Título: | COMBINANDO PARA TER SUCESSO: UMA NOVA ESTRATÉGIA PARA MELHORAR A PREVISÕES DE MODELOS DE AMORTECIMENTO EXPONENCIAL | ||||||||||||
Autor: |
TIAGO MENDES DANTAS |
||||||||||||
Colaborador(es): |
FERNANDO LUIZ CYRINO OLIVEIRA - Orientador |
||||||||||||
Catalogação: | 04/FEV/2019 | Língua(s): | INGLÊS - ESTADOS UNIDOS |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=36435&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=36435&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.36435 | ||||||||||||
Resumo: | |||||||||||||
A presente tese se insere no contexto de previsão de séries temporais. Nesse sentido, embora muitas abordagens tenham sido desenvolvidas, métodos simples como o de amortecimento exponencial costumam gerar resultados extremamente competitivos muitas vezes superando abordagens com maior nível de complexidade. No contexto previsão, papers seminais na área mostraram que a combinação de previsões tem potencial para reduzir de maneira acentuada o erro de previsão. Especificamente, a combinação de
previsões geradas por amortecimento exponencial tem sido explorada em papers recentes. Apesar da combinação de previsões utilizando Amortecimento Exponencial poder ser feita de diversas formas, um método proposto recentemente e chamado de Bagged.BLD.MBB.ETS utiliza uma técnica chamada
Bootstrap Aggregating (Bagging) em combinação com métodos de amortecimento exponencial para gerar previsões mostrando que a abordagem é capaz de gerar previsões mensais mais precisas que todos os benchmarks analisados. A abordagem era considerada o estado da arte na utilização de Bagging e Amortecimento Exponencial até o desenvolvimento dos resultados obtidos nesta tese. A tese em questão se ocupa de, inicialmente, validar o método Bagged.BLD.MBB.ETS em um conjunto de dados relevante
do ponto de vista de uma aplicação real, expandindo assim os campos de aplicação da metodologia. Posteriormente, são identificados motivos relevantes para redução do erro de e é proposta uma nova metodologia que utiliza Bagging, Amortecimento Exponencial e Clusters para tratar o efeito covariância, até então não identificado anteriormente na literatura do método. A abordagem proposta foi testada utilizando diferentes tipo de séries temporais da competição M3, CIF 2016 e M4, bem como utilizando dados
simulados. Os resultados empíricos apontam para uma redução substancial na variância e no erro de previsão.
|
|||||||||||||
|