Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: ESTRATÉGIAS DE APROXIMAÇÕES ANALÍTICAS HIERÁRQUICAS DE PROBLEMAS NÃO LINEARES: MÉTODOS DE PERTURBAÇÃO
Autor: MARIANA GOMES DIAS DOS SANTOS
Colaborador(es): ROBERTA DE QUEIROZ LIMA - Orientador
Catalogação: 29/ABR/2019 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=37854&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=37854&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.37854
Resumo:
Problemas dinâmicos governados por problemas de valor inicial (PVI) não lineares, em geral, despertam grande interesse da comunidade científica. O conhecimento da solução desses PVI facilita o entendimento das características dinâmicas do problema. Porém, infelizmente, muitos dos PVI de interesse não têm solução conhecida. Nesse caso, uma alternativa é o cálculo de aproximações para a solução. Métodos numéricos e analíticos são eficientes nessa tarefa e podem fornecer aproximações com a precisão desejada. Os métodos numéricos foram muito desenvolvidos nos últimos anos e amplamente aplicados em problemas de diversas áreas da engenharia. Pacotes computacionais de fácil utilização foram criados e hoje fazem parte dos mais tradicionais programas de simulação numérica. Entretanto, as aproximações numéricas têm uma desvantagem em relação às aproximações analíticas. Elas não permitem o entendimento de como a solução depende dos parâmetros do problema. Visto isso, esta dissertação foca na análise e implementação de técnicas analíticas denominadas métodos de perturbação. Foram estudados os métodos de Lindstedt-Poincaré e de múltiplas escalas de tempo. As metodologias foram aplicadas em um PVI envolvendo a equação de Duffing não amortecida. Programas em álgebra simbólica foram desenvolvidos com objetivo de calcular aproximações analíticas hierárquicas para a solução desse problema. Foi feita uma análise paramétrica, ou seja, estudo de como as condições iniciais e os valores de parâmetros influem nas aproximações. Além disso, as aproximações analíticas obtidas foram comparadas com aproximações numéricas calculadas através do método do Runge- Kutta. O método de múltiplas escalas de tempo também foi aplicado em um PVI que representa a dinâmica de um sistema massa-mola-amortecedor com atrito seco. Devido ao atrito, a resposta do sistema pode ser caracterizada em duas fases alternadas, a fase de stick e a fase de slip, compondo um fenômeno chamado stick-slip. Verificou-se que as aproximações obtidas para resposta do sistema pelo método de múltiplas escalas de tempo têm boa acurácia na representação da dinâmica do stick-slip.
Descrição: Arquivo:   
NA ÍNTEGRA PDF