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Abstract

Duque Guimarães Saraiva, Daniel; Côrtes Vieira Lopes, Hélio (Ad-
visor). Dealing with decision points in process mining. Rio
de Janeiro, 2018. 33p. Dissertação de mestrado – Departamento de
Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Due to the increasing competitiveness and demand for higher perfor-
mance, many companies realized that it is necessary to rethink and enhance
their business processes. In order to achieve this goal, companies have been
turning to computational techniques that are capable of extracting new
information and insights from their, ever-increasing, datasets. Business pro-
cesses, normally, have many places where a decision has to be made. It is
reasonable to expect that similar inputs have the same decisions made to
them during the process. The goal of this dissertation is to create a decision
miner that automates the decision-making inside a process. First, we will
identify decision points in a Petri net model. Then, we will transform the
decision-making problem into a classification one, where each of the pos-
sible decisions becomes a class. In order to automate the decision-making,
a decision tree is trained using data attributes from the event logs. A real
world case study is used to validate that the decision miner is reliable when
using real world data.

Keywords
Decision Mining; Decision Points; Process Mining; Petri nets;

Decision Tree;
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Resumo

Duque Guimarães Saraiva, Daniel; Côrtes Vieira Lopes, Hélio.
Tratando pontos de decisão em mineração de processos. Rio
de Janeiro, 2018. 33p. Dissertação de Mestrado – Departamento de
Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Devido ao grande aumento da competitividade e da, cada vez maior,
demanda por eficiência, muitas empresas perceberam que é necessário
repensar e melhorar seus processos. Para atingir este objetivo, elas têm cada
vez mais buscado técnicas computacionais que sejam capazes de extrair
novas informações e conhecimentos de suas grandes bases de dados. Os
processos das empresas, normalmente, possuem momentos em que uma
decisão deve ser tomada. É razoável esperar que casos similares tenham
decisões parecidas sendo tomadas ao longo do processo. O objetivo desta
dissertação é criar um minerador de decisão que seja capaz the automatizar
a tomada de decisão dentro de um processo. A primeira parte do trabalho
consiste na identificação dos pontos de decisão em uma rede de Petri.
Em seguida, transformamos a tomada de decisão em um problema de
classificação no qual cada possibilidade da decisão se torna uma classe. Para
fazer a automatização, é utilizada uma árvore de decisão treinada com os
atributos dos dados que estão presentes nos logs dos eventos. Um estudo
de caso real é utilizado para validar que o minerador de decisão é confiável
para processos reais.

Palavras-chave
Mineração de Decisão; Pontos de Decisão; Mineração de Processos;

Redes de Petri; Árvore de Decisão;
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1
Introduction

In order to survive and prosper in today’s competitive world, companies
have realized that it is necessary to rethink and enhance business processes.
Since the 80´s, many companies have invested heavily on process automation
technologies. Such initiatives have resulted in tremendous gains, both in terms
of productivity and process efficiency.

However, there is still room for further improvements. One way of
achieving this goal is to use data that is available or that can be obtained
from the systems that manage a company’s processes. Such data can be stored
in event logs and can be treated by new computational techniques such as
machine learning algorithms.

The process mining field was created from this necessity. It combines
techniques from process analysis and data science into a single field of study.
These techniques have proven to be valuable tools to gain insights into how
business processes are handled within an organization and are usually employed
in process discovery (3, 4) and conformance checking (7, 8).

Process discovery can be used to automatically construct a process model
that reflects the real business process, derived from real data observations that
were stored in event logs. Conformance checking can be used to verify if the
process behaviors indicated from data logs follows a given model. It can also
validate if business rules are being followed. Together, process discovery and
conformance checking, may be used as inputs to improve business processes, for
example: process discovery can be a starting point to model complex systems
and conformance checking can be used to find problems in existing processes.

An important aspect of processes is the decisions made during their
execution. Depending on the choices made, the result may differ, hence, making
it one of the key aspects of a process. Our goal is to show that there is
information in the event logs that can help us identify which decision should be
made throughout our process. In order to achieve this, we have to first identify
the decision points (1, 9) in a model. Once they have been identified, we have
to understand why the choice was made. One way to approach this problem
is thinking of it as a classification problem, where each of the possible choices
is a different class, thus, making it possible to transform the decision-making
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Chapter 1. Introduction 11

problem into a machine learning one.
There are several classification algorithms, and the decision tree was

chosen due to its flexibility, in terms of handling data. It is capable of handling
discrete and continuous numeric data, non-numeric data and missing data,
which is a major concern when dealing with real world data. In order to train
the decision tree, we will match the outcomes of the decisions points with the
information present in the event logs up to that point. This way we will try to
extract which data attribute, or group of data attributes, contains information
that can help us to correctly identify the outcome of a decision-making process.
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2
Petri nets

Petri Nets originated from the work of Carl Adam Petri (5) and, from
that point onward, its study has increased considerably. For a review of the
history of Petri Nets and bibliography it is recommended to read Murata (6).

The Petri net model has three main components: places, transitions and
arcs. Places and transitions are two different types of nodes and arcs are the
connections between those nodes. The Petri net is, by definition, a directed
bipartite graph, because nodes of the same type are not allowed to be connected
and arcs have a direction.

In a model, places are represented by circles, transitions by rectangles
and arcs by arrows, as can be seen in figure 2.1. Places may contain zero or
more tokens, represented as black dots. A place p is called an input place of a
transition t if there exists an arc from p to t and p is called an output place
of t if there exists an arc from t to p. A transition t is enabled if all its input
places contain at least one token and once it is enabled it can be fired. Firing
the transition t consumes one token from each of its input places and creates
a new token in all its output places.

Figure 2.1: Document analysis - initial state.
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Chapter 2. Petri nets 13

2.1
Example

To exemplify a Petri net model, we will use the net shown in figure 2.1.
This net represents a document analysis by a company’s employee and it is
composed of four places (d_in, busy, free, d_out) and two transitions (start,
finish). In the state shown in the figure 2.1, there are a total of five tokens,
four in place d_in and one in place free. The tokens in place d_in represent
new documents to be processed by the employee and the token in place free
indicates that the employee is currently free.

When the transition start fires, two tokens will be consumed, one from
place d_in and one from place free, and one token will be created in place
busy. The new state of the model is represented in figure 2.2 (left). The token
in place busy indicates that the employee is busy analyzing the document.

Since place free has no more tokens, the transition start is no longer
enabled and because place busy has a token the transition finish can be fired.
When the transition finish is fired, the token in place busy is removed and new
tokens are created in places d_out and free, representing that one document
has already been analyzed and that the employee is again free, as shown in
figure 2.2 (right).

Figure 2.2: Document analysis.

2.2
Mining a Petri net from event logs

Process discovery techniques seek to find a model that best represents
a business process. Since there are many algorithms, there can be multiple
solutions to a single mining problem. It is not in the scope of this work to
delve into much detail about these algorithms. Lijie Wen (4) has already made
good work explaining and comparing several of those algorithms and it is
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Chapter 2. Petri nets 14

recommended. An example of a mined process model from a set of logs is
represented in figure 2.3.

Figure 2.3: Example of Petri net mined from event logs.

It is important to notice that the set of event logs used to mine a model
may not comprise all possible routes in a process, hence, it is important to
keep in mind that mined models may not represent the whole process. This
concept is called completeness. As in many other data science related topics,
such as machine learning, one cannot assume to have mapped all possibilities
in a training set. Therefore, when we start training decision points, we should
always keep in mind that there is a possibility that our model does not contain
all possible information.

2.3
Identifying Decision Points in a Petri net

A decision point in any business process is a step of the process where
a decision has to be made before the process can follow through one of the
many available paths. In a Petri net model, a decision point is any place that
is an input place to two or more transitions, or, from another perspective, a
place is a decision point if it has more than one outgoing arc. In figure 2.3, for
example, places p1 and p3 are decision points, because each of them may lead
to two possible activities. In p1 you may choose between transitions B and C,
and in p3 you may choose between transitions E and F.
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3
Choosing Paths for Decision Points

After identifying decision points in a Petri net, we want to be able to
automatically choose routes for new cases in our model. Machine learning
algorithms have been widely adopted to extract patterns, similar to the ones
we are looking for, from large sets of data. For example, a supervised machine
learning algorithm could be taught to identify birds inside a dataset of animals.
The training dataset could contain information like: number of legs, the
presence of wings, number of eyes, type of coverage (feathers, fur, scales, etc...),
and after training the algorithm the "concept" of bird, it would be capable of
classifying new animals as birds and non-birds. An analogous approach to the
example could be done in the decision point case. If we treat each of the possible
activities as one class, we could then teach a machine learning algorithm which
route should be taken for a given set of data attributes and then use the trained
algorithm to choose routes for new data entries. Supervised learning algorithms
normally need a large dataset in order to correctly learn the patterns, in our
case, this is not an issue since most of the processes that require analysis have
an abundant set of observed data.

When observing data attributes in decision points, we are capable of
extracting information on business rules, as can be seen in figure 3.1. In the
image, there are 2 highlighted decision points. In the first decision point p0, if
the client has a premium policy or the request amount is below 500, the next
activity is Check policy only, if the client has a normal policy and is requesting
500 or more, the next activity is Check all. After passing through the activity
Evaluate Claim, the data attribute status is set and in the decision point p2
the value of the data attribute status defines which activity will be the next. If
the value is approved, it goes to activity Send Approval, else it goes to activity
Send Refusal.

3.1
Choosing an Algorithm

There are many supervised machine learning algorithms in the literature,
but most of them have a hard time dealing with non-numeric data, for instance,
algorithms like SVM, k-nearest neighbor and neural networks can only handle
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Chapter 3. Choosing Paths for Decision Points 16

Figure 3.1: Business rules extracted from data attributes.

numeric data. When dealing with binary options, like yes/no, it is simple to
make a numeric conversion, option one = 1 and option two = 0. In other
cases where there is a clear order of the values, such as good/average/bad, it
is also possible to make a numeric conversion, for example, good = 1, average
= 0.5 and bad = 0. Unfortunately, there are many cases where there is not a
clear order, for example, when dealing with an animal classification, it is not
clear how to convert animal classes (mammals, reptiles, amphibians, fish and
birds) into a numeric value. Even tough we could create dummy columns for
each of the possible classifications, depending on the number of categories we
would end up creating lots of columns and this would require more space and
processing power to handle, making it not ideal. Besides the non-numeric data
limitation in those algorithms, they are also unable to deal with missing data,
which is a major concern when dealing with real world data. Because of those
issues, these algorithms are not a good suit for the problem at hand.

Another possibility, would be using a Naive Bayes approach, but the
algorithm is not good at handling continuous numeric data, hence, making it
also not an ideal choice for our problem. Decision Tree’s algorithm is capable
of handling all the issues previously mentioned. It is capable of handling
continuous numeric data, as well as, handle non-numeric data, and, most
importantly, it is capable of dealing with missing values, making it a viable
choice to solve our classification problem. An important thing to be cautious
about, when using machine learning algorithms, is overfitting. Decision trees
have many techniques to avoid such problems, reinforcing it as a good choice
for the problem at hand.

One could try to argue that a random forest would also be a good choice
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Chapter 3. Choosing Paths for Decision Points 17

for this problem because it is a combination of multiple decision trees, hence,
solving all the problems described above. The reason that random forests are
not the best choice for our problem, is that we are trying to replicate business
rules. When using a single decision tree, we are, intuitively, creating a mapping
from the tree’s splitting rules into business rules. Using multiple trees would
not make much sense, because a process should have a set of defined rules that
decides what is the next activity.

Figure 3.2 summarizes all the highlights made in this section. One thing
to keep in mind is that some filters that we used to evaluate what is the
most fitted algorithm for our task may not be an issue depending on the case.
For instance, if representing the business rule is not important, then using
the random forest is also a good choice. Similar analogies could be made for
the other filters. In our case, we think that the representation of business
rules is important because we want to be sure that the algorithm is correctly
identifying the patterns.

Figure 3.2: Algorithms summary.

3.2
Challenges for Decision Mining

There are many challenges when dealing with real-life observations and
the main concern is related to the quality of the data. One problem that may
occur, as was said before, is the absence of data in some logs, in other words,
missing data. Another problem is that data could be incorrectly logged in some
specific cases, be it by human error or a bug in one of the systems. Hence, we
have to keep in mind that the data may contain noise. So the mining algorithm
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Chapter 3. Choosing Paths for Decision Points 18

has to be robust1, in order to deal with this noisy data. Also, when validating
which business rules were set, by the algorithm, for each decision point, it is
required that a human gets involved, because the system cannot, by itself,
reason on the meaning of them nor understand the correctness of the obtained
business rules.

When filtering the noisy data, we also have to be careful about some
other aspects related to the control-flow, as was described by van der Aalst
(1), they are: invisible activities, duplicate activities and loops.

3.2.1
Invisible Activities

An invisible activity is any activity, in a model, that is not present in
the event logs, as is defined by van der Aalst (1). Since those activities are
not present in the logs, we are unable to train our decision tree using them
as a class, because there are no examples to be used as training data. So,
instead of using them as the classes in the training model, we should look for
the following visible activity. This way, we are able to identify which invisible
activity was chosen. For example, in figure 3.3, when training p0, if the first
activity observed is D, then we can be sure that the second branch was taken.

Figure 3.3: Invisible Activity.

Even though we may find a following visible activity, it may not be
enough to determine which path was taken. In the example shown in figure
3.3, if the first visible activity is E, we cannot assume that the third branch
was taken, because the other branches also reach the same activity, so having
it as the first one is not enough to do this assumption. So, when we reach a

1Remember that the decision tree has some techniques to avoid overfitting, so when the
noise is an outlier or an information that was incorrectly logged a couple of times, it should
not have an effect on the tree.
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joint construct, we stop tracking those invisible activities and their respective
branches are removed from the analysis.

3.2.2
Duplicate Activities

Another problem that needs to be solved is duplicate activities. It is
common, in event logs, to have multiple, distinct, activities associated to the
same event name, so it may not be clear to which activity they are associated.
Moreover, if we are trying to train a decision point similar to p0, shown in
figure 3.4, it would not be clear what choice was made, because both would
indicate class A.

The way we are dealing with duplicate activities is doing the same that
was done to invisible activities, look for the next visible activity, that is also not
duplicate. In the example shown in figure 3.4, if the first branch was chosen,
instead of indicating the activity A, activity B would be the selected one, and
if the second branch was selected, the same thing would happen and activity
D would be the one selected.

Figure 3.4: Duplicate Activity.

3.2.3
Loops

The last challenge that will be discussed related to decision point training
are loops. Figure 3.5 shows a model with two invisible activities (represented
in red) and the 3 red circles A, B and C, that indicate decision points that
may have loop related problems.
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Figure 3.5: Loops.

Decision points contained in a loop (A):When training the decision
tree, it was expected that each process instance generated a single training
example. However, having the decision point inside a loop makes it possible
to have multiple occurrences of it associated with this single process instance.
Since every choice made in a decision point is relevant for our analysis, it is
important to use all occurrences in the logs to train the decision tree.

Decision points containing a loop (B): Even though a log may
contain multiple occurrences of C and D, only their first occurrence is related
to the decision point Start. All the others are only related to the decision point
p0.

Decision points that are loops (C): Since the decision point p2 is
only reached after the process passes once through either C or D, it should not
be counted as a training example for this decision point. Only the following
occurrences of C or D should be used to train this decision point.

The examples above show that, when there are loops in our model, it is
not enough to consider the occurrence of an activity to consider it as a training
example for a given decision point. It is necessary to observe the order of the
activities to correctly classify them, for example, only occurrences of C and D
after occurrences of activity E should be considered as a training example for
the decision point p2.
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4
PUC Decision Miner

A decision miner was developed in Python. It requires a .pnml file,
containing the Petri net model, and a .xes file, containing the event logs. As
was described before, there are 3 issues that need to be addressed, they are:
Duplicate Activities, Loops and Invisible Activities.

Duplicate Activities and Loops only need the Petri net model information
to be treated whilst Invisible Activities need both the model and the event logs.
Once those issues have been addressed, the last thing that will be discussed is
the training of the decision tree.

4.1
Addressing the Issues

4.1.1
Duplicate Activities

To treat Duplicate Acitivities it only requires a loop through the transi-
tions checking whether another one with the same label (activity name) has
already been visited as can be seen in the algorithm 1.

Algorithm 1 Treating Duplicate Activities
1: function treat_duplicate_activities(petri_net_model)
2: for transition in petri_net_model.transitions do
3: transition.duplicate← FALSE
4: end for
5: visited_labels← []
6: for transition in petri_net_model.transitions do
7: if visited_labels.contains(transition.label) then
8: transition.duplicate← TRUE
9: else

10: visited_labels.add(transition.label)
11: end if
12: end for
13: end function
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Chapter 4. PUC Decision Miner 22

4.1.2
Loops

To treat Loops we will identify their starting place and their complete
path. This information will later be used when training the tree. In order to
find the starting place of the loop, we used a recursive algorithm, as shown
in algorithm 2. Instead of using the place’s label through the recursion, the
key, which is an identifier of the place, is used. The key is a better suit for the
recursion because there can be places with the same label, thus using the key
will allow us to distinguish between them.

In the algorithm, when it finds the origin of the loop it creates a key-value
structure that links the path of the loop to the key of the starting place. This
structure is them added to an internal dictionary1 of the place and returned.

Algorithm 2 Place’s Recursive Function to Find Loops
1: function find_loops(visited_places_keys)
2: if self.key in visited_places_keys then
3: path← visited_places_keys.from(self.key)
4: add_loop(self.key, path)
5: return {self.key : path}
6: end if
7: loops_found← {}
8: for activity in self.output_arcs do
9: for place in activity.output_arcs do

10: loops← place.set_loops(visited_places_keys.add(self.key))
11: if length(loops) > 0 then
12: for loop_key, loop_path in loops do
13: if loop_key == self.key then
14: continue
15: end if
16: add_loop(loop_key, loop_path)
17: loops_found.add(loop_key, loop_path)
18: end for
19: end if
20: end for
21: end for
22: return loops_found
23: end function

4.1.3
Invisible Activities

To treat Invisible Activities, we will loop through the event logs and find
all the distinct activities on it. Once all the distinct activities have been found,

1The addition of a new-found path to the dictionary, represented as add_loop, was
summed up for easier understanding. The loops_found.add was also simplified.
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we will check if the model’s transitions are inside this list. If they are not, they
will be marked as invisible. This is represented in algorithm 3.

Algorithm 3 Treating Invisible Activities
1: function treat_invisible_activities(petri_net_model, event_logs)
2: visible_activities← []
3: for activity in event_logs.activities do
4: if !visible_activities.contains(activity.name) then
5: visible.activities.add(activity.name)
6: end if
7: end for
8: for transition in petri_net_model.transitions do
9: if visible_activities.contains(transition.label) then

10: transition.invisible← FALSE
11: else
12: transition.invisible← TRUE
13: end if
14: end for
15: end function

4.2
Training the Decision Tree

To train the decision tree consistently, we will always use the id of the
activity instead of its name to avoid cases that are duplicate activities. Due to
this, we will have to later match the id to the activity name or path to know
to what branch it refers to.

Even though training the decision tree can be an automatic process, it
can create rules that do not represent accurately the real business rule. The
tree will always choose the attribute that splits the data most efficiently in
spite of its meaning in the process. A person with a deeper understanding of
the process and data attributes can enhance the tree by filtering the attributes
that are not supposed to be used in the rules.

One example of such case is represented in figure 4.1. It shows an
automatically generate tree for place p0 of the process shown in figure 3.1.
As it can be seen, instead of creating a tree with two rules, one for PolicyType
and one for Amount, the algorithm used the attribute CustomerID to split the
data into two groups. The rule created by the tree is not even close to the
actual business rule shown in figure 3.1. This wrong rule is a big issue because
once we try to predict the outcome for a new customer, the tree will always
choose the Check policy only activity, even if the client has a normal policy. In
fact, this simple case could also show another similar issue when creating the
tree. If each account had an account manager identified with an attribute
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AccManagerID and a single manager was responsible for all the premium
accounts, the algorithm could choose the AccManagerID as one of the rules.
Analogous to the CustomerID case, once this manager stops handling premium
accounts, the tree rule will always choose a single path for all accounts. Hence,
having a human intervention when creating the tree can bring benefits to the
final outcome.

Figure 4.1: Automatically generated tree that uses a data attribute that is not
meant to be used.
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5
Examples

To finalize this dissertation, we will test the miner with an artificial case
and a real world one. As was explained before, in order to create more accurate
rules there will be human intervention to filter out some of the data attributes.

5.1
Artificial Case

The artificial case’s Petri net is represented in figure 5.1. This case is
based on the one present in the paper of Van der Aalst (1) and the dataset
used was obtained on the website of the Prom extension (10). In this case there
are 3 decision points: p0, p2 and p3.

Figure 5.1: Artificial Case - Petri Net

The rules created by the tree of place p0, figure 5.2, are similar, but
not equal, to the actual rules. The difference is that the actual business rule
separates the Amount at the value of 500 instead of 525. This difference is
negligible and happens due to the lack of data in the training set. For example,
if we had only two training samples, one with the Amount of 600 and another
with 450, the rule that would be created would use the value of 525. This
happens due to the fact that the decision tree cannot know where is the exact
splitting point between those two values, so the tree makes a guess at the
middle of those two values, which is 525, and uses this value in the rule.
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Figure 5.2: Decision Tree for place p0

The trees for places p2 and p3 are similar, since they are complementary1,
and are shown in figures 5.3 and 5.4, respectively. Both rules are simple and
are equal to the actual rule.

Figure 5.3: Decision Tree for place p2

5.2
Real World Case

The real world case that we will be using as the validation case is the
one used at the BPI 2017 challenge2. Instead of using the complete Petri net,
we are using a reduced one that was used by our team in the competition. The
simplified Petri net is shown in figure 5.5. As it can be seen, there are many

1A decision in p2 also sets the outcome for p3 and vice-versa.
2The BPI (Business Process Intelligence) Challenge 2017 was a competition sponsored

by Minit and Celonis that they provided participants with a real-life event log and asked
them to analyze these data using whatever techniques available, focusing on one or more of
the process owner’s questions or proving other unique insights into the process captured in
the event log.
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Figure 5.4: Decision Tree for place p3

transitions named as tau. All of them are a summary of activities that have
been simplified for an easier analysis of the net.

In the Petri net, there are 4 decision points: p4, p7, p8 and p9. Despite
the number of decision points, only p8 can be analyzed in this simplified net.
This happens because all tau transitions are invisible activities3 and because
the transition O_Create Offer is a duplicate activity. Due to this two facts, the
decision points p4, p7 and p9 end up with only one route available, eliminating
them from the analysis.

In figure 5.5 it can be seen that there are three possible outcomes for the
decision point p8 : A_Denied, A_Pending and W_Call incomplete files. If the
route taken is through W_Call incomplete files, it can either go through p8
again and be used as new training data or it can go through a different route
and end up at A_Cancelled.

The decision tree created for p8 is shown in figure 5.6. There are two
things that should be pointed out before we start the analysis of the results.
First is that all clients that do not have a CreditScore are set with the value of
zero, so the split in the decision tree reflects a segregation of clients that have
a CreditScore and clients who don’t. Second is that the A_Pending actually
reflects an approval for the offer made.

Table 5.1 summarizes the results obtained in an in-sample test for our
tree. As it is presented, the tree has a great accuracy, over 80%, for both
A_Denied and W_Call incomplete files and a really low accuracy, about 10%,
for A_Pending. If we take a closer look into the data and the tree we can
get some clues to why this is happening. The first split on the tree, using
the CreditScore, segregates clients who have a CreditScore and those who
don’t. Since there is not another split inside the group of clients that have
a CreditScore, there can only be two conclusions: either all, or at least most,
of the clients go only through one path (W_Call incomplete files), or there

3Since tau transitions are groups of activities they are not available inside the event logs.
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Figure 5.5: Real world case p0

is not much difference between groups that go through different paths. Table
5.2 shows the outcome for clients who have a CreditScore. It can be seen that
about 54% are asked for more data (W_Call incomplete files) and about 45%
are given the credit (A_Pending). Thus, invalidating the first possibility.

As we can see, basically, clients with CreditScore cannot be separated in
a group that is missing information (W_Call incomplete files) and one that
gets the credit (A_Pending). This implies that there may be some things that
are not represented in the event logs that affects the choice to give credit or
not. It could either be some missing documentation, such as mailing address,
or even some intangible aspect, such as the confidence that the bank has on the
client. For instance, a call from the account manager saying good things about
the client asking for credit probably enhances his chances of getting credit.
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Figure 5.6: Decision Tree for place p8

Another possible variant not inside the data is the date that the account was
open, which could indicate the clients "fidelity" to the bank. Also, there could
be some of the so called social engineering at work that is also a non-tangible
aspect of the negotiation.

Even though we could go further with this analysis, it is not in the scope
of this work to delve much into detail about this specific real world case, but
rather use it to validate our decision miner. The analysis already presented
has shown its value and how it could be used to better understand the dataset
used and the outcomes. In spite of the tree being unable to make good decision
between W_Call incomplete files and A_Pending, we were able to explain the
reason of this behavior. The result observed in this study only reinforces the
idea that, still, some sort of human interaction during this part of the process
is required.

5.3
Other algorithms

In spite of explaining in section 3.1 why some of the algorithms are not
the best choice for this work, we think it is important to test whether some
of them have a better performance than the decision tree. Specifically, we are
going to test the random forest and the naive bayes. For our test, we used the
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real world case data and did a cross validation test using 5 groups. The results
are shown in table 5.3.

As it can be seen, overall, the decision tree had the best performance
54.9%. The results also show that both the random forest and the nayve bayes
had a hard time separating A_Pending andW_Call incomplete files outcomes.
This strengths our point that there is probably information not represented
in the data that differentiates those two types of outcomes. With this test we
may conclude that, for this real world case, the decision tree is the best choice4

between the three algorithms.

5.4
State of the art

As far as we are aware, the state of the art of decision mining is described
in the work of Van der Aalst (1). Since it is the state of the art, we have
implemented our miner based on his work (1). It was tested using the same
test case as his work, described in section 5.1, and also using a real world case,
described in section 5.2.

In our work, besides showing some of the key aspects of the implemen-
tation, we have also discussed the results obtained by our miner in the real
world case. From our analysis of the results, we can see that, in addition of
being a tool that automates the decision-making process, the decision miner’s
decision tree can be used as a starting point in data analysis5.

5.5
Future Work

There are lots of things to be done when it comes to decision mining.
Just in this paper there are many possibilities of studies, specially if we discard
the assumption that the algorithm must represent business rules, like: testing
with other algorithms, using enhancers for the algorithms, like Gradient Boost
for the Decision Tree, and combining two or more algorithms. Some of these
approaches are likely to increase the accuracy obtained in our tests.

Another work that could be done is to solve the challenges that we stated
in section 3.2. This would be a great advance in decision mining. Just in our
real world test case 3 out of the 4 decision points were eliminated due to one
of more of these challenges.

4It is the best choice considering the overall result, if we were interested in predicting
A_Denied and were not worried about representing business rules, the Naive Bayse would
be the best one.

5The whole analysis done in section 5.2 started and was based in the decision tree.
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Table 5.1: In-sample test accuracy.
Output Accuracy

W_Call incomplete files 82.8%
A_Denied 81.3%
A_Pending 11.5%

Table 5.2: Outputs for clients that have CreditScore.
Output Percentage of cases

W_Call incomplete files 54.8%
A_Pending 45.2%
A_Denied 0.0032%

Table 5.3: Algorithms performance in a 5 fold Cross Validation test.
Output Decision Tree Random Forest Naive Bayes
W_Call

incomplete files
82.5% 67.9% 32.7%

A_Pending 12.1% 30.0% 48.6%
A_Denied 81.3% 65.8% 99.1%
Total 54.9% 52.9% 44.6%
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6
Conclusions

In this dissertation, the state of the art of decision mining was reviewed
based mostly on the work of van der Aalst (1) through the development of a
decision miner in Python.

We’ve started by presenting the basic concepts of Petri nets, since it is
the base model used by the miner. Afterwards we’ve presented the challenges
associated to decision mining (invisible activities, duplicate activities and loops)
and ways to solve them. Then, it was shown that between several supervised
machine learning algorithms, the decision tree is the best option for this task
due to its flexibility, when it comes to data handling, and intuition1.

To finalize this dissertation, we’ve tested the decision miner using a real
world case. We could see that the miner was capable of creating a decision
tree for the decision point and them we’ve made an analysis of the result.
During this analysis we were able to explain why the result was not as good
as we expected. This result also reinforced the fact that, still, some level of
human intervention is required during the final steps. It is also important to
remark that, even though the decision miner was created to only automate the
decision-making, the data frame structure used, as well as, the decision tree,
can help us get some insights about the data and also help in other types of
data analysis just as the ones presented in the study.

1The association that can be made between the trees splitting rules and the actual
business rules.
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