satisfiability jump from trivial to np-complete.
SIAM J. Comput., 22:203–210, 1993.

[8] KNOX, F.. Two constructions relating to conjectures of beck on
positional games, 2012.

DBD
PUC-Rio - Certificação Digital Nº 1821412/CA


	Combinatorial Games and the Neighborhood Conjecture
	Resumo
	Table of contents
	Introduction
	Overview of the dissertation

	Some Fundamental Results
	Tools and Basic concepts
	Maker and Breaker

	On f(3) and f(4)
	About the f function
	f(4) is equal to 3
	The  graph
	' from 
	G4 from '


	Lower bounds on the function f(k)
	The lower bound of the f function

	A little help from our friends (SAT and binary trees)
	SAT
	Trees
	The upper bound of the f function

	The upper bound on ftree
	Preliminaries tools and definitions
	The proof

	Bibliography



