Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: TRATANDO PONTOS DE DECISÃO EM MINERAÇÃO DE PROCESSOS
Autor: DANIEL DUQUE GUIMARAES SARAIVA
Colaborador(es): HELIO CORTES VIEIRA LOPES - Orientador
Catalogação: 26/ABR/2019 Língua(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=37835&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=37835&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.37835
Resumo:
Devido ao grande aumento da competitividade e da, cada vez maior, demanda por eficiência, muitas empresas perceberam que é necessário repensar e melhorar seus processos. Para atingir este objetivo, elas têm cada vez mais buscado técnicas computacionais que sejam capazes de extrair novas informações e conhecimentos de suas grandes bases de dados. Os processos das empresas, normalmente, possuem momentos em que uma decisão deve ser tomada. É razoável esperar que casos similares tenham decisões parecidas sendo tomadas ao longo do processo. O objetivo desta dissertação é criar um minerador de decisão que seja capaz the automatizar a tomada de decisão dentro de um processo. A primeira parte do trabalho consiste na identificação dos pontos de decisão em uma rede de Petri. Em seguida, transformamos a tomada de decisão em um problema de classificação no qual cada possibilidade da decisão se torna uma classe. Para fazer a automatização, é utilizada uma árvore de decisão treinada com os atributos dos dados que estão presentes nos logs dos eventos. Um estudo de caso real é utilizado para validar que o minerador de decisão é confiável para processos reais.
Descrição: Arquivo:   
NA ÍNTEGRA PDF