Título: | UMA IMPLEMENTAÇÃO EM ELEMENTOS DE CONTORNO PARA PROBLEMAS DE MECÂNICA DA FRATURA USANDO FUNÇÕES GENERALIZADAS DE WESTERGAARD. | ||||||||||||
Autor: |
MARILENE LOBATO CARDOSO |
||||||||||||
Colaborador(es): |
NEY AUGUSTO DUMONT - Orientador |
||||||||||||
Catalogação: | 05/FEV/2019 | Língua(s): | PORTUGUÊS - BRASIL |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=36545&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=36545&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.36545 | ||||||||||||
Resumo: | |||||||||||||
No método dos elementos de contorno tradicional, a modelagem numérica de trincas é usualmente realizada por meio de uma solução fundamental hipersingular. Um procedimento mais natural seria utilizar uma solução fundamental capaz de representar a singularidade 1/raiz quadrada r que surge quando se analisa o campo de tensões próximo à ponta da trinca. Esta representação já foi realizada por Dumont e Lopes em 2003, com alguns refinamentos conseguidos por Dumont e Mamani em 2011, numa formulação do Método Híbrido de Elementos de Contorno, onde as soluções fundamentais são desenvolvidas a partir de funções de tensão generalizadas do tipo Westergaard para problemas de trincas com deslocamento prescrito, conforme proposto por Tada et al, em 1993. O presente trabalho, que é uma continuação das pesquisas de Dumont e Mamani, realiza um estudo sobre o uso destas funções generalizadas para a representação de grandezas na ponta da trinca em problemas de elasticidade e potencial. Os resultados obtidos são comparados conceitualmente com os desenvolvimentos clássicos de Westergaard e Williams. Também foram analisados alguns resultados com funções de tensão generalizadas de trinca com abertura semielíptica e polinomiais, além do uso de funções que representam a rotação relativa das faces
da trinca. Além disso, é apresentada a aplicação da função de tensão de Westergaard generalizada como solução fundamental do método dos Elementos de Contorno Convencional, mais especificamente para a obtenção da matriz G do sistema, uma vez que a matriz H já foi desenvolvida, em trabalhos anteriores, com bons resultados. São apresentados alguns exemplos numéricos de aplicação para contornos externos, furos e trincas.
|
|||||||||||||
|