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Abstract

Dantas, Tiago Mendes; Oliveira, Fernando Luiz Cyrino (Advisor).
Combining to succeed: A novel strategy to improve fore-
casts from Exponential Smoothing models. Rio de Janeiro,
2018. 80p. Tese de doutorado – Departamento de Engenharia In-
dustrial, Pontifícia Universidade Católica do Rio de Janeiro.

This thesis is inserted in the context of time series forecasting. In this
sense, although many approaches have been developed, simple methods such
as exponential smoothing usually produce extremely competitive results, of-
ten surpassing approaches with a higher level of complexity. Seminal papers
in time series forecasting showed that the combination of forecasts has the
potential to dramatically reduce the forecast error. Specifically, the combi-
nation of forecasts generated by Exponential Smoothing has been explored
in recent papers. Although this can be done in many ways, a specific method
called Bagged.BLD.MBB.ETS uses a technique called Bootstrap Aggrega-
ting (Bagging) in combination with Exponential Smoothing methods to
generate forecasts, showing that the approach can generate more accurate
monthly forecasts than all the analyzed benchmarks. The approach was
considered the state of the art in the use of Bagging and Exponential Smo-
othing until the development of the results obtained in this thesis. This
thesis initially deals with validating Bagged.BLD.MBB.ETS in a data set
relevant from the point of view of a real application, thus expanding the
fields of application of the methodology. Subsequently, relevant motifs for
error reduction are identified and a new methodology using Bagging, Expo-
nential Smoothing and Clusters is proposed to treat the covariance effect,
not previously identified in the method’s literature. The proposed approach
was tested using data from three time series competitions (M3, CIF 2016
and M4), as well as using simulated data. The empirical results point to a
substantial reduction in variance and forecast error.

Keywords
Bagging; Clustering Time Series; Exponential Smoothing; Parti-

tioning Around Medoids; Variance Reduction.
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Resumo

Dantas, Tiago Mendes; Oliveira, Fernando Luiz Cyrino. Combi-
nando para ter sucesso: uma nova estratégia para melho-
rar a previsões de modelos de amortecimento exponencial.
Rio de Janeiro, 2018. 80p. Tese de Doutorado – Departamento de
Engenharia Industrial, Pontifícia Universidade Católica do Rio de
Janeiro.
A presente tese se insere no contexto de previsão de séries tempo-

rais. Nesse sentido, embora muitas abordagens tenham sido desenvolvidas,
métodos simples como o de amortecimento exponencial costumam gerar
resultados extremamente competitivos muitas vezes superando abordagens
com maior nível de complexidade. No contexto previsão, papers seminais na
área mostraram que a combinação de previsões tem potencial para reduzir
de maneira acentuada o erro de previsão. Especificamente, a combinação de
previsões geradas por amortecimento exponencial tem sido explorada em pa-
pers recentes. Apesar da combinação de previsões utilizando Amortecimento
Exponencial poder ser feita de diversas formas, um método proposto recen-
temente e chamado de Bagged.BLD.MBB.ETS utiliza uma técnica chamada
Bootstrap Aggregating (Bagging) em combinação com métodos de amorte-
cimento exponencial para gerar previsões mostrando que a abordagem é
capaz de gerar previsões mensais mais precisas que todos os benchmarks
analisados. A abordagem era considerada o estado da arte na utilização
de Bagging e Amortecimento Exponencial até o desenvolvimento dos re-
sultados obtidos nesta tese. A tese em questão se ocupa de, inicialmente,
validar o método Bagged.BLD.MBB.ETS em um conjunto de dados rele-
vante do ponto de vista de uma aplicação real, expandindo assim os campos
de aplicação da metodologia. Posteriormente, são identificados motivos re-
levantes para redução do erro de e é proposta uma nova metodologia que
utiliza Bagging, Amortecimento Exponencial e Clusters para tratar o efeito
covariância, até então não identificado anteriormente na literatura do mé-
todo. A abordagem proposta foi testada utilizando diferentes tipo de séries
temporais da competição M3, CIF 2016 e M4, bem como utilizando dados
simulados. Os resultados empíricos apontam para uma redução substancial
na variância e no erro de previsão.

Palavras-chave
Bagging; Agrupamento de séries temporais; Amortecimento expo-

nencial; Partitioning Around Medoids; Redução de variância.
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"Look up at the stars and not down at your
feet. Try to make sense of what you see, and
wonder about what makes the universe exist.
Be curious"

Stephen Hawking, .
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1
Introduction

With the acceleration of industrial development and the intensification of
competitiveness, the lack of a well-designed planning stage that meets current
and future needs has a direct impact on the entire production chain. Not
planning properly, regardless of the size of the company, within the context
of Production Systems, means incurring in several problems in the future. For
example: lack of labour, raw material, among other limitations of productive
processes that has as a consequence the inability to meet the demands of the
consumer market.

The lack of knowledge about the future and the inherent randomness of
short, medium and long term projections make forecasting methods extremely
necessary in the planning and management stages of Production Systems. A
forecasting method that is able to accurately predict the future has as its
great asset the quantification of uncertainty so that decision making can be
done more efficiently, see [1].

Having the importance of producing accurate forecasts in mind, time
series forecasting researchers have been developing statistical models and
methods for decades, see [38] for a comprehensive review.

Interestingly, a field called Machine Learning has become popular in
recent years, driven by the evolution of computers, that allowed increasingly
powerful machines to be available at low cost, and the creation of "Machine
Learning as a Service" clouds which allowed powerful algorithms to be easily
delivered to everybody, see [42].

The use of techniques that combine both classic statistical models and
modern Machine Learning approaches are starting appear in time series
forecasting literature and recent studies have shown promissing results, for
instance see [13] and [33].

Understanding that the results from the combination of techniques and
approaches are the state of the art in time series forecasting, this thesis
seeks to combine both classical time series forecasting methods and Machine
Learning methods. Therefore, it starts by validating the methodology in [13]
that combines Bootstrap Aggregating (Bagging) with Exponential Smoothing
methods, on a real air transport demand forecast issue, expanding then the
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Chapter 1. Introduction 14

fields of application of the method. Afterwards, this thesis seeks to identify
and give intuition on why the method works. By doing so, possible aspects
of improvement are identified and these improvements are packed into a
new method called Bagged.Cluster.ETS, since it uses Bagging, Clusters and
Exponential Smoothing.

The proposed approach is tested using simulated data to check and
compare specific aspects, such as variance, and data from three forecasting
competitions to access forecast accuracy. It is shown that the proposed
approach is able to not only address the drawbacks in [13], but also reducing
forecast error in many cases when compared to all benchmarks.

The main motivation to create the proposed approach, hereby called
Bagged.Cluster.ETS, which is also the main motivation for this thesis, is
that despite of the fact that existing methods using Bagging and Exponential
Smoothing to generate and aggregate a group of forecasts in order to reduce
variance, none of them consider the effect of covariance among the group of
forecasts, even though it could drastically impact the total variance of the
group and, therefore, the forecast accuracy.

Next chapters are organized as follows: chapter 2 is dedicated to present
the presents the literature review about Bagging in time series forecasting
context to contextualize how this work is inserted in the state of the art.
Chapter 3 explain Bagged.BLD.MBB.ETS in details. Chapter 4 presents the
application of Bagged.BLD.MBB.ETS to a real problem on air transportation
context, including a literature review on demand forecasting using time series
forecasting methods. Chapter 5 is devoted to present the proposed approach
called Bagged.Cluster.ETS. This is done by first explaining why Bagging
works, the drawbacks in the methodology proposed by Bergmeir et al. in [13]
and, then, proposing the methodology itself. The chapter is finalized validating
the methodology using simulated data, and data from 3 competitions M3, CIF
2016 and M4. Finally, chapter 6 is dedicated to the final considerations and
directions to future research.
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2
Literature Review and Contributions

With the final goal of generating forecasts as accurate as possible,
several time series forecasting methods have been developed in the literature,
see [38]. However, while many complex methods have been proposed, it
is yet remarkable that simple approaches usually obtain good forecasting
performance, many times beating strong and more complex contestants, see
[39] for a comparison between Dynamic Linear Models and simpler models
such as the Exponential Smoothing and [33] for results on one of the latest
time series forecasting competition up to this date.

Considering simplicity as a starting point, [40] presents how the Holt-
Winters, a particular method from the class of Exponential Smoothing, see
[37], have been evolving in order to incorporate new features such as multiple
cycles, see [41]. Evolving the Exponential Smoothing is desirable, since the
method is widely recognized as being both simple and highly accurate.

In [2] Breiman introduces the Bagging method as a way to reduce the
prediction error using multiple versions of a predictor. Each of these versions
are generated resampling the learning set using a technique called Bootstrap,
see [3]. Breiman’s paper is considered seminal and have been referenced
thousands of times. However, despite the fact that many other papers using
Bagging in the field of Machine Learning have been published, just a few
of them use Bagging to improve time series forecasting performance. We next
describe a chronological review of relevant works using Bagging in a time series
forecasting context:

– The work of Inoue and Killian in [4] presents one of the first attempts
to use Bagging in time series context. The authors concluded, using an
econometric approach, that Bagging was responsible for reducing the
forecast error.

– Lee and Yang in [5], used Bagging to model binary and quantile time
series data (e.g. time series of sign of a financial return). A large reduction
in the prediction error was found but no improvements with large samples
were verified.

– Inoue and Killian in [6] proposed three variants of the Bagging algo-
rithm in order to verify whether the inclusion of real economic activity
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Chapter 2. Literature Review and Contributions 16

indicators to U.S consumer price inflation forecasting model was able to
reduce the prediction Mean Squared Forecast Error (MSFE) estimates.
The author’s findings pointed that MSFE was indeed reduced.

– In [7], Cordeiro and Neves proposed a combination of Bagging and
Exponential Smoothing in an approach called Boot.EXPOS. Although
the idea from the authors was interesting, their results were not really
consistent when tested using data from the M3 competition, see [22] on
the original M3 competition.

– Hillebrand and Medeiros in [8] applies Bagging to a log-linear model and
a non-linear specification with logistic transitions to increase forecast
accuracy for realized volatility, showing that Bagging log-linear model
provides larger improvements on forecast accuracy.

– Rapach and Strauss in [9] showed that a combination of Bagging and
Dynamic Linear Regression models to forecast the U.S. employment
growth often lead to MSFE reduction.

– Wang et al. proposed in [10] a multi-ensemble hybrid system using Bag-
ging, Supporting Vector Machines (SVM) and Artificial Neural Networks
(ANN) to make forecasts for chaotic time series. The authors demon-
strated the approach using Bagging is capable of generating more accu-
rate results in comparison with other ensemble methods and single-model
SVM or ANN.

– Zontul et al. in [11] proposed a successful combination of Bagging with an
algorithm called REPTree to produce wind speed forecasts in Kirklareli
(Turkey). However, the lack of other regions poses as a drawback of the
paper.

– The work of Jin et al. in [12] proposed a revised version of Bagging
to consider the dependency in time series data. They also demonstrate
that Bagging was able robustify financial time series forecasts even when
models are poorly specified.

– Bergmeir et al. in [13] proposed an approach combining Bagging with
exponential smoothing methods and perform an extensive evaluation by
making forecasts for the M3 competition data set (645 yearly, 756 quar-
terly and 1428 monthly time series), demonstrating that their approach
is extremely accurate, specially for monthly time series.

The results presented in [13] are quite important because they show
an impressive reduction on the forecasting error for Exponential Smoothing
methods, indicating an enourmous potential to improve forecasts in many
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Chapter 2. Literature Review and Contributions 17

fields. In this sense, in a result also verified in this thesis, Dantas and Cyrino
Oliveira in [14] expanded the fields of application to the air transportation
industry by showing the method proposed in [13] was able to outperform the
benchmarks (SARIMA, Holt Winters, ETS, and Seasonal Naive). The paper
poses itself as an important proof of the method’s capacity due to its use on a
real problem.

Despite the fact the work in [13] contributes significantly to an area yet
poorly explored that is the combination of traditional times series and machine
learning methods, the work leave some aspects unattended. First aspect is
the lack of validation on other datasets than the M3 competition, since the
competition, although the main reference, is a bit outdated by now. Second
aspect refers to the lack of explanation or even intuition on why their method
works. Finally, the third aspect derives straight from the second, since by not
having a proper explanation on why their method works, the authors missed
one important point of improvement that is to consider the covariance among
the aggregated forecasts.

Filling the gaps left unattended in [13] is the main motivation to this
thesis, where it is expected that making significant contributions to what is,
up to this date, the documented state of the art in time series forecasting, would
lead the whole forecasting field to better forecasts methods and practices.

2.1
Contributions

This thesis seeks to make contributions to the time series forecasting
field. One important contribution lies on expanding the fields of application of
the method proposed in [13]. This is done by applying the approach to real air
transport demand data. This contribution has beneficial implications on how
forecasts can be done in the air transportation field.

Another contribution is an analysis on why Bagging tends to improve
forecast accuracy of the Exponential Smoothing method, filling a gap left
unattended in [13] and showing that covariance plays a fundamental role in it.

Identifying the possible underlying reasons on why the method produces
lower forecast errors is fundamental when one is trying to get even better
results. This leads to the main contribution of the thesis that is to take
into account aspects left unattended by the previous authors to propose
a new method using Bagging, Exponential Smoothing and Clusters, called
Bagged.Cluster.ETS. The method is extensively tested and compared with
other methods, including the state of the art.

The first contribution has direct relation to the author’s published paper
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"Air transportation demand forecast through Bagging Holt Winters
methods" in the Journal of Air Transport Management, Volume 59, March
2017, Pages 116-123 and can be found in chapter 3 and 4 of the thesis.

The core ideas and results developed in this thesis that constitute the
other major contributions are found in chapter 5 and have a strong relation
with the author’s already published paper "Improving Time Series Fore-
casting: an Approach Combining Bootstrap Aggregation, Clusters
and Exponential Smoothing" in the International Journal of Forecasting,
Volume 34, October-December 2018, Pages 748-761.

Next chapter is devoted to explaining in details the state of the art of
Bagging and Exponential Smoothing, called Bagged.BLD.MBB.ETS.
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3
The state of the art of Bagging Exponential Smoothing -
Bagged.MBB.BLD.ETS

This chapter is devoted to explaining in details the main aspects of
Bagged.BLD.MBB.ETS, the method proposed by Bergmeir et. al in [13]. Since
the method was proposed a lot of attention was given to it and papers using
the methodology have been written. Besides the paper on air transportation
(product of this thesis), recently, Meira and Cyrino Oliveira in [84] successfully
applied the approach to the energy sector and Petropoulos et al. in [47] have
explored sources of uncertainty in the method, although they have not explored
the one to be presented in this thesis that is the covariance.

3.1
Bagged.BLD.MBB.ETS

The approach can be divided into five major steps: transformation,
decomposition, simulation, forecasting and aggregation. The steps and the
specific choices made by Bergmeir and colleagues in [13] are described next:

Step 1 - Transformation

– Transform the time series;

The first step of the approach is to transform the time series. The
transformation is conducted using the family of Box-Cox transformations, see
[19]. This transformations are defined as follow:

wt =

log(yt) if λ=0;

(yλt − 1)/λ otherwise.

Note when λ=0 then transformation simply reduces to natural logarithm.
However it is up to the user to define the λ that suits best to each series. In
Bagged.BLD.MBB.ETS, the method proposed by Guerrero in [43] is used. The
reason why choosing Guerrero’s method is because it is know that it acts as a
variance stabilizer. Stabilizing variance is a desired feature since high variances
can severely impact the performance of the subsequent steps.
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Step 2 - Decomposition

– Decompose the time series into three components: seasonal, trend and
remainder;

Although there are several methods to decompose time series,
Bagged.BLD.MBB.ETS uses the Seasonal-Trend decomposition using LOESS
(STL decomposition), proposed by in [20]. STL is an additive method that
applies a sequence of smoothing operations using Locally Weighted Regression
(LOESS) to decompose the time series into three components: Seasonal (St),
Trend (Tt), and Remainder (Rt):

yt = St + Tt +Rt (3-1)
The method has many interesting features, such as being flexible in

a sense that the amount of variation over time in the seasonal and trend
components can be specified by the user, robustness to outliers and missing
values. As an example, see figure 3.1 for a STL decomposition of the
logarithm of Mauna Loa Atmospheric CO2 Concentration time series, see [44]
for reference on the time series.

Figure 3.1: STL decomposition of the Logarithm of the CO2 series

When there is no seasonal pattern in the time series, the decomposition
is made using a loess-based procedure, see [77]. In this case, the decomposition
reduces to only Trend (Tt) and Remainder (Rt) components:

yt = Tt +Rt (3-2)
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Step 3 - Simulation

– Generate new versions of the remainder;

– Add back the seasonal and trend components to each of the new versions
of the remainders;

– Detransform the versions using the same λ used in step 1.

In order to generate new versions of the remainder the Bootstrap method,
proposed by Efron in [3] is used. The method has been largely used in a wide
variety of situations where there is uncertainty regarding an estimator or the
quality of a method. Its great advantage lies in the fact that it cab be easily
implemented in a series of situations where the calculation of some parameter
of interest cannot be found in a trivial way. Although extremely powerful, the
method was initially developed for independent data. A theoretical proof is
presented by Singh in [46], attesting the quality of the method for cases where
the data is independent. However, the author indicate that for dependent data,
the method elaborated by Efron in [3] is inadequate.

It is important to understand that the remainder component may still be
serially correlated. This means that if one simply resample remainder obser-
vations without taking serial correlatation into account, then the dependency
structure might be lost. To overcome this problem, Bagged.BLD.MBB.ETS
uses Moving Block Bootstrap (MBB), a technique created by Kunsch in [45]
to maintain the dependency structure almost intact by breaking the series into
blocks and resampling only the blocks.

The MBB idea is to construct and randomly select blocks of consecutive
observations. The method can be describes as follows:

Bi = (yi, ..., yi+l−1) (3-3)
Is the block of size l , beginning at the observation yi, from a stationary

process, 1 ≤ i ≤ b where b = n− l+1. Selecting by simple random sample with
replacement from the set of blocks {B1, B2, .., Bb} a new sample is formed by
B∗1 , .., B

∗
k where k is the number of selected blocks. The elements in B∗i can be

denoted by (y∗(i−1)l+1, .., y
∗
il), i = 1, ..., k. Thus, the MBB sample, of size m = kl

is y∗1, .., y∗m. A visual representation of the approach can be seen in the work of
of Fotios and colleagues in [47] reproduced in figure 3.2.
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Figure 3.2: MBB - Source: Petropoulos et al. in [47]

One important aspect to consider is the size of the block. While one can
determine it based on any criteria, Bergmeir and colleagues in [13] consider
the size of the blocks as the double of the frequency of the time series (e.g.
24 for monthly time series and 8 for quarterly). This is justified by the fact
that some seasonal effect may remain in the remainder. Thus, having blocks
with this size would diminish the impact of seasonal effects not captured by
the decomposition phase.

Step 4 - Forecasting

– Make forecasts for each Bootstrapped time series plus the original;

Although many forecasting methods exist (e.g. SARIMA, Neural Nets,
THETA, among many others), the Exponential Smoothing is the forecast-
ing method adopted by Bagged.BLD.MBB.ETS. The explanation given by
Bergmeir and colleagues in [13] on the use of the method is due to its rel-
evance even after 50 years of existence, see [40], simplicity and transparency
and adaptiveness to changes. Also, the work of Hyndman and colleagues in [37]
gave the method strong theoretical support in a form of a state space approach
called ETS. The ETS models allow to produce not only point forecasts, as the
Exponential Smoothing algorithm in the past did, but also an entire forecast
distribution allowing to determine forecast intervals. Since ETS is an state
space approach, the models have an observation equation and transition equa-
tions for each component (level, trend and seasonal) and each of the models
have additive or multiplicative errors. Taking all this variations into account a
total of 30 models are defined using the approach. The ETS stands for Error,
Trend, Seasonal, and the models can be uniquely defined using the taxonomy
bellow:
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– Error={A,M }

– Trend={ N,A,Ad,M,Md }

– Seasonal={ N,A,M }

Where A is additive, M is multiplicative, Ad is additive damped, Md is
multiplicative damped and N is none. Figure 3.3 reproduces a table in [1]
that presents the equation for each of the 30 models.

Figure 3.3: ETS - Source: Hyndman and Athanasopoulos in [75]

The ETS models are implemented in R. The ets function from the
forecast package implements this type of models , see [48]. If the model is
not specified by the user, the ets function have a fully automatic selection of
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model using Akaike’s Information Criterion (AIC). In this thesis, version 8.0
of the package was used.

Step 5 - Aggregation

– Aggregate the forecasts to generate the final result.

The aggregation of the forecasts can be done using many measures,
eg. simple mean, median, weighted mean, trimmed mean etc. However, it is
important to have in mind that depending on the distribution of the forecasts,
the results might change a lot. This is especially true in the presence of outliers.
In this sense, Bagged.BLD.MBB.ETS uses the median as the aggregation
method, since it is less sensitive to outliers. Figure 3.4 shows the flowchart of
entire the approach.
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Figure 3.4: Bagged.BLD.MBB.ETS flowchart
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4
Bagged.BLD.MBB.ETS to an Air Transport problem

The Bagged.BLD.MBB.ETS approach was proposed and successfully
tested on data from the M3 competition. Inspired by the good results, in this
chapter it is presented the first contribution of the thesis. This is an application
of the method to a real air transport issue that is to forecast the air passenger
demand.

In this sense, this chapter is a product of the feedbacks from the experts
in forecasting and air transport about the following conference papers:

– Forecasting the Air Transportation Demand: An application at Am-
sterdam Schiphol Airport using Bagged Holt Winters assisted by
Compression-Based Dissimilarity measure - International Sympo-
sium on Forecasting - California - USA 2015 - Awarded with
the travel grant award

– Bagging ARIMA para previsão de demanda de transporte aéreo - En-
contro Nacional de Engenharia de Produção - Fortaleza -
Brazil 2015

Furthermore, these feedbacks highly influenced not only the creation of
this chapter but also this chapter’s heavily based related publication in the
Journal of Air Transport Management, one of the finest journals in the field
of air transportation:

– Air transportation demand forecast through Bagging Holt Winters meth-
ods - Journal of Air Transport Management, Volume 59, March
2017, Pages 116-123.

4.1
introduction

The air transport sector has an enormous relevance in both social and
economic aspects of country’s developments, see [60]. Due to this, the problems
related to the air transportation field usually are not simple and being subject
to modern optimization techniques based on operations research (OR) theories,
see [61] for an overview of OR techniques applied to the air transportation field.
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These techniques apply to several areas such as aircraft and crew scheduling,
revenue management, overbooking, leg-based seat inventory management and
the planning and operations of aviation infrastructure.

Demand forecast plays an important role, since it affects the entire air
transport operation. Inaccurate forecast can have disastrous consequences such
as system congestion, excess infrastructure capacities, increased operator’s
costs, public and private drainage of funds, among others.

This chapter uses Bagged.BLD.MBB.ETS in order to generate short to
medium term forecast (1 year ahead) for the air transport demand. This work
was the first one to use the method in the air transport context and by the
time the related paper was published, March 2017, was a novelty in the sector.

Next section briefly reviews the literature about air transportation fore-
casting. Section 3 explains the specific choices in the methodology. Section 4 is
dedicated to present data and the evaluation metrics used in the study. Section
5 is dedicated to presenting the results. Finally, the last section presents the
conclusions.

4.2
Literature Review on Air Transport Time Series Forecast

Several methods have been considered to forecasting the air transport
demand. In general, two approaches are common to address this issue: causal
econometric models and univariate time series models. The econometric ap-
proach seeks to identify relationships between, e.g. total air passengers and
social, economic, and service-related factors. The univariate time series ap-
proach only depends on the past of the series to generate forecasts, making
use of the correlation between present and past observations.

In order to check the state of the art of the air passenger demand
forecast, we have conducted an online search for papers combining the words
air transport and forecast. Considering only the most recent (since the year
2000), a total of 68 papers have been found. However, not all of them have a
direct relationship with air transport demand forecast.

In [62] it is presented a modified version of the Holt Winters method
called Holt Winters with damped trend. The authors consider monthly time
series of total air Passengers at UK airports to demonstrate that their approach
improves forecasting performance for long lead times. One interesting feature
of their method is that it allows generating low, medium and high scenarios
by just varying the future trend. Another application of forecasting was
developed in [63] and predicts survival probabilities of Asian Airlines using
an adapted Markov Model that takes into account the relationship between
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airline growth and profitability. An application in [64] uses leading indicators
such as macroeconomic variables as input for a Probit model for predicting
short-term shifts in demand for business travels by air to and from the United
Kingdom. The forecasts generated by the approach were shown to be more
precise in comparison with the benchmark linear model.

Considering sensitive events, the work in [65] evaluate the impact of
September 11 on the United States air travel demand. They consider an inter-
vention model to show that there was a significant impact for 1 month, con-
sidering domestic demand, and 2 months, considering international demand.
They also make forecasts using the approach and compare it with forecasts
generated by an ARIMA model, demonstrating the superiority of their ap-
proach. Specifically to the United States, [67] analyses whether it is better to
forecast the air travel demand using aggregated data at a national level or to
aggregate the resulting forecasts of individual airports.

Considering Artificial Neural Networks, the work in [66] developed a mul-
tivariate hybrid approach to forecast the Brazilian air transportation demand,
showing the approach was superior when compared with an econometric ap-
proach.

Regarding city-pairs, [68] not only considered an Artificial Neural Net-
work Model but also logistic regression algorithms to forecast the probability
of unconnected city-pairs being connected in the future by an air route. While,
in [70] two gravity models are considered to forecast air passenger volume
between city pairs.

Considering the performance of official forecasts, in [69] autoregressive
and exponential smoothing methods were used to make independent forecasts
for the total number of passengers at Lisbon Airport. The forecasts are
compared to the one made by the government to demonstrate that the official
forecasts were too optimistic.

A combination of methods is proposed in [71]. The authors put a high ef-
fort on developing a Neuro Fuzzy method based on Singular Spectral Analysis.
The study uses data from the Hong Kong International Airport to show that
the approach was capable of producing better forecasts when compared with
several methods and models like ARIMA, Multi-Layer Perceptron, Wavelet
Neural Network, Takagi-Sugeno-Kang Recurrent Fuzzy System, Classical De-
composition and Singular Spectral Analysis.

The literature review resulted in no evidence, as far as we are aware, of
the application of a combined approach of Bootstrap aggregating (Bagging)
and time series forecasting methods to predict air transport demand.
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4.3
Data description

The data considered in the study are proxy time series for the air
passenger demand (national level). A total of 14 countries was considered in
the study. The majority of the countries are located in Europe (Belgium, Czech
Republic, Denmark, Germany, Greece, Ireland, Italy, Netherlands, Portugal,
Spain and the United Kingdom) but countries out of Europe were also
considered (Australia, Brazil and the United States of America). For the
European countries the monthly time series of total passengers carried was
used and the data was obtained from EUROSTAT. The Australian data was
obtained from the Bureau of Infrastructure, Transport and Regional Economics
(BITRE). The Brazilian data provided by the National Civil Aviation Agency
of Brazil (ANAC) and for the United States, data from the Bureau of
Transportation Statistics (BTS) for the USA was used.

The period considered in the majority of the countries was from January
2007 to December 2014. The only exceptions are Ireland and the United
Kingdom which data runs from January 2003 to December 2014. In all cases,
data before 2014 was used as training set (in-sample) and from January 2014
to December 2014 was used as a test set (out-of-sample).

The series in the study, exhibit visual trends. However, the perceived
growth is not homogeneous in all 14 countries. For example, Europe and
USA have slower growth rates in comparison to Australia and Brazil. Another
example is the perceived effects of the world economic crisis in 2008 and 2010
that even persisted in the subsequent years in some countries, such as the case
in Ireland, Spain, Greece, and U.K. Portugal. The non-European countries
behaved in another way. The effects of the crisis lasted longer in the USA and
a stationary period can be seen. The growth rates in Brazil were interestingly
high and the country has only experienced the effects of the crisis and other
internal problems after 2014. Finally, Australia experienced high growth rates.
Despite the differences found in each country, it is clear that there is a strong
seasonal pattern governing all time series, see 4.1.
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Figure 4.1: Air Passenger demand by country

4.4
Methods

The Bagged.BLD.MBB.ETS showed in chapter 3 is used, but it is also
considered a particular case to specifically address the known properties of the
time series. In this sense, knowing that all time series presents a strong seasonal
pattern and in some cases, trend, the model in the Exponential Smoothing tax-
onomy are restricted do MAM and AAM (Holt Winters method). Also, the lack
of evidence that the results were getting any better after the transformation-
detransformation process led to the decision of not using the Box-Cox trans-
formation. It its important to understand that the choices made are, in fact,
particular cases of the original approach, since one of the possible Box Cox
transformations is the identity and Holt Winters is part of the ETS family
of models. Figure 4.2 shows a flowchart of the approach considering these
choices.
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Figure 4.2: Bagging Holt Winters Flowchart
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In order to access the quality of the approach the Symmetric Mean
Absolute Percentage Error (sMAPE), defined by Makridakis in [72] was used.
The metric gives a symmetric penalty to positive and negative value and is
scale-free. This allows direct comparison between time series with different
scales. See equation 4-1.

sMAPE = 2
T

T∑
t=1

|yt − ŷt|
|yt|+ |ŷt|

(4-1)

The method proposed by Bergmeir and colleagues in [13],
Bagged.BLD.MBB.ETS, and its restricted version, Bagged Holt Winters,
was compared to other four benchmarks: SARIMA, Exponential Smoothing
(both the state-space approach called ETS and Holt Winters) and Seasonal
Naive.

4.5
Forecasting Results

The results presented in table 4.1 indicated that Bagged.BLD.MBB.ETS
was able to substantially reduce the forecast error in the majority of the coun-
tries in comparison to its single counterparts (ETS to Bagged.BLD.MBB.ETS
and Holt Winters to Bagged Holt Winters). The sMAPE of the approaches
using Bagging was on average 20% lower than their single counterparts addi-
tive Holt Winters, multiplicative Holt Winters and ETS. Specifically, Bagging
with the multiplicative Holt Winters led to a reduction of, approximately, 33%
in comparison to a single multiplicative Holt Winters. The case with Bagging
with additive Holt Winters led to a reduction of, approximately, 17% when
comparing to a single additive Holt Winters. Finally, Bagging with ETS mod-
els led to a reduction of, approximately 11%, in comparison to a single ETS
model.

Comparing the best approaches using Bagging and the benchmarks
(ETS, Holt Winters, SARIMA and Seasonal Naive) there were reductions in
sMAPEs in almost all countries. In this sense, the sMAPE of the best Bagging
approach was on average 32% lower in comparison to the best Holt Winters
in each country, 37% in comparison to SARIMA, 38% in comparison to ETS
and 43% in comparison to Seasonal Naive. The forecasts using the best model
with Bagging along the actual values are shown in figure 4.3.

One of the possible explanations on why Bagging with ETS performed
worse than with Holt Winters is due to the automatic selection of models.
While using Bagging with additive or multiplicative Holt Winter only generate
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an ensemble of forecasts created by the same model with different parameters,
the ETS makes an ensemble of forecasts created by more them one model with
different parameters.

Table 4.1: sMAPE Out of Sample
Countries

Bagging Holt Winters Holt Winters
Bagged.BLD.MBB.ETS ETS SARIMA Seasonal Naive

Multiplicative Additive Multiplicative Additive
Australia 1.71 2.28 2.01 2.22 1.93 2.05 1.94 5.55
Belgium 3.73 6.47 4.52 7.81 7.16 7.47 5.82 8.74
Brazil 2.32 2.76 4.80 4.30 2.32 2.68 3.89 6.06

Czech Republic 2.88 1.74 3.39 1.85 1.95 2.45 3.57 2.39
Denmark 2.97 4.85 4.39 6.20 5.36 5.98 4.49 5.80
Germany 2.66 3.40 3.68 4.53 3.65 4.46 3.36 3.11
Greece 8.81 13.63 19.76 17.63 13.93 18.58 16.90 14.51
Ireland 5.73 4.98 7.48 6.45 5.72 7.37 6.68 7.32
Italy 2.54 3.86 4.70 5.71 3.76 5.17 3.17 2.77

Netherlands 1.63 2.71 2.36 4.04 2.09 3.38 3.88 4.87
Portugal 3.09 6.83 5.01 8.98 5.55 6.06 4.98 8.98
Spain 3.90 4.65 5.19 5.36 4.80 5.75 4.56 4.58

United Kingdom 2.55 3.22 3.51 4.31 4.20 4.93 4.09 4.49
United States 1.09 1.75 2.25 1.23 2.09 1.21 8.22 2.54

Figure 4.3: Forecasts Out of Sample by country
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4.6
Summary and Concluding Remarks

The level of competitiveness in the air industry makes the relevance of
reductions in the forecast error even more desirable, since the optimization of
processes and the corresponding costs are usually discussed at decimal scale.
In this sense, methods that can improve accuracy of demand forecast are very
much appreciated.

In practice, reducing forecast error means that management decisions can
be taken in a more precise way and the relation between profit and cost can be
better estimated. In the air transport industry, it has a huge impact. Taking
the case of airport management as an example, a forecast that overestimates
the demand makes the operating unit costs higher (e.g., unnecessary staff, idle
equipment) while the forecasts that underestimate the demand can lead to
a reduction in the level of service (e.g., lack of staff, queues, higher waiting
times).

In this chapter, for the first time in the literature, a combination
of Bagging and Exponential Smoothing was applied to the air industry
to predict future demand for air transportation. The method employed is
Bagged.BLD.MBB.ETS proposed in [13].

The Bagged.BLD.MBB.ETS approach was able to consistently produce
forecasts with reduced error when compared to other benchmarks: SARIMA,
Holt Winters, ETS and Seasonal Naive. Among the 14 countries in the study,
the method was able to reduce sMAPE in 13 of them. This result is an
indication that the method should also produce satisfactory results if applied
to other countries and can be seen as an important tool for the air industry.
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5
Bagged.Cluster.ETS - A new approach to Bagging Exponen-
tial Smoothing

This chapter presents the main findings of the paper. After applying
and stressing the method proposed by Bergmeir and colleagues, the obvious
next step was to propose improvements. Although the solution seems pretty
obvious now, it was a hard process that consumed months of thinking, writing
and coding. During the process, some of the findings have been presented to
other researchers in the following national and international events:

– Improving times series forecasting: an approach combining Bagging,
Clusters and Exponential Smoothing - International Symposium on
Forecasting - Santander, Spain 2016

– Improving times series forecasting: an approach combining Bagging,
Clusters and Exponential Smoothing - Encontro de Pesquisa e Pós-
Graduação em Engenharia de Produção - Curitiba, Brazil
2017 *Paper awarded with Honourable Mention in statistical analysis.

– Bagging-Clustering Methods to Forecast Time Series - International
Symposium on Forecasting - Cairns, Australia 2017

– Forecasting energy consumption combining Bagging and Clusters - In-
ternational Symposium on Forecasting - Boulder, USA 2018

Every lesson learned during this period led to a novel approach called
Bagged.Cluster.ETS. The proposed methods and the results were published
on the première time series forecasting journal called International Journal of
Forecasting. Therefore, this chapter is heavily based on the following work:

– Improving Time Series Forecasting: an Approach Combining Bootstrap
Aggregation, Clusters and Exponential Smoothing - International
Journal of Forecasting, Volume 34, October-December 2018, Pages
748-761.
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5.1
Introduction

The proposed approach is indeed a powerful way to improve the fore-
casting performance of ETS models. However, there are unattended aspects
in the approach that can increase the forecast error. The way the ensemble is
constructed, via Bootstrap approach, might produce correlated forecasts (high
covariance effect), affecting the Mean Squared Error of Forecast (MSFE). The
MSFE is composed by a sum of variances and squared bias. Therefore, if one
is interested in reducing the forecast error, the variance and the bias are the
fundamental keys to better results.

Inspired by these ideas, this chapter proposes an approach,
Bagged.Cluster.ETS, to reduce the forecast error by reducing the ensem-
ble’s variance. Along the explanations of the proposed approach, an extensive
simulation is conducted, in order to access and compare bias and variance
with the Bagged.BLD.MBB.ETS. The forecast itself is also verified using data
from more than 103,000 time series from 3 different competitions M3, CIF
2016 and the recent M4.

5.2
Why Bagging tends to work

In order to propose an approach that generates lower forecast error it
is vital to understand the reasons why Bagging works. In a recent work,
Petropoulos and colleagues, see [47], describe some reasons why Bagging
actually works. According the authors, Bagging is successful because it handles
three sources of uncertainty: data, model and parameter uncertainty. The
authors also argue that the main benefits of Bagging come from the model
uncertainty that makes different models be selected as optimal due to the
bootstrapped versions.

Despite the insights in [47], variance itself is one important missing point
not addressed by the authors. In this sense, the work of Inoue and Kilian in
[4] presents the properties of MSFE showing that it can be decomposed into
three additive terms: variance of the real values, squared bias and variance of
the forecasts:
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MSFE = E[(yt+1|t − ŷt+1|t)2] =
= E[(yt+1|t − E(yt+1|t))2] + [E(yt+1|t)− E(ŷt+1|t)]2 + E[(ŷt+1|t − E[ŷt+1|t])2]
= E[(yt+1|t − E(yt+1|t))2] + [E(yt+1|t)− E(ŷt+1|t)]2 + V ar(ŷt+1|t)
= E[(yt+1|t − E(yt+1|t))2] + bias(ŷt+1|t)2 + V ar(ŷt+1|t)
= V ar(yt+1|t) + bias(ŷt+1|t)2 + V ar(ŷt+1|t)

(5-1)

Note since V ar(yt+1|t) is the variance that comes from the data it cannot
be controlled, and there is not much one can do, regardless the forecasting
method, to make it smaller. However, the bias, bias(ŷt+1|t)2, and the variance,
V ar(ŷt+1|t), are strictly derived from forecasting method. This means that one
can, potentially, affect them in order to obtain better results. In other words,
if one is seeking to reduce MSFE, the last two terms are the key to do it.

The average forecast of the Bootstrapped forecasts can be written as:

ỹt+1|t = 1
B

B∑
i=1

ŷ∗(i)t+1|t (5-2)

where ŷ∗(i)t+1|t indicates the forecast for instant t + 1 at time t, using the
Bootstrapped version i, and B is the total number of Bootstrap samples.

Because Bagging resamples the learning set, it is expected the average
group of the Bootstrapped forecasts would have similar bias but reduced
variance. This is due to the expressions below:

bias(ỹt+1|t) =

= E[ 1
B

B∑
i=1

ŷ∗(i)t+1|t]− E[yt+1|t] =

= 1
B

B∑
i=1

bias(ŷ∗(i)t+1|t)

(5-3)

V ar(ỹt+1|t) = 1
B2

B∑
i=1

V ar(ŷ∗(i)t+1|t) + 1
B2

∑
i 6=i′

Cov[ŷ∗(i)t+1|t, ŷ
∗
(i′)t+1|t] (5-4)

Note that according equation 5-3, if the Bootstrap versions are unbiased,
then an unbiased ensemble is constructed. In this sense, if one already has an
unbiased forecast then Bagging isn’t very effective in bias reduction. However,
equation 5-4 shows Bagging’s real strengths since it shows that if the variances
of the Bootstrapped forecasts are similar and there is no correlation among
them, the variance of the group reduces to:

V ar(ỹt+1|t) ≈ 1
B
V ar(ŷ∗(1)t+1|t) (5-5)
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One big drawback in the work of Bergmeir and colleagues, [13], and in all
previous related works is that the authors do not give proper treatment to the
covariance effect. This means that despite the fact that forecast error is reduced
in previous works, the second part of the equation 5-4 is neglected. This has
an important effect on the overall results, since increasing the covariance might
increases the variance of the group and consequently increase the forecast error.
This is the main gap that this thesis tries to bridge.

It is worth mentioning that Leo Breiman in a seminal paper, see [23],
presented the famous Random Forest method as an extension of the Bagging
Trees method that deals with the correlation among the ensemble. This is
done by providing randomization of possible selected variables and is a clever
solution for static data. The final result is a less correlated ensemble that
usually results in lower prediction error.
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5.3
Proposed Approach - Bagged.Cluster.ETS

In this section we explain the proposed approach called
Bagged.Cluster.ETS. The approach combines Bagging, Cluster and Expo-
nential smoothing models. The approach has similarities with Boot.Expos,
see [7] and Bagged.BLD.MBB.ETS. The later share common steps with
Bagged.Cluster.ETS since the process to generate the bootstrapped versions
is the same. However, Boot.Expos and Bagged.BLD.MBB.ETS don’t give
any treatment to the covariance effect presented in equation 5-4 nor provide
any means to prevent forecasts with large bias to be selected. The reduction
of bias and variance is something desirable, but hardly achievable due to a
well known trade-off between bias and variance. This means that usually a
reduction in variance is followed by an increase in bias and vice versa, see [24]
for more details on the bias variance trade-off.

Among the forecasts produced using the bootstrapped versions of the
original time series, there are some that perform better in terms of accuracy.
However, the forecasts that perform poorly have the potential to reduce the
overall forecast performance of the group by affecting the bias of the group.

In order to prevent the inclusion of poorly accurate forecasts in the
ensemble, the idea is to use a validation set as big as the amount of data that
will be forecasted. In the cases where there is not enough data is available,
it is recommended to use a validation set of equal size to the frequency of
the time series. Thus, the proposal is to generate a considerable high number
of Bootstrapped version (at least 1000) and aggregate only a fraction of the
versions (e.g. 10%) that generate the best forecasts, considering some metric
(e.g. sMAPE, MASE among others), in the validation set. In this thesis, the
number of generated series is set to 1000 and of selected series is set to 100.
The number of selected series follows the work of Bergmeir and colleagues, see
[13], and is big enough in terms of convergence.

Regarding the effect covariance effect, the proposal to reduce the corre-
lation among the ensemble is to create clusters of Bootstrapped series. Cluster
methods tend to group together objects, in this case time series, that have
lower distance. This means that series inside a cluster tend to have maximal
similarity and series in different clusters tend to have minimum similarity. In
this sense, the main idea is that selecting time series from different clusters
would lead to an ensemble less correlated that would produce less correlated
forecasts.

A great review of clustering techniques, showing not only methods but
applications, can be found in [25]. In order to choose a clustering method, one
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has to define what similarity is in their own context. Defining similarity means
to choose a similarity/dissimilarity distance. Several distances are exemplified
by Montero and Vilar, see [26], using their R package Tsclust (the same used
in this thesis). The Euclidean distance is used in the proposed approach. Our
interest here is to group profiles of series by pairing each pair of series and
mapping them in a one-to-one scheme which makes the Euclidean distance a
good match for it.

Moreover, the Euclidean distance produces good results with faster out-
puts when compared to other distances tested in this thesis such as Fréchet (see
[51]), Dynamic Time Warping (see [49]), an adaptive distance/dissimilarity in-
dex covering both proximity on values and on behavior (see [51]), distances
based on autocorrelations (see [52], [53] and [54]), distances based on peri-
odograms (see [55] and [53]), a distance based on the discrete wavelet trans-
form (see [56]), distances based on the symbolic representation SAX (see [57])
and distances based on compression (see [58] and [59]). In some cases, the cal-
culation of the mentioned distances more than tripled the computational time,
since some of them include also model estimation, with no clear gain in the
final performance of the approach and, therefore, not justifying using a more
complex distance/dissimilarity metric.

Regarding the clustering technique, the Partitioning Around Medoids
(PAM) clustering algorithm was chosen due to its velocity and robustness to
outliers, see [34]. PAM is a non-hierarchical clustering method that operates
trying to discover iteratively objects that are defined as medoids, in this case
time series, that are located in the center of a cluster. This is done by reducing
the average dissimilarity of the objects to the object defined as the medoid.

The number of clusters, k, needs to be defined by the user. One way of
doing it is using cross-validation. However, depending on the number of time
series to be forecasted this might not be feasible since it is a computationally
intensive process. As a an alternative, one can use an automatic way to do it
by using the Silhouette Information. The method measures similarity of an
object to its cluster. It does so by calculating the following quantity:

s(i) = b(i)− a(i)
max{a(i), b(i)} (5-6)

where a(i) is the average distance of time series i to all time series in its own
cluster, and b(i) is the lowest average distance between time series i to all other
time series in any other clusters.
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Note that s(i) vary from -1 to 1, where higher values indicate that the
time series is correctly allocated to its clusters. The ideal number of clusters is
obtained using the average of the silhouette method, see [27]. To exemplify the
approach, consider the example using data from OECD on monthly interest
rates (10-year bonds) running January 1995 to November 2012 from: Ireland,
Japan, Portugal, Switzerland, UK and USA. This data was subject analysis in
[26]. See figure 5.1.

Figure 5.1: Interest Rates by Country

In order to generate the clusters the PAM algorithm with Euclidean
distance was used and the Silhouette Information was calculated, leading to
the ideal number of 3 clusters (Portugal and Ireland; Switzerland and Japan;
UK and USA), since the average of the Silhouette Information is maximized
when k is set to 3, see figure 5.2.
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Figure 5.2: Silhouette method

An important aspect still not mentioned is the number of series selected
in each cluster. To do so, we define the number of series selected in each
cluster proportional to the size (total number of series) of each cluster. Thus,
the number of series, nh, picked in each cluster h is defined as follows:

nh = Nh

N
∗ n (5-7)

Where nh is the number of time series selected in each cluster h, n is the number
of series to be aggregated (e.g. 100 time series), Nh is the total number of time
series in cluster h and N is the total number of Bootstrapped versions.

To illustrate the approach a flowchart is presented in figure 5.3. The
approach can also be divided into two parts: First part is devoted to generate
the Bootstrap versions and the second to manipulating the versions in order
to obtain the best results. The first part uses the same algorithm proposed
by Bergmeir and colleagues in [13] and presented in algorithm 1. The second
part implements the ideas exposed in this section, see algorithm 2.
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Figure 5.3: Bagged.Cluster.ETS Flowchart
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Algorithm 1 Generating bootstrapped series
1: procedure BOOTSTRAP(ts,num.boot)
2: λ← BoxCox.lambda(ts,min=0,max=1)
3: ts.bc← BoxCox(ts,λ = 1)
4: if ts is seasonal then
5: [trend seasonal remainder] ← stl(ts.bc)
6: else
7: seasonal ← 0
8: [trend,remainder] ← loess(ts.bc)
9: end if
10: recon.series[1] ← ts
11: for i in 2 to num.boot do
12: boot.sample[i] ← MBB(remainder)
13: recon.series.bc[i] ← trend + seasonal +boot.sample[i]
14: recon.series[i] ← InvBoxCox(recon.series.bc[i],λ)
15: end for
16: return recon.series
17: end procedure

Algorithm 2 Proposed Approach
1: procedure Proposed Approach(recon.series,k)
2: if length(forecast.period)<prop*length(recon.series) then
3: pseudo.recon.series ← recon.series without the last length(forecast.period) observations
4: else
5: pseudo.recon.series ← recon.series without the last frequency(recon.series) observations
6: end if
7: for i in 1 to num.boot do
8: pseudo.model[i] ← ets(pseudo.recon.series[i])
9: pseudo.forecast[i] ← forecast(pseudo.model[i])
10: pseudo.forecast.sMAPE[i] ← sMAPE(pseudo.forecast[i])
11: end for
12: cluster.1, cluster.2, . . . , cluster.k ← PAM(recon.series)
13: for h in 1 to k do
14: ensemble ← select nh recon.series from cluster.h with lowest rank(pseudo.forecast.sMAPE)
15: end for
16: for j in 1 to 100 do
17: model[j] ← ets(ensemble[j])
18: ensemble.forecast[j] ← forecast(model[j])
19: end for
20: final.forecast ← median(ensemble.forecast)
21: return final.forecast
22: end procedure

As an example, time series 1083 from the M3 competition dataset is used
to demonstrate the two algorithms. The algorithm 1 can be visualized in figure
5.4 where the original time series is presented (series in black) on the left and
the bootstrapped versions (series in blue) generated from it are presented on
the right. Note the bootstrapped versions introduce the noise to the original
time series that leads to different forecasts. Figure 5.5 presents algorithm 2
applied to the bootstrapped versions shown in figure 5.4. On the left side,
it shows the forecasts from the series selected in each cluster (forecasts with
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the same color belong to the same cluster) and on the right side it shows the
aggregated forecast using the median.

Figure 5.4: Bootstrapped versions from time series 1083

Figure 5.5: Forecasts for time series 1083
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5.4
Computational Aspects of Bagged.Cluster.ETS

The proposed approach modifies the existing Bagged.BLD.MBB.ETS
method in order to obtain the ultimate goal that is better forecasts. However,
one important aspect of it is the feasibility of the approach in terms of
computational time. In practice, this means that if one has to generate forecasts
under limited time, the process has to be fast.

By the time this thesis was written there was only one implementation
of Bagged.BLD.MBB.ETS. This is a function called baggedETS in the fore-
cast package from R. This function was used to generate the comparisons in
this thesis study and used as the base to the construction of the baggedClus-
terETS function that implements the approach described in this chapter.

Although it was important to use the same function as the previous
author’s to be sure the results were not being influenced by the way the
methodology was coded, baggedETS is a slow function that suffer mainly
because of the number of computations required. One point not considered by
the authors was that, despite the fact that Bagging can be slow depending
on the number of replics generated by Bootstrap, the method could be easily
parallelized, something not implemented in their code.

In this sense, parellelization can be done using Google’s general Map
Reduce idea, see figure 5.6, proposed by Dean and Ghemawat in [80] and
customized to machine learning problems by Chu and colleagues in [79]. The
later demonstrated that algorithms fitting the Statistical Query Model can
be written in a summation form. This summation can be expressed in a Map
Reduce framework, since the summation over the data points can be batched.
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Figure 5.6: Map Reduce - Source: Salem in [85]

Occurs that Bagging can be thought this way, where the summation in
equation 5-2 corresponds to a reduce operation and the ŷ∗(i)t+1|t, is generated
by the map function f̂(y∗(i)t), an ETS model, see figure 5.7. This allows to
distribute the calculations over the machines (or cores in the case of a single
machine with multiple cores). Taking this into account, the implementation
of Bagged.Cluster.ETS, baggedClusterETS function, parallelizes parts of
the calculations, making the process much faster and scalable, which is not
the case for the implementation of Bagged.BLD.MBB.ETS, baggedETS.
This means that if one get access to more cores/machines, something easily
achievable using cloud services, the code run faster. In fact, in the development
of this thesis, in several occasions, machines in the cloud (Google and AWS
Amazon) with a large number of cores (16, 32 and 64) were used, making the
process feasible.
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Figure 5.7: Map Reduce diagram - Source: Ramakrishnan et al. in [86]

In order to exemplify how parallel computing can speeds up the comput-
ing process, a m4.16xlarge machine (188 ECUs, 64 vCPUs, 2.3 GHz, Intel Xeon
E5-2686v4, 256 GiB memory) on the AWS Amazon cloud was used to generate
12 months ahead forecasts for the monthly totals of accidental deaths in the
USA from 1973 to 1978, see [74] for reference on the time series. Figure 5.8 il-
lustrates how the computational time decreases for baggedClusterETS(the
implementation of the proposed approach using R) as the number of CPUs
increases.

Figure 5.8: Processing time

Finally, the full code that implements Bagged.Cluster.ETS is already
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available for free on github (https://github.com/tiagomendesdantas/Bagged.Cluster.ETS).
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5.5
Bias and Variance analysis

The proposed approach, Bagged.Cluster.ETS, has as the main contribu-
tion the application of time series clustering for reducing correlated forecasts
that affects the overall variance and, consequently, the forecast error. There-
fore, it is important to verify whether the method, in fact, is able to reduce
variance without compromising bias in comparison to Bagged.BLD.MBB.ETS.
To do so, we conduct a Monte Carlo simulation study considering four Data
Generation Processes (DGPs) listed in details bellow:

Autoregressive - AR(6)
We first consider an Autoregressive model of order 6. This model fits the famous
Sunspot dataset, see [73], and the parameters obtained from adjusting the
AR(6) to the data were the ones considered in the simulation. This follows the
same approach used by Taieb and Atiya in [28]. The model can be seen below:

yt = 100 + 1.2401yt−1 − 0.419yt−2 − 0.1797yt−3 + 0.1267yt−4

−0.2259yt−5 + 0.1697yt−6 + εt
(5-8)

where εt is independently and identically distributed (i.i.d.), N(0, 17.28)

Smooth Transition Autoregressive - STAR
The second model is an Smooth Transition Autoregressive. The model have
been subject to many simulation studies for purposes of model selection,
evaluation and comparisons. The parameters are the same ones used in [28].
The DGP is shown below:

yt = 500 + 0.3yt−1 + 0.6yt−2 + (0.1− 0.9yt−1 + 0.8yt−2)[1 + e−10yt−1 ]−1 + εt

(5-9)

where εt is independently and identically distributed (i.i.d.), N(0, 1)

Exponential smoothing state space model - ETS (A,N,A)
The third model is an Exponential Smoothing using the state space approach.
The parameters were obtained applying the model to the Accidental Deaths in
the US from 1973 to 1978 time series. The time series is widely known due to
its use in as example in [74] and in the forecast package from R to demonstrate
ETS models. The DGP can be seen bellow:
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yt = lt−1 + st−m + εt

lt = lt−1 + 0.5891εt
st = st−m + 0.001εt

(5-10)

where εt is independently and identically distributed (i.i.d.), N(0, 264.75)

Seasonal Autoregressive Integrated Moving Average - SARIMA
Since the SARIMA is one of the most used models when it comes to seasonal
time series, it was considered in the simulations. The specific model considered,
SARIMA(3, 0, 1)(0, 1, 2)12, was the best to fit the monthly Corticosteroid
Drug Sales in Australia from 1992 to 2008 time series. The steps to obtain
the best model (identification and also parameter estimates) are the same
reported in [75].The model is shown bellow:

yt = yt−12 + 0.1603(yt−1 − yt−13)− 0.5481(yt−2 − yt−14)− 0.5678(yt−3 − yt−15)+
εt − 0.5222εt−12 − 0.1768εt−24 + 0.3827εt−1 − 0.1998459εt−13 − 0.06766136εt−25

(5-11)

where εt is independently and identically distributed (i.i.d.), N(0, 0.06).

The experiment was conducted considering 1000 time series of length
100 for each DGP. In this sense, first 88 observations from each series were
used as training set and the last 12 as test set. The bias and variance
were estimated considering the forecasts for the test set. For each time
series, the number of clusters for the proposed approach, Bagged.Cluster.ETS,
was set to 5, 10, 20, 40, 80. The automatic selection using the Silhouette
Information was also considered. For the sake of fair comparisons, in both
cases, Bagged.BLD.MBB.ETS and Bagged.Cluster.ETS, the number of time
series considered in the aggregation phase were set to 100. In both methods
the size of the block was set to 24 to ensure that even if some seasonality was
missed in the decomposition phase would still be captured inside the blocks.

In order to compare the results between Bagged.BLD.MBB.ETS and
Bagged.Cluster.ETS, ratios of bias and variance among the methods were
calculated. This is shown in figure 5.9, where lines in black represent the
Bagged.BLD.MBB.ETS, which is considered the benchmark. The other lines
were generated using the Bagged.Cluster.ETS varying the number of clusters
where lines in blue, green, orange, yellow, red and pink are, respectively, the
approach with 5, 10, 20, 40, 80 clusters and the automatic selection. Figure 5.9
shows the results, where values smaller or greater than 1 indicates the proposed
approach have, respectively, higher or lower values for bias or variance.
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Regarding the squared bias, no consensus between the results were found
for all DGPs, since the values oscillated above and below 1, (see figure 5.9).
Generally speaking, the proposed approach increased bias for almost all DGPs,
the only exceptions are the AR with 5 and 80 clusters and SARIMA. However,
as intended, variance was reduced in all cases, see tables 5.1, 5.2, 5.3 and 5.4.

The simulations indicate the proposed approach sometimes increases
bias, but in general reduces variance. Moreover, the reduction in variance was
higher than the increase in bias in all the cases, meaning the trade-off weights
more on the variance side due to its magnitude. This is precisely the expected
effect that leads towards better forecasts.
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Figure 5.9: Bias and Variance from DGPs

Table 5.1: Squared Bias and Variance - AR
Measures Bagged.BLD.MBB.ETS

Proposed Approach
k=5 k=10 k=20 k=40 k=80 Automatic

Squared Bias 24.24961 23.95768 24.60746 25.50372 25.42617 24.08474 24.48792
Variance 1878.05877 1796.92845 1805.87991 1800.33918 1812.08169 1869.32690 1836.71178

DBD
PUC-Rio - Certificação Digital Nº 1421392/CA



Chapter 5. Bagged.Cluster.ETS - A new approach to Bagging Exponential
Smoothing 54

Table 5.2: Squared Bias and Variance - STAR
Measures Bagged.BLD.MBB.ETS

Proposed Approach
k=5 k=10 k=20 k=40 k=80 Automatic

Squared Bias 0.00188 0.00214 0.00215 0.00190 0.00194 0.00201 0.00198
Variance 6.00350 5.55466 5.65972 5.58463 5.72152 5.79445 5.69631

Table 5.3: Squared Bias and Variance - ETS
Measures Bagged.BLD.MBB.ETS

Proposed Approach
k=5 k=10 k=20 k=40 k=80 Automatic

Squared Bias 172.29797 183.12050 183.40112 176.13825 181.46536 179.87989 173.58747
Variance 41154.93728 39434.44026 39456.12883 39401.36690 39572.46175 40531.28877 40429.45484

Table 5.4: Squared Bias and Variance - SARIMA
Measures Bagged.BLD.MBB.ETS

Proposed Approach
k=5 k=10 k=20 k=40 k=80 Automatic

Squared Bias 3.66877e-05 3.49816e-05 3.51077e-05 3.57547e-05 3.4729e-05 3.58039e-05 3.5621e-05
Variance 0.00387 0.00357 0.00358 0.00361 0.00361 0.00369 0.00368

In the simulation the number of clusters that lead to better results seemed
to vary from DGP but, in general, the best results were the ones up to 40
clusters. However to specifically address the effects of the number of clusters
in forecast accuracy, next section uses data from forecasting competitions and
afterwards makes forecasts using the proposed approach comparing the results
with the benchmark and Bagged.BLD.MBB.ETS in an ex-ante analysis.
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5.6
Experiments on Forecasting Competitions Data

In order to understand the impacts of the selection of the number of
clusters and also to verify the performance of the proposed approach in terms of
forecast accuracy, data from the M3, CIF 2016 and M4 competitions are used.
The M3 competition was a widely known time series forecasting competition
organized in 2000 by Spyros Makridakis with more than 3000 series, being
1428 monthly, 756 quarterly and 645 yearly time series from several fields
(e.g. macroeconomics, demographics, industry, among others). The dataset
from the competition is still the main reference to evaluate and compare time
series forecasting methods, see [22]. In [76], Rob Hyndman, Editor-in-Chief of
International Journal of Forecasting (IJF), the première journal on forecasting,
stated:

"The M3 data have continued to be used since 2000 for testing new
time series forecasting methods. In fact, unless a proposed fore-
casting method is competitive against the original M3 participating
methods, it is difficult to get published in the IJF".

Despite all the relevance of M3, by this time it is a bit outdated, therefore
we also considered data from two more recent competitions, CIF 2016 and
the recently finished but in preliminary results phase, M4. On CIF 2016,
the competitors were supposed to forecast 72 monthly time series. Among
the time series, 24 were real time series from banking domain and 48 were
artificially generated, see [33]. When this study was conducted the competition
was already over. This was not the case for the M4 that we actually participated
and were supposed to make forecasts for 100,000 time series from many fields
and frequencies.

5.6.1
Effects on the number of clusters

To verify the behave of the forecast error according to the number of
clusters in Bagged.Cluster.ETS, monthly data from M3 and CIF 2016 was used
(data from the test set on the M4 competition was not available to conduct
the same analysis on it). To do so 1000 bootstrapped versions using algorithm
1 was generated and only 100 were actually aggregated using algorithm 2. The
number of clusters tested varied from 3 to 90. It is important to note that this
simulation process is computationally intensive, since it means that for each
variation of cluster (1100 ETS models are estimated and used to forecast).
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The sMAPE was the metric used to access the forecast performance.
In figure 5.10 the behave of sMAPE using the proposed approach when the
number of clusters varies from 3 to 90 (lines in black) is shown. The graph also
shows the sMAPE for Bagged.BLD.MBB.ETS (lines in red) and the proposed
approach using the Silhouette information (lines in blue). Note that there is
a relatively fast decay in forecast error when the number of clusters increase
until between 40 and 50 clusters and afterwards the sMAPE starts to increase.

The results are in fact coherent with the design of the approach. The
intuition about it comes from the fact that the approach forces the aggregated
forecast to be composed by at least one forecast from each cluster. In this
sense, when the number of clusters is too small, the majority of the forecasts
comes from the same cluster. This means that the selected forecast may be
too similar. On the other hand, a large number of clusters also forces the
procedure to select forecasts that are not that distant, since each cluster is not
very different from each other. In this sense, having a an equilibrium between
the number of clusters and the number of time series (in this case, the number
of clusters between 40% to 50% of the number of series) is preferable and led
to smaller forecast errors.

Figure 5.10: sMAPE according to the number of clusters
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5.6.2
Performance of the Proposed Approach on Competitions

The proposed approach, Bagged.Cluster.ETS was evaluated using M3
and CIF 2016 data. In order to do so, time series were divided into training
and test set (out of sample), where the forecast performance metrics were cal-
culated. The proposed approach was compared with the original M3 and CIF
2016 competition methods (in this case, the performance metrics was calcu-
lated using the original submissions by each participant in the competition)
and also with Bagged.BLD.MBB.ETS, the method proposed by [13].

The performance metrics considered were the Symmetric Mean Absolute
Percentage Error (sMAPE), previously defined in equation 4-1, and the Mean
Absolute Scaled Error (MASE). The first metric was used to classify the
competing methods in both competitions. The second metric, has desirable
statistical properties, as showed by Hyndman in [29]. Also, the metric has
better interpretation when compared to sMAPE, since it allows a direct
comparison between the considered approach and the naive forecast. See
equation 5-12:

MASE = 1
T

T∑
t=1

|yt − ŷt|
1

T−1

T∑
t=2
|yt − yt−1|

(5-12)

In order to present the results, six columns were constructed: mean of
the sMAPEs ranks (Rank sMAPE) in each series, mean of the sMAPEs (Mean
sMAPE), median of sMAPEs (Median sMAPE), mean of the MASEs ranks
(Rank MASE) in each series, mean of the MASEs (Mean MASE) and median
of MASEs (Median MASE). The inclusion of the median in the analysis is due
to the possible asymmetries in sMAPE and MASE distribution of the results.
The results were sorted using the first column (Rank sMAPE), this follows the
results in [13].

To search for statistically significant differences among the methods, the
Friedman rank-sum test with the post-hoc procedure from Hochberg and Rom
was emplyoed, see [30] for details on the procedure and implementations.
Specifically, the method with lower Rank sMAPE was used as control method
and the others were tested for statistical significance.

The entire approach was conducted using R. The results for
Bagged.BLD.MBB.ETS were obtained using baggedETS function from the
forecast package which improved the results for most of the cases in comparison
to the ones presented in [13].
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5.6.2.1
M3 - Monthly Results

The results indicate the superiority of the proposed approach,
Bagged.Cluster.ETS, in comparison to all other benchmarks for monthly
time series, considering all metrics, see table 5.5. The overall Friedman
rank-sum test had a p-value of 3.15 X 10−10. indicating the rejection of null
hypothesis of no difference among the results. When considering the proposed
approach as control method, the adjusted p-values from the post-hoc pro-
cedure indicated statistically significant differences at α = 5% between the
approach and all other methods but Bagged.BLD.MBB.ETS, THETA and
Forecast Pro, see table 5.6.

Table 5.5: Methodologies’ comparison - M3 Monthly
Methods Rank sMAPE Mean sMAPE Median sMAPE Rank MASE Mean MASE Median MASE
Proposed Approach 11.553 13.617 8.738 11.558 0.835 0.685
Bagged.BLD.MBB.ETS 11.709 13.653 8.848 11.737 0.837 0.691
THETA 11.983 13.892 8.925 11.930 0.858 0.706
ForecastPro 12.000 13.898 8.809 12.023 0.848 0.702
COMB S-H-D 13.028 14.466 9.374 13.095 0.896 0.736
ETS 13.056 14.135 9.073 13.074 0.865 0.716
ForcX 13.260 14.466 9.212 13.314 0.894 0.741
HOLT 13.288 15.795 9.281 13.243 0.909 0.730
WINTER 13.582 15.926 9.305 13.575 1.165 0.735
RBF 13.808 14.76 9.209 13.840 0.910 0.762
DAMPEN 14.006 14.576 9.441 14.088 0.908 0.75
AAM1 14.009 15.670 9.675 13.841 0.905 0.769
AutoBox2 14.151 15.731 9.282 14.209 1.082 0.758
B-J auto 14.220 14.796 9.320 14.239 0.914 0.749
AutoBox1 14.250 15.811 9.268 14.268 0.924 0.748
SMARTFCS 14.374 15.007 9.517 14.283 0.919 0.749
AAM2 14.388 15.938 9.621 14.184 0.923 0.779
Flors-Pearc2 14.414 15.186 9.614 14.474 0.950 0.790
Auto-ANN 14.483 15.031 9.616 14.505 0.928 0.778
PP-Autocast 14.699 15.328 9.897 14.783 0.994 0.759
ARARMA 14.743 15.826 9.800 14.774 0.907 0.777
AutoBox3 14.800 16.590 9.397 14.697 0.962 0.775
Flors-Pearc1 15.126 15.986 9.959 15.159 1.008 0.797
THETAsm 15.177 15.380 9.650 15.176 0.950 0.771
ROBUST-Trend 15.372 18.931 9.733 15.293 1.039 0.830
SINGLE 15.834 15.300 10.028 15.919 0.974 0.810
NAIVE2 16.687 16.891 10.115 16.721 1.037 0.838
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Table 5.6: Friedman rank-sum test - M3 Monthly
hypothesis Adjusted p-value

Proposed Approach -
Bagged.BLD.MBB.ETS 0.599

THETA 0.147
ForecastPro 0.132
COMB S-H-D 6.791E-7

ETS 4.159E-7
ForcX 8.991E-9
HOLT 5.125E-9

WINTER 8.304E-12
RBF 3.114E-14

DAMPEN 1.449E-16
AAM1 1.325E-16

AutoBox2 2.205E-18
B-J auto 2.744E-19
AutoBox1 1.064E-19

SMARTFCS 2.108E-21
AAM2 1.339E-21

Flors-Pearc2 5.817E-22
Auto-ANN 5.838E-23
PP-Autocast 3.198E-26
ARARMA 6.636E-27
AutoBox3 8.026E-28
THETAsm 3.062E-34
Flors-Pearc1 2.498E-33

ROBUST-Trend 7.661E-38
SINGLE 4.242E-47
NAIVE2 6.212E-67

5.6.2.2
M3 - Quarterly and Yearly Results

The forecasts for quarterly and yearly time series indicate a heavy de-
cline in performance for the proposed method. This results is not unexpected
since in the work of Bergmeir and colleagues Bagged.BLD.MBB.ETS had poor
results for this frequencies, see [13]. However, the results for the proposed ap-
proach performed were worse than Bagged.BLD.MBB.ETS in both frequen-
cies. Considering the quarterly data, the THETA method obtained the best
results for the considered metrics but the Median MASE, see table 5.7. The
results on yearly data varied a lot depending on the accuracy metric. In this
sense, the ForcX method obtained the best results considering Rank sMAPE,
Rank MASE and Median MASE. The RBF method obtained the best results
considering Mean sMAPE and Flors-Pearc1 was the best according to Me-
dian sMAPE and, finally, considering the Mean MASE, the ROBUST-Trend
obtained the best results, see table 5.8.

The overall p-value for the Friedman rank-sum test, considering quarterly
data was 9.54 X 10−11 and for yearly data meaning that that are statistically
significant differences among the methods in both frequencies. Considering
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quarterly data and using the THETA method as control, there are statistically
significant differences between the method and all other methods. On yearly
data and selecting the ForcX method as the control method, the adjusted
p-value indicated significant differences between ForcX and all methods but
RBF, AutoBox2, Flors-Pearc1, THETA, ForecastPro, Robust-Trend and PP-
Autocast see table 5.9.

Table 5.7: Methodologies’ comparison - M3 Quarterly
Methods Rank sMAPE Mean sMAPE Median sMAPE Rank MASE Mean MASE Median MASE
THETA 11.817 8.956 5.369 11.821 1.087 0.774
COMB S-H-D 12.620 9.216 5.315 12.614 1.105 0.817
ROBUST-Trend 12.915 9.789 5.000 12.944 1.152 0.823
DAMPEN 13.109 9.361 5.586 13.101 1.126 0.839
PP-Autocast 13.272 9.395 5.256 13.278 1.128 0.825
ForcX 13.349 9.537 5.620 13.339 1.155 0.810
Bagged.BLD.MBB.ETS 13.464 9.803 5.810 13.464 1.163 0.855
B-J auto 13.655 10.260 5.685 13.655 1.188 0.880
ETS 13.717 9.605 5.761 13.687 1.186 0.872
ForecastPro 13.729 9.815 5.837 13.763 1.204 0.853
Proposed Approach 13.742 9.891 5.817 13.684 1.171 0.862
HOLT 13.771 10.938 5.711 13.731 1.225 0.861
RBF 13.796 9.565 5.665 13.757 1.173 0.847
AutoBox2 13.871 10.004 5.595 13.906 1.185 0.85
WINTER 13.895 10.840 5.710 13.871 1.217 0.874
Flors-Pearc1 13.988 9.954 5.612 14.007 1.184 0.844
ARARMA 14.005 10.186 6.108 13.975 1.185 0.860
Auto-ANN 14.416 10.199 6.282 14.444 1.241 0.923
THETAsm 14.705 9.821 5.647 14.683 1.211 0.942
AAM1 14.798 10.165 6.365 14.852 1.24 0.944
SMARTFCS 14.813 10.153 5.708 14.855 1.226 0.858
Flors-Pearc2 14.832 10.431 6.220 14.913 1.255 0.925
AutoBox3 14.931 11.192 6.150 14.882 1.272 0.921
AAM2 14.966 10.260 6.443 15.017 1.256 0.956
SINGLE 15.203 9.717 6.184 15.151 1.229 0.980
AutoBox1 15.257 10.961 6.145 15.278 1.331 0.957
NAIVE2 15.362 9.951 6.184 15.328 1.238 0.985

Table 5.8: Methodologies’ comparison - M3 Yearly
Methods Rank sMAPE Mean sMAPE Median sMAPE Rank MASE Mean MASE Median MASE
ForcX 11.596 16.480 11.337 11.567 2.769 1.809
RBF 11.929 16.424 10.738 11.947 2.720 1.902
AutoBox2 11.953 16.593 11.309 11.970 2.754 1.835
Flors-Pearc1 12.044 17.205 10.724 12.054 2.938 1.914
THETA 12.068 16.974 11.252 12.112 2.806 1.971
ForecastPro 12.238 17.271 11.049 12.253 3.026 1.886
ROBUST-Trend 12.302 17.033 11.298 12.347 2.625 1.887
PP-Autocast 12.366 17.128 10.825 12.36 3.016 1.919
Bagged.BLD.MBB.ETS 12.402 17.397 11.200 12.422 2.891 2.000
DAMPEN 12.426 17.36 10.948 12.416 3.032 1.911
COMB S-H-D 12.499 17.072 11.682 12.454 2.876 1.950
ETS 12.535 17.114 11.535 12.576 2.893 2.011
Proposed Approach 12.727 17.560 11.417 12.715 2.931 1.978
SMARTFCS 12.901 17.706 11.834 12.922 2.996 2.095
HOLT 13.160 20.021 11.766 13.174 3.182 2.079
WINTER 13.160 20.021 11.766 13.174 3.182 2.079
Flors-Pearc2 13.556 17.843 12.548 13.584 3.016 2.189
B-J auto 13.572 17.726 11.699 13.578 3.165 1.918
ARARMA 13.595 18.356 11.353 13.688 3.481 1.933
Auto-ANN 13.891 18.565 13.079 13.865 3.058 2.112
AutoBox3 14.091 20.877 12.891 14.078 3.177 2.232
THETAsm 14.116 17.922 12.215 14.036 3.006 2.179
AutoBox1 14.395 21.588 12.747 14.401 3.679 2.256
NAIVE2 14.712 17.880 12.369 14.629 3.172 2.267
SINGLE 14.766 17.817 12.445 14.674 3.171 2.262
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Table 5.9: Friedman rank-sum test - M3 Quarterly and Yearly
Quarterly Yearly

hypothesis Adjusted p-value hypothesis Adjusted p-value
THETA - ForcX -

COMB S-H-D 0.049 RBF 0.417
ROBUST-Trend 0.007 AutoBox2 0.384

DAMPEN 0.002 Flors-Pearc1 0.274
PP-Autocast 3.674E-4 THETA 0.249

ForcX 1.754E-4 ForecastPro 0.117
Bagged.BLD.MBB.ETS 5.486E-5 ROBUST-Trend 0.085

B-J auto 6.729E-6 PP-Autocast 0.060
ETS 3.276E-6 Bagged.BLD.MBB.ETS 0.049

ForecastPro 2.842E-6 DAMPEN 0.043
Proposed Approach 2.425E-6 COMB S-H-D 0.027

HOLT 1.719E-6 ETS 0.022
RBF 1.252E-6 Proposed Approach 0.006

AutoBox2 4.900E-7 SMARTFCS 0.001
WINTER 3.609E-7 WINTER 1.350E-4

Flors-Pearc1 1.055E-7 HOLT 1.350E-4
ARARMA 8.365E-8 Flors-Pearc2 1.738E-6
Auto-ANN 1.951E-10 B-J auto 1.425E-6
THETAsm 1.515E-12 ARARMA 1.070E-6
AAM1 2.880E-13 Auto-ANN 2.134E-8

SMARTFCS 2.156E-13 AutoBox3 1.151E-9
Flors-Pearc2 1.535E-13 THETAsm 7.782E-10
AutoBox3 2.401E-14 AutoBox1 8.589E-12
AAM2 1.245E-14 NAIVE2 2.916E-14
SINGLE 1.105E-16 SINGLE 1.039E-14
AutoBox1 3.583E-17
NAIVE2 3.897E-18

5.6.3
Discussion

In order to better understand the behave of Bagged.Cluster.ETS in com-
parison to Bagged.BLD.MBB.ETS, the variance of the group of Bootstrapped
forecasts was calculated for both methods for the entire forecasting horizon (18
months for monthly data, 8 quarters for quarterly data and 6 years for yearly
data). Considering monthly data, the results indicate that in comparison to
Bagged.BLD.MBB.ETS, Bagged.Cluster.ETS was able to reduce variance for
the entire forecasting horizon and for the majority of time series. This is pre-
cisely the expected behave of the proposed method by the introduction of the
changes that distinguish both methods. However, this result does not hold
for the quarterly and yearly cases, this helps to understand why the method
didn’t produce good forecasting results for this frequencies. See table 5.10 for
the percentage of the results where the proposed method produced results with
smaller variance in comparison to Bagged.BLD.MBB.ETS.
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Table 5.10: Results with reduced variance - Bagged.Cluster.ETS
h Monthly (%) Quarterly (%) Yearly (%)
1 50.98 49.47 45.43
2 53.15 50.4 48.06
3 53.15 49.47 47.6
4 53.99 47.22 47.75
5 53.78 46.96 48.68
6 55.25 48.81 48.53
7 56.93 48.54 –
8 58.26 48.15 –
9 55.39 – –
10 53.99 – –
11 53.01 – –
12 51.54 – –
13 52.59 – –
14 52.94 – –
15 53.99 – –
16 53.29 – –
17 53.99 – –
18 54.97 – –

One possible explanation on why the divergent results for monthly and
quarterly/yearly is the size of the considered time series. While the median
length for monthly time series is 115, for quarterly and yearly these numbers
drop, respectively, to 44 and 19. Having a small number of data points may
hurt the entire procedure.

Intuitively, Bagged.BLD.MBB.ETS is affected by the short length of the
time series. Specifically. the MBB phase of the procedure would have less
blocks to sample, leading to more similar time series and, consequently, similar
forecasts. This would increase the covariance effect. The case for the proposed
approach is even worse since besides the MBB problem, the clustering phase
would also hurt the procedure. This is due to design of the method itself that
forces at least one time series from each created cluster to be picked and when
the time series generated by MBB are too similar, the PAM would create
clusters with unsatisfactory dissimilarity.

5.6.4
CIF 2016

The Bagged.BLD.MBB.ETS method has its merits on monthly data
by outperforming all other methods from the original M3 competition.
The proposed approach improved Bagged.BLD.MBB.ETS at monthly fre-
quency by reducing the forecasting error even more. However, the results for
Bagged.BLD.MBB.ETS are substantially worse for quarterly and yearly data.
The performance for the proposed method adds an additional clustering step
that can be a potential source of error, therefore the results are even worse
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than Bagged.BLD.MBB.ETS. This is an indication that having enough data
points is vital to the process.

The data from the M3 competition is the benchmark dataset but a bit
dated by now. In this sense, a dataset from the recent CIF 2016 competition
is used to validate the proposed method. The data consists of 72 time series
divided between real and artificial ones, where the last accounts for 2/3 of the
series. The data is exclusively monthly, which taking into account the results
from the M3 competition makes it a perfect match to find more evidence in
favour of the quality of the approach.

Considering all metrics, but median sMAPE and median MASE, the
proposed approach generated the best forecasts for the entire 48 artificial time
series, see table 5.11. The results on table 5.12, indicate that considering the
24 real time series, the Ensemble of LSTMs and ETS was the winner for all
metrics. It is yet important to note that considering all metrics but mediand
sMAPE and median MASE, Bagged.Cluster.ETS generated better results than
its direct contestant Bagged.BLD.MBB.ETS.

The table 5.13 shows the results considering all time series in the
competition. The results indicated the Ensemble of LSTMs and ETS as the
top performer in the competition. The proposed approach obtained the second
best results according to all metrics, but Median sMAPE and Median MASE,
confirming its superiority against Bagged.BLD.MBB.ETS.

The results from the Friedman rank-sum test indicated an overall p-value
of 1.62 X 10−10 pointing to the rejection of the null hypothesis of no difference
between the results at α= 5%. Having the Ensemble of LSTMs and ETS
as the control method no statistically significant differences at α= 5% were
found between the control and the following methods: Bagged.Cluster.ETS,
Bagged.BLD.MBB.ETS, LSTM deseasonalized, ETS, MLP and FRBE.

It is interesting to check that the top 3 performers (Ensemble of LSTMs
and ETS, Bagged.Cluster.ETS and the Bagged.BLD.MBB.ETS) were the ones
that did some form of combination of forecasts. These results are related to
equation 5-4 and corroborate with section 5.2.
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Table 5.11: CIF 2016 - Methodologies’ comparison - Artificial Series
Methods Rank sMAPE Mean sMAPE Median sMAPE Rank MASE Mean MASE Median MASE
Proposed Approach 6.896 6.308 5.078 6.792 0.964 0.559
Bagged.BLD.MBB.ETS 7.146 6.319 5.000 6.938 0.968 0.552
Ensemble of LSTMs and ETS 8.604 6.706 5.373 8.604 0.979 0.640
ETS 8.771 6.615 5.340 8.646 1.003 0.573
FRBE 9.208 7.024 5.375 9.312 1.064 0.630
LSTM deseasonalized 9.312 6.710 5.235 9.250 0.986 0.662
Boot.EXPOS 9.729 6.904 5.496 9.688 1.054 0.682
MLP 9.979 6.761 5.368 10.104 1.021 0.657
ARIMA 10.958 7.349 5.492 10.875 1.088 0.677
HEM 10.979 7.322 5.129 11.062 1.085 0.668
REST 11.688 7.342 6.259 11.792 1.076 0.717
PB-GRNN 11.917 7.754 5.591 11.917 1.140 0.711
PB-RF 11.917 7.754 5.591 11.917 1.140 0.711
PB-MLP 12.229 7.718 5.649 12.333 1.133 0.692
AVG 13.042 8.208 6.642 13.000 1.236 0.85
LSTM 13.479 7.795 6.619 13.458 1.124 0.835
MTSFA 14.292 9.464 6.414 14.312 1.333 0.775
Fuzzy c-regression m 14.625 9.588 7.274 14.667 1.430 1.219
FCDNN 15.646 8.587 7.475 15.625 1.259 0.833
Random Walk 17.062 10.69 8.855 17.125 1.621 1.195
THETA 17.750 10.834 8.790 17.917 1.604 1.396
TSFIS 17.833 10.697 9.489 17.792 1.625 1.279
HFM 19.021 14.564 9.607 18.979 3.675 1.293
MSAKAF 19.229 14.634 12.840 19.208 2.003 1.568
CORN 23.688 19.327 18.867 23.688 2.758 2.349

Table 5.12: CIF 2016 - Methodologies’ comparison - Real Series
Methods Rank sMAPE Mean sMAPE Median sMAPE Rank MASE Mean MASE Median MASE
Ensemble of LSTMs and ETS 8.292 19.090 14.649 8.167 0.424 0.321
LSTM deseasonalized 9.125 18.178 15.735 8.958 0.494 0.327
MLP 10.583 22.882 23.514 10.583 0.491 0.343
Fuzzy c-regression m 10.750 22.010 20.041 10.750 0.521 0.353
REST 10.917 22.654 19.696 11.208 0.541 0.409
TSFIS 11.062 23.928 20.880 11.021 0.555 0.449
AVG 11.458 22.746 19.343 11.542 0.520 0.377
Random Walk 11.792 22.379 17.451 11.917 0.526 0.419
ETS 11.833 22.409 18.732 11.708 0.513 0.391
Proposed Approach 12.000 26.325 20.141 11.938 0.550 0.376
HEM 12.042 24.466 20.777 12.083 0.532 0.371
FRBE 12.250 24.667 18.616 12.167 0.531 0.369
LSTM 12.958 24.414 16.683 12.708 0.593 0.344
THETA 13.125 22.599 20.776 13.208 0.546 0.320
Bagged.BLD.MBB.ETS 13.250 26.748 20.117 13.146 0.552 0.388
MSAKAF 13.625 31.891 22.721 13.708 0.709 0.569
ARIMA 13.771 28.988 21.679 13.729 0.584 0.441
PB-GRNN 13.875 27.992 24.830 14.042 0.744 0.527
PB-RF 13.875 27.992 24.830 14.042 0.744 0.527
MTSFA 14.167 30.608 27.100 13.958 0.715 0.472
PB-MLP 14.458 29.392 25.906 14.042 0.711 0.469
Boot.EXPOS 15.125 31.942 21.633 15.042 0.674 0.458
HFM 16.500 38.055 24.736 16.917 2.463 0.543
FCDNN 17.125 32.698 26.650 17.417 0.908 0.620
CORN 21.042 47.624 34.024 21.000 1.207 1.100
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Table 5.13: CIF 2016 - Methodologies’ comparison - All Series
Methods Rank sMAPE Mean sMAPE Median sMAPE Rank MASE Mean MASE Median MASE
Ensemble of LSTMs an ETS 8.500 10.834 6.598 8.458 0.794 0.559
Proposed Approach 8.597 12.980 6.048 8.507 0.826 0.545
Bagged.BLD.MBB.ETS 9.181 13.128 5.978 9.007 0.829 0.537
LSTM deseasonalized 9.250 10.532 7.017 9.153 0.822 0.597
ETS 9.792 11.880 6.666 9.667 0.840 0.532
MLP 10.181 12.135 6.923 10.264 0.845 0.545
FRBE 10.222 12.905 6.769 10.264 0.886 0.566
HEM 11.333 13.037 7.317 11.403 0.900 0.590
REST 11.431 12.446 7.574 11.597 0.898 0.591
Boot.EXPOS 11.528 15.250 6.923 11.472 0.928 0.614
ARIMA 11.896 14.562 7.027 11.826 0.920 0.562
AVG 12.514 13.054 8.020 12.514 0.997 0.676
PB-GRNN 12.569 14.500 7.856 12.625 1.008 0.653
PB-RF 12.569 14.500 7.856 12.625 1.008 0.653
PB-MLP 12.972 14.943 8.052 12.903 0.992 0.681
LSTM 13.306 13.334 8.202 13.208 0.947 0.684
Fuzzy c-regression m 13.333 13.729 10.036 13.361 1.127 0.722
MTSFA 14.250 16.512 9.692 14.194 1.127 0.707
Random Walk 15.306 14.586 9.141 15.389 1.256 0.833
TSFIS 15.576 15.107 10.183 15.535 1.269 0.911
FCDNN 16.139 16.624 8.713 16.222 1.142 0.818
THETA 16.208 14.756 11.012 16.347 1.251 0.744
MSAKAF 17.361 20.386 14.239 17.375 1.572 1.314
HFM 18.181 22.394 11.890 18.292 3.271 1.144
CORN 22.806 28.760 19.858 22.792 2.241 1.826

Table 5.14: Friedman rank-sum test - CIF 2016
hypothesis Adjusted p-value

Ensemble of LSTMs and ETS -
Proposed Approach 0.937

Bagged.BLD.MBB.ETS 0.579
LSTM deseasonalized 0.541

ETS 0.292
MLP 0.171
FRBE 0.160
HEM 0.021
REST 0.017

Boot.EXPOS 0.014
ARIMA 0.006
AVG 0.001
PB-RF 9.080E-4

PB-GRNN 9.080E-4
PB-MLP 2.664E-4
LSTM 8.941E-5

Fuzzy c-regression m 8.137E-5
MTSFA 2.764E-6

Random Walk 2.887E-8
TSFIS 7.977E-9
FCDNN 4.739E-10
THETA 3.297E-10
MSAKAF 5.051E-13

HFM 2.974E-15
CORN 1.982E-31
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5.6.5
Participation in the M4 Competition

The M4 competition was announced in November 2017 and officially
started in the first day of January 2018. The deadline was 31 May 2018
with final results expected to 28th of September 2018. The competition was
organized by Spyros Makridakis and is a continuation to the previous M1, M2
and M3 competitions. On the official M4 comptetion website , see [81] it says
that:

"M-Competitions more generally seek to identify the most accurate
forecasting method(s) for different types of predictions. To get
precise and compelling answers, the M4 is utilizing 100,000 real-life
series, and incorporates all major forecasting methods, including
those based on Artificial Intelligence (AI), as well as the more
traditional statistical ones".

On total, more than 248 teams and individuals from 48 countries partici-
pated in the competition. However, probably by the influence of the large num-
ber of series, only 50 individuals and teams completed the submission process
and produced forecasts for the 100,000 time series from many fields (Demo-
graphic, finance, industry, macro, micro and other) and frequencies (Yearly,
quarterly, monthly, weekly, daily and hourly),see table 5.15 and [82] for the
paper on the preliminary results.

Table 5.15: M4 dataset
Frequency Micro Industry Macro Finance Demographic Other Total
Yearly 6538 3716 3903 6519 1088 1236 23000
Quarterly 6020 4637 5315 5305 1858 865 24000
Monthly 10975 10016 10016 10987 5728 277 48000
Weekly 112 6 41 164 24 12 359
Daily 1476 422 127 1559 10 633 4227
Hourly - - - - - 414 414
Total 5121 18798 19402 24534 8708 3437 100000

The team from PUC-Rio was composed by Tiago Mendes Dantas and
Fernando Luiz Cyrino Oliveira and participated with Bagged.Cluster.ETS.
In order to make the participation viable in terms of time and costs,
Bagged.Cluster.ETS ran on the AWS cloud using a c4.8xlarge machine (132
ECUs, 36 vCPUs, 2.9 GHz, Intel Xeon E5-2666v3, 60 GiB memory).

The preliminary results, released on June 18 2018, evinced the level
of the competition by the presence of not only high profile researchers,
such as Sir David Hendry and Rob Hyndman, but also companies such as
UBER and Wells Fargo. On total, there were more than 30 submissions from
academia/universities and more than 10 from companies-organizations.
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The evaluation of the methods was done using a combination of sMAPE
and MASE called Overall Weighted Average (OWA), see equation 5-13, and
the results showed that Bagged.Cluster.ETS was one among the only 17 out
of 50 methods (on total there were 60 contestants: 50 methods from team
and individuals and 10 benchmarks) that outperformed the benchmarks. The
approach ranked 17th considering the OWA, 23th considering sMAPE and
15th considering MASE. Note the method, as expected, outperformed all the
single Exponential Smoothing benchmarks. See table 5.16 for the full the list
of submitted methods.

OWA =
MASE
NAIV E2 + sMAPE

NAIV E2
2 (5-13)

Table 5.16: M4 results
Team Members Affiliation Type of Method sMAPE MASE OWA General Rank (OWA) General Rank (sMAPE) General Rank (MASE)
Smyl, S. Uber Technologies Hybrid 11.374 1.536 0.821 1 1 1
Montero-Manso, P., Talagala, T., Hyndman, R. J. & Athanasopoulos, G. University of A Coruña & Monash University Combination 11.720 1.551 0.838 2 3 3
Pawlikowski, M., Chorowska, A. & Yanchuk, O. ProLogistica Soft Combination 11.845 1.547 0.841 3 5 2
Jaganathan, S. & Prakash, P. Individual Combination 11.695 1.571 0.842 4 2 6
Fiorucci, J. A. & Louzada, F. University of Brasilia & University of São Paulo Combination 11.836 1.554 0.843 5 4 4
Petropoulos, F. & Svetunkov, I. University of Bath & Lancaster University Combination 11.887 1.565 0.848 6 6 5
Shaub, D. Harvard Extension School Combination 12.020 1.595 0.86 7 9 7
Legaki N. Z. & Koutsouri K. National Technical University of Athens Statistical 11.986 1.601 0.861 8 8 8
Doornik, J., Hendry, D. & Castle, J. University of Oxford Combination 11.924 1.627 0.865 9 7 10
Pedregal, D.J., Trapero, J. R., Villegas, M. A. & Madrigal, J. J. University of Castilla-La Mancha Combination 12.114 1.614 0.869 10 10 9
Spiliotis, E. & Assimakopoulos, V. National Technical University of Athens Statistical 12.148 1.628 0.874 11 12 11
Roubinchtein, A. Washington State Employment Security Department Combination 12.183 1.633 0.876 12 13 13
Ibrahim, M. Georgia Institute of Technology Statistical 12.198 1.644 0.88 13 14 14
Tartu M4 seminar University of Tartu Combination 12.496 1.633 0.888 14 19 12
Waheeb, W. Universiti Tun Hussein Onn Malaysia Combination 12.146 1.706 0.894 15 11 22
Darin, S. & Stellwagen, E. Business Forecast Systems (Forecast Pro) Statistical 12.279 1.693 0.895 16 15 20
Dantas, T. & Cyrino Oliveira, F. Pontifical Catholic University of Rio de Janeiro Combination 12.553 1.657 0.896 17 21 15
THETA Benchmark Statistical 12.309 1.696 0.897 18 16 21
Combination of Exponential Smoothing Models Benchmark Combination 12.555 1.663 0.898 19 23 16
Nikzad, A. Individual Combination 12.370 1.724 0.907 20 17 25
Dampen Exponential Smoothing Benchmark Statistical 12.661 1.683 0.907 21 25 18
Segura-Heras, J. V., Vercher-González, E., Bermúdez-Edo, J. D., & Corberán-Vallet, A. Universidad Miguel Hernández & Universitat de Valencia Combination 12.507 1.717 0.91 22 20 24
Trotta, B. Individual Machine Learning 12.894 1.682 0.915 23 27 17
Chen, W. & Francis, J. Fordham University Combination 12.554 1.730 0.915 24 22 26
Svetunkov, I., Abolghasemi, M. & Kourentzes, N. Lancaster University & University of Newcastle Combination 12.464 1.745 0.916 25 18 28
Talagala, T., Hyndman, R. J. & Athanasopoulos, G. Monash University Statistical 12.902 1.687 0.917 26 28 19
Sui, M. & Rengifo, E. Fordham University Combination 12.855 1.743 0.93 27 26 27
Kharaghani, S. Individual Combination 13.063 1.716 0.93 28 29 23
Smart Forecast Smart Cube (Smart Forecast) Combination 13.214 1.788 0.955 29 31 30
Wainwright, E., Butz E. & Raychaudhuri, S. Oracle Corporation (Crystal Ball) Statistical 13.336 1.798 0.962 30 32 32
Holt’s Exponential Smoothing Benchmark Statistical 13.775 1.772 0.971 31 40 29
Simple Exponential Smoothing Benchmark Statistical 13.087 1.885 0.975 32 30 34
Valle dos Santos, R., Araújo, C. & Accioly, R. Individual Combination 13.820 1.789 0.977 33 41 31
Reilly, T. Automatic Forecasting Systems, Inc. (AutoBox) Statistical 13.756 1.873 0.997 34 39 33
Naïve 1 Benchmark Statistical 13.564 1.912 1.00 35 34 36
Iqbal, A., Seery, S. & Silvia, J. Wells Fargo Securities Statistical 14.312 1.892 1.022 36 44 35
Fritschi, R. Individual Statistical 13.530 2.069 1.040 37 33 44
Bontempi, G. Université Libre de Bruxelles Combination 13.990 2.023 1.045 38 42 39
Naïve 2 Benchmark Statistical 14.208 2.044 1.058 39 43 40
Bandara, K., Bergmeir, C. & Hewamalage, C. Monash University Combination 12.653 2.334 1.077 40 24 47
Seasonal Naïve Benchmark Statistical 14.657 2.057 1.078 41 47 42
Patelis, A. Individual Combination 14.430 2.098 1.081 42 45 45
Kyriakides, I. & Artusi, A. University of Nicosia Combination 14.889 2.068 1.090 43 48 43
Viole, F. & Vinod, H. Fordham University Combination 15.392 2.015 1.094 44 49 38
Chirikhin, K. & Ryabko, B. Novosibirsk State University Combination 16.468 1.957 1.119 45 52 37
Alves Santos Junior, J. G. Individual Machine Learning 16.638 2.056 1.151 46 53 41
Mohamed, A. ServiceNow Combination 15.901 2.310 1.190 47 51 46
Clark, C. Individual Statistical 15.881 2.583 1.261 48 50 48
Selamlar, H. T. Dokuz Eylul University Statistical 13.587 3.305 1.365 49 37 52
Taylan, A. S. Yapı Kredi Invest Statistical 13.577 3.322 1.369 50 36 53
Yapar G., Capar S. & Yavuz. I. Dokuz Eylul University Statistical 13.573 3.371 1.382 51 35 55
Yilmaz, T. E. Dokuz Eylul University Statistical 13.627 3.676 1.464 52 38 57
Çetin, B. Dokuz Eylul University Statistical 14.489 3.576 1.469 53 46 56
Mukhopadhyay, S. University of Texas Machine Learning 18.469 3.059 1.481 54 54 50
Recurrent neural network (RNN) Benchmark Machine Learning 21.152 2.685 1.482 55 57 49
Pełka, P. Czestochowa University of Technology Machine Learning 19.573 3.341 1.595 56 56 54
Multilayer Perceptron (MLP) Benchmark Machine Learning 21.653 3.225 1.642 57 58 51
Dudek, G. Czestochowa University of Technology Other 26.137 6.110 2.561 58 59 58
Sirotin, R. Siberian State University of Telecommunications and Information Sciences Statistical 19.136 14.081 4.387 59 55 59

Unfortunately, on the preliminary results there is no full description of
the methods in the competition. These are expected in the final version that
will be available on September 28 2018. However, the competition organizers
detailed the top 6 in the end of June at the International Symposium on
Forecasting held in Boulder, Colorado - USA. According to the authors the
methods from top 6 were:
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– Smyl,S (UBER): Hybrid model of Exponential Smoothing with LSTM
and Hierarchical modeling where the parameters were estimated using
data from the entire dataset and individual series. In the end a combi-
nation was also considered.

– Montero-Manso, P., Talagala,T., Hyndman, R.J. & Athana-
sopoulos, G. (University of la Coruña and Monash Univer-
sity): Combination of ARIMA, ETS, tbats, THETA, Naïve, Seasonal
Naïve, Neural Network and LSTM where the aggregation was made by
a weighted average. The weights were calculated using the extreme gra-
dient boosting algorithm (Xgboost) considering holdout sets.

– Pawlikoski,M, Chorowska,A. & Yanchuk,O. (Prologistica Soft)
- Combination of several statistical methods via weighted average. The
pool of methods was defined manually based on the characteristics of the
time series.

– Jaganathan, S. & Prakash, P. (individual) - Combination of
statistical methods using the approach defined in [83].

– Fiorucci, J.A. & Louzada,F. (University of Brasilia and Uni-
versity of São Paulo) - Combination of ARIMA, ETS and THETA
via weighted average where the weights were estimated using cross-
validation.

– Petropoulos, F & Sventunkov, I. (University of Bath and Lan-
caster University) - Combination of ETS, CES, ARIMA and THETA
via the median of the forecasts.

An analysis on the type of methods that outperformed the benchmarks
evince that combination was the right direction to follow in this competition.
Moreover, a closer look at the top 6 approaches indicated also that the
weighting scheme do matters. In this sense, while Bagged.Cluster.ETS is indeed
a combination approach, there is no weighting in the proposed methodology.
This is certainly a point of improvement that might have played an important
role in the final result. Findings like these and probably many others from
other researchers are precisely what makes competitions useful.
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5.7
Summary and Concluding Remark

This chapter introduced an innovative way of improving forecasting per-
formance of Bagging Exponential Smoothing methods by combining Bag-
ging, Exponential Smoothing and Clusters methods. The proposed approach,
Bagged.Cluster.ETS, takes into account the covariance effect, an important
aspect left unattended by previous authors, and seeks to minimize it by gener-
ating clusters and, subsequently, selecting series from them. By doing so, the
proposed approach is expected to reduce the forecast error.

The proposed approach was submitted to a series of validations. In this
sense, a simulation exercise using Monte Carlo and 4 DGPs was conducted
to understand the behave of the Bagged.Cluster.ETS’s bias and variance in
comparison to Bagged.BLD.MBB.ETS and also the impact of the number
of clusters in bias and variance. The overall result was that, as intended,
Bagged.Cluster.ETS was able to reduce variance without sacrificing bias a
lot. The number of clusters also played an important role in the magnitude of
this reduction.

The main objective of a forecasting method is to be as accurate as
possible. Therefore, data from M3 competition and CIF 2016 was used in two
ways. First to understand the impact of the number of cluster in forecasting
performance and second to conduct an ex-ante forecasting analysis of the
proposed approach with the original methods from the M3 competition,
plus Bagged.BLD.MBB.ETS and ETS and the methods in the CIF 2016
competition (this already includes Bagged.BLD.MBB.ETS).

The results on the number of clusters indicated that the ideal number was
between 40 and 50 clusters, considering 100 time series in the ensemble. Also,
the results showed that the automatic selection of clusters using the Silhouette
information performed very well.

The ex-ante analysis indicated that Bagged.Cluster.ETS is a top
competitor, since for the 1428 monthly time series from the M3 com-
petition and 72 from CIF 2016 the approach consistently outperformed
Bagged.BLD.MBB.ETS and all other benchmarks in the first competition and
all but one, an Ensemble of LSTM and ETS, in the second competition.

A controversial point in the result, but not uncommon in the forecasting
time series area, was the fact that the methods did not show statistically sig-
nificant differences between the proposed approach and some of the methods.
Nevertheless, in the case of forecasting the results are still valid and important
findings as [31] and [32] clarify.

The preliminary results of the fresh M4 competition showed the approach
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was able to outperform the competition benchmarks and although there
were better ranked methods. Bagged.Cluster.ETS produced good results and
is aligned with the top 6 performers as it also uses combination in order
to generate the final forecasts. The competition also demonstrated that an
introduction of a weighting scheme is a possible direction for future steps on
the Bagged.Cluster.ETS.

It is important to note that for CIF 2016, M3 and M4, the Silhouette
information was the method used to select the ideal number of clusters for
each series. However, if one has the necessary computational power, the cross-
validation approach is indeed a valid option that should be considered in
determining the optimal number of clusters.
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6
Concluding Remarks e Future Directions

Acknowledging that precise forecasts are a fundamental part of planning
processes and the basis for every efficient system, this thesis finds its motivation
on improving time series forecasting performance by proposing the use of the
state of the art method, Bagged.BLD.MBB.ETS, on a very real problem and
going further by identifying points of improvement in the state of the art and
finalizing proposing a new approach to improving existing methods.

The minor contribution of the thesis lies on explaining the state of the art,
Bagged.BLD.MBB.ETS, in detail and applying it to the problem of forecasting
demand for air transport. On total, data from 14 countries was used and it was
shown that Bagging was able to reduce the forecast error in almost all the cases
when compared to single versions of the approach and the other benchmarks.
At this point, Bagged.BLD.MBB.ETS has never been used in this context,
making it a valid direction to practitioners in the industry.

It is important to understand that precise forecasts are of fundamental
importance in the air transport industry where even small errors can lead to
disastrous effects such as system congestion, excess infrastructure capacities,
increased operators’ costs. Thinking about companies, having more accurate
forecast than its rivals can translate into competitive advantages since the data
inputs on planning are more reliable.

The major contribution of the thesis rests on understanding why Bagging
actually improve performance and how it works on Bagged.BLD.MBB.ETS,
leading to the proposition of a new approach called Bagged.Cluster.ETS. The
method uses the methodology proposed by Bergmeir and colleagues in [13] as
a starting point, but goes further by addressing a key point of improvement
that was the covariance among the ensemble of forecasts that are aggregated,
impacting the variance and, consequently the forecast error.

To understand how the variance and bias behave in both
Bagged.BLD.MBB.ETS and Bagged.Cluster.ETS a simulation study is con-
ducted using the Monte Carlo simulation method. In order to access how
the variance and bias behave in both methods in the presence of diverse
characteristics (e.g. non-linearity and seasonality) 4 DGPs are used. It is
shown that, in comparison to Bagged.BLD.MBB.ETS, Bagged.Cluster.ETS,
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in general was able to reduce variance without hurting bias a lot, therefore,
making a good balance in the bias variance trade-off.

The quality of the forecasts generated by Bagged.Cluster.ETS was ac-
cessed using data from time series forecasting competition. In this sense data
from M3, CIF 2016 and the yet not fully finished M4 were used. The first 2
were initially used to verify how the number of clusters affected the quality of
the forecasts, where the results indicated a number between 40 and 50 in the
case, considering an aggregation of 100 time series.

Afterwards, the proposed approach was used to generate forecasts in an
ex-ante fashion for M3 and CIF 2016. The results were compared to bench-
marks in the original competitions (plus Bagged.BLD.MBB.ETS that was not
available in the case of the M3). Bagged.Cluster.ETS was able to outperform
Bagged.BLD.MBB.ETS in both competitions (considering monthly data), rep-
resenting an advance in the state of the art and validated using the main
reference. Furthermore, considering monthly data, the proposed approach out-
performed all other methods in the M3 and ranked second in CIF 2016.

A drawback of the method, evinced in the quarterly and yearly data from
M3 competition, was its inability to generate good forecasts in the presence
of time series with small length. As it happened to Bagged.BLD.MBB.ETS,
Bagged.Cluster.ETS experienced a deterioration in its forecasts, suffering even
more than the first, probably, due to the extra phase (clustering) in the
proposed methodology.

The evaluation of the M4 competition showed the approach was one
among the 17 to actually beat the benchmarks. Although it did not rank in
the top 3 methods, as we would like, the performance of Bagged.Cluster.ETS
was aligned to what is the future in time series forecasting, since, the method
is a combination of forecasts like the top methods.

It is important to say that the high number of time series to forecasts,
100,000, and the length of the competition, approximately 4 months, posed
as a great difficulty. Since Bagged.Cluster.ETS is a computationally intensive
method, a lot of validation and evaluation of the performance of the method
that would lead to improvements, and that are common among participants in
this type of competitions, were not implemented. This means that the results
can probably be improved.

The competition itself, although in their preliminary results, is already
providing guidance to further research, as immediately after the results it
became clear that a weighting scheme can lead Bagged.Cluster.ETS to even
better forecasts, something that before the competition was not crystal clear,
see [17]. Therefore, the weighting scheme constitutes as a clear extension of
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this work. As possible extensions of this work, the following stand out:

– The study of weighting schemes;

– The investigation of other alternative decomposition methods than STL;

– A detailed investigation on the gains of including other distances and
clustering algorithms;

– The analytical calculations of the ensemble’s variance;

– The inclusion of probabilistic forecasts;

– The investigation of computational cost/complexity reduction tech-
niques;

– Other forms of variance reduction less computationally intensive.

DBD
PUC-Rio - Certificação Digital Nº 1421392/CA



Bibliography

[1] HYNDMAN, R. J.; ATHANASOPOULOS, G.. Forecasting: principles
and practice. OTexts, Melbourne, Australia, 2014.

[2] BREIMAN, L.. Bagging predictors. Machine learning, 24(2):123–140,
1996.

[3] EFRON, B.. Bootstrap methods: Another look at the jackknife.
Ann. Statist., 7(1):1–26, 01 1979.

[4] INOUE, A.; KILIAN, L.. Bagging time series models. Discussion Paper,
Centre for Economic Policy Research, London, 2004.

[5] LEE, T.-H.; YANG, Y.. Bagging binary and quantile predictors for
time series. Journal of econometrics, 135(1):465–497, 2006.

[6] INOUE, A.; KILIAN, L.. How useful is bagging in forecasting
economic time series? a case study of us consumer price inflation.
Journal of the American Statistical Association, 103(482):511–522, 2008.

[7] CORDEIRO, C.; NEVES, M. M.. Forecasting time series with boot.
expos procedure. Revstat, 7(2):135–149, 2009.

[8] HILLEBRAND, E.; MEDEIROS, M. C.. The benefits of bagging for
forecast models of realized volatility. Econometric Reviews, 29(5-
6):571–593, 2010.

[9] RAPACH, D. E.; STRAUSS, J. K.. Bagging or combining (or both)? an
analysis based on forecasting us employment growth. Econometric
Reviews, 29(5-6):511–533, 2010.

[10] WANG, Y.; XIAO, M. ; ZHOU, Y.. A hybrid ensemble approximation
method for chaotic time series forecast. Journal of Information &
Computational Science, 9(18):5849–5856, 2012.

[11] ZONTUL, M.; AYDIN, F.; DOAN, G.; SENER, S. ; KAYNAR, O..
Wind speed forecasting using reptree and bagging methods in
kirklareli-turkey. Journal of Theoretical and Applied Information Tech-
nology, 56:17–29, 10 2013.

DBD
PUC-Rio - Certificação Digital Nº 1421392/CA



Bibliography 75

[12] JIN, S.; SU, L. ; ULLAH, A.. Robustify financial time series forecast-
ing with bagging. Econometric Reviews, 33(5-6):575–605, 2014.

[13] BERGMEIR, C.; HYNDMAN, R. J. ; BENITEZ, J. M.. Bagging expo-
nential smoothing methods using stl decomposition and box–
cox transformation. International Journal of Forecasting, 32(2):303–312,
2016.

[14] DANTAS, T. M.; OLIVEIRA, F. L. C. ; REPOLHO, H. M. V.. Air
transportation demand forecast through bagging holt winters
methods. Journal of Air Transport Management, 59:116–123, 2017.

[17] TIMMERMANN, A.. Forecast combinations. Handbook of economic
forecasting, 1:135–196, 2006.

[19] BOX, G. E.; COX, D. R.. An analysis of transformations. Journal of
the Royal Statistical Society. Series B (Methodological), p. 211–252, 1964.

[20] CLEVELAND, R. B.; CLEVELAND, W. S. ; TERPENNING, I.. Stl: A
seasonal-trend decomposition procedure based on loess. Journal
of Official Statistics, 6(1):3, 1990.

[22] MAKRIDAKIS, S.; HIBON, M.. The m3-competition: results, conclu-
sions and implications. International journal of forecasting, 16(4):451–
476, 2000.

[23] BREIMAN, L.. Random forests. Machine learning, 45(1):5–32, 2001.

[24] GEMAN, S.; BIENENSTOCK, E. ; DOURSAT, R.. Neural networks and
the bias/variance dilemma. Neural Computation, 4(1):1–58, 1992.

[25] LIAO, T. W.. Clustering of time series data—a survey. Pattern
recognition, 38(11):1857–1874, 2005.

[26] MONTERO, P.; VILAR, J.. Tsclust: An r package for time series
clustering. Journal of Statistical Software, Articles, 62(1):1–43, 2014.

[27] ROUSSEEUW, P. J.. Silhouettes: a graphical aid to the interpreta-
tion and validation of cluster analysis. Journal of computational and
applied mathematics, 20:53–65, 1987.

[28] TAIEB, S. B.; ATIYA, A. F.. A bias and variance analysis for
multistep-ahead time series forecasting. IEEE transactions on neural
networks and learning systems, 27(1):62–76, 2016.

DBD
PUC-Rio - Certificação Digital Nº 1421392/CA



Bibliography 76

[29] HYNDMAN, R. J.; KOEHLER, A. B.. Another look at measures of
forecast accuracy. International journal of forecasting, 22(4):679–688,
2006.

[30] GARCÍA, S.; FERNÁNDEZ, A.; LUENGO, J. ; HERRERA, F.. Advanced
nonparametric tests for multiple comparisons in the design
of experiments in computational intelligence and data mining:
Experimental analysis of power. Information Sciences, 180(10):2044–
2064, 2010.

[31] ARMSTRONG, J. S.. Significance tests harm progress in forecast-
ing. International Journal of Forecasting, 23(2):321–327, 2007.

[32] KOSTENKO, A. V.; HYNDMAN, R. J.. Forecasting without signifi-
cance test. manuscript, Monash University, Australia, 2008.

[33] ŠTĚPNIČKA, M.; BURDA, M.. On the results and observations of the
time series forecasting competition cif 2016. In: FUZZY SYSTEMS
(FUZZ-IEEE), 2017 IEEE INTERNATIONAL CONFERENCE ON, p. 1–6.
IEEE, 2017.

[34] KAUFMAN, L.; ROUSSEEUW, P. J.. Finding groups in data: an
introduction to cluster analysis, volumen 344. John Wiley & Sons,
2009.

[37] HYNDMAN, R. J.; KOEHLER, A. B.; SNYDER, R. D. ; GROSE, S.. A state
space framework for automatic forecasting using exponential
smoothing methods. International Journal of Forecasting, 18(3):439–454,
2002.

[38] DE GOOIJER, J. G.; HYNDMAN, R. J.. 25 years of time series
forecasting. International journal of forecasting, 22(3):443–473, 2006.

[39] FILDES, R.. An evaluation of bayesian forecasting. Journal of
Forecasting, 2(2):137–150, 1983.

[40] GOODWIN, P.; OTHERS. The holt-winters approach to exponential
smoothing: 50 years old and going strong. Foresight, 19:30–33, 2010.

[41] TAYLOR, J. W.. Short-term electricity demand forecasting using
double seasonal exponential smoothing. Journal of the Operational
Research Society, 54(8):799–805, 2003.

DBD
PUC-Rio - Certificação Digital Nº 1421392/CA



Bibliography 77

[42] RIBEIRO, M.; GROLINGER, K. ; CAPRETZ, M. A. M.. Mlaas: Machine
learning as a service. In: 2015 IEEE 14TH INTERNATIONAL CON-
FERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), p.
896–902, Dec 2015.

[43] GUERRERO, V. M.. Time-series analysis supported by power
transformations. Journal of Forecasting, 12(1):37–48, 1993.

[44] CLEVELAND, W. S.. Visualizing data. Hobart Press, 1993.

[45] KUNSCH, H. R.. The jackknife and the bootstrap for general
stationary observations. The annals of Statistics, p. 1217–1241, 1989.

[46] SINGH, K.. On the asymptotic accuracy of efron’s bootstrap. The
Annals of Statistics, p. 1187–1195, 1981.

[47] PETROPOULOS, F.; HYNDMAN, R. J. ; BERGMEIR, C.. Exploring
the sources of uncertainty: Why does bagging for time series
forecasting work? European Journal of Operational Research, 268(2):545–
554, 2018.

[48] HYNDMAN, R.; KHANDAKAR, Y.. Automatic time series forecasting:
The forecast package for r. Journal of Statistical Software, 27(3), 2008.

[49] BERNDT, D. J.; CLIFFORD, J.. Using dynamic time warping to find
patterns in time series. In: KDD WORKSHOP, número 16, p. 359–370.
Seattle, WA, 1994.

[51] EITER, T.; MANNILA, H.. Computing discrete fréchet distance.
Technical report, Citeseer, 1994.

[51] CHOUAKRIA, A. D.; NAGABHUSHAN, P. N.. Adaptive dissimilarity
index for measuring time series proximity. Advances in Data Analysis
and Classification, 1(1):5–21, 2007.

[52] GALEANO, P.; PEÑA, D. P.. Multivariate analysis in vector time
series. Resenhas do Instituto de Matemática e Estatística da Universidade
de São Paulo, 4(4):383–403, 2000.

[53] CAIADO, J.; CRATO, N. ; PEÑA, D.. A periodogram-based metric
for time series classification. Computational Statistics & Data Analysis,
50(10):2668–2684, 2006.

[54] MAHARAJ, E. A.; D’URSO, P.. Fuzzy clustering of time series in the
frequency domain. Information Sciences, 181(7):1187–1211, 2011.

DBD
PUC-Rio - Certificação Digital Nº 1421392/CA



Bibliography 78

[55] CASADO DE LUCAS, D.. Classification techniques for time series
and functional data. PhD thesis, Universidad Carlos III de Madrid, 2010.

[56] ZHANG, H.; HO, T. B.; ZHANG, Y. ; LIN, M.-S.. Unsupervised feature
extraction for time series clustering using orthogonal wavelet
transform. Informatica, 30(3), 2006.

[57] LIN, J.; KEOGH, E.; WEI, L. ; LONARDI, S.. Experiencing sax: a novel
symbolic representation of time series. Data Mining and knowledge
discovery, 15(2):107–144, 2007.

[58] KEOGH, E.; LONARDI, S. ; RATANAMAHATANA, C. A.. Towards
parameter-free data mining. In: PROCEEDINGS OF THE TENTH
ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DIS-
COVERY AND DATA MINING, p. 206–215. ACM, 2004.

[59] KEOGH, E.; LONARDI, S.; RATANAMAHATANA, C. A.; WEI, L.; LEE, S.-
H. ; HANDLEY, J.. Compression-based data mining of sequential
data. Data Mining and Knowledge Discovery, 14(1):99–129, 2007.

[60] SINGH, D.; DALEI, N. N. ; RAJU, T. B.. Forecasting investment and
capacity addition in indian airport infrastructure: Analysis from
post-privatization and post-economic regulation era. Journal of Air
Transport Management, 53:218–225, 2016.

[61] BARNHART, C.; BELOBABA, P. ; ODONI, A. R.. Applications of
operations research in the air transport industry. Transportation
science, 37(4):368–391, 2003.

[62] GRUBB, H.; MASON, A.. Long lead-time forecasting of uk air pas-
sengers by holt–winters methods with damped trend. International
Journal of Forecasting, 17(1):71–82, 2001.

[63] CHIN, A. T.; TAY, J. H.. Developments in air transport: implica-
tions on investment decisions, profitability and survival of asian
airlines. Journal of Air Transport Management, 7(5):319–330, 2001.

[64] NJEGOVAN, N.. A leading indicator approach to predicting short-
term shifts in demand for business travel by air to and from the
uk. Journal of Forecasting, 24(6):421–432, 2005.

[65] LAI, S. L.; LU, W.-L.. Impact analysis of september 11 on air travel
demand in the usa. Journal of Air Transport Management, 11(6):455–458,
2005.

DBD
PUC-Rio - Certificação Digital Nº 1421392/CA



Bibliography 79

[66] ALEKSEEV, K.; SEIXAS, J.. A multivariate neural forecasting mod-
eling for air transport–preprocessed by decomposition: A brazil-
ian application. Journal of Air Transport Management, 15(5):212–216,
2009.

[67] CARSON, R. T.; CENESIZOGLU, T. ; PARKER, R.. Forecasting (aggre-
gate) demand for us commercial air travel. International journal of
Forecasting, 27(3):923–941, 2011.

[68] KOTEGAWA, T.; DELAURENTIS, D. A. ; SENGSTACKEN, A.. Devel-
opment of network restructuring models for improved air traf-
fic forecasts. Transportation Research Part C: Emerging Technologies,
18(6):937–949, 2010.

[69] SAMAGAIO, A.; WOLTERS, M.. Comparative analysis of government
forecasts for the lisbon airport. Journal of Air Transport Management,
16(4):213–217, 2010.

[70] GROSCHE, T.; ROTHLAUF, F. ; HEINZL, A..Gravity models for airline
passenger volume estimation. Journal of Air Transport Management,
13(4):175–183, 2007.

[71] XIAO, Y.; LIU, J. J.; HU, Y.; WANG, Y.; LAI, K. K. ; WANG, S.. A neuro-
fuzzy combination model based on singular spectrum analysis
for air transport demand forecasting. Journal of Air Transport
Management, 39:1–11, 2014.

[72] MAKRIDAKIS, S.. Accuracy measures: theoretical and practical
concerns. International Journal of Forecasting, 9(4):527–529, 1993.

[73] TONG, H.. Non-linear time series: a dynamical system approach.
Oxford University Press, 1990.

[74] BROCKWELL, P. J.; DAVIS, R. A.. Time series: theory and methods.
Springer Science & Business Media, 2013.

[75] HYNDMAN, R. J.; ATHANASOPOULOS, G.. Forecasting: principles
and practice. OTexts, 2014.

[76] Rob hyndmans’blog post on the m4 competition. https://
robjhyndman.com/hyndsight/m4comp/. Accessed: 2017-11-17.

[77] SHYU, W. M.; GROSSE, E. ; CLEVELAND, W. S.. Local regression
models. In: STATISTICAL MODELS IN S, p. 309–376. Routledge, 2017.

https://robjhyndman.com/hyndsight/m4comp/
https://robjhyndman.com/hyndsight/m4comp/
DBD
PUC-Rio - Certificação Digital Nº 1421392/CA



Bibliography 80

[79] CHU, C.-T.; KIM, S. K.; LIN, Y.-A.; YU, Y.; BRADSKI, G.; OLUKOTUN,
K. ; NG, A. Y.. Map-reduce for machine learning on multicore.
In: ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS, p.
281–288, 2007.

[80] DEAN, J.; GHEMAWAT, S.. Mapreduce: simplified data processing
on large clusters. Communications of the ACM, 51(1):107–113, 2008.

[81] Official m4 competition webpage. https://www.m4.unic.ac.cy/.
Accessed: 2018-07-25.

[82] MAKRIDAKIS, S.; SPILIOTIS, E. ; ASSIMAKOPOULOS, V.. The m4
competition: Results, findings, conclusion and way forward.
International Journal of Forecasting, 2018.

[83] ARMSTRONG, J. S.. Principles of forecasting: a handbook for
researchers and practitioners, volumen 30. Springer Science & Business
Media, 2001.

[84] DE OLIVEIRA, E. M.; OLIVEIRA, F. L. C.. Forecasting mid-long
term electric energy consumption through bagging arima and
exponential smoothing methods. Energy, 144:776–788, 2018.

[85] SALEM, A. M.. Facebook distributed system case study for dis-
tributed system inside facebook datacenters. International Journal
of Technology Enhancements and Emerging Engineering Research, 2, 2014.

[86] RAMAKRISHNAN, L.; ZBIEGEL, P. T.; CAMPBELL, S.; BRADSHAW, R.;
CANON, R. S.; COGHLAN, S.; SAKREJDA, I.; DESAI, N.; DECLERCK,
T. ; LIU, A.. Magellan: experiences from a science cloud. In: PRO-
CEEDINGS OF THE 2ND INTERNATIONAL WORKSHOP ON SCIENTIFIC
CLOUD COMPUTING, p. 49–58. ACM, 2011.

https://www.m4.unic.ac.cy/
DBD
PUC-Rio - Certificação Digital Nº 1421392/CA


	Combining to succeed: A novel strategy to improve forecasts from Exponential Smoothing models
	Resumo
	Table of contents
	Introduction
	Literature Review and Contributions
	Contributions

	The state of the art of Bagging Exponential Smoothing -Bagged.MBB.BLD.ETS
	Bagged.BLD.MBB.ETS

	Bagged.BLD.MBB.ETS to an Air Transport problem
	introduction
	Literature Review on Air Transport Time Series Forecast
	Data description
	Methods
	Forecasting Results
	Summary and Concluding Remarks

	Bagged.Cluster.ETS - A new approach to Bagging Exponential Smoothing
	Introduction
	Why Bagging tends to work
	Proposed Approach - Bagged.Cluster.ETS
	Computational Aspects of Bagged.Cluster.ETS
	Bias and Variance analysis
	Experiments on Forecasting Competitions Data
	Effects on the number of clusters
	Performance of the Proposed Approach on Competitions
	M3 - Monthly Results
	M3 - Quarterly and Yearly Results

	Discussion
	CIF 2016
	Participation in the M4 Competition

	Summary and Concluding Remark

	Concluding Remarks e Future Directions
	Bibliography



