Título: | TÉCNICAS DE ESTIMAÇÃO DE DIREÇÃO DE ALTA-RESOLUÇÃO EXPLORANDO CONHECIMENTO A PRIORI | ||||||||||||
Autor: |
SILVIO FERNANDO BERNARDES PINTO |
||||||||||||
Colaborador(es): |
RODRIGO CAIADO DE LAMARE - Orientador |
||||||||||||
Catalogação: | 27/AGO/2018 | Língua(s): | INGLÊS - ESTADOS UNIDOS |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=34917&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=34917&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.34917 | ||||||||||||
Resumo: | |||||||||||||
A maioria dos métodos e algoritmos para estimação de direção é pouco precisa em cenários formados por fontes próximas, pequenos lotes de amostras e sinais correlatados. Nos últimos anos, alguns métodos para superar tais óbices utilizaram conhecimento prévio de direções de sinais oriundos de usuários estáticos. Porém, este conceito está limitado a direções de chegada conhecidas. Esta tese apresenta várias contribuições para superar os problemas mencionados anteriormente. Introduz-se um novo conceito de
conhecimento a priori aplicado à estimação de direção, substituindo-se as tradicionais direções de chegada disponíveis por estimativas preliminares obtidas on-line. Tal ideia é incorporada aos algoritmos propostos e suas extensões. Também é introduzido um conceito para a estimação da matriz de covariância de dados reduzindo-se iterativamente os seus subprodutos que ocorrem na região finita de amostras. Esta abordagem é complementada por uma análise da matriz de covariância modificada, que mostra que, após a primeira iteração, o Mean Squared Error (MSE) da matriz de covariância de dados livre desses subprodutos é menor ou igual ao MSE da matriz de covariância de dados original. Combinando-se os dois conceitos anteriormente descritos, obtém-se um novo método denominado Multi-Step Knowledge-Aided Iterative (MS-KAI) que eleva a precisão de algoritmos existentes. Inicialmente, o método MS-KAI é usado com Uniform linear Arrays (ULAs) e é combinado com o algoritmo Estimation of Signal Parameters
via Rotational Invariance Techniques, resultando no algoritmo proposto MS-KAI-ESPRIT. O método é então ampliado para uso com um número arbitrário de iterações e combinado com o algoritmo Gradiente Conjugado, resultando no algoritmo MS-KAI-CG. Finalmente, ele é usado com arranjos aninhados e combinado com o algoritmo Multiple Signal Classification, resultando no algoritmo proposto MS-KAI-MUSIC. Simulações mostram que o método MS-KAI eleva a precisão de algoritmos baseados em subespaços, empregando modelos de sinais baseados em ULAs e non-ULAs.
|
|||||||||||||
|