
João Carlos Virgolino Soares

Graph Optimization and Probabilistic SLAM of
Mobile Robots using an RGB-D Sensor

Dissertação de Mestrado

Dissertation presented to the Programa de Pós–graduação em
Engenharia Mecânica of PUC-Rio in partial fulfillment of the
requirements for the degree of Mestre em Engenharia Mecânica.

Advisor: Prof. Marco Antonio Meggiolaro

Rio de Janeiro
March 2018

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

João Carlos Virgolino Soares

Graph Optimization and Probabilistic SLAM of
Mobile Robots using an RGB-D Sensor

Dissertation presented to the Programa de Pós–graduação em
Engenharia Mecânica of PUC-Rio in partial fulfillment of the
requirements for the degree of Mestre em Engenharia Mecâ-
nica. Approved by the undersigned Examination Committee.

Prof. Marco Antonio Meggiolaro
Advisor

Departamento de Engenharia Mecânica – PUC-Rio

Prof. Wouter Caarls
Departamento de Engenharia Elétrica – PUC-Rio

Prof. Paulo Fernando Ferreira Rosa
Seção de Engenharia de Computação – IME

Prof. Márcio da Silveira Carvalho
Vice Dean of Graduate Studies

Centro Técnico Científico – PUC-Rio

Rio de Janeiro, March 26th, 2018

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

All rights reserved.

João Carlos Virgolino Soares

Graduated in Mechanical Engineering at Pontifícia Universi-
dade Católica do Rio de Janeiro in 2015

Bibliographic data
Soares, João Carlos Virgolino

Graph optimization and probabilistic SLAM of mobile
robots using an RGB-D sensor / João Carlos Virgolino Soares;
advisor: Marco Antonio Meggiolaro. – 2018.

109 f. : il. color. ; 30 cm

Dissertação (mestrado) - Pontifícia Universidade Católica
do Rio de Janeiro , Departamento de Engenharia Mecânica,
2018.

Inclui bibliografia

1. Engenharia Mecânica – Teses. 2. SLAM. 3. Robótica
probabilística. 4. Otimização de grafos. 5. Sensor RGB-
D. 6. ROS. I. Meggiolaro, Marco Antonio. II. Pontifícia
Universidade Católica do Rio de Janeiro . Departamento de
Engenharia Mecânica. III. Título.

CDD: 621

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

In memory of my father, João Carlos Pinheiro Soares.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Acknowledgments

To my advisor, Professor Marco Antonio Meggiolaro, for the oportunity,
orientation and incentive.

To Professors Paulo Fernando Ferreira Rosa and Wouter Caarls, for the
interest in the work.

To Professor Carlos Alberto de Almeida, for the fundamental role in my
formation.

To Professors Ivan Menezes and Mauro Speranza for all support.
To CAPES, for the financial support.
To my colleagues Rodrigo Bianchi, Marisa Bazzi, Eduardo Cota, Thiago

Almeida and André Xavier.
To all my friends from team RioBotz, specially Fischer, Adriel, Homsi,

Maria Vitória, Gustavo, Júnior, Ivan, Mariana, Montesanto, Zig, Luiz San-
tarelli, Ziliani, Daniel, David, Henrique, Lohan, Grativol, Robalo, Coutinho,
Letícia, Malu, Tatiana, Rodrigo D’Amico, Rodrigo Nogueira, Rafael Schoen-
felder, Rodrigo Duque, Yann and Victória.

To Guilherme Rodrigues, João Almeida Ramos and Eduardo von Ristow,
for all advice.

To my friends from PUC-Rio, Igor Girsas, Juliana Leão, Bruno Cala-
sães, Gabriel Barsi, Matheus Cosenza, Pedro Froner, José Benatti, Antonio
Rodrigues, Felipe Salles and Thaís Joffe.

To my long time friends, Fernando and José Renato.
To Isaías, Rosemary, Lucas and Letícia, my family from the heart.
To my dear aunties Norma and Nadir.
To all my relatives.
To my parents João and Imar, for the unconditional love.
To my wife Ana, for always been by my side.
To God, who allowed me to get here.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Abstract

Soares, João Carlos Virgolino; Meggiolaro, Marco Antonio (Advi-
sor). Graph Optimization and Probabilistic SLAM of Mo-
bile Robots using an RGB-D Sensor. Rio de Janeiro, 2018.
109p. Dissertação de Mestrado – Departamento de Engenharia Me-
cânica, Pontifícia Universidade Católica do Rio de Janeiro .

Mobile robots have a wide range of applications, including autonomous
vehicles, industrial robots and unmanned aerial vehicles. Autonomous mo-
bile navigation is a challenging subject due to the high uncertainty and non-
linearity inherent to unstructured environments, robot motion and sensor
measurements. To perform autonomous navigation, a robot need a map of
the environment and an estimation of its own pose with respect to the global
coordinate system. However, usually the robot has no prior knowledge about
the environment, and has to create a map using sensor information and loca-
lize itself at the same time, a problem called Simultaneous Localization and
Mapping (SLAM). The SLAM formulations use probabilistic algorithms to
handle the uncertainties of the problem, and the graph-based approach is
one of the state-of-the-art solutions for SLAM. For many years, the LRF
(laser range finders) were the most popular sensor choice for SLAM. Howe-
ver, RGB-D sensors are an interesting alternative, due to their low cost.
This work presents an RGB-D SLAM implementation with a graph-based
probabilistic approach. The proposed methodology uses the Robot Opera-
ting System (ROS) as middleware. The implementation is tested in a low
cost robot and with real-world datasets from literature. Also, it is presented
the implementation of a pose-graph optimization tool for MATLAB.

Keywords
SLAM; Probabilistic robotics; Graph-Optimization; RGB-D Sensor;

ROS.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Resumo

Soares, João Carlos Virgolino; Meggiolaro, Marco Antonio. Otimi-
zação de Grafos e SLAM Probabilístico de Robôs Móveis
usando um Sensor RGB-D. Rio de Janeiro, 2018. 109p. Dis-
sertação de Mestrado – Departamento de Engenharia Mecânica,
Pontifícia Universidade Católica do Rio de Janeiro .

Robôs móveis têm uma grande gama de aplicações, incluindo veículos
autônomos, robôs industriais e veículos aéreos não tripulados. Navegação
móvel autônoma é um assunto desafiador devido à alta incerteza e não-
linearidade inerente a ambientes não estruturados, locomoção e medições de
sensores. Para executar navegação autônoma, um robô precisa de um mapa
do ambiente e de uma estimativa de sua própria localização e orientação
em relação ao sistema de referência global. No entando, geralmente o
robô não possui informações prévias sobre o ambiente e deve criar o
mapa usando informações de sensores e se localizar ao mesmo tempo,
um problema chamado Mapeamento e Localização Simultâneos (SLAM).
As formulações de SLAM usam algoritmos probabilísticos para lidar com
as incertezas do problema, e a abordagem baseada em grafos é uma das
soluções estado-da-arte para SLAM. Por muitos anos os sensores LRF (laser
range finders) eram as escolhas mais populares de sensores para SLAM.
No entanto, sensores RGB-D são uma alternativa interessante, devido ao
baixo custo. Este trabalho apresenta uma implementação de RGB-D SLAM
com uma abordagem baseada em grafos. A metodologia proposta usa o
Sistema Operacional de Robôs (ROS) como middleware do sistema. A
implementação é testada num robô de baixo custo e com um conjunto de
dados reais obtidos na literatura. Também é apresentada a implementação
de uma ferramenta de otimização de grafos para MATLAB.

Palavras-chave
SLAM; Robótica probabilística; Otimização de grafos; Sensor RGB-D;

ROS.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Table of contents

1 Introduction 15
1.1 Motivation 15
1.1.1 SLAM 17
1.1.2 RGB-D Sensors 18
1.1.3 Robot Operating System 19
1.2 Problem Definition 20
1.3 Literature Review 21
1.3.1 Filtering Approaches 21
1.3.2 Graph-based approaches 22
1.3.3 Visual SLAM 24
1.3.4 RGB-D SLAM 24
1.4 Objectives 25
1.5 Dissertation Outline 26

2 Theoretical Background 27
2.1 Probability Theory 27
2.1.1 Gaussian Distribution 27
2.1.2 Conditional Probability 28
2.1.3 Independence 29
2.2 Probabilistic Formulation of SLAM 29
2.3 Least Squares Problem 31
2.3.1 Linear Least Squares 31
2.3.2 Non-linear Least Squares 32
2.4 Rigid Motion in R3 and Attitude Representations 33
2.4.1 Rotation Matrices 33
2.4.2 Euler Angles 35
2.4.3 Quaternions 35
2.5 Camera Model 37
2.6 Visual Features 38
2.6.1 ORB Features 39
2.7 Map representations 39
2.7.1 Point Cloud 42
2.8 Iterative Closest Point 43
2.9 Random Sample Consensus 45
2.10 ROS 46
2.10.1 rviz 47
2.10.2 Rosbag 47

3 Pose-Graph Optimization tool for MATLAB 49
3.1 Pose-Graph 49
3.2 Graph Optimization as a Non-linear Least Squares Problem 49
3.2.1 1D Example 52
3.3 2D Pose-Graph Optimization 55
3.3.1 2D Dataset Evaluation 56

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

3.4 3D Pose-Graph Optimization 61
3.4.1 Quaternion Exponential Map and Manifold Optimization 61
3.4.2 Implementation 63
3.4.3 3D Dataset Evaluation 65

4 SLAM Implementation 70
4.1 Hardware 70
4.1.1 Kinect v2 70
4.1.2 Kinect Calibration 71
4.1.3 iRobot Create 72
4.1.4 Assembled Robot 73
4.2 System Overview 74
4.3 Data Acquisition 75
4.3.1 Point Clouds from images 75
4.3.2 Downsampling 76
4.4 Visual Odometry 76
4.5 Loop Closure 76
4.5.1 Feature Detection 78
4.5.2 Feature Matching 78
4.5.3 Outlier Rejection 79
4.5.4 ICP 79
4.5.5 Initial Alignment 80
4.5.6 Loop Closure Parameters 80
4.6 Graph Optimization 81
4.7 Map Construction 81
4.8 Summary 81

5 Results 83
5.1 Experiments 83
5.2 Dataset Evaluation 86
5.2.1 Translation 86
5.2.2 Translation 2 88
5.2.3 Freiburg Room 89
5.2.4 Long Office Household 92
5.2.5 State-of-the-art Comparison 96

6 Conclusions 98
6.1 Future Works 99

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

List of figures

Figure 1.1 Mars Exploration Rover 15
Figure 1.2 Self-driving car 16
Figure 1.3 Roomba - robotic vacuum cleaner 16
Figure 1.4 Diagram of an autonomous mobile robot system 17
Figure 1.5 Microsoft Kinect v2 18
Figure 1.6 Guardian robot 19
Figure 1.7 Robonaut 19
Figure 1.8 Graph-SLAM system 20

Figure 2.1 SLAM problem as a Dynamic Bayesian Network 30
Figure 2.2 Pose-graph representation of the SLAM problem 30
Figure 2.3 Linear least squares solution 32
Figure 2.4 Position of the body in world coordinates 33
Figure 2.5 A yaw, pitch and roll convention 35
Figure 2.6 Camera Model 37
Figure 2.7 Map of Landmarks 40
Figure 2.8 Grid Map 41
Figure 2.9 Feature Map 41
Figure 2.10 Point Cloud 42
Figure 2.11 Comparison between a point cloud and a OctoMap 43
Figure 2.12 ROS Master 46
Figure 2.13 Node communication 46
Figure 2.14 ROS Graph 47
Figure 2.15 Point Cloud in rviz 47
Figure 2.16 Rosbag publishing kinect data 48

Figure 3.1 1D pose-graph 52
Figure 3.2 Intel - Initial corrupted pose-graph 57
Figure 3.3 Intel Optimized pose-graph 57
Figure 3.4 MOLE 2D Optimization 57
Figure 3.5 Intel dataset - Global error per iteration 58
Figure 3.6 M3500 Initial corrupted pose-graph 58
Figure 3.7 M3500 Optimized pose-graph 59
Figure 3.8 Olson’s pose-graph 59
Figure 3.9 M3500 Global error per iteration 59
Figure 3.10 Initial corrupted pose-graph 60
Figure 3.11 Optimized pose-graph 60
Figure 3.12 LAGO’s pose-graph 60
Figure 3.13 Global error per iteration 60
Figure 3.14 Mapping from S2 into R2 62
Figure 3.15 Initial sphere 66
Figure 3.16 Optimized sphere 67
Figure 3.17 Global Error per Iteration - Sphere Dataset 67
Figure 3.18 Garage - Initial Graph 68
Figure 3.19 Stanford garage 68

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Figure 3.20 Garage - Optimized trajectory 69
Figure 3.21 Global Error per Iteration - Parking Garage Dataset 69

Figure 4.1 Microsoft Kinect v2 70
Figure 4.2 LiPo Battery 71
Figure 4.3 12V BEC 71
Figure 4.4 Kinect Calibration 72
Figure 4.5 Image Pattern 72
Figure 4.6 iRobot Create 73
Figure 4.7 iRobot wheels 73
Figure 4.8 Robot fully assembled 74
Figure 4.9 General Overview of the System 74
Figure 4.10 Registered color and depth frames 75
Figure 4.11 Point Cloud 76
Figure 4.12 Downsampled Cloud 76
Figure 4.13 Loop Closure 77
Figure 4.14 Feature Detection 78
Figure 4.15 Feature Matching 79

Figure 5.1 Robot performing SLAM 83
Figure 5.2 Robot performing SLAM 83
Figure 5.3 Experiment 1 - point cloud map 84
Figure 5.4 Experiment 2 - point cloud map 84
Figure 5.5 Experiment 3 - point cloud map 85
Figure 5.6 Experiment 3 - point cloud map 2 85
Figure 5.7 fr1-xyz - Trajectory 87
Figure 5.8 fr1-xyz - Color Frame 87
Figure 5.9 fr1-xyz - Point Cloud Map 88
Figure 5.10 fr2-xyz trajectory 89
Figure 5.11 fr2-xyz - Point Cloud Map 89
Figure 5.12 fr1-room - Visual Odometry 90
Figure 5.13 fr1-room - Optimized 90
Figure 5.14 fr1-room - Point Cloud Map 91
Figure 5.15 fr1-room - Point Cloud Map 2 92
Figure 5.16 fr3-long-office - Visual Odometry 93
Figure 5.17 fr3-long-office - Optimized 93
Figure 5.18 fr3-long-office: Initial Point Cloud 94
Figure 5.19 fr3-long-office: Point Cloud Map 94
Figure 5.20 fr3-long-office: Point Cloud Map 2 94
Figure 5.21 fr3-long-office 30Hz - Visual Odometry 95
Figure 5.22 fr3-long-office 30Hz - Optimized 96

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

List of tables

Table 3.1 Parameters of 1D Graph optimization example 53

Table 4.1 Kinect v2 Specifications 71
Table 4.2 ICP Parameters 80
Table 4.3 Initial Alignment Parameters 80
Table 4.4 SLAM Parameters 80

Table 5.1 ATE evaluation of the fr1 xyz dataset in meters 87
Table 5.2 ATE evaluation of the fr2 xyz dataset in meters 88
Table 5.3 ATE evaluation of the freiburg1 room dataset in meters 91
Table 5.4 ATE evaluation of the fr3 long office household in meters 92
Table 5.5 ATE evaluation of the freiburg3 long office household

30Hz in meters 95
Table 5.6 ATE RMSE Comparison between the present work and

state-of-the-art implementations for the fr1 room dataset 96
Table 5.7 Comparison between the present work and state-of-the-

art implementations for the fr3 office dataset 97

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

List of Abreviations

AGV – Autonomous Guided Vehicle
ATE – Absolute Trajectory Error
DBN – Dynamic Bayesian Network
DOF – Degrees of Freedom
EKF – Extended Kalman Filter
ICP – Iterative Closest Point
IMU – Inertial Measurement System
LiPo – Lithium Polymer
LM – Levenberg-Marquardt
PCG – Preconditioned Conjugate Gradient
PCL – Point Cloud Library
PDF – Probability Density Function
RANSAC – Random Sample Consensus
RMSE – Root Mean Squared Error
ROS – Robot Operating System
RPE – Relative Pose Error
SIFT – Scale Invariant Feature Transform
SLAM – Simultaneous Localization and Mapping
UAV – Unmanned Aerial Vehicle
VO – Visual Odometry

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

They that sow in tears shall reap in joy.

Psalm 126:5.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

1
Introduction

1.1
Motivation

Robotic systems are becoming more commom in society, improving life
quality performing tasks that are tedious, dangerous or even impossible for
humans. Robotic manipulators, for example, allowed a considerable improve-
ment in manufacturing industry with a faster production and a more reliable
quality. Despite their success, they suffer from a limited mobility [1]. In certain
applications is neccessary a robot that is able to move freely through the envi-
ronment. Mobile robots are robotic systems capable of moving and operating
without a fixed location. The Mars Exploration Rover, shown in Fig. 1.1, for
example, allowed cientific research in a planet to which is currently infeasible
to send humans.

Figure 1.1: Mars Exploration Rover

Mobile robots can be teleoperated, automated guided vehicles or fully
autonomous [1]. AGVs are robots that follow a pre-determined path and
are often used in industrial applications such as product transportation.
Teleoperated robots are usually used in a situation of high risk for humans.
However, many applications need a fully autonomous robot. Self-driving cars,

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 1. Introduction 16

for example, are a topic of extense discussion and research nowadays, and are
being developed by several companies such as Google, Tesla and GM.

Figure 1.2: Self-driving car

Achieving fully autonomous navigation is increasingly becoming essential
in mobile robotics. Autonomous mobile robots have several other applications,
including mobile industrial robots that are more flexible to changes in environ-
ment or interaction with humans in a workspace than AGVs, tour-guide robots,
aerial surveillance of UAVs and home-service robots, such as the house-cleaning
robot roomba, shown in Fig. 1.3.

Figure 1.3: Roomba - robotic vacuum cleaner

Autonomous mobile navigation is currently one of the most challenging
subjects in robotics, due to the high uncertainty and non-linearity inherent
to unstructured and unpredictable environments, sensor measurements, and
locomotion, in contrast to manufacturing robot arms that are usually fixed

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 1. Introduction 17

and perform repetitive tasks, such as welding and assembling, in a controlled
and predictable environment.

There are four major problems in autonomous mobile robotics: percep-
tion, localization and mapping, path planning and motion control (locomotion)
[1]. Their interdependence is illustrated in Fig. 1.4.

Figure 1.4: Diagram of an autonomous mobile robot system

The goal of the motion control problem is to study the kinematics of the
robot and low-level details of the locomotion system. Perception is responsible
for extraction and interpretation of raw sensor data. Localization, mapping
and path planning are higher-level tasks that need robust techniques to be
achieved [1]. This work is focused on the perception, localization and mapping
problems.

1.1.1
SLAM

Autonomous mobile robots need an accurate map of the environment,
as well as an estimation of its own pose with respect to the global coordinate
system, in order to be able to navigate autonomously. However, usually both
map and pose are unknown and only sensor information is available. Also, a
map is needed to perform localization, and the robot needs a pose estimation to
build an accurate map [2]. Therefore, this problem consists in simultaneously
creating a map of the environment using raw sensor information and estimating
the pose of the robot in this map, and it is known as Simultaneous Localization
and Mapping (SLAM).

SLAM is a fundamental step to achieve full autonomy [3], therefore it is
one of the most researched topics in mobile robotics. However, several problems
remain open in SLAM [4] [5], such as dealing with fast robot dynamics

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 1. Introduction 18

or highly dynamic scenarios, and achieving persistent autonomy, high-level
understanding of the environment, and a robust performance.

SLAM has been implemented in different applications and types of en-
vironments. For example, in oil industry, inspection and maintenance robots
need to perform localization, and need a globally consistent 3D metric repre-
sentation of the environment for structural inspection, or to perform physical
interventions, such as control panel operation or valve turning.

1.1.2
RGB-D Sensors

For many years the laser range-finders were the most broadly used sensors
for SLAM, due do its high range and precision. However, their cost is a
considerable limitation to research and commercial projects. Cameras are a
more cheap solution and provide rich information about the environment.
Tesla Motors, for example, has opted to use cameras and radars instead of
laser range-finders to produce more afordable autonomous cars. However, the
absence of a direct depth measurement increases the level of complexity of the
algorithms to solve the SLAM problem.

RGB-D sensors are an interesting alternative due to their low cost and
weight, and to the fact that they provide both color and depth information,
despite having more limited measurement range than laser scanners. The
Microsoft Kinect [6], shown in Fig. 1.5, is a popular RGB-D sensor created
for the gaming industry, and has been incorporated into computer science
and robotics research for development of SLAM systems, object recognition,
machine learning and 3D reconstruction at an affordable price.

Figure 1.5: Microsoft Kinect v2

The first version of the Kinect, with a structured-light technology,
had range and resolution limitations, and was also unsuitable for outdoor
applications due to sunlight [7]. The second generation, the Microsoft Kinect
v2 [6], is a time-of-flight camera with a higher resolution and a wider field

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 1. Introduction 19

of view [8]. The new kinect has opened new possibilities for research and
development of mobile robotics. Hernández-Aceituno et al. [9], for example,
made a comparison between the accuracy of a kinect v2, laser range-finders
and stereo cameras for outdoor close range obstacle detection in a self-driving
car. The kinect outperformed the other sensors.

1.1.3
Robot Operating System

One of the problems in writing robot software is to deal with different
types of hardware and integration of multiple tasks and systems. The Robot
Operating System (ROS) is an open source framework for writing robot
software that promotes collaborative development through a modular system
that facilitates code reuse. ROS provides a set of tools and libraries for
robotics applications and integrates multiple tasks, devices and low-level
control through a graph-based architecture [10].

ROS has a large and active community with several collaborators, and
can be used with multiple languages, such as C++ or Python. Beside the large
use in research, several companies and organizations adopted ROS in their
robots. The robot Guardian from Robotnik, for example, shown in Fig. 1.6,
is a modular teleoperated mobile robot for outdoor operations equiped with
a Hokuyo laser range-finder, an IMU and a GPS [11]. The robot Robonaut,
shown in Fig. 1.7, is a humanoid robot designed and developed by NASA and
General Motors to work at the International Space Station, which debuted the
use of ROS in space [12].

Figure 1.6: Guardian robot Figure 1.7: Robonaut

Other examples of ROS-driven robots include Warthog, an amphibious
unmanned ground vehicle from Clearpath Robotics [13], MPO-700, an om-
nidirectional robot from Neobotix [14], and Baxter, an industrial robot from
Rethink Robotics [15].

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 1. Introduction 20

1.2
Problem Definition

As stated before, mobile robotics is inherently uncertain, especially due
to unstructured environments, robot motion and sensor measurements. If a
robot is performing localization deterministically using wheel encoders, for
example, the estimation will be completely wrong after some motion [5].
Probabilistic algorithms deal with this uncertainty explicitly representing it
using probability theory [3].

There are three major probabilistic paradigms for SLAM: Kalman Filters,
Particle Filters and Graph-based approaches. The first two are called online
SLAM methods, because the estimated state is the current position of the
robot. The third one is also called full SLAM, because the complete trajectory
of the robot is estimated [16].

This implementation uses the Graph-SLAM approach. It consists in a
representation of the states of the robot with a graph that is optimized using
a non-linear least squares minimization to generate a maximum likelihood
solution for the trajectory.

The SLAM problem is divided into two main steps: front-end and back-
end. The front-end processes sensor information and creates the graph using a
motion estimation method. The back-end uses probability theory to optimize
the graph given the measurement errors. In Fig. 1.8 is shown a typical Graph-
SLAM system. In contrast to the front-end, the back-end is completely sensor-
independent. It only depends on the right graph construction.

Figure 1.8: Graph-SLAM system

A major step in this implementation is known as the Loop Closure
problem, when the robot revisits a previous known location, followed by
the corresponding correction of the map. The quality of the implementation
depends on the capability of the system to detect loop closures with enough
accuracy [17].

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 1. Introduction 21

1.3
Literature Review

In 1986, probabilistic methods were beginning to be used in robotics
research. At the 1986 IEEE Robotics and Automation Conference in San
Francisco, several researches recognized that probabilistic mapping was a
fundamental problem in robotics [4]. According to Durrant-Whyte et al.[4], the
coining of the term "SLAM" occurred in 1995 in his work about AGVs at the
International Symposium on Robotics Research[18], but the SLAM problem
was introduced in 1986 by Smith and Cheeseman [19], who used the Extended
Kalman Filter to deal with geometric uncertainties and to incrementally use
new information about locations of different landmarks in a map and their
correlations, estimating the posterior probability distribution of the pose of
the robot and landmark positions.

1.3.1
Filtering Approaches

The Kalman Filter is a Bayesian filter created by Rudolph Kalman in
the 1950s for filtering and prediction in linear systems. It assumes linear state
transitions, linear measurements and Gaussian noise. However, a mobile robot
is a non-linear system, therefore the Kalman Filter is not applicable. The
Extended Kalman Filter uses a local linearization procedure with a first order
Taylor expansion to overcome the linearity assumption [3].

After the mathematical introduction to the SLAM problem with EKF
by Smith and Cheeseman [19], the method was implemented in 1989 by
Mountarlier and Chatila [20], using a mobile robot with a laser range-finder and
odometry information. For several years the EKF was the dominant approach
for SLAM, with many other implementations and variations. In 1991, Leonard
and Durrant-Whyte [21] applied EFK-SLAM in a mobile robot navigation
problem with sonar sensors in a known environment. Dissanayake et al. [22],
in 2001, showed the monotonic convergence behaviour of the uncertainty of
landmark locations in EKF-SLAM, and also implemented the method in a
vehicle with a radar in an outdoor environment.

However, the EKF-SLAM suffer from a major drawback. In the EFK-
SLAM the map is composed of point landmarks. The computational cost of
the implementation is dominated by the number of landmarks in the map,
because the O(n2) elements of the covariance matrix have to be updated every
time a landmark is observed, which leads to a scalability limitation and the
problem becomes computationally intractable for large maps [23]. This issue

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 1. Introduction 22

was recognized by Leonard and Feder in 1999 [24], and by Guivant and Nebot
in 2001 [25].

To overcome this problem, Montemerlo at al. presented in 2002 the
FastSLAM algorithm [26], that is also a Bayesian method to estimate the
posterior probability distribution of the pose and landmark positions. However,
this algorithm uses Rao-Blackwellized Particle Filters to obtain a logarithmic
computational requirement with the number of landmarks in the map.

Particle Filter, also known as sequential Monte Carlo method, is a
non-parametric posterior probability estimator based on Bayes’ Theorem and
Monte Carlo techniques [27]. Instead of using a parametric representation of
the uncertainty, as the Kalman filter does, the Particle Filter draws samples
from a distribution to represent it [3]. Therefore, Particle filters have the ad-
vantages of being capable to deal with non-Gaussian noise, represent complex
multimodal beliefs, and be applied to global localization problems, such as
the kidnapped robot problem (when the robot is suddenly carried to another
location), as opposed to Kalman filters [25].

First introduced for SLAM by Murphy in 1999 [28], the Rao-
Blackwellized Particle Filter is a extension of the Monte Carlo Localization
algorithm [29], which is an application of the Particle Filter to the robot local-
ization problem [26]. The idea of FastSLAM is to use the Rao-Blackwellized
Particle Filter to model the pose of the robot by a set of particles sampled from
the probabilistic motion model. Each particle has K independent Kalman fil-
ters for its own K landmark locations [30] [23]. It results in a O(Nlog(K))
computational requirement. Applications of FastSLAM include the work of
Neto et al. [31], in which they performed FastSLAM extracting visual features
from the environment.

Another SLAM implementation that used Rao-blackwellized Particle
Filter is the DP-SLAM [32], presented in 2003 by Eliazar and Parr. Unlike
FastSLAM, the DP-SLAM makes no landmark assumptions and is specific for
laser range-finders. Canchumuni and Meggiolaro [33], for example, performed
DP-SLAM using a single laser range-finder with a Genetic Algorithm to obtain
robot displacement.

1.3.2
Graph-based approaches

Despite the efforts to overcome the scalability problems from the early
approaches to SLAM, it was found that filtering methods have an inconsistency
issue if applied to SLAM problems [34]. This issue arises from one of the major
disadvantages of filtering approaches, which is that data is discarded after

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 1. Introduction 23

processed [35]. Smoothing, or Graph-based methods, have better performance
and accurary than filtering methods by saving all data available [36][16]. Due
to this characteristic, they are also called full SLAM methods.

The Graph-based approach for SLAM was proposed in 1997 by Lu and
Milios [37]. They presented a method to maintain all robot poses and spatial
relationships between them, generated from odometry and scan matching,
creating a network and further optimizing it at once. However, their approach
was infeasible to perform in real-time [38] [16], and it was heavily dependent
on the initial estimate [39]. In 1999, Gutmann and Konolige [39] proposed a
method for global pose estimation based on the work of Lu and Milios, but
with an incremental approach, specifically designed to work for long cycles
and to avoid local minimum convergence. Other important contributions were
made afterwards. Howard et al.[40], in 2001, modeled the spatial constraints
between poses as springs and apllied a relaxation method for localization
and mapping. In 2002, Duckett et al. [41] used Gauss-Seidel relaxation for
constraint minimization, assuming a known orientation, a place recognition
system and odometry information. In 2005, Frese et al. [42] developed a
improved relaxation implementation.

Another Graph-SLAM approach was presented by Olson et al. in 2006
[43], using stochastic gradient descent to optimize the graph. This method
was a considerable improvement for its computational efficiency, and also for
the possibility to recover the robot trajectory from poor initial estimates. In
2007, Grisetti et al. [44] extended the algorithm presented by Olson using a
tree-based parameterization with a better rate of convergence.

All previous methods were developed for a two-dimensional space. One of
the first implementations that could be applied in both 2D and 3D systems was
the
√
SAM (square root SAM) developed by Dellaert and Kaess [35] in 2006.

They took advantage of the sparse structure of the matrices associated with
the Graph-SLAM problem, performing a sparse factorization of the information
matrix into a square root form. In 2008, Kaess et al. [45] presented a variant of
the previous work, called iSAM, performing incremental updates of the square
root information matrix.

In 2011, Kümmerle et al. [38] presented the g2o framework, a general
Graph-SLAM formulation that can be applied to Bundle Adjustment, 2D and
3D Graph-SLAM problems. g2o is an open-source C++ framework that is
currently one of the state-of-the-art formulations for graph optimization, and
it has been used as a back-end in several monocular, stereo and RGB-D SLAM
implementations. g2o can use different solvers such as Cholesky, Preconditioned
Conjugate Gradient (PCG) and Levenberg-Marquardt (LM).

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 1. Introduction 24

Other important Graph-SLAM formulations for 2D and 3D problems
include TORO, MTKM and HOG-Man. TORO [46], presented by Grisetti
et al. in 2009, is an open source C++ standalone implementation that uses
a tree-based parameterization. MTKM [47], developed by Wagner et al.,
is an open-source least-squares optimization tool for MATLAB, that can
be used for multi-sensor calibration and Graph-SLAM problems. HOG-Man
(Hierarchical Optimization for Pose Graphs on Manifolds) is an open source
C++ implementation of the approach developed by Grisetti et al. [48], which
has a hierarchical optimization solution to Graph-SLAM.

To overcome parameterization problems in 3D optimization, Hertzberg et
al. [49] proposed in 2008 the �-method, to perform optimization on manifolds,
which is used in previous cited frameworks, such as g2o, MTKM and HOG-
Man. The �-method and the manifold optimization theory are discussed in
details in chapter 3.

1.3.3
Visual SLAM

The use of cameras in robotics increased with the development and
improvement of computer vision and image processing techniques, such as
feature detectors. The work of Davison and Murray [50], in 1998, was the first
visual SLAM system with real time processing [51].

The visual odometry and SLAM research had a considerable improve-
ment in the past years, with several important open source implementations,
such as: Semi-direct Visual Odometry (SVO) [52], Large Scale Direct monoc-
ular SLAM (LSD SLAM) [53] and ORB SLAM [54].

1.3.4
RGB-D SLAM

The use of RGB-D cameras for robotics research is relatively recent.
Henry et al. [17] developed in 2012 a RGB-D SLAM system using sparse visual
features combined with ICP. Another early system was developed by Endres
et al. [55] in 2012.

In 2011, Huang et al. [56] implemented a visual odometry system, named
FOVIS, in a micro air vehicle using an RGB-D camera for localization and
mapping using sparse visual features, but without a probabilistic formulation.
Another visual odometry formulation for RGB-D sensors was developed by
Whelan et al. [57] in 2013, integrating FOVIS and other visual odometry
estimation methods with a GPU-based implementation.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 1. Introduction 25

Newcombe et al. [58] presented, in 2011, the KinectFusion algorithm,
performing accurate real-time mapping with a volumetric representation and
a GPU-based implementation.

In 2012, Sturm et al. [59], from the Technical University of Munich,
presented a benchmark for the evaluation of RGB-D SLAM system, with
several sequences of depth and color images recorded from a Microsoft Kinect,
and their respective ground-truth camera poses obtained from a motion-
capture system.

The first popular RGB-D SLAM system was implemented in 2014 by
Endres et al. [60]. It uses matched sparse visual features to estimate motion
between frames in the front-end, and the g2o framework as back-end.

In 2015, Whelan et al. [61] presented Elastic Fusion, a RGB-D SLAM
system without a pose graph, using dense camera tracking and GPU.

In 2017 the ORB-SLAM2 [62] was presented by Mur-Artal and Tardós
as an extension of their previous work. It is an open-source hybrid formulation
that can be used in systems with monocular cameras, stereo cameras and
RGB-D sensors. The ORB-SLAM2 formulation uses ORB features [63], a place
recognition methodology, loop closure detection and the g2o framework with
Levenberg-Marquadt for non-linear optimization of the pose-graph.

1.4
Objectives

– Develop an algorithm for simultaneous localization and mapping of mo-
bile robots in indoor environments using only RGB and Depth informa-
tion provided by an RGB-D camera, assuming a 6-DOF system and a
static environment.

– Use a graph-based probabilistic formulation to deal with the uncertain-
ties of sensor information and robot motion.

– Use ROS as a middleware of the system.

– Evaluate the algorithm using a benchmark dataset.

– Test the implementation in a low cost system composed by a commercial
differential drive robot (iRobot Create [64]), a Microsoft Kinect v2 and
a notebook.

– Develop a standalone pose-graph optimization tool for MATLAB, that
can operate as back-end for a SLAM system.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 1. Introduction 26

1.5
Dissertation Outline

This dissertation is divided into 6 chapters that are structured as follows:

Chapter 2 presents the fundamental concepts and theoretical background
used in this implementation, including basic probability theory concepts,
types of orientation representations, the camera model, visual features, types
of maps and ROS concepts.
Chapter 3 presents the development of a back-end pose-graph optimization
tool for MATLAB with the respective dataset evaluation.
Chapter 4 details the hardware, the open source libraries used, the algo-
rithms and steps of the SLAM system implementation .
Chapter 5 shows the results obtained from the experiments using the robot
platform with a kinect, and the results of a numerical evaluation of the SLAM
system using a benchmark dataset.
Chapter 6 presents the conclusions and suggestions for future work.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

2
Theoretical Background

2.1
Probability Theory

In probabilistic robotics, the robot states, sensor measurements and
control inputs are modeled as random variables [3]. If X is a random variable,
p(x) denotes the probability of X take a specific value x, which is stated in
Eq. (2-1).

p(x) = p(X = x) (2-1)

The Eq. (2-1) is defined for a discrete random variable. In SLAM
algorithms the variables are continuous. A continuous random variable depends
on a non-negative function called probability density function (PDF), which
gives the probability of the variable assume a value in a specific interval [65].

2.1.1
Gaussian Distribution

The majority of SLAM formulations represent uncertainty using a mul-
tivariate Gaussian distribution. The Gaussian distribution, also called normal,
is defined through its parameters, which are mean µ and the covariance matrix
Σ. The probability density function of a multivariate normal distribution is:

p(x) = N (x;µ,Σ) = det(2πΣ) 1
2 exp

{
− 1

2(x− µ)TΣ−1(x− µ)
}

(2-2)

where the mean µ is a vector and the covariance matrix Σ is a positive
semidefinite symmetric matrix. This is also called the moments representation
[3].

The Gaussian distribution can be parameterized in a different form, using
the information matrix Ω instead of the covariance matrix, and the information
vector ν instead of the mean vector. They are obtained according to Eqs. (2-3)
and (2-4).

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 2. Theoretical Background 28

ν = Σ−1µ (2-3)

Ω = Σ−1 (2-4)
which leads to Eq. (2-5):

p(x) = N (x; ν,Ω) = η exp
{
− 1

2x
TΩx+ xTν

}
(2-5)

where η is a constant. This is also called the canonical representation and it is
used in information filters and in the graph-based formulation. The canonical
representation has several advantages in robotics applications, in comparison
with the moments representation. For instance, it is just needed to set Ω = 0
to represent global uncertainty in the information form. However, it becomes
infinity in a covariance matrix [3].

2.1.2
Conditional Probability

The conditional probability p(x|y) expresses the change in the belief of
x when there is knowledge about another related random variable y. The
conditional probability is defined by Eq. (2-6).

p(x|y) = p(x, y)
p(y) (2-6)

where p(x, y) is called the joint distribution.
The Bayes’ rule, stated in Eq. (2-7), relates two conditional probabilities.

p(x|y) = p(y|x)p(x)
p(y) (2-7)

Bayes’ rule is the base of the probabilistic formulations for SLAM. The
probability p(x) is called prior probability, which is the knowledge about X
before incorporating the knowledge about Y , and p(x|y) is called the posterior
probability distribution of X. The Bayes’ rule allows to infer p(x|y) using the
prior knowledge and p(y|x), which is usually easier to obtain in probabilistic
robotics problems [3].

The theorem of total probability, stated in Eq. (2-8) for the continuous
case, is used to calculate probabilities with a conditional dependence.

p(x) =
∫
p(x|y)p(y)dy (2-8)

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 2. Theoretical Background 29

2.1.3
Independence

The independence between two random variables X and Y arises when
the knowledge about Y does not alter the probability of X, which is stated in
Eq.(2-9).

p(x|y) = p(x) (2-9)

The concept of independence is very important in SLAM because it is
related to one of the assumptions made in the probabilistic formulation.

2.2
Probabilistic Formulation of SLAM

In the SLAM problem, the robot moves in an unknown environment and
does not have prior knowledge of it own poses x, modeled as random variables
x1:T = [x1, ..., xT]. Instead, only odometry information u1:T = [u1, ..., uT] and
sensor measurements z1:T = [z1, ..., zT] are available. Thus, the problem consists
in the estimation of the posterior probability distribution of the trajectory of
the robot and the map m, given the measurements of the environment, which
is stated in Eq. (2-10).

p(x1:T ,m|z1:T , u1:T) (2-10)

There are several map representations, such as landmarks, occupancy
grids, surface maps and pointclouds. The poses and odometry information
can be represented as 3D rigid transformations in SE(3). In this work they
are obtained using color and depth information provided by the kinect, and
performing a visual odometry estimation method.

Two important assumptions are made to estimate the posterior proba-
bility distribution in (2-10). The world is assumed to be static and the mea-
surements are considered independent.

The SLAM problem can be represented as a Dynamic Bayesian Network
(DBN), shown in Fig. 2.1. In DBNs, the nodes correspond to the random
variables of the problem, connected if there is a conditional dependence
[16]. DBNs are used to describe filtering processes, with the motion model
p(xt|xt−1, u), and the measurement model p(zt|xt,mt). The motion model
represents the probability that the robot is in the state xt at time t given
the previous state and the odometry information. The measurement model

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 2. Theoretical Background 30

represents the probability of the measurement zt is made give the current
state of the robot [16].

x0 x1 xt-1 xt xT

z1 zt-1 zt zT

u1 ut-1 ut uT

m

Figure 2.1: SLAM problem as a Dynamic Bayesian Network

Another representation of the SLAM problem is the Graph-based formu-
lation, exemplified in Fig. 2.2. The nodes represent the poses of the robot, and
the edges represent spatial constraints between two poses, locally affected by
Gaussian noise, and resulted from measurements and odometry information
[16]. In Fig. 2.2, eij is an error function that measures how well the states xi
and xj satisfy the constraints [38]. The objective is to minimize this errors,
finding the configuration that best satisfies the constraints.

Figure 2.2: Pose-graph representation of the SLAM problem

Unlike filtering approaches, in graph-slam there is no requirement to
distinguish motion and measurement models, both are considered factors in
the graph [5].

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 2. Theoretical Background 31

2.3
Least Squares Problem

The Graph-SLAM formulation has an intrinsic connection with the Least
Squares problem. The Least Squares is an optimization problem, which is
generally defined as finding the minimum value x∗ of an objective function
F (x), as stated in Eq. (2-11).

x∗ = argmin
x

F (x) (2-11)

The necessary condition for a value x∗ to be a local minimizer of the cost
function F (x) is that the derivative of F in x∗ should be equal to zero [66], as
stated in Eq. (2-12).

F ′(x∗) = 0 (2-12)

According to Nocedal and Wright [67], the objective function for the
general least squares problem can be defined as Eq. (2-13).

F (x) = 1
2

m∑
i=1

(fi(x))2 (2-13)

Thus, rewriting in vector formulation, the least squares problem can be
stated as:

x∗ = argmin
x

1
2f(x)T f(x) (2-14)

where f is a vector function f : Rn → Rm.

2.3.1
Linear Least Squares

In a linear least squares problem, f is linearly dependent on x and is
stated in Eq. (2-15).

f(x) = b− Ax (2-15)

where b ∈ Rm and A ∈ Rmxn. The derivative of the cost function is given by:

F ′(x) = −AT (b− Ax) (2-16)

which leads to:

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 2. Theoretical Background 32

(ATA)x = AT b (2-17)

Eq. (2-17) can be solved using QR or Cholesky decomposition, for
example [67]. In Fig. 2.3 is shown the solution of a linear least squares problem
of line fitting.

0 10 20 30 40 50 60 70 80 90
-200

0

200

400

600

800

1000

1200

Figure 2.3: Linear least squares solution

2.3.2
Non-linear Least Squares

For non-linear problems, the cost function F(x) can be linearized by the
Taylor expansion [66], stated in Eq. (2-18).

f(x+ δx) = f(x) + J(x)δx +O(||δx||)2 (2-18)

where J is the Jacobian matrix, containing the first partial derivatives of the
function, as shown in Eq. (2-19).

J(x) =
[
∂fj
∂xi

]
1<j<m
1<i<n

(2-19)

Gauss-Newton is a popular method for solving non-linear least squares
problems, that only consider the first order terms of the Taylor expansion
(2-18). It has the advantage of not requiring the calculation of the second
derivatives, which can be computationally expensive [67]. The solution is found
by solving the following system:

(J(x)TJ(x))δx = −J(x)f (2-20)
with the incremental step:

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 2. Theoretical Background 33

xk+1 = xk + δxk
(2-21)

The Levenberg-Marquadt is variant of Gauss-Newton, with an added
damping factor to control convergence [66].

2.4
Rigid Motion in R3 and Attitude Representations

A robot movement is considered a rigid body motion, which is defined as
a motion that preserves distance between points and angles between vectors
[68]. A rigid body motion is composed by translation and rotation. The pose
of a rigid body in three-dimensional space is described by its position and
orientation. The position of the body is usually defined by the position of
the origin that describes body coordinates [x′, y′, z′], expressed in fixed world
coordinates [x, y, z] [69], as shown in Fig. 2.4. For orientation, or attitude, there
are several possible parameterizations in three-dimensional space.

Figure 2.4: Position of the body in world coordinates

2.4.1
Rotation Matrices

The orientation of a rigid body can be described as a matrix transforma-
tion between a body coordinate frame and the fixed world coordinate frame
[68]. This matrix has the following form:

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 2. Theoretical Background 34

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 (2-22)

R is a 3x3 matrix whose columms are mutually orthogonal. The set of
all 3x3 rotation matrices is called SO(3), the Special Orthogonal group [70].
This set is more formally defined by Eq. (2-23).

SO(3) = {R ∈ R3 : RRT = I, detR = +1} (2-23)

A set G is called a group if it satisfies the axioms of closure, identity,
inverse and associativity. Therefore, SO(3) is a group under the operation of
matrix multiplication, with the identity matrix as the identity element. It is
also called the rotation group of R3 [68].

As an example, Eq. (2-24) defines a rotation matrix that represents a
rotation about the x-axis by an angle θ.

R =

1 0 0
0 cos(θ) sin(θ)
0 −sin(θ) cos(θ)

 (2-24)

To represent a rigid motion in 3D composed by a translation and a
rotation, it is used a 4x4 transformation matrix, written in homogeneous
coordinates:

T =

x

R y

z

0 0 0 1

 (2-25)

where R is a 3x3 rotation matrix and x, y and z are the coordinates of a
translation vector. The set of all transformations that can be applied to a rigid
body is called the Special Euclidean Group [68], as stated in Eq. (2-26).

SE(3) = {(t, R), t ∈ R3, R ∈ SO(3)} (2-26)

where t represents the translation and R represents the rotation.
Given a pose Pbc in frame c, relative to frame b, and a pose Pab in frame

b, relative to frame a, then the pose in frame c relative to frame a is given
by:[68]

Pac = PabPbc =
RabRbc Rabtbc + tab

0 1

 (2-27)

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 2. Theoretical Background 35

2.4.2
Euler Angles

The most commom and intuitive rigid body attitude representation is
the Euler angle parameterization [69]. It corresponds to a sequence of three
different rotations: yaw (φ), pitch (χ) and roll (ψ). In Fig. 2.5 is shown one of
the conventions that can be employed.

Figure 2.5: A yaw, pitch and roll convention

This is the most compact rotation representation in three-dimensional
space, because it only requires three variables to describe the orientation. How-
ever, this representation has a major disadvantage. The minimal representation
generates singularities, which is called the Gimbal Lock problem [71]. It oc-
curs when two axes are aligned, leading to a loss of degree-of-freedom. In the
convention exemplified in Fig. 2.5, it happens when pitch approaches ±π/2,
when a change in roll implies a change in yaw.

The Eq. (2-28) defines a pose described as a 3D translation plus a Euler
angle representation of the orientation.

p = [x, y, z, φ, χ, ψ] (2-28)

2.4.3
Quaternions

Quaternions were first described by W. R. Hamilton in 1843 [72], and can
be seen as a generalization of complex numbers, with three different imaginary
parts [73]. In Eq.(2-29) is shown a general form of a quaternion.

q = qxi+ qyj + qzk + qw (2-29)

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 2. Theoretical Background 36

where

i2 = j2 = k2 = ijk = −1 (2-30)

and qx, qy, qz, qw ∈ R. Thus, it is a sum of a scalar qw and a vector part
qv = [qx, qy, qz].

The complex conjugate q∗ of a quaternion q is given by Eq. (2-31).

q∗ = −qxi− qyj − qzk + qw (2-31)

The set of unit-length quaternions, also called unit quaternions, are a
sub group of quaternions that are used to represent rotations. They satisfy the
condition ‖qu‖ = 1. The unit quaternion is given by Eq. (2-32).

qu = q

‖q‖
= 1√

q2
w + q2

x + q2
y + q2

z

q (2-32)

A full quaternion belongs to the R4 space. However, the unit quaternion
belongs to a subspace of R4 called S3, which represents the unit sphere in R4

[74][75].
There are several advantages of using the unit quaternion notation,

specially for representing rotations [73]. These advantages will be explained
in details in chapter 3.

Thus, a pose in R3 can be represented by a translation vector and a unit
quaternion, as stated in Eq. (2-33).

p = [x, y, z, qx, qy, qz, qw] (2-33)

The quaternion parameters can also be written in terms of unit vectors
ux, uy, uz and an angle θ, which is stated by Eqs. (2-34).

qr = cos(θ/2)
qx = sin(θ/2)ux
qy = sin(θ/2)uy
qz = sin(θ/2)uz

(2-34)

Another important property of quaternions is the inverse, which is defined
in Eq. (2-35).

q−1 = q∗

‖q‖2 (2-35)

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 2. Theoretical Background 37

If it is a unit quaternion, the inverse is the conjugate. One advantage of
the quaternion notation is the facility to perform inversion, in comparison to
rotation matrices.

The quaternion multiplication is similar to a polynomial multiplication.
The multiplication between two quaternions p and q is given by:

pq =(pw + ipx + jpy + kpz)(qw + iqx + jqy + kqz) =

(pwqw − pxqx − pyqy − pzqz)

+ i(pwqx + pxqw + pyqz − pzqy)

+ j(pwqy + pyqw + pzqx − pxqz)

+ k(pwqz + pzqw + pxqy − pyqx)

(2-36)

An important characteristic of quaternion multiplication is that commu-
tativity is not preserved [76], in order words:

pq 6= qp (2-37)

2.5
Camera Model

In order to correctly use the sensor information, this section defines the
camera model used in this implementation, as well as its parameters. The
camera model is used to map information from world coordinates to image
coordinates, and to define the position of the camera in world coordinates. In
Fig. 2.6 is shown the camera model used. It is named as the pinhole camera
model [77].

Figure 2.6: Camera Model

The center C of the euclidean coordinate system [Xc, Yc, Zc] is also the
center of the camera. The image plane is located at Zc = f , where f is called
the focal length of the camera. P is called the principal point, where the Z

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 2. Theoretical Background 38

axis meet the image plane. The origin of coordinates in image plane usually is
not at the principal point. The coordinates of the principal point in the image
plane are called cx and cy.

Using this model, a point in space with coordinates X’ = [X ′, Y ′, Z ′] can
be mapped to a point [fX ′/Z ′+ cx, fY

′/Z ′+ cy] on the image plane [77]. This
mapping process can be rewritten as stated in Eq. (2-38).

u

v

1

 = K

X ′

Y ′

Z ′

1

 (2-38)

where [u, v, 1] are the coordinates of the mapped point in the image plane,
written in homogeneous coordinates, and K is the matrix defined by Eq. (2-
39).

K =

f 0 cx 0
0 f cy 0
0 0 1 0

 (2-39)

K is called calibration matrix or intrinsic matrix, because it contains the
intrinsic parameters of the camera. The extrinsic parameters express where the
camera is located in world frame coordinates. These parameters are composed
by a 3x3 rotation matrix and a translation vector [77], defined in Eq (2-40).

Xc

Yc

Zc

1

 =
R t

0 1

X

Y

Z

1

 (2-40)

where [X, Y, Z, 1] is a point in world frame homogeneous coordinates, and
[Xc, Yc, Zc, 1] is the same point in the camera coordinate frame.

2.6
Visual Features

In order to estimate motion between frames, the robot needs to detect
and track important parts of the scene observed by the kinect, using the color
images, which is done by a process called feature extraction. There are two
main steps in feature extraction: keypoint detection and feature description
[78].

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 2. Theoretical Background 39

The keypoint detector searches for a region in the image with a strong
intensity variation, such as a corner. The keypoint is at the center of this region.
The feature descriptor is a multidimensional vector that describes the region
around the keypoint, obtained computing the orientations of the surrounding
points [78].

These features need to be invariant to scale, rotation and translation, so
they can be matched in sequential frames during camera motion. The Scale
Invariant Feature Transform (SIFT) features were developed by Lowe in 2004
[79]. It is one of the most popular methods of feature detection and description
in robotics and computer vision.

2.6.1
ORB Features

Despite of its popularity in computer vision applications, including object
recognition and visual mapping, SIFT features are computationally expensive
and can be restrictive to real-time applications, such as SLAM. ORB features,
developed by Rublee et al. [63], overcome this problem, having similar accuracy
to SIFT, with a speed performance almost two orders of magnitude faster.

ORB is based on the FAST [80] keypoint detector and the BRIEF
[81] descriptor. SIFT uses histograms of gradient computations to describe
the orientation in a keypoint, which is computationally expensive. ORB,
alternatively, uses an intensity centroid approach to describe orientations,
which gives a single dominant result for each keypoint [63].

2.7
Map representations

Aside from its importance in the SLAM problem solving, an accurate
map has a major influence in the ability of the robot to perform other tasks,
such as motion planing and collision avoidance.

Formally, a metric map is a structure that symbolically encodes the geo-
metrical aspects of the environment [5]. There are two main metric representa-
tions in two-dimensional problems: landmark-based maps and occupancy grid
maps.

A landmark map is a set of sparse point locations that are assumed to
be distinguishable [82]. In Fig. 2.7 is shown a map of landmarks in an EKF-
SLAM problem. The black crosses represent the landmarks and the red circle
represent the position of the robot. It has the advantage of being a compact
representation. The main problem regarding landmark maps is to perform

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 2. Theoretical Background 40

data association, in other words, to be able to distinguish different landmarks
at different positions.

-2 0 2 4 6 8 10 12
-2

0

2

4

6

8

10

12

Figure 2.7: Map of Landmarks

Occupancy grid is a map representation developed by Elfes and Moravec
[83][84]. It consists in a discretization of the environment into a regular grid
square. Each cell is considered either occuppied or free. If the map is proba-
bilistic, the cells have a percentual occupancy belief. In Fig. 2.8 is shown an
example of mapping with known poses using an occupancy grid map. The
green lines represent the trajectory of the robot.

For many years two-dimensional maps were widely used in mobile robots
localization and navigation tasks. However, several problems in mobile robotics
require a three-dimensional model. Complex environments, such as aerial and
underwater, cannot rely on 2D maps. 3D mapping is also required in certain
indoor applications. For instance, a reliable colision avoidance system requires
a 3D map, because only 2D information cannot prevent colision into objects
with irregular shapes. Furthermore, if the mobile robot has an arm and needs
to identify and manipulate objects in a scene, it would need a 3D map.

There are several 3D map representations. They are usually sub-
categorized into sparse or dense maps. The sparse representation is also called
feature-based, as it represent the environment as a set of sparse 3D landmarks
corresponding to features [5]. Figure 2.9 shows a feature-based map generated
by ORB-SLAM [54]. The camera poses are represented in blue, and the red
points are the features.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 2. Theoretical Background 41

Figure 2.8: Grid Map

Figure 2.9: Feature Map

In contrast to sparse representations, dense representations aim to pro-
vide more detailed information about the environment. There are several types
of dense representations. For instance, surfel maps [85], planar colored sur-
faces used by Henry et al. [17]. Also, voxel grids, presented by Roth-Tabak
and Jain (1989) [86] and Moravec [87], which discretize the environment in
cubic volumes. Furthermore, octree-based maps, such as OctoMap developed
by Hornung et al. [88], with a probabilistic occupancy estimation.

However, this work uses point clouds, one of the most popular 3D
representations in robotics.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 2. Theoretical Background 42

2.7.1
Point Cloud

A Point Cloud is a structure used to represent 3D raw data with
geometric coordinates and color information of a collection of points. The point
cloud representation has an extensive history of usage in robotics applications,
with stereo cameras, RGB-D sensors and 3D laser scanners [5]. In Fig. 2.10 is
shown an example of a point cloud generated from depth and color information
provided by a Kinect v2.

The Point Cloud Library (PCL) [89] was presented in 2010 as an open
source library for point cloud processing. It is one of the greatest initiatives in
open 3D perception, containing several state-of-the-art algorithms for point
cloud registration, filtering and visualization. The PCL is used to create,
vizualize, manipulate and store the pointclouds.

Figure 2.10: Point Cloud

The point cloud representation has two major drawbacks. First, it does
not provide a direct representation of free or unknown space, as opposed to the
octomap representation [88]. Thus, it is not feasible to perform a collision-free
navigation using a point cloud representation. Second, there is no upper bound
for memory consumption [88]. Figure 2.11, from Hornung et al. [88], shows a
visual comparison between a point cloud, on the left, and a OctoMap, on the
right.

Despite these problems, the point cloud is a practical representation, with
an easy implementation, several state-of-the-art tools, and can be further post-
processed to another representation, such as OctoMaps, to allow navigation
and other tasks. However, this post-process is not in the scope of this work.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 2. Theoretical Background 43

Figure 2.11: Comparison between a point cloud and a OctoMap

2.8
Iterative Closest Point

One technique to estimate the motion between two frames is the Iterative
Closest Point (ICP) algorithm. The ICP technique has several variations
and implementations. The most cited work about ICP was presented by
Besl and McKay [90]. The main ideia of ICP is to iterativelly compute the
rigid transformation between two sets of points which minimizes the distance
between the pairs [91].

Given two point clouds X and Y and a initial guess T0 for the transfor-
mation between them, the first step is to compute the correspondences between
the two sets of points. In other words, to find, for every point in the first set,
the closest point in the other set [92]. This correspondence is evaluated with
a given threshold dmax. The second step is to find the new transformation by
minimizing a error metric that measures the distance between the correspond-
ing pairs [91]. These two steps are iterated until the convergence criteria is
reached, which is when a change in the solution falls below a given threshold
ε.

There are several types of error metrics used in ICP and also several
methods to minimize it. One classic metric is the sum of squared distances
between corresponding points [93], stated by Eq. (2-41).

E(R, t) = 1
Np

Np∑
i=1
‖yi − (R xi + t)‖2 (2-41)

where Np is the number of point correspondences, R is the rotation matrix
and t is the translation vector of the transformation matrix.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 2. Theoretical Background 44

One method to solve it is to use singular value decomposition (SVD),
as presented by Umeyama [94] in 1991. According to Umeyama, the mini-
mal value of E is found applying the SVD in the covariance matrix of X and Y:

Cxy = 1
Np

Np∑
i=1

(yi − µy)(xi − µx)T (2-42)

where µx and µp are the mean vector of the two sets of points, given by Eqs
(2-43) and (2-44).

µx = 1
Nx

Nx∑
i=1

xi (2-43)

µy = 1
Np

Ny∑
i=1

yi (2-44)

The SVD of Cxy is given by:

SVD(Cxy) = USV T (2-45)

Thus, R and t are given by:[95]

R = U

1 0 0
0 1 0
0 0 det(UV T)

V T (2-46)

t = µy −Rµx (2-47)

The standard steps of ICP are described in algorithm 1, according to
Segal et al. [91].

Algorithm 1 ICP
1: X ← point cloud 1
2: Y ← point cloud 2
3: T ← T0
4: while not converged do

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 2. Theoretical Background 45

5: for i← 1 to Np do
6: bi ← FindClosestPointInY(T · xi)
7: if ‖bi − T · xi‖ ≤ dmax then
8: αi ← 1
9: else

10: αi ← 0
11: endif
12: endfor
13: T ← argmin

T
(∑Np

i=1 αi‖T · xi − bi‖2)

14: endwhile

2.9
Random Sample Consensus

The Random Sample Consensus (RANSAC), presented by Fischler and
Bolles [96] in 1981, is a robust estimation algorithm that fits a model to data
in the presence of outliers [77]. For example, the line fitting problem from
section 2.3.1, in which, given a set of 2D points, a line must be estimated by
minimizing the sum of squared perpendicular distances from the points. If one
of the points is incorrect, in other words, too far from the others, it can ruin
the estimation. The RANSAC algorithm can overcome this problem rejecting
this point, called outlier, given a threshold.

The general procedure for RANSAC estimation is described in algorithm
2. Given a data set S, a model M and a threshold, the minimum set k of data
required to estimate the model is sampled from S and a hypothesis model
is created. The rest of the data is tested with this hypothesis and evaluated
using the threshold. If the mean error of these evaluated points is within the
hypothesis threshold, a new hypothesis is evaluated using the inliers. This
process is repeated until the best model is found.

Algorithm 2 RANSAC
1: S ← data
2: inliers← 0
3: for N iterations do
4: s← sample k random points from S
5: compute hypothesis from s
6: for points do
7: error ← evaluate point using hypothesis
8: if error < threshold then
9: inliers += point

10: endif
11: endfor

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 2. Theoretical Background 46

12: compute mean error
13: if mean_error < hypothesis_threshold then
14: recompute hypothesis from inliers
15: if hypothesis better than model then
16: bestModel ← hypothesis
17: bestInliers← inliers
18: endif
19: endif
20: endfor

2.10
ROS

ROS is built as a large number of small programs that communicate
one another through messages. These messages can be sensor input, debug
messages or control output. This setup creates a graph-based structure where
the nodes are the programs and the edges are the messages, carried by topics.
These programs can publish or subscribe to topics, depending on its use [97].
The master node, part of roscore, is the node that connects all nodes of the
ROS system, as shown in Fig. 2.12.

MASTER

NODE1 NODE2

NODE4 NODE3

Figure 2.12: ROS Master

If a node is subscribed to more than one topic, they can be syncronized
so the algorithm does not proceed until all specified messages with the same
timestamp arrive. In Fig. 2.13 is shown an example of a topic subscribing and
advertising connection.

Figure 2.13: Node communication

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 2. Theoretical Background 47

In Fig. 2.14 is shown an example of a ROS graph that corresponds to
a communication with a image topic between the kinect driver and a image
processing code. The driver is publishing the image topic and the calibration
node is subscribing to it.

Figure 2.14: ROS Graph

2.10.1
rviz

ROS has a 3D vizualization environment called rviz that displays sensor
data in real time with custom vizualization markers. It is a very useful tool for
code debugging and data verification. In Fig. 2.15 is shown the rviz interface
with a point cloud and its corresponding color image.

Figure 2.15: Point Cloud in rviz

2.10.2
Rosbag

ROS has a special data format called ".bag". The rosbag package has
a set of tools to read and write bag files. The bag format is very useful
to save ROS topics and sensor data and reproduce the same experiment in

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 2. Theoretical Background 48

different moments. Figure 2.16 shows a graphical example of a rosbag file
publishing several kinect topics, such as depth images, color images and camera
information. The topics are represented by the rectangular boxes.

Figure 2.16: Rosbag publishing kinect data

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

3
Pose-Graph Optimization tool for MATLAB

This chapter details the theoretical framework of the Graph-based opti-
mization, and presents the implementation of a pose-graph optimization tool
for MATLAB that can operate as an effective SLAM back-end, based on the
works of Grisetti et al. [16], Kümmerle et al. [38] and Wagner et al.[47].

3.1
Pose-Graph

The graph is composed by a set of nodes x = [x1, . . . , xT] that represent
the positions of the robot in a plane or in space, depending if the problem
is two-dimensional or three-dimensional. It is assumed that the robot has
odometry information and range measurements. The relative transformation
between two poses xi and xj is called the predicted measurement ẑij. The real
observations are represented by zij. The error function is computed by the
difference between the measurement prediction and the real measurement [16],
as stated in Eq. (3-1).

eij(xi, xj) = zij − ẑij (3-1)

When the robot performs a movement, going from position i to position
j, a node xj is created and also an edge eij between xi and xj. An edge is also
created if the robot revisits a previous known location, a process called loop
closure.

The processes of graph creation and loop closure detection are imple-
mented in the front-end of a SLAM system, and are detailed in Chapter 4, for
the particular case of RGB-D SLAM.

3.2
Graph Optimization as a Non-linear Least Squares Problem

The objetive of the graph-based SLAM problem is to find the trajectory
of the robot that best explains the constraints between poses, imposed by
the measurements. This is done by estimating the state x̂ that maximizes the
posterior belief [98], stated by Eq. (3-2).

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 3. Pose-Graph Optimization tool for MATLAB 50

x̂ = argmax
x

p(x|z) (3-2)

However, usually p(x|z) is hard to obtain due to the non-linearities
associated with the map between the measurements and the states. Using
Bayes’ Theorem Eq. (3-2) can be rewritten as:

x̂ = argmax
x

p(z|x)p(x)
p(z) (3-3)

Since p(z) is independent of x and there is no knowledge about the prior
state, p(x) and p(z) can be dropped [5], and the problem becomes a maximum
likelihood estimation:

x̂ = argmax
x

p(z|x) (3-4)

Assuming that the measurements are conditionally independent, the
problem factorizes into:

x̂ = argmax
x

n∏
k=1

p(zk|x) (3-5)

With the assumption of locally Gaussian measurements, the likelihood
of the measurements will also be Gaussian:

x̂ = argmax
x

∏
exp(−eTij(xi, xj, zij)Ωijeij(xi, xj, zij)) (3-6)

where Ω is the information matrix associated with each measurement. Taking
the logarithm to transform the product into a sum:

x̂ = argmax
x

∑
ij

−eTij(xi, xj, zij)Ωijeij(xi, xj, zij) (3-7)

Removing the negative signal, it becomes a minimization problem:

x̂ = argmin
x

∑
ij

eTij(xi, xj, zij)Ωijeij(xi, xj, zij) (3-8)

which has the same structure of a non-linear least squares problem:

x∗ = argmin
x

F (x) (3-9)

where

F (x) =
∑

eTijΩeij (3-10)

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 3. Pose-Graph Optimization tool for MATLAB 51

and can be solved using standard optimization methods such as Gauss-Newton
or Levenberg-Marquardt, described in chapter 2.

A solution to the non-linear least squares problem is to use the first order
Taylor expansion around the initial guess x̌ to approximate the error function,
as stated in eq. (3-11).

eij(x̌+ δx) ≈ eij + Jijδx (3-11)

where Jij is the Jacobian of the error function computed in x̌. Thus, the cost
function F of an observation between nodes i and j can be obtained rewriting
a parcel of the sum in Eq. (3-8) with the local approximation of Eq. (3-11).

Fij(x̌+ δx) ≈ (eij + Jijδx)TΩij(eij + Jijδx) (3-12)

The global cost function can be found with the sum of all local approxi-
mations:

F (x̌+δx) =
∑

Fij(x̌+δx) ≈
∑

(eTijΩijeij+2eTijΩijJijδx+δTx JTijΩijJijδx) (3-13)

Eq. (3-13) can be minimized solving the following linear system:

Hδx = −b (3-14)

where

H =
∑

JTijΩijJij = JTΩJ (3-15)

b =
∑

JTijΩijeij = JTΩe (3-16)

The solution for one iteration is then obtained by adding the increments
to initial guess, as stated in Eq. (3-17).

x∗ = x̌+ δx (3-17)

The formulation is described using pseudocode notation in algorithm 3.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 3. Pose-Graph Optimization tool for MATLAB 52

Algorithm 3 Pose Graph Optimization
1: procedure Read Graph
2: x← vertices
3: z ← edges
4: Ωij ← information matrices
5: endprocedure
6: while not converged do
7: preallocate H and b
8: for all measurements do
9: compute error function eij

10: compute Jacobians of the error function with respect to the nodes
i and j

11: compute the contribution of this measurement to H
12: compute b
13: endfor
14: δx ← solve(Hδx = −b)
15: x += δx
16: endwhile

A 1D numerical example was elaborated for a better comprehension of
the methodology.

3.2.1
1D Example

Considering a robot traveling in a 1D environment, a loop closure occur
when the robot returns to the initial point, as shown in Fig. 3.1. The edges
e01, e12, e23 and e34 are obtained with visual odometry, and the edge e40 is the
loop closure.

Figure 3.1: 1D pose-graph

The real initial state of the system is:

xgroundtruth = [0, 0.5, 2, 1.5, 0] (3-18)

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 3. Pose-Graph Optimization tool for MATLAB 53

In table 3.1 is shown the measurements in comparison with the ground
truth data. It is assumed that the visual odometry is not very accurate, but
the system has a good loop closure detector, given that it was able to correctly
estimate the initial position.

Table 3.1: Parameters of 1D Graph optimization example

Measurement Measured Ground Truth
z01 (visual odometry) 0.6 0.5
z12 (visual odometry) 1.6 1.5
z23 (visual odometry) -0.5 -0.5
z34 (visual odometry) -1.4 -1.5
z40 (loop closure) 0 0

According to the visual odometry, the predicted state is:

xpredicted = [0, 0.6, 2.2, 1.7, 0.3] (3-19)

Comparing to the ground truth, the initial RMSE error is 18.97%.
The error vector is given by Eq. (3-1).

e(x) =

z01 − (x1 − x0)
z12 − (x2 − x1)
z23 − (x3 − x2)
z34 − (x4 − x3)
z40 − (x0 − x4)

z0 − x0

=

0
0
0
0

0.30
0

(3-20)

The last constraint is to assure that the pose x0 is at the origin of the
coordinate system. The Jacobian matrix is obtained calculating the derivative
of the error function in terms of each pose.

J =

1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
−1 0 0 0 1
1 0 0 0 0

(3-21)

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 3. Pose-Graph Optimization tool for MATLAB 54

The information matrix is given:

Ω =

Ω01 0 0 0 0 0
0 Ω12 0 0 0 0
0 0 Ω23 0 0 0
0 0 0 Ω34 0 0
0 0 0 0 Ω45 0
0 0 0 0 0 Ω0

=

10 0 0 0 0 0
0 10 0 0 0 0
0 0 10 0 0 0
0 0 0 10 0 0
0 0 0 0 100 0
0 0 0 0 0 100

(3-22)

The H matrix and b vector are obtained using Eqs (3-15) and (3-16).

H = JTΩJ =

210 −10 0 0 −100
−10 20 −10 0 0

0 −10 20 −10 0
0 0 −10 20 −10
−100 0 0 −10 110

(3-23)

b = JTΩe =

−30
0
0
0
30

(3-24)

With the matrix H and vector b is possible to find the solution to Eq.
(3-14) using a linear solver, such as QR decomposition.

δx = [0.0000,−0.0732,−0.1463,−0.2195,−0.2927] (3-25)

Thus, the optimized trajectory after one iteration will be:

xoptimized = xpredicted + δx = [0, 0.5268, 2.0537, 1.4805, 0.0073] (3-26)

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 3. Pose-Graph Optimization tool for MATLAB 55

with a RMSE error of 2.84% is comparison with the ground truth.

It is noticeable that the value of Ω5 is larger than the others. The
information matrix encodes the uncertainty of each measurement. If a certain
value is larger, it is more important to the optimization because the informa-
tion about this constraint is more reliable. The front-end is responsible for
the construction of the graph. If the front-end was not able to establish the
correct information about the loop closure, the values of the elements of the
information matrix would be more similar, which would lead, in this case, to
a more slow optimization. For example, if the information matrix was given by:

Ω =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 100

(3-27)

Then, the optimized trajectory would be:

xoptimized = [0, 0.54, 2.08, 1.52, 0.06] (3-28)

with a RMSE error of 4.90% is comparison with the ground truth.

3.3
2D Pose-Graph Optimization

In the two-dimensional problem, the state of the robot is given by:

xi = [tTi , θi] (3-29)

where ti is a 2D vector, corresponding to the x and y coordinates of the position
of the robot in a plane, and θi corresponds to the orientation of the robot at
the node i. It is important to normalize the angle θ between π and −π after
every iteration.

Each measurement between the nodes i and j is given by zij:

zij = [tTij, θij] (3-30)

The information matrix of each measurement is a 3x3 matrix.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 3. Pose-Graph Optimization tool for MATLAB 56

The rotations of the robot are expressed with 2x2 rotation matrices, as
shown in Eq. (3-31).

Ri =
(
cos(θi) −sin(θi)
sin(θi) cos(θi)

)
(3-31)

The error function is expressed by Eq. (3-32):

eij = z−1
ij

(
RT
i (tj − ti)
θj − θi

)
(3-32)

The Jacobian matrix is composed by the derivate of the error function in
terms of each pose. However, as the error function of each measurement only
depends on the values of two nodes, the Jacobian has the folowing structure:

Jij =
(

0 . . . 0 ∂eij
∂xi

0 . . . 0 ∂eij
∂xj

0 . . . 0
)

(3-33)

The Eq. (3-14) can be solved using different numerical methods. In
MATLAB, the mldivide command (δx := H\ − b) is a efficient tool to solve
this system, as it uses optimized linear solvers, such as QR, LU or Cholesky,
depending on the structure of the matrices.

3.3.1
2D Dataset Evaluation

The implementation is evaluated using several datasets available in the
literature. There are two main formats to represent graph files: TORO and g2o

[99]. They differ with respect to the ordering of the elements of the information
matrix. The datasets in the 2D evaluation are in the TORO format. All nodes
are represented by an ID, x, y and θ values, which correspond to the initial
odometry poses.

All edge lines have the format: "IDfrom IDto x y θ I11 I12 I22 I33 I13
I23". The first two numbers "IDfrom IDto" correspond respectively to the
ID of observing and observed nodes i and j. The x and y values compose
the translation vector between nodes, and θ correspond to the rotation angle
between nodes. The numbers "I11 I12 I22 I33 I13 I23" are the 6 top triangular
elements of the 3x3 information matrix correspondent to each measurement.
As the information matrix is symmetric, it becomes:

Ωij =

I11 I12 I13
I12 I22 I23
I13 I23 I33

 (3-34)

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 3. Pose-Graph Optimization tool for MATLAB 57

The first evaluation is with the Intel dataset, a benchmark dataset with
real data acquired at the Intel Research Lab in Seattle, consisting of raw
measurements from wheel odometry and laser range finder. Its graph contain
1228 poses 1505 constraints. Figure 3.2 shows the initial pose-graph corrupted
by drift in odometry estimation and measurement errors. The blue dots are the
poses of the robot, and the red lines are the measurement constraints, derived
from scan matching.

Figure 3.2: Intel - Initial corrupted pose-graph

In Fig. 3.3 is shown the optimized graph that corresponds to the
optimized trajectory of the robot. In Fig. 3.4 is shown a comparative image of
the same dataset optimized by a method called MOLE2D [100], developed by
Carlone and Censi.

Figure 3.3: Intel Optimized pose-graph Figure 3.4: MOLE 2D Optimization

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 3. Pose-Graph Optimization tool for MATLAB 58

In Fig. 3.5 is shown the logarithmic global error per iteration. In only
four iterations the system was able to optimize the entire graph, which shows
the robustness of this implementation.

1 1.5 2 2.5 3 3.5 4 4.5 5

iterations

5

10

15

20

lo
g

gl
ob

al
 e

rr
or

Intel Dataset

Figure 3.5: Intel dataset - Global error per iteration

Another evaluation was made using the Manhattan world dataset with
3500 poses and 5453 constraints, created by Olson et al. [43]. In Fig. 3.6 is
shown the initial corrupted graph.

Figure 3.6: M3500 Initial corrupted pose-graph

In Fig. 3.7 is shown the optimized graph that corresponds to the
optimized trajectory of the robot. In Fig. 3.8 is shown a comparative image
of the same dataset optimized by Olson et al. The system achieved the final
desired trajectory.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 3. Pose-Graph Optimization tool for MATLAB 59

Figure 3.7: M3500 Optimized pose-
graph

Figure 3.8: Olson’s pose-graph

The global error is shown in Fig. 3.9. The initial global error is two orders
of magnitude larger than the previous dataset. However, the optimization was
made in three iterations.

1 1.5 2 2.5 3 3.5 4 4.5 5

iterations

8

10

12

14

16

18

20

22

24

lo
g

gl
ob

al
 e

rr
or

M3500 Dataset

Figure 3.9: M3500 Global error per iteration

The objective of the last 2D test is to evaluate if the system is able to
optimize a graph with oversized number of constraints. This dataset contains
10000 poses and 64311 constraints. The initial corrupted configuration is shown
in Fig. 3.10. In Figs. (3.11) and (3.12) is shown a comparison between the
result of the present work and the result obtained with LAGO, an algorithm
developed by Carlone et al. [101].

The global error is shown in Fig. 3.13. Even with a larger number of
constraints, the system is able to optimize the graph. The initial global error
is one order of magnitude larger than the previous dataset. The optimization
is made in six iterations.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 3. Pose-Graph Optimization tool for MATLAB 60

Figure 3.10: Initial corrupted pose-graph

-160 -140 -120 -100 -80 -60 -40 -20 0 20
-140

-120

-100

-80

-60

-40

-20

0

20

40

60

Figure 3.11: Optimized pose-graph Figure 3.12: LAGO’s pose-graph

1 2 3 4 5 6 7

iterations

12

14

16

18

20

22

24

26

lo
g

gl
ob

al
 e

rr
or

M10000 Dataset

Figure 3.13: Global error per iteration

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 3. Pose-Graph Optimization tool for MATLAB 61

3.4
3D Pose-Graph Optimization

Opposed to 2D optimization, with a single normalized angle, the repre-
sentation of orientation is problematic in 3D. In chapter 2, three parameteri-
zations were presented: euler angles, rotation matrices and unit quaternions.
However, all three suffer from considerable drawbacks in problems such as
pose-graph optimization.

The use of Euler Angles is subject to singularities. As discussed in chapter
2, when two of the three rotation axes are aligned, a DOF is lost, which is called
the gimbal lock problem. To overcome this problem, a solution would be the
use of an over-parametrized representation, such as rotation matrices or unit
quaternions.

The problem with the use of rotation matrices is the necessity to impose
six non-linear constraints to ensure orthogonality and unit length of the
columns. In other words, to ensure it remains in SO(3) [70].

Quaternions are more suitable for optimization problems than rotation
matrices due to the number of constraints that need to be maintained at
every iteration. A quaternion just need to maintain its unit lenght throughout
the optimization process. However, the addition of this constraint degrades
the performance of the algorithm [70]. The problems about the quaternion
parameterization occur because rotations have three DOF and the quaternion
can change in four directions.

Since estimation algorithms, in general, expect variables from euclidean
vector spaces [49], the goal is to use a representation with three parameters,
such as euler angles, but without singularities. However, there is no SO(3)
parameterization with only three parameters that has no singularities [49].

To overcome these problems, the state is globally represented by a
unit quaternion, but local perturbations around the current state have a
minimal representation, ideally behaving as an euclidean space [49]. This
parametrization is related to manifold theory and exponential maps.

3.4.1
Quaternion Exponential Map and Manifold Optimization

A manifold is a mathematical space that can be locally approximated by
an euclidean space, but it is not on a global scale [102]. In other words, "every
point of a manifold has a neighborhood that can be mapped bidirectionally to
Rn" [103].

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 3. Pose-Graph Optimization tool for MATLAB 62

The space of rotations and S3, the unit quaternions, are manifolds and
can be locally mapped to a euclidean space. Therefore, the parameterization
problem discussed in the previous section can be dealt with using unit
quaternions to represent the orientation of the state, and defining a operator
� that maps a local variation in the euclidean space to a variation on the
manifold [16].

The analogous case for 2D is represented by Fig 3.14 from the work of
Hertzberg [103]. The surface of the S2 sphere is locally mapped into a plane
in R2.

Figure 3.14: Mapping from S2 into R2

The �-method, developed by Hertberg [49], defines the mapping func-
tions between the manifold and the euclidean spaces, which are called the
exponential and logarithmic maps.

The operator �, stated in Eq. (3-35), represent the exponential map,
which performs a rotation around axis δ with an angle ‖δ‖, accoding to
Hertzberg et al. [103].

p� δ = p exp
(
δ

2

)
(3-35)

The operator �, stated in Eq. (3-36), represent the logarithmic map,
which computes the rotation from p to q. The global difference in manifold
space is mapped to a local perturbation in euclidean space [16].

q � p = 2 · log(p−1q) (3-36)

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 3. Pose-Graph Optimization tool for MATLAB 63

According to Ude [75] and Hertzberg [49], the exponential and logarith-
mic functions are given by the following equations, considering a quaternion
with real part w and vector part u.

The exponential map function maps a vector v into a unit quaternion q:

exp : R3 → S3 (3-37)

exp(v) = q =

[
sin(‖v‖) v

‖v‖ , cos(‖v‖)
]

for ‖v‖ 6= 0

[0,0,0,1] for v = 0
(3-38)

The logarithmic map function maps a unit quaternion q into a vector v:

log : S3 → R3 (3-39)

log(q) = v =

0 for u = 0

atan(‖u‖/w)
‖u‖ u for u 6= 0, w 6= 0

π/2
‖u‖u for w = 0

(3-40)

3.4.2
Implementation

This implementation is based on the work of Wagner et al. [47]. They
managed to create a MATLAB framework for graph optimization with a
manifold representation. However, their framework is more generic, extended
to multi-sensor calibration problems, with an object-oriented implementation
and an SO(3) exponential map. The present work is specifically designed to
pose-graph optimization problems with a pose-quaternion representation. The
implementation of Wagner et al. is based on the �-method, presented by
Hertzberg [49].

The pose of the robot is represented by a translation vector and a full
unit quaternion:

xi = [ti, qi] (3-41)

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 3. Pose-Graph Optimization tool for MATLAB 64

and the measurement functions are as well represented by a translation vector
and a full unit quaternion:

zij = [tij, qij] (3-42)

The expected measurement between two poses is:

ẑij = (x−1
i · xj) (3-43)

Thus, the error function is defined by:

eij = ẑij � zij (3-44)

The rest of the implementation is analogous to the 2D case. For instance,
Eq. (3-11) can be rewritten as Eq. (3-45), around δx = 0.

eij = eij(x̌� δx) w eij + Jijδx (3-45)

The Jacobian is given by Eq. 3-46.

Jij = ∂eij(x̌� δx)
∂δx

(3-46)

However, now the Jacobian matrix is computed numerically, according
to Hertzberg [49]. A small perturbation is applied for each degree of freedom.

Jij = eij(x� dvj)− eij(x)
d

(3-47)

where eij is the error function, d is a small positive scalar and vj is the unitary
vector corresponding to the DOF.

Thus, the incremental addition to the initial guess is defined by the
exponential map:

x∗ = x̌� δx (3-48)

The operator � first converts the rotational part of δx to a full quaternion
and then apply the transformation to x̌ [16][104].

The formulation is described using pseudocode notation in algorithm 4.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 3. Pose-Graph Optimization tool for MATLAB 65

Algorithm 4 3D Pose Graph Optimization
1: procedure Read Graph
2: x← vertices
3: z ← edges
4: Ωij ← inf matrices
5: endprocedure
6: while not converged do
7: preallocate sparse J
8: preallocate e
9: given scalar d

10: for all measurements m do
11: compute error function eij
12: eij ← Ωijeij
13: zij ← measurement m
14: procedure compute the Jacobian
15: for each dependant random variable rv do
16: for k = 1 : dof(e) do
17: xie ← xi � dek
18: ed ← (x−1

ie xj)� zij
19: ed ← Ωijed
20: J += ed−eij

d

21: endfor
22: endfor
23: endprocedure
24: e += eij

25: endfor
26: H ← JT J
27: b← JT e
28: δx ← sparsesolve(Hδx = −b)
29: x = x� δx
30: endwhile

3.4.3
3D Dataset Evaluation

The 3D optimization is evaluated with datasets in the g2o format. The
nodes are listed in the format "ID x y z qx qy qz qw", which corresponds to
the number of the pose and its respective 3D position and orientation in unit
quaternion representation. However, in this case, the real part of the quaternion
is the last one.

All edge lines have the format: "IDfrom IDto x y z qx qy qz qw I11 ...
I66". The first two numbers "IDfrom IDto" correspond to the ID of observing
and observed nodes i and j. The x, y and z compose the translation vector
between nodes, and qx, qy, qz, qw is the unit quaternion rotation between the
two nodes. The numbers I11 ... I66 are the 21 top triangular elements of the

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 3. Pose-Graph Optimization tool for MATLAB 66

6x6 information matrix, stated in Eq. (3-49). As the information matrix is
symmetric, only 21 number are necessary to fill the entire matrix.

Ωij =

I11 I12 I13 I14 I15 I16
I22 I23 I24 I25 I26

I33 I34 I35 I36
I44 I45 I46

... I55 I56
I66

(3-49)

The first dataset represents the movement of a robot on a surface of
a sphere, corresponding of 2500 poses and 4949 contraints. Fig. 3.15 shows
the initial graph configuration, a sphere corrupted by noise. Figure. 3.16
shows that the system is able to correctly optimize the graph, displaying
the optimized sphere. Figure 3.17 shows the global error per iteration of the
evaluation in logarithmic scale. The system is able to optimize the graph in
under 6 iterations.

Figure 3.15: Initial sphere

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 3. Pose-Graph Optimization tool for MATLAB 67

Figure 3.16: Optimized sphere

1 2 3 4 5 6

Iterations

7

8

9

10

11

12

13

14

15

Lo
g

G
lo

ba
l E

rr
or

Sphere Dataset

Figure 3.17: Global Error per Iteration - Sphere Dataset

The next evaluation uses real data aquired from an instrumented car at
the Stanford parking garage. The parking garage dataset, provided by Carlone
et al. [105], has 1661 poses and 6275 constraints. Figure 3.19 shows the place
were data was aquired. In Fig. 3.18 is shown the initial corrupted graph, and
Fig. 3.20 shows the optimized trajcetory of the robot.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 3. Pose-Graph Optimization tool for MATLAB 68

Figure 3.18: Garage - Initial Graph

Figure 3.19: Stanford garage

Figure 3.21 shows the global error per iteration of the evaluation in
logarithmic scale. Despite having more constraints, it has a smaller initial
global error, in comparison with the sphere dataset. The system is able to
optimize the graph in under 4 iterations.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 3. Pose-Graph Optimization tool for MATLAB 69

Figure 3.20: Garage - Optimized trajectory

1 2 3 4 5 6

Iterations

0

1

2

3

4

5

6

7

8

9

10

Lo
g

G
lo

ba
l E

rr
or

Parking Garage Dataset

Figure 3.21: Global Error per Iteration - Parking Garage Dataset

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

4
SLAM Implementation

This chapter presents the implementation of a complete RGB-D SLAM
system, with details of the hardware, software libraries, methodologies and
algorithms used.

4.1
Hardware

4.1.1
Kinect v2

The Microsoft Kinect v2, shown in Fig. 4.1 [106], is composed by two
sensors: a color camera and a depth sensor based on the time-of-flight principle.
The scene is illuminated by a strobed infrared light that is reflected by
obstacles. Then, the infrared (IR) camera register the time of flight for each
pixel [8]. The work of Sell and O’Connor [107] provides a detailed explanation
of the depth measurement methodology. Table 4.1 presents the specifications
of the Microsoft Kinect v2, according to Fankhauser et al. [8].

Figure 4.1: Microsoft Kinect v2

The kinect v2 has limitations that need to be observed. The minimum
and maximum depth measurements have to be set in the driver. If the range
is set out of the interval 0.5− 4.5, the measurement errors increase.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 4. SLAM Implementation 71

Table 4.1: Kinect v2 Specifications

Depth Camera

Resolution 512 x 424 px
Field of View 70.6◦ x 60◦

Angular resolution 0.14◦/px
Operating range 0.5–4.5 m

Color Camera Resolution 1920 x 1080 px
Field of View 84.1◦ x 53.8◦

Frame rate 30 Hz
Mass 970 g
Connection USB 3.0
Voltage 12 V DC

The kinect driver used is the open source libfreenect2 [108], and the
library iai_kinect is used as a link between libfreenect and ROS.

To allow a free locomotion of the robot, the kinect is powered with
a lithium polymer (LiPo) battery of 12.6 V, shown in Fig 4.2. A Battery
Eliminator Circuit (BEC), shown in Fig. 4.3 is a voltage regulator used to
provide a constant supply of 12 V to the kinect.

Figure 4.2: LiPo Battery Figure 4.3: 12V BEC

4.1.2
Kinect Calibration

The kinect need to be calibrated in order to obtain the intrinsic and
extrinsic parameters of the IR and RGB cameras. For this purpose, the
calibration tool from iai_kinect2 [109] is used. The calibration is made using a
chessboard calibration pattern. The follow steps are recommended to perform
a correct calibration [109]:

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 4. SLAM Implementation 72

– Print a calibration pattern and attach it to a flat surface, as shown in
Fig. 4.4.

– Check with a caliper if the distance between squares in the pattern is
correct.

– Assure that the image is clear and stable.
– Check if the pattern is detected, as shown in Fig. 4.5.
– Record images with different orientations and distances. It is recom-
mended to record at least 100 images.

This process is performed for both color and IR cameras of the kinect
v2. The iai_kinect2, then, register the depth images to the rgb images using
the instrinsic and extrinsic parameters.

Figure 4.4: Kinect Calibration Figure 4.5: Image Pattern

4.1.3
iRobot Create

The iRobot Create [64], shown in Fig. 4.6 is a commercial differential
drive mobile robot explicitly designed for robotics development and research. It
has digital and analog input and output, approximately 90 minutes of battery
autonomy, and can be controlled through an IR remote control, or using a
driver available for ROS, called create_autonomy [110].

Aside from its two main wheels, the iRobot has two more to balance the
robot with an added load: a castor wheel at the front of the robot and a simple
roller wheel at the back, as shown in Fig. 4.7.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 4. SLAM Implementation 73

Figure 4.6: iRobot Create

Figure 4.7: iRobot wheels

4.1.4
Assembled Robot

Attached to the robot is a laptop, responsible to receive and process
sensor data, store the map and trajectory, and send motion controls to the
iRobot. The laptop has an Intel Core i7 6700 HQ processor with 2.60 GHz and
16 GB of RAM, running Ubuntu Linux 14.04 LTS and ROS Indigo. In Fig. 4.8
is shown the fully assembled robot, composed by iRobot Create, a Microsoft
Kinect v2 and the laptop.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 4. SLAM Implementation 74

Figure 4.8: Robot fully assembled

4.2
System Overview

As stated in chapter 1, a SLAM system is composed of two main parts:
front-end and back-end. The front-end comprises visual odometry and loop
closure steps, which corresponds to the graph construction. After the graph is
fully optimized, the global map is generated using the stored point clouds and
the trajectory. This process is detailed in the following sections, and Fig. 4.9
illustrates the general pipeline. The final output of the system is the global
map, the optimized trajectory in pose quaternion notation and the optimized
graph in g2o format. The system is written as a ROS package, composed by a
main C++ ROS node and auxiliary header files.

Figure 4.9: General Overview of the System

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 4. SLAM Implementation 75

The following open-source libraries are used in this implementation:

– g2o [38]: For graph construction and optimization

– FOVIS [56]: Visual odometry

– PCL [89]: For point cloud registration and visualization

– OpenCV [111]: Library for computer vision algorithms

– libfreenect2 [108]: The kinect v2 driver

– iai2_kinect [109]: Collection of tools for a ROS interface with kinect v2

– Eigen [112]: For operations with vectors, matrices and quaternions

4.3
Data Acquisition

The main node receives color and depth images provided by the kinect.
All data is passed in form of ROS topics. The kinect driver grabs the images,
the depth images are registered to the color images by iai_kinect2, and they
are sent to the main node, as shown in Fig. 4.10.

Figure 4.10: Registered color and depth frames

4.3.1
Point Clouds from images

After the registration of the depth images, the point clouds are generated
combining the color and depth data using the equations from the camera
model, stated in Eqs. (4-1), (4-2) and (4-3). The library iai_kinect2 provides
the point clouds for the main node.

Z = depth_image[v, u] (4-1)

X = (u− cx)
Z

fx
(4-2)

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 4. SLAM Implementation 76

Y = (v − cy)
Z

fy
(4-3)

4.3.2
Downsampling

Due to the large amount of memory required by the point cloud rep-
resentation, a voxel grid filter from PCL is applied to reduce the number of
points used to create the global map. In fig. 4.11 is shown a point cloud with
the full set of measured points and in Fig. 4.12 is shown the same point cloud
after the filtering process.

Figure 4.11: Point Cloud Figure 4.12: Downsampled Cloud

4.4
Visual Odometry

The FOVIS library [56] is used to obtain a camera motion estimate
between frames. FOVIS is a robust visual odometry framework that uses sparse
visual features and a quaternion absolute orientation estimation [113].

This work uses a ROS implementation of FOVIS. The FOVIS node
subscribes to the corresponding topics: rgb camera information, depth camera
information, depth image and color image. The camera information topics
carry the camera matrices from calibration. The FOVIS node publishes the
odometry topic, which is sent to the main node. At every iteration the
transformation between the previous and the current FOVIS pose is computed.

4.5
Loop Closure

The incremental frame-to-frame alignment of FOVIS accumulates drift
over time, due to sensor noise, which is the reason to use the Graph-SLAM

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 4. SLAM Implementation 77

formulation. The loop closure detection is the most important step in Graph-
SLAM, as it directly defines the errors of the trajectory.

Ideally, to detect a loop closure, it would simply require a comparison
between the current frame and all past frames. However, it is computationally
infeasible [17]. To overcome this problem, only a subset of frames is selected
to be compared. They are called keyframes.

The first frame is selected as a keyframe and it is matched against the
next frames. When the number of matched inliers starts to decrease and is
below a chosen threshold, called keyframe inliers threshold, it means that the
robot has made a significant movement and a new keyframe is chosen.

Every new keyframe is matched against the previous ones to search for
a loop closure, if the poses of the previous keyframes are close enough to the
current one, given a metric constraint.

If the number of matched inliers between the current keyframe and a
past keyframe is above a threshold, called loop closure inliers threshold, then
a loop is detected and a constraint is added to the graph. In Fig. 4.13 is shown
a loop detection with the estimated trajectory and the corrected trajectory in
green, after the loop closure and graph optimization.

Figure 4.13: Loop Closure

The loop closure constraints are created using the ICP method with a
RANSAC initial alignment, detailed in the next subsections. The information
matrix is the identity matrix multiplied by the number of matched inliers
between the two keyframes. This formulation is based on the work of Henry
et al. [17], and on the implementation of Miguel Algaba [114].

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 4. SLAM Implementation 78

4.5.1
Feature Detection

The OpenCV library has several feature detection implementations. The
ORB features [63] are used in this work for their efficiency and computational
performance. In Fig. 4.14 is shown an example of the feature detection
implementation used. The corresponded feature descriptors are also obtained
with the OpenCV implementation.

Figure 4.14: Feature Detection

4.5.2
Feature Matching

To match features from two images, the OpenCV implementation of the
brute-force matcher is used. The brute-force matcher compares each descriptor
of the first frame with all other features from the second frame using a distance
metric. For each feature in the first frame, the closest one in the second frame
is its match. In Fig. 4.15 it is shown two sequential color frames and its
corresponding matched points.

The problem with feature matching is that false matches, also called
outliers, can be detected, which can lead to a failure in the loop detection and,
consequently, in graph optimization. Therefore, a outlier rejection technique
must be applied.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 4. SLAM Implementation 79

Figure 4.15: Feature Matching

4.5.3
Outlier Rejection

Considering the sets x and x′ of the n matched points from two frames,
the fundamental matrix is the 3x3 matrix that relates these two sets as stated
in Eq. (4-4).

x′iFxi = 0, i = 1 . . . n (4-4)

One method to reject outliers in feature matching is to find the funda-
mental matrix associated with the matched point of the two frames and apply
Eq. 4-4 for each correspondence. If the result is below a threshold close to zero,
then the correspondence is an inlier. Otherwise, the correspondence is rejected.

The fundamental matrix is found through the 8-point algorithm, detailed
by Hartley and Zisserman [77]. To find the fundamental matrix, there must
exist at least 8 point matches for the solution be unique [77]. In this work, the
fundamental matrix is found with the OpenCV implementation, which uses
the RANSAC method to improve robustness.

4.5.4
ICP

When a loop is detected, the transformation between the two frames need
to be estimated in order to create the graph constraint. For this purpose, the
PCL implementation of ICP is used. The transformation is estimated based
on the SVD method, as described in chapter 2.

However, the ICP algorithm needs a initial guess for the transformation
estimation, in order to avoid a local minimum. A initial alignment is made using
RANSAC. In Tab. 4.2 is shown the chosen parameters for the ICP alignment.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 4. SLAM Implementation 80

Table 4.2: ICP Parameters

Parameter Value
Max Iterations 150
Max Correspondance Distance 0.05
Transformation threshold 1e-4

4.5.5
Initial Alignment

With the matched points from two frames and their respective values,
it is possible to apply the RANSAC algorithm to estimate the transformation
between the frames. The PCL RANSAC initial alignment implementation is
used in this step, and the obtained transformation is used as an initial guess
in the ICP algorithm.

Table 4.3: Initial Alignment Parameters

Parameter Value
Max Iterations 150
Inlier RANSAC threshold 0.01

4.5.6
Loop Closure Parameters

In Tab. 4.4 is shown the parameters used in the loop closure detection.
The number of matched features is filtered using the main outlier threshold in
the main code, to select the keyframes, and with the loop outlier theshold to
detect a loop closure.

Table 4.4: SLAM Parameters

Parameter Value
Number of features 2200
Keyframe Inliers Threshold 200
Loop Closure Inliers Threshold 100
Loop Outlier Rejection Threshold 0.1
Main Outlier Rejection Threshold 3.0

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 4. SLAM Implementation 81

4.6
Graph Optimization

The g2o framework is used to construct and optimize the graph. The
graph can be optimized in real time, after every loop closure, or at the end
of the procedure, before the map construction. The poses and constraints are
represented in the g2o format. The information matrix for every measurement
is the identity matrix multiplied by the number of inliers.

4.7
Map Construction

The global map is constructed through the alignment of all stored point
clouds. If the system is only performing visual odometry, the map can be
incrementally constructed aligning the current point cloud to the global map,
given the estimated transformation between the previous and the current pose.
In this implementation, the map is constructed at the end of the procedure,
after the graph is completed optimized, to improve performance. At the end of
the optimization, all point clouds are stored, each one with a respective pose.

The PCL has a function "transformPointCloud" that applies a given
transformation to a point cloud. This function is used to align all keyframe
point clouds with their respective optimized poses. Finally, each one is added
to the global map at the same coordinate system. This formulation is described
using pseudocode notation in algorithm 5.

Algorithm 5 Global Map Construction
1: initialize global map
2: keyframes← get keyframes
3: poses← get poses
4: for all keyframes do
5: pointcloudk ← get keyframe pointcloud
6: aligned_cloud = transform(keyframek, pose)
7: global map += aligned_cloud
8: endfor

4.8
Summary

The algorithm 6 details the whole procedure of graph construction
and optimization using the previously explained techniques. The "ROS-OK"
condition returns "false" if the node is shut down.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 4. SLAM Implementation 82

Algorithm 6 RGB-D SLAM
1: initialize node
2: while ROS-OK do
3: save first frame
4: detect features
5: pc1← point cloud 1
6: dpc1← downsample pc1
7: P1 ← first fovis pose
8: graph vertex 1← P1
9: for every new frame i do

10: Pi ← ith fovis pose
11: save current frame i
12: detect features
13: feature match(features i, features i-1)
14: n_inliers← outlier rejection
15: if n_inliers < threshold then
16: keyframej ← currentframei
17: graph vertex j← Pj
18: Tj−1,j ← compute transformation between keyframes
19: add edge
20: detect loop between current and past keyframes
21: if loop detected then
22: add edge
23: endif
24: endif
25: endfor
26: endwhile
27: optimize graph
28: save graph
29: save trajectory
30: create global map

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

5
Results

This chapter presents the results obtained from real time experiments
and real world dataset evaluation, using the proposed methodology. First,
point cloud maps are created in real time experiments with the kinect and the
iRobot. Next, the system is numerically evaluated using benchmark sequences
and corresponded groundtruth trajectories.

To numerically analyze the proposed methodology with experimental
data, it is necessary to have the ground truth trajectory of the robot in the
environment. However, this would require motion detector systems or other
external measurement device. Therefore, the numerical evaluation is made only
with benchmark datasets.

5.1
Experiments

This section presents the qualitative results obtained with the proposed
methodology, using the assembled robot presented in chapter 4. All the
experiments were conducted in the Robotics Laboratory from the Pontifical
Catholic University of Rio de Janeiro. In Figs. 5.1 and 5.2 is shown the
assembled robot performing SLAM.

Figure 5.1: Robot performing SLAM Figure 5.2: Robot performing SLAM

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 5. Results 84

In the first two experiments, two separated parts of the room are
mapped, one at a time, with slow movements and covering a small region.
The maps are shown in Figs 5.3 and 5.4. The maps have a good quality with
few misalignments.

Figure 5.3: Experiment 1 - point cloud map

Figure 5.4: Experiment 2 - point cloud map

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 5. Results 85

In the following experiment, the robot maps the entire room at once. The
Figs. 5.5 and 5.6 are parts of the same map. The velocity of the robot is higher
than the previous test.

Figure 5.5: Experiment 3 - point cloud map

Figure 5.6: Experiment 3 - point cloud map 2

This experiment clearly have an inferior quality than the first two
experiments for two main reasons. First, the higher motion speed, which
causes image blur and other effects. If the robot moves too fast or make a
rough movement, it causes a considerable misalignment in the map. Second, a
larger map implies a larger trajectory, which causes odometry drift. However,
the graph optimization overcome major misalignment problems caused by
odometry drift. Despite the misalignments, the map is still consistent due to
the loop closure detection and optimization.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 5. Results 86

5.2
Dataset Evaluation

The numerical evaluation of the system is made using the RGB-D bench-
mark [59] from Technical University of Munich, which provides datasets of color
and depth image sequences of a kinect sensor, under different conditions. All
sequences have a corresponded ground-truth trajectory, obtained with a high
precision motion capture system.

This evaluation employs the Absolute Trajectory Error (ATE) to com-
pare the estimated trajectory with the provided ground-truth trajectory. The
ATE compares absolute distances between both trajectories and evaluates the
global consistency [59].

For each dataset is evaluated the mean, minimum, maximum and root
mean square errors. Given the trajectory estimate with translational compo-
nents x̂ = [x̂1, · · · , x̂n], and the ground truth trajectory with translational
components x = [x1, · · · , xn], the root mean square error (RMSE) is given by
Eq. 5-1.

RMSE =
(

1
n

n∑
i=1
‖x̂i − xi‖2

)1/2

(5-1)

The ground truth trajectories have the format "timestamp tx ty tz qx
qy qz qw", where timestamp is the time of each pose in unix epoch time, "tx,
ty, tz" is the translation vector, and "qx qy qz qw" is a unit quaternion. The
estimated trajectories and the ground truth trajectories are aligned using the
timestamps of each pose [59].

5.2.1
Translation

The "freiburg1_xyz" is a sequence of 798 frames corresponding to a dis-
tance of 7.11m and a translational velocity of 0.24m/s. It contains translatory
motions along the axes x, y and z, with almost no rotational movements.
In Fig. 5.7 is shown the comparison between the motion estimation and the
ground-truth, and in Tab. 5.1 is shown the RMSE, mean, minimum and max-
imum errors of the estimated trajectory. In Fig. 5.8 is shown a color frame of
the sequence and in Fig. 5.9 is shown the resulted point cloud map.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 5. Results 87

Figure 5.7: fr1-xyz - Trajectory

Figure 5.8: fr1-xyz - Color Frame

Table 5.1: ATE evaluation of the fr1 xyz dataset in meters

Error Value (m)
RMSE 0.0569
Mean 0.0522
Min 0.0016
Max 0.1224

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 5. Results 88

Figure 5.9: fr1-xyz - Point Cloud Map

5.2.2
Translation 2

The "freiburg2_xyz" is also a sequence of translatory motions along the
axes x, y and z. However, it has a slower camera motion. The average trans-
lational velocity is 0.058m/s and an average angular velocity of 1.716deg/s.
The translational velocity is about 4 times slower than the previous sequence.
Figure 5.10 shows the comparison between the estimated trajectory and the
ground truth trajectory. In Tab. 5.2 is shown the RMSE, mean, minimum and
maximum errors of the estimated trajectory. In Fig. 5.11 is shown the resulted
Point Cloud map.

Table 5.2: ATE evaluation of the fr2 xyz dataset in meters

Error Value (m)
RMSE 0.0174
Mean 0.0155
Min 0.0012
Max 0.0373

It is noticeable that the estimated trajectory is much more aligned with
the groundtruth in comparison with the previous sequence, which shows that
the motion velocity is an important factor in the SLAM process.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 5. Results 89

Figure 5.10: fr2-xyz trajectory

Figure 5.11: fr2-xyz - Point Cloud Map

5.2.3
Freiburg Room

The "freiburg1_room" is a larger sequence, with 15.989m of ground-truth
trajectory length, 0.334m/s of average translational velocity and 29.882deg/s

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 5. Results 90

of average angular velocity. The simulation is made with a frame rate of 3 Hz.
The sequence is a movement through a whole office and is suited for evaluating
loop closure detection. In Fig. 5.12 is shown the comparison between the ground
truth trajectory and the estimated trajectory with only visual odometry. In
Fig. 5.13 is shown the same comparison, but with graph optimization.

Figure 5.12: fr1-room - Visual Odometry

Figure 5.13: fr1-room - Optimized

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 5. Results 91

Table 5.3 compares the results using only visual odometry with the ones
with graph optimization, showning the RMSE, mean, minimum and maximum
errors in meters. The overall errors are larger than the previous sequences
due to faster motions and larger trajectory. However, the graph optimization
provides a considerable improvement in the trajectory, and a cohesive map is
produced.

Table 5.3: ATE evaluation of the freiburg1 room dataset in meters

Error Visual Odometry Graph Optimization
RMSE 0.2807 0.1987
Mean 0.2432 0.1722
Min 0.0256 0.0159
Max 0.6446 0.4072

In Figs. 5.14 and 5.15 is shown two views of the resulted global point
cloud map of the sequence. It is noticeable that a person is standing in one
corner of the map. As the person stood still during the mapping process, there
was no problem. However, if the person had moved during mapping, it would
violate the assumption that the world is static and the map would be corrupted.

Figure 5.14: fr1-room - Point Cloud Map

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 5. Results 92

Figure 5.15: fr1-room - Point Cloud Map 2

5.2.4
Long Office Household

The "freiburg3_long office" is an even larger sequence, with 21.455m of
ground-truth trajectory length, and 0.249m/s of average translational velocity.
This dataset has a loop closure near the end, which can also be used to evaluate
the loop search system and graph optimization. This sequence is evaluated with
a framerate of 3Hz. In Fig. 5.16 is shown the comparison between the ground
truth trajectory and the estimated trajectory with only visual odometry. In
Fig. 5.17 is shown the same comparison, but with graph optimization, stating
that the optimization deacrease the error along the trajectory.

Table 5.4 compares the results using only visual odometry with the ones
with graph optimization, showning the RMSE, mean, minimum and maximum
errors in meters. The maximum error is reduced in 50% after the graph
optimization.

Table 5.4: ATE evaluation of the fr3 long office household in meters

Error Visual Odometry Graph Optimization
RMSE 0.2717 0.1238
Mean 0.2329 0.1101
Min 0.0381 0.0156
Max 0.5375 0.2685

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 5. Results 93

Figure 5.16: fr3-long-office - Visual Odometry

Figure 5.17: fr3-long-office - Optimized

In Fig. 5.18 is shown the initial point cloud of the dataset. In Figs. 5.19
and 5.20 is shown the progressive creation of the global map.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 5. Results 94

Figure 5.18: fr3-long-office: Initial Point Cloud

Figure 5.19: fr3-long-office: Point Cloud Map

Figure 5.20: fr3-long-office: Point Cloud Map 2

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 5. Results 95

This sequence is also evaluated with a framerate of 30 Hz, to test the
performance of the system operating in real time in a long trajectory. In Fig.
5.21 is shown the trajectory with only visual odometry in real time. In Fig. 5.22
is shown the trajectory with graph optimization. 129 keyframes are selected in
the process and a loop is detected between nodes 4 and 121, which allow the
RMSE error to drop from 0.5144m to 0.3064m, as shown in Tab. 5.5. Thus,
the system is capable to detect loop closures in real time and perform graph
optimization.

Figure 5.21: fr3-long-office 30Hz - Visual Odometry

Table 5.5: ATE evaluation of the freiburg3 long office household 30Hz in meters

Error Visual Odometry Graph Optimization
RMSE 0.5144 0.3064
Mean 0.4863 0.2842
Min 0.1799 0.0476
Max 1.1818 0.4654

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 5. Results 96

Figure 5.22: fr3-long-office 30Hz - Optimized

5.2.5
State-of-the-art Comparison

In Tables 5.6 and 5.7 are shown comparisons between the proposed
implementation and state-of-the-art methods. The comparisons are made using
the ATE RMSE metric and the datasets freiburg room, with 3Hz of frame rate,
and freiburg long office household, with 30 Hz of frame rate.

For the freiburg room dataset, the comparison, shown in Tab. 5.6, is
made with the first version of the rgbdslam method developed by Endres et
al. [55] and FOVIS. This work outperformmed both methods.

Table 5.6: ATE RMSE Comparison between the present work and state-of-the-
art implementations for the fr1 room dataset

Method ATE RMSE (m)
This work 0.1987
RGB-D SLAM 0.2190
FOVIS 0.2807

For the freiburg long office household dataset, the comparison, shown in
5.7, is made with LSD-SLAM [53], a direct monocular SLAM algorithm, and
ElasticFusion [61], the dense visual SLAM method mentioned in chapter 1.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 5. Results 97

Despite outperforming LSD-SLAM and FOVIS, this work has an inferior
result compared to ElasticFusion for two main reasons. First, this work still
need improvement in the loop closure implementation, which needs a more
robust method for comparing images in the loop closure search, as the feature
matching step is computationally expensive. Also, the ElasticFusion algorithm
is a GPU-based method, which significantly improves speed.

Table 5.7: Comparison between the present work and state-of-the-art imple-
mentations for the fr3 office dataset

Method ATE RMSE (m)
ElasticFusion 0.0170
This work 0.3064
LSD-SLAM 0.3853
FOVIS 0.5144

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

6
Conclusions

This work was subdivided into two main parts. First, it was proposed
the development of an RGB-D SLAM system, capable of real-time perfor-
mance, using a graph-based probabilistic framework to deal with the high
uncertainty and non-linearity inherent to unstructured environments, sensor
measurements, and robot motion. The second proposition of this work was to
develop a MATLAB tool for pose-graph optimization.

The pose-graph optimization tool for MATLAB was presented in chapter
3. A methodology was proposed for bidimensional and three-dimensional
problems. For the 2D case, the proposed methodology was evaluated with
simulated and real world datasets, and compared with results from state-of-
the-art implementations, achieving desired results. For the 3D problems, a
methodology was presented to deal with the orientation representation problem
discussed. The 3D implementation was also evaluated using datasets available
in the literature. The system was able to optimize graphs with a large number
of constraints and a considerable initial error in both cases.

The RGB-D SLAM implementation was presented in chapter 4. The
system was evaluated in two situations. First, it was tested with real-time
experiments using an iRobot and a kinect v2. The second evaluation was
made using benchmark datasets for numerical analysis. The system was able
to work in real time, and the results showed that the loop closure detection
and graph optimization provided a considerable reduction of odometry drift,
in both dataset evaluation and experiments.

The real time experiments showed that the system was able to detect
loop closures in real time, which allowed the robot to perform SLAM through
an entire room without serious misalignments in the map. The duration of
the experiments showed that the system has scalability to handle real world
problems.

The dataset evaluation was made using four sequences. The first two were
composed by simple translational movements. The third and fourth sequences
had a faster camera speed and a longer trajectory, but the system was able to
achieve good results in localization and mapping.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Chapter 6. Conclusions 99

However, the SLAM implementation faced some limitations. In both
experiments and dataset evaluation, the system denoted sensitivity to rough
movements and increased camera speed. Depending on the speed, the graph
optimization was not able to correct the drift.

Also, despite its effectiveness, the loop closure system is not optimal
in terms of computational performance. The need for feature matching with
previous keyframes is expensive, and there are techniques of place recognition
to improves this step that were not used in this work.

Furthermore, the assumption of static world prevents any moving object
or person to be in the front of the robot whilst it is performing SLAM, which
can be a problem for a factory or an office operation, for example.

Finally, the choice of point clouds for map representation is also not
memory-efficient.

Despite these problems, the system was able to perform real-time SLAM,
created consistent maps and achieve an acceptable global error in localization.
This implementation has low cost, using only open source software and
affordable hardware, and it has a vast applicability.

6.1
Future Works

For the pose-graph optimization tool, a C++ implementation is proposed
to allow its use in real time SLAM implementations, such as the proposed
RGB-D SLAM system.

For the RGB-D SLAM system, there are several open problems and
challenges that can be explored in future implementations. The first suggested
improvement is to use other map representations than point clouds, such as
OctoMaps, for a more efficient memory usage, specially for long time operation,
and to allow navigation tasks.

Another important improvement is to extend the implementation to
the use in dynamic environments, which would improve considerably the
applicability of the system.

Other interesting approach is to perform semantic mapping, in other
words, to create maps with a level of information beyond metric, which can
enhance the robustness of the system and open a path to novel applications.

Furthermore, the performance of the implementation can be increased
using a more efficient loop detector, with a bag of words formulation for place
recognition, for example.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Bibliography

[1] R. Siegwart and I. Nourbakhsh. Introduction to Autonomous Mobile Robots.
MIT Press, 2004.

[2] J. Leonard and H. Durrant-Whyte. Simultaneous map building and local-
ization for an autonomous mobile robot. In Proc IEEE Int Workshop on
Intelligent Robots and Systems, Osaka, Japan, 1991.

[3] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005.

[4] H. Durrant-Whyte and T. Bailey. Simultaneous localization and mapping:
part i. IEEE Robotics Automation Magazine, 13:99 – 110, 2006.

[5] C. Cadena, L. Carlone, H. Carrillo, Yasir Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. Leonard. Past, present, and future of simultaneous localization
and mapping: Towards the robust-perception age. IEEE Transactions on
Robotics, 32:1309–1332, 2016.

[6] Microsoft. Kinect v2. http://www.microsoft.com/en-
us/kinectforwindows/meetkinect/features.aspx, 2015.

[7] R. El-laithy, J. Huang, and M. Yeh. Study on the use of microsoft kinect
for robotics applications. In Proceedings of the 2012 IEEE/ION Position,
Location and Navigation Symposium, pages 1280–1288, 2012.

[8] P. Fankhauser, M. Bloesch, D. Rodriguez, R. Kaestner, M. Hutter, and
R. Siegwart. Kinect v2 for mobile robot navigation: Evaluation and modeling.
In 2015 International Conference on Advanced Robotics (ICAR), pages 388–
394, 2015.

[9] J. Hernández-Aceituno, R. Arnay, J. Toledo, and L. Acosta. Using kinect
on an autonomous vehicle for outdoors obstacle detection. IEEE Sensors
Journal, 16(10):3603–3610, 2016.

[10] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng. Ros: an open-source robot operating system. In
Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA) Workshop
on Open Source Robotics, Kobe, Japan, may 2009.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Bibliography 101

[11] Robotnik. Mobile robot guardian. https://www.robotnik.eu/mobile-
robots/guardian/, 2014.

[12] B. Gerkey. Ros running on iss. http://www.ros.org/news/2014/09/ros-
running-on-iss.html, 2014.

[13] Clearpath Robotics. Warthog. https://www.clearpathrobotics.com/warthog-
unmanned-ground-vehicle-robot/.

[14] Neobotix. Omnidirectional robot mpo-700. http://www.neobotix-
robots.com/omnidirectional-robot-mpo-700.html.

[15] Rethink Robotics. Baxter. http://www.rethinkrobotics.com/baxter/.

[16] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard. A tutorial on
graph-based slam. IEEE Intelligent Transportation Systems Magazine, 2:31
– 43, 2010.

[17] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. Rgb-d mapping: Using
kinect-style depth cameras for dense 3d modeling of indoor environments.
The International Journal of Robotics Research, 31:647–663, 2012.

[18] H. Durrant-Whyte, D. Rye, and E. Nebot. Localization of autonomous
guided vehicles. In Robotics Research: The Seventh International Sympo-
sium, pages 613–625. Springer London, 1996.

[19] R. Smith and P. Cheeseman. On the representation and estimation of spatial
uncertainly. The International Journal of Robotics Research, 5:56–68, 1986.

[20] P. Moutarlier and R. Chatila. An experimental system for incremental
environment modeling by an autonomous mobile robot. In 1st International
Symposium on Experimental Robotics, 1989.

[21] J. Leonard and H. Durrant-Whyte. Mobile robot localization by tracking
geometric beacons. IEEE Transactions on Robotics, 7:376 – 382, 1991.

[22] G. Dissanayake, P. Newman, S. Clark, H. Durrant-Whyte, and M. Csorba. A
solution to the simultaneous localization and map building (slam) problem.
IEEE Transactions on Robotics and Automation, 17(3):229–241, 2001.

[23] M. Montemerlo and S. Thrun. Simultaneous localization and mapping
with unknown data association using fastslam. In 2003 IEEE International
Conference on Robotics and Automation, volume 2, pages 1985–1991, 2003.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Bibliography 102

[24] J. Leonard and H. Feder. A computationally efficient method for large-
scale concurrent mapping and localization. In Robotics Research: The Ninth
International Symposium. Springer Verlag, 2000.

[25] J. Guivant and E. Nebot. Optimization of the simultaneous localization and
map building algorithm for real time implementation. IEEE Transactions on
Robotics and Automation, 17:242–257, 2001.

[26] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. Fastslam: A
factored solution to the simultaneous localization and mapping problem.
In Eighteenth National Conference on Artificial Intelligence, pages 593–598,
2002.

[27] J. Handschin and D. Mayne. Monte carlo techniques to estimate the
conditional expectation in multi-stage non-linear filtering. International
Journal of Control, 9(5):547–559, 1969.

[28] K. Murphy. Bayesian map learning in dynamic environments. In Proceedings
of the 12th International Conference on Neural Information Processing
Systems, pages 1015–1021, Cambridge, MA, USA, 1999. MIT Press.

[29] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo localization
for mobile robots. In Proceedings 1999 IEEE International Conference on
Robotics and Automation, volume 2, pages 1322–1328 vol.2, 1999.

[30] G. Grisetti, G. Tipaldi, C. Stachniss, W. Burgard, and D. Nardi. Fast
and accurate slam with rao–blackwellized particle filters. Robotics and
Autonomous Systems, 55(1):30 – 38, 2007.

[31] A. Neto, P. Rosa, T. Oliveira, and P. Pellanda. Efficiency of the visual
fastslam technique with a common feature map for two vehicles in the
integrated exploration of an indoor environment. Journal of Control,
Automation and Electrical Systems, 4(24):450–469, 2013.

[32] A. Eliazar and R. Parr. Dp-slam: fast, robust simultaneous localization and
mapping without predetermined landmarks. In IJCAI’03 Proceedings of the
18th international joint conference on Artificial intelligence, 2003.

[33] S. Canchumuni and M. Meggiolaro. Probabilistic simultaneous localization
and mapping of mobile robots in indoor environments with a laser range
finder. In 22nd International Congress of Mechanical Engineering (COBEM),
Ribeirão Preto, São Paulo, Brazil, 2013.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Bibliography 103

[34] S. J. Julier and J. K. Uhlmann. A counter example to the theory of
simultaneous localization and map building. In Proceedings 2001 ICRA.
IEEE International Conference on Robotics and Automation, volume 4, pages
4238–4243 vol.4, 2001.

[35] F. Dellaert and M. Kaess. Square root sam: Simultaneous localization and
mapping via square root information smoothing. The International Journal
of Robotics Research, 25(12):1181–1203, 2006.

[36] S. Thrun and M. Montemerlo. The graphslam algorithm with applications to
large-scale mapping of urban structures. International Journal on Robotics
Research, 25:403–430, 2005.

[37] F. Lu and E. Milios. Globally consistent range scan alignment for environ-
ment mapping. Autonomous Robots, 4:333–349, 1997.

[38] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard.
g2o: A general framework for graph optimization. In Proceedings of IEEE
International Conference on Robotics and Automation (ICRA), 2011.

[39] J. Gutmann and K. Konolige. Incremental mapping of large cyclic environ-
ments. In Proceedings of IEEE International Symposium on Computational
Intelligence in Robotics and Automation (CIRA), 1999.

[40] A. Howard, M. J. Mataric, and G. Sukhatme. Relaxation on a mesh:
a formalism for generalized localization. In Proceedings 2001 IEEE/RSJ
International Conference on Intelligent Robots and Systems. Expanding the
Societal Role of Robotics in the the Next Millennium, volume 2, pages 1055–
1060 vol.2, 2001.

[41] T. Duckett, S. Marsland, and J. Shapiro. Fast, on-line learning of globally
consistent maps. Auton. Robots, 12(3):287–300, May 2002.

[42] U. Frese, P. Larsson, and T. Duckett. A multilevel relaxation algorithm
for simultaneous localization and mapping. IEEE Transactions on Robotics,
21(2):196–207, 2005.

[43] E. Olson, J. Leonard, and S. Teller. Fast iterative alignment of pose
graphs with poor initial estimates. In Proceedings 2006 IEEE International
Conference on Robotics and Automation, 2006. ICRA 2006., pages 2262–
2269, 2006.

[44] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard. A tree parameter-
ization for efficiently computing maximum likelihood maps using gradient
descent. In In Proc. of Robotics: Science and Systems (RSS), 2007.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Bibliography 104

[45] M. Kaess, A. Ranganathan, and F. Dellaert. isam: Incremental smoothing
and mapping. IEEE Transactions on Robotics, 24(6):1365–1378, 2008.

[46] G. Grisetti, C. Stachniss, and W. Burgard. Nonlinear constraint network
optimization for efficient map learning. Trans. Intell. Transport. Sys.,
10(3):428–439, September 2009.

[47] R. Wagner, O. Birbach, and U. Frese. Rapid development of manifold-
based graph optimization systems for multi-sensor calibration and slam. In
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 3305–3312, 2011.

[48] G. Grisetti, R. Kümmerle, C. Stachniss, U. Frese, and C. Hertzberg. Hier-
archical optimization on manifolds for online 2d and 3d mapping. In 2010
IEEE International Conference on Robotics and Automation, pages 273–278,
May 2010.

[49] C. Hertzberg. A framework for sparse, non-linear least squares problems on
manifolds, 2008.

[50] A. Davison and D. Murray. Mobile robot localisation using active vision. In
European Conference on Computer Vision, pages 809–825. Springer, 1998.

[51] A. Davison, I. Reid, N. Molton, and O. Stasse. Monoslam: Real-time single
camera slam. IEEE transactions on pattern analysis and machine intelligence,
29(6):1052–1067, 2007.

[52] C. Forster, M. Pizzoli, and D. Scaramuzza. Svo: Fast semi-direct monocular
visual odometry. In 2014 IEEE International Conference on Robotics and
Automation (ICRA), pages 15–22, 2014.

[53] J. Engel, T. Schöps, and D. Cremers. Lsd-slam: Large-scale direct monocular
slam. In Computer Vision – ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part II, pages 834–849,
2014.

[54] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós. Orb-slam: A versatile
and accurate monocular slam system. IEEE Transactions on Robotics,
31(5):1147–1163, 2015.

[55] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Burgard.
An evaluation of the rgb-d slam system. 2012 IEEE International Conference
on Robotics and Automation, pages 1691–1696, 2012.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Bibliography 105

[56] A. S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox, and
N. Roy. Visual odometry and mapping for autonomous flight using an rgb-d
camera. In Int. Symposium on Robotics Research (ISRR), Flagstaff, Arizona,
USA, 2011.

[57] T. Whelan, H. Johannsson, M. Kaess, J. J. Leonard, and J. McDonald.
Robust real-time visual odometry for dense rgb-d mapping. In 2013 IEEE
International Conference on Robotics and Automation, pages 5724–5731,
2013.

[58] R. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. Davison,
P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon. Kinectfusion: Real-
time dense surface mapping and tracking. In Mixed and augmented reality
(ISMAR), 2011 10th IEEE international symposium on, pages 127–136.
IEEE, 2011.

[59] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A
benchmark for the evaluation of rgb-d slam systems. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 573–580,
2012.

[60] F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard. 3-d mapping
with an rgb-d camera. IEEE Transactions on Robotics, 30:177 – 187, 2014.

[61] T. Whelan, S. Leutenegger, R. Salas-Moreno, B. Glocker, and A. Davison.
Elasticfusion: Dense slam without a pose graph. Robotics: Science and
Systems, 2015.

[62] R. Mur-Artal and J. D. Tardós. Orb-slam2: An open-source slam system
for monocular, stereo, and rgb-d cameras. IEEE Transactions on Robotics,
33(5):1255–1262, 2017.

[63] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient
alternative to sift or surf. In 2011 International Conference on Computer
Vision, pages 2564–2571, 2011.

[64] iRobot. irobot create. http://www.irobot.com/filelibrary/create/Create
Manual_Final.pdf, 2006.

[65] D.P. Bertsekas and J.N. Tsitsiklis. Introduction to Probability. Athena
Scientific books. Athena Scientific, 2002.

[66] K. Madsen, H. B. Nielsen, and O. Tingleff. Methods for non-linear least
squares problems (2nd ed.), 2004.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Bibliography 106

[67] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York,
NY, USA, second edition, 2006.

[68] R. Murray, S. Sastry, and L. Zexiang. A Mathematical Introduction to
Robotic Manipulation. CRC Press, Inc., Boca Raton, FL, USA, 1st edition,
1994.

[69] J. Diebel. Representing attitude: Euler angles, unit quaternions, and rotation
vectors, 2006.

[70] F. Grassia. Practical parameterization of rotations using the exponential
map. J. Graph. Tools, 3(3):29–48, 1998.

[71] J. Blanco. A tutorial on se(3) transformation parameterizations and on-
manifold optimization, 2010.

[72] Y. Jia. Quaternions and rotation. 2017.

[73] B. Horn. Some notes on unit quaternions and rotation. 2001.

[74] J. Gallier. Notes on differential geometry and lie groups. 2012.

[75] A. Ude. Filtering in a unit quaternion space for model-based object tracking.
Robotics and Autonomous Systems, 28(2-3):163–172, 1999.

[76] L. Vicci. Quaternions and rotations in 3-space: The algebra and its geometric
interpretation. Technical report, Chapel Hill, NC, USA, 2001.

[77] R. Hartley and A. Zisserman. Multiple view geometry in computer vision.
Cambridge university press, 2003.

[78] V. Högman. Building a 3d map from rgb-d sensors. Master’s thesis, Royal
Institute of Technology (KTH), 2012.

[79] D. Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 60(2):91–110, Nov 2004.

[80] E. Rosten and T. Drummond. Machine learning for high-speed corner
detection. In European conference on computer vision, pages 430–443.
Springer, 2006.

[81] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. Brief: Binary robust
independent elementary features. In European conference on computer
vision, pages 778–792. Springer, 2010.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Bibliography 107

[82] S. Thrun et al. Robotic mapping: a survey. Exploring artificial intelligence
in the new millennium, 1:1–35, 2002.

[83] A. Elfes. Occupancy Grids: A Probabilistic Framework for Robot Perception
and Navigation. PhD thesis, Pittsburgh, PA, USA, 1989.

[84] H. Moravec. Sensor fusion in certainty grids for mobile robots. AI magazine,
9(2):61, 1988.

[85] H. Pfister, M. Zwicker, J. Van Baar, and M. Gross. Surfels: Surface elements
as rendering primitives. In Proceedings of the 27th annual conference
on Computer graphics and interactive techniques, pages 335–342. ACM
Press/Addison-Wesley Publishing Co., 2000.

[86] Y. Roth-Tabak and R. Jain. Building an environment model using depth
information. Computer, 22(6):85–90, 1989.

[87] H. Moravec. Robot spatial perceptionby stereoscopic vision and 3d evidence
grids. 1996.

[88] A. Hornung, K. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard.
Octomap: An efficient probabilistic 3d mapping framework based on octrees.
Auton. Robots, 34(3):189–206, apr 2013.

[89] R. Rusu and S. Cousins. 3D is here: Point Cloud Library (PCL). In IEEE
International Conference on Robotics and Automation (ICRA), Shanghai,
China, May 9-13 2011.

[90] P. Besl and N. McKay. Method for registration of 3-d shapes. In Sensor
Fusion IV: Control Paradigms and Data Structures, volume 1611, pages
586–607. International Society for Optics and Photonics, 1992.

[91] A. Segal, D. Haehnel, and S. Thrun. Generalized-icp. In Proceedings of
Robotics: Science and Systems, Seattle, USA, June 2009.

[92] T. Zinßer, J. Schmidt, and H. Niemann. A refined icp algorithm for robust
3-d correspondence estimation. In Image Processing, 2003. ICIP 2003.
Proceedings. 2003 International Conference on, volume 2, pages II–695.
IEEE, 2003.

[93] S. Rusinkiewicz and M. Levoy. Efficient variants of the icp algorithm. In
3-D Digital Imaging and Modeling, 2001. Proceedings. Third International
Conference on, pages 145–152. IEEE, 2001.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Bibliography 108

[94] S. Umeyama. Least-squares estimation of transformation parameters be-
tween two point patterns. IEEE Trans. Pattern Anal. Mach. Intell.,
13(4):376–380, April 1991.

[95] D. Eggert, A. Lorusso, and R. Fisher. Estimating 3-d rigid body trans-
formations: a comparison of four major algorithms. Machine vision and
applications, 9(5-6):272–290, 1997.

[96] M. Fischler and R. Bolles. Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography.
Commum ACM, 24:381 – 395, 1981.

[97] M. Quigley, B. Gerkey, and W. Smart. Programming Robots with ROS: A
Practical Introduction to the Robot Operating System. O’Reilly Media, Inc.,
1st edition, 2015.

[98] F. Endres. Robot Perception for Indoor Navigation. PhD thesis, University
of Freiburg, 2015.

[99] L. Carlone. g2o versus toro: Format and cost functions.

[100] L. Carlone and A. Censi. From angular manifolds to the integer lattice: Guar-
anteed orientation estimation with application to pose graph optimization.
CoRR, abs/1211.3063, 2012.

[101] L. Carlone, R. Aragues, J. Castellanos, and B. Bona. A fast and accurate
approximation for planar pose graph optimization. The International Journal
of Robotics Research, 33(7):965–987, 2014.

[102] J. Lee. Introduction to Smooth manifolds. 2001.

[103] C. Hertzberg, R. Wagner, U. Frese, and L. Schröder. Integrating generic sen-
sor fusion algorithms with sound state representations through encapsulation
of manifolds. Information Fusion, 14(1):57–77, 2013.

[104] A. Ude. Nonlinear least squares optimisation of unit quaternion functions for
pose estimation from corresponding features. In Pattern Recognition, 1998.
Proceedings. Fourteenth International Conference on, volume 1, pages 425–
427. IEEE, 1998.

[105] L. Carlone, R. Tron, K. Daniilidis, and F. Dellaert. Initialization techniques
for 3d slam: a survey on rotation estimation and its use in pose graph
optimization. In Robotics and Automation (ICRA), 2015 IEEE International
Conference on, pages 4597–4604. IEEE, 2015.

DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

Bibliography 109

[106] iFixit. “xbox one kinect teardown”. https://www.ifixit.com/Teardown/
Xbox+One+Kinect+Teardown/19725.

[107] J. Sell and P O’Connor. The xbox one system on a chip and kinect sensor.
IEEE Micro, 34(2):44–53, 2014.

[108] J. Blake, F. Echtler, C. Kerl, and L. Xiang. libfreenect2:
Open source drivers for the kinect for windows v2 device.
https://github.com/OpenKinect/libfreenect2.

[109] T. Wiedemeyer. IAI Kinect2. https://github.com/code-iai/iai_
kinect2, 2014 – 2015. Accessed June 12, 2015.

[110] J. Perron. create autonomy: a ros driver for irobot create.
https://github.com/AutonomyLab/create_autonomy.

[111] G. Bradski. The opencv library. Dr. Dobb’s Journal of Software Tools, 2000.

[112] B. Jacob and G. Guennebaud. Eigen. http://eigen.tuxfamily.org/.

[113] B. Horn. Closed-form solution of absolute orientation using unit quaternions.
JOSA A, 4(4):629–642, 1987.

[114] M. Algaba. kinect6dslam. https://github.com/MiguelAlgaba/KinectSLAM6D,
2012.

https://github.com/code-iai/iai_kinect2
https://github.com/code-iai/iai_kinect2
DBD
PUC-Rio - Certificação Digital Nº 1612641/CA

	Graph Optimization and Probabilistic SLAM of Mobile Robots using an RGB-D Sensor
	Resumo
	Table of contents
	Introduction
	Motivation
	SLAM
	RGB-D Sensors
	Robot Operating System

	Problem Definition
	Literature Review
	Filtering Approaches
	Graph-based approaches
	Visual SLAM
	RGB-D SLAM

	Objectives
	Dissertation Outline

	Theoretical Background
	Probability Theory
	Gaussian Distribution
	Conditional Probability
	Independence

	Probabilistic Formulation of SLAM
	Least Squares Problem
	Linear Least Squares
	Non-linear Least Squares

	Rigid Motion in R3 and Attitude Representations
	Rotation Matrices
	Euler Angles
	Quaternions

	Camera Model
	Visual Features
	ORB Features

	Map representations
	Point Cloud

	Iterative Closest Point
	Random Sample Consensus
	ROS
	rviz
	Rosbag

	Pose-Graph Optimization tool for MATLAB
	Pose-Graph
	Graph Optimization as a Non-linear Least Squares Problem
	1D Example

	2D Pose-Graph Optimization
	2D Dataset Evaluation

	3D Pose-Graph Optimization
	Quaternion Exponential Map and Manifold Optimization
	Implementation
	3D Dataset Evaluation

	SLAM Implementation
	Hardware
	Kinect v2
	Kinect Calibration
	iRobot Create
	Assembled Robot

	System Overview
	Data Acquisition
	Point Clouds from images
	Downsampling

	Visual Odometry
	Loop Closure
	Feature Detection
	Feature Matching
	Outlier Rejection
	ICP
	Initial Alignment
	Loop Closure Parameters

	Graph Optimization
	Map Construction
	Summary

	Results
	Experiments
	Dataset Evaluation
	Translation
	Translation 2
	Freiburg Room
	Long Office Household
	State-of-the-art Comparison

	Conclusions
	Future Works

