Título: | OTIMIZAÇÃO DE GRAFOS E SLAM PROBABILÍSTICO DE ROBÔS MÓVEIS USANDO UM SENSOR RGB-D | ||||||||||||
Autor: |
JOAO CARLOS VIRGOLINO SOARES |
||||||||||||
Colaborador(es): |
MARCO ANTONIO MEGGIOLARO - Orientador |
||||||||||||
Catalogação: | 23/MAR/2021 | Língua(s): | INGLÊS - ESTADOS UNIDOS |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=51950&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=51950&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.51950 | ||||||||||||
Resumo: | |||||||||||||
Robôs móveis têm uma grande gama de aplicações, incluindo veículos
autônomos, robôs industriais e veículos aéreos não tripulados. Navegação
móvel autônoma é um assunto desafiador devido à alta incerteza e nãolinearidade
inerente a ambientes não estruturados, locomoção e medições de
sensores. Para executar navegação autônoma, um robô precisa de um mapa
do ambiente e de uma estimativa de sua própria localização e orientação
em relação ao sistema de referência global. No entando, geralmente o
robô não possui informações prévias sobre o ambiente e deve criar o
mapa usando informações de sensores e se localizar ao mesmo tempo,
um problema chamado Mapeamento e Localização Simultâneos (SLAM).
As formulações de SLAM usam algoritmos probabilísticos para lidar com
as incertezas do problema, e a abordagem baseada em grafos é uma das
soluções estado-da-arte para SLAM. Por muitos anos os sensores LRF (laser
range finders) eram as escolhas mais populares de sensores para SLAM.
No entanto, sensores RGB-D são uma alternativa interessante, devido ao
baixo custo. Este trabalho apresenta uma implementação de RGB-D SLAM
com uma abordagem baseada em grafos. A metodologia proposta usa o
Sistema Operacional de Robôs (ROS) como middleware do sistema. A
implementação é testada num robô de baixo custo e com um conjunto de
dados reais obtidos na literatura. Também é apresentada a implementação
de uma ferramenta de otimização de grafos para MATLAB.
|
|||||||||||||
|