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Abstract

Pinto, Silvio Fernando Bernardes; Lamare, Rodrigo Caiado de (Ad-
visor). High-Resolution Direction Finding Techniques Exploi-
ting Prior Knowledge. Rio de Janeiro, 2018. 123p. Tese de douto-
rado – Departamento de Engenharia Elétrica, Pontifícia Universidade
Católica do Rio de Janeiro.
Most conventional methods and algorithms for direction finding suffer

from poor accuracy when subjected to scenarios characterized by closely
spaced sources, short data records and correlated source signals. In the last
few years, some approaches to overcoming these problems have exploited
prior knowledge of signal directions coming from static users. However, this
concept is restricted to known directions of arrival. This thesis presents se-
veral contributions to dealing with the aforementioned problems. A novel
concept of a priori knowledge applied to direction finding is first presented,
which replaces the traditional available known DOAs so far employed with
previous estimates obtained on line. This idea is then incorporated into the
proposed algorithms and their extensions. Another approach is also intro-
duced to estimating the data covariance matrix by iteratively reducing its
by-products, which occurs in the finite sample region. This concept is com-
plemented by a reshaped covariance matrix analysis, which shows that after
the first iteration the Mean Squared Error of the data covariance matrix free
of these side effects is less than or equal to the MSE of the original one.
A novel method, termed Multi-Step Knowledge-Aided Iterative (MS-KAI),
for increasing the accuracy of existing algorithms based on the combina-
tion of the previous concepts is then developed. The MS-KAI method is
initially employed with Uniform Linear Arrays (ULAs) and is combined
with the Estimation of Signal Parameters via Rotational Invariance Tech-
niques algorithm, resulting in the proposed MS-KAI-ESPRIT algorithm.
Then, MS-KAI is extended for use with an arbitrary number of iterations
and combined with the Conjugate Gradient algorithm, resulting in the MS-
KAI-CG algorithm. Finally, the MS-KAI method is considered with nested
arrays and combined with the Multiple Signal Classification algorithm, re-
sulting in the proposed MS-KAI-MUSIC algorithm. Simulation results show
that MS-KAI method enhances the accuracy of subspace based algorithms
employing ULA and non-ULA based system models.

Keywords

High-resolution parameter estimation; Direction finding; Knowledge-
aided techniques.
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Resumo

Pinto, Silvio Fernando Bernardes; Lamare, Rodrigo Caiado de. Técni-
cas de Estimação de Direção de Alta-Resolução Explorando
Conhecimento a Priori. Rio de Janeiro, 2018. 123p. Tese de Douto-
rado – Departamento de Engenharia Elétrica, Pontifícia Universidade
Católica do Rio de Janeiro.
A maioria dos métodos e algoritmos para estimação de direção é pouco

precisa em cenários formados por fontes próximas, pequenos lotes de amos-
tras e sinais correlatados. Nos últimos anos, alguns métodos para superar
tais óbices utilizaram conhecimento prévio de direções de sinais oriundos
de usuários estáticos. Porém, este conceito está limitado a direções de che-
gada conhecidas. Esta tese apresenta várias contribuições para superar os
problemas mencionados anteriormente. Introduz-se um novo conceito de
conhecimento a priori aplicado à estimação de direção, substituindo-se as
tradicionais direções de chegada disponíveis por estimativas preliminares
obtidas on-line. Tal ideia é incorporada aos algoritmos propostos e suas ex-
tensões. Também é introduzido um conceito para a estimação da matriz
de covariância de dados reduzindo-se iterativamente os seus subprodutos
que ocorrem na região finita de amostras. Esta abordagem é complemen-
tada por uma análise da matriz de covariância modificada, que mostra que,
após a primeira iteração, o "Mean Squared Error" (MSE) da matriz de co-
variância de dados livre desses subprodutos é menor ou igual ao MSE da
matriz de covariância de dados original. Combinando-se os dois conceitos an-
teriormente descritos, obtém-se um novo método denominado “Multi-Step
Knowledge-Aided Iterative” (MS-KAI) que eleva a precisão de algoritmos
existentes. Inicialmente, o método MS-KAI é usado com "Uniform linear
Arrays" (ULAs) e é combinado com o algoritmo "Estimation of Signal Pa-
rameters via Rotational Invariance Techniques", resultando no algoritmo
proposto MS-KAI-ESPRIT. O método é então ampliado para uso com um
número arbitrário de iterações e combinado com o algoritmo Gradiente Con-
jugado, resultando no algoritmo MS-KAI-CG. Finalmente, ele é usado com
arranjos aninhados e combinado com o algoritmo "Multiple Signal Clas-
sification", resultando no algoritmo proposto MS-KAI-MUSIC. Simulações
mostram que o método MS-KAI eleva a precisão de algoritmos baseados em
subespaços, empregando modelos de sinais baseados em ULAs e non-ULAs.

Palavras-chave

Estimação de parâmetros em alta resolução; Estimação de direção;
Técnicas auxiliadas por conhecimento.
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1

Introduction

1.1

Overview

As an active area of research in the broad field of signal processing, array
signal processing focuses on the problem of estimating signal parameters from
data collected over the spatial aperture of an array of sensors, in which the
sensors are placed at distinct spatial locations. The estimation task is usually
associated with the extraction of desired information from impinging signals
in the presence of noise and interference. The sensor array deals with the
estimation problem by exploiting the spatial separation of the sensor elements
to capture the propagating wavefronts, which emanate from energy-radiating
sources. Common signal parameters of interest to be estimated are the signal
content itself, the directions of arrival of the signals, and their power. To
obtain this information, the sensor array data are processed using statistical
and adaptive signal processing techniques. These techniques include parameter
estimation and adaptive filtering applied to array signal processing. The
fundamental set of principles and techniques for sensor array signal processing
is applicable in many areas [1, 2], including wireless communications, radar,
sonar, biomedicine, seismology and astronomy.

Two of the most relevant topics within array signal processing are beamforming
and direction of arrival (DOA) estimation [1], which present unavoidable
challenges when designing wireless communications systems. Both tasks start
with the records of radiating wavefronts impinging on sensor arrays at a given
instant to form an observation vector which is used to build a sample covariance
matrix which becomes the basis of the processes.

In a straightforward way, the first topic, i.e., beamforming or spatial filtering
can be defined as the process of properly weighting signals from a particular
direction for emphasizing them and attenuating the interferences, which can be
done differently. In one approach, the weighting applied to the received signal
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Chapter 1. Introduction 16

at each sensor element is fixed and data-independent. Alternatively, one can
use adaptive beamforming,in which weighting is continuously adapted to track
changes in the system and rejects interference. The adaptive algorithms used to
adjust the weights for each sensor element are designed by optimizing certain
criteria according to the given properties. One of the most relevant design
criteria in practice is the constrained minimum variance (CMV) approach [4],
which only involves the knowledge of the array geometry and the angle of the
desired signal. The CMV optimality criterion minimizes the total beamformer
output power while constraining the array response in the direction of the
desired signal to be constant. Due to its simplicity and effectiveness much
effort has been devoted over the past few decades to devise efficient adaptive
algorithms in order to realize a practical beamformer design [1, 3, 5]. In the
class of adaptive algorithms, the least-mean squares (LMS) method [5] as a
representative of the low-complexity stochastic gradient techniques makes use
of gradient vectors for the iterative computation of the weights and yields an
acceptable performance in many applications. However, its efficacy strongly
depends on the step size and the eigenvalue spread of the covariance matrix,
resulting in an insufficient convergence performance for certain scenarios [3].
An alternative method is the recursive least squares (RLS) algorithm [5], which
is independent of the eigenvalue spread and thus achieves fast convergence
speed. However, its main drawbacks are numerical instability and a relatively
high complexity.

The DOA estimation has the purpose of determining the angle of arrival of
a given spatially propagating signal relative to the antenna array. To this
end, the spatial separation of multiple sensor elements is exploited to obtain
the location of the energy-radiating source. The result of the estimation
procedure is subsequently used for the beamforming to steer the beam towards
this specific direction, in order to capture or radiate maximal power. Since
the field of applications involving DOA estimation is constantly expanding,
numerous direction finding techniques have been devised over the past few
decades [1,6]. The most well-known parameter estimation strategies discussed
here can be classified into three main categories, namely conventional [7],
subspace-based [8–11, 13, 15], and maximum likelihood (ML) methods [14].
The concept of the conventional DOA estimation algorithms relies on the
beamforming principle. These techniques successively steer the main beam
in all possible look directions and measure the output power [10], which
is recorded in the form of a pseudo spectrum over the angle range. The
largest peaks in the pseudo spectrum are associated with the DOA estimates.
The most prominent approach within this class is Capon’s method [7] based

DBD
PUC-Rio - Certificação Digital Nº 1412790/CA
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on the CMV criterion [4]. It minimizes the power induced by interfering
signals and noise while keeping the gain towards the look direction fixed.
Although the implementation of the conventional techniques is simple, they
suffer from lack of angular resolution and demand a large number of sensors
to improve their accuracies. The class of subspace-based methods exploits
a spectral decomposition of the covariance matrix to achieve high-resolution
DOA estimates. Among the most relevant techniques are the multiple signal
classification (MUSIC) [8], its extension Root-MUSIC [9], the estimation of
signal parameters via rotational invariance techniques (ESPRIT) [10], its
enhancement, namely Unitary ESPRIT [11, 12], the auxiliary vector filtering
(AVF) [13] and conjugate gradient (CG) [15, 16] algorithms developed for
direction finding. The MUSIC-type and the ESPRIT-type algorithms exploit
the eigen-structure of the covariance matrix, allowing a decomposition of the
observation space into a signal subspace and a complementary noise subspace.
Specifically, MUSIC scans over the possible angle range and makes use of the
orthogonality of the subspaces to obtain a pseudo spectrum with increased
resolution. Its extension, termed Root-MUSIC, when applied to uniform linear
arrays avoids the exhaustive search for peaks by applying a polynomial rooting
technique. The ESPRIT-type algorithms avoid the exhaustive peak search
by dividing the sensor array into two identical subarrays and benefit from
the uniform displacement of the subarrays. The Unitary ESPRIT uses the
fact that the phase factors representing the displacement lie on the unit
circle. More recent algorithms like AVF and CG iteratively generate an
extended non-eigen-based signal subspace containing the true signal subspace
and the scanning vector itself, termed extended Krylov signal subspace.
The DOA estimates are determined by the search for the collapse of the
extended signal subspace as the scanning vector belongs to it. While the AVF
algorithm adopts auxiliary vectors to form the extended signal subspace, the
CG method applies residual vectors and can be considered as an extension
of the AVF technique. Both approaches provide high-resolution estimates
for closely spaced sources at a low signal-to-noise ratio, and a small sample
size. ML-type methods, which were some of the first techniques developed
for DOA estimation, are based on a parametric approach. They effectively
exploit the underlying data model, resulting in sufficiently high accuracy that
is superior to the conventional and subspace-based methods, especially in low
SNR conditions, or when the number of signal samples or data records are
small. However, the efficiency comes at the expense of the computational
intensity as a multidimensional search is required, which makes ML-type
methods less attractive than subspace-based algorithms. An iterative approach
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to limiting the computational effort is the alternating projection technique [14],
which transforms the optimization problem into a sequence of one-dimensional
optimization problems. Non-linear arrays is a current research field dealing
with structures combining two or more uniform linear arrays (ULAs) with
increasing intersensor spacing for boosting the M − 1 number of sources that
can be resolved with a M element ULA using traditional subspace based
methods like MUSIC. One of these structures, termed nested array, makes
possible the increase of the degrees of freedom of ULA subspace-based methods
from O (N) physical sensors to O (N2). However its initial formulation [85]
and later related works [86–88] are restricted to uncorrelated sources. The
inherent saving of sensors at the expense of significant number of samples
will be exploited by the Multi-Step KAI MUSIC (MS-KAI-MUSIC) method
proposed in this thesis to resolve closely-spaced sources.

1.2

Motivation

As discussed in the previous section, the large computational effort demanded
to ensure ML-type methods’ better accuracy than conventional and subspace-
based ones made the former less popular than the latter. Conventional tech-
niques like Capon’s method and its extension root-Capon are subjected to
lack of angular resolution and demand a large number of sensors to reach
higher resolution. The MUSIC-type techniques, whose variance approaches
the Cramer-Rao Lower Bound (CRB) for uncorrelated signals, is one of the
subspace-based methods that yields high-resolution DOA estimates, however
they require an accurate hard peak search, which relies on the size of the search
step. Despite its extension Root-MUSIC avoids the costly peak search by using
a polynomial rooting technique, both techniques suffer from low levels of an-
gular resolution for closely spaced sources at low signal-to-noise ratios, and at
small sample sizes. The ESPRIT-type and its unitary version, also classified as
high-resolution subspace methods, take advantage of centro-symmetric array
configurations. They prevent long peak searches and are computationally more
efficient than MUSIC and Conventional types, however they also deal with loss
of resolution as a result of the closeness of the sources. Despite their better
performance than conventional and eigenstructure techniques like Capon, MU-
SIC, ESPRIT and their variations, CG and AVF algorithms, which are based
on non-eigenvector bases, are handicapped by computational complexity like
in the first two preceding methods. While Capon and MUSIC require long peak
searches, Krylov signal subspace for AVF and CG algorithms is built for each
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search angle. All parameter estimation strategies mentioned previously have
drawbacks that constitute a fertile area for research and innovation. Two of
them lead to advancements to be pursued. The first is the attenuation of the
computational complexity of algorithms, mainly for high-resolution direction
finding tasks. The second one is the enhancement of the accuracy of high-
resolution direction finding techniques by exploiting prior knowledge, which is
the subject of this thesis.

1.3

Contributions

It is known that most of conventional methods for direction finding suffer from
poor accuracy when subjected to scenarios characterized by closely spaced
sources and or correlated sources. In the last years, some approaches to
overcome this lack of accuracy have exploited the prior knowledge of signal
directions coming from static users and base stations. However, this concept
is restricted to available known directions of arrival. In this context, the main
contributions of this thesis can be summarized as follows:

• A new concept of a priori knowledge applied to direction finding, which
replaces the traditional available known DOAs so far employed with
previous estimates obtained on line. This idea was incorporated to the
proposed algorithms and their extensions. As expected, the achieved
accuracy of the method is dependent on the accuracy of the initial
estimates.

• A new approach to estimating the covariance matrix by a refinement
process that iteratively reduces its by-products, which occur in the finite
sample region. This concept is complemented by a reshaped covariance
matrix analysis, which shows that at the earliest iteration the Mean
Squared Error (MSE) of the data covariance matrix free of these side
effects is less than or equal to the MSE of the original one.

• Formulation of a new method, termed multi-step knowledge-aided itera-
tive (MS-KAI), for increasing the accuracy of existent algorithms based
on the combination of the previous concepts. This method, initially em-
ployed with ULAs to collect impinging signals to be processed by ES-
PRIT and CG algorithms, was extended to non-uniform linear arrays
of the two-level nested class processed by the MUSIC algorithm. The
method can be further extended to other types of non-linear arrays.
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MS-KAI-ESPRIT algorithm performs well when tested under multiple
uncorrelated sources and small number of samples, and despite the in-
herent degradation in its accuracy resulting from using highly correlated
sources, its performance can also be considered good under these condi-
tions.

MS-KAI-CG and its version equipped with forward-backward averaging
(MS-KAI-CG-FB) show good performance when applied to two uncorre-
lated and two strongly correlated sources, respectively. To this end, both
versions require a sufficient number of samples. Preliminary studies have
shown that for a number of sources superior to two, their performances
are not satisfactory, which is a consequence of poor effectiveness of the
original CG algorithm in providing MS-KAI-CG and MS-KAI-CG-FB
with initial accurate estimates.

MS-KAI-MUSIC applied to a two-level nested array under a scenario
of two uncorrelated closely-spaced sources provides a significant gain
in terms of probability of resolution when compared to the original
MUSIC and the original Nested-MUSIC. In terms of RMSE, its gain
is marginal but consistent. In summary, the results lead us to conclude
that the proposed techniques have excellent potential for applications
with sufficiently large data records in large-scale antenna systems, radar
and other large sensor arrays. The heavy computational burden inherent
to the MS-KAI method, which is a consequence of nested loops and
multiple matrices products needed, is a point to be considered in future
works.

1.4

Thesis Outline

This thesis is organized as follows:

Chapter 2

This chapter begins with the formulation of the problem of source localization
using a system model based on uniform linear arrays. Based on such model,
we discuss several existing source localization methods and some of their
limitations, which leads us to strive for improvements in the accuracy of current
techniques or formulate more precise ones. We also examine the fundamentals
of prior knowledge and an effective preliminary idea to upgrade the accuracy
of conventional algorithms by employing knowledge obtained on line. At the
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end of this chapter, we examine a non-uniform linear array model composed
of two levels, termed nested array, which will be the basis for the algorithm
proposed in the last chapter.

Chapter3

In this chapter, we describe a new subspace-based method for DOA estimation
of signals originating from far-field sources, termed Multi-Step KAI ESPRIT
(MS-KAI-ESPRIT), which iteratively reduces the disturbance factors of the
estimated data covariance matrix and incorporates prior knowledge which is
gradually obtained on line. An analysis of the MSE of the reshaped data co-
variance matrix is carried out along with comparisons between computational
complexities of the proposed and existing algorithms. Simulations focusing on
closely-spaced sources, where they are uncorrelated and correlated, illustrate
the improvements achieved.

Chapter4

In this chapter, we extend the approach taken for the subspace-based ESPRIT
to a Krylov subspace-based method, referred to as multi-step knowledge-
aided iterative conjugate gradient (CG) (MS-KAI-CG). We also develop a
version of MS-KAI-CG provided with forward-backward averaging, denoted
by MS-KAI-CG-FB, that is suitable for correlated signals. Differently from
existing knowledge-aided methods, which exploit known DOAs to improve the
estimation of the covariance matrix of the input data, the proposed MS-KAI-
CG algorithms exploit knowledge of the structure of the forward-backward
smoothed covariance matrix and its perturbation terms and the gradual
incorporation of prior knowledge, which, similarly to MS-KAI-ESPRIT, is
obtained on line. Simulation results employing uncorrelated and correlated
closely spaced sources illustrate the improvement achieved by the proposed
method and the influence of its iterations on its performance.

Chapter5

This chapter expands even more the concept of the multi-step knowledge-
aided method described in the two preceding chapters. Now, the method,
which was no longer restricted to ULA based methods, is widened even further
in order to embrace a non-uniform linear array like a two-level nested one.
Now, differently of the two previous chapters, which are dedicated to ESPRIT
and CG, we develop this method applying it to MUSIC algorithm, calling it
multi-step knowledge-aided iterative nested MUSIC (MS-KAI-MUSIC). The
proposed method refines the augmented sample covariance matrix, which is
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also obtained by exploiting a difference co-array structure and its properties,
and the gradual incorporation of prior knowledge, which, similarly to MS-
KAI-CG and MS-KAI-ESPRIT, is obtained on line. Simulations show that
MS-KAI-MUSIC significantly outperforms existing techniques.

Chapter 6

In this chapter, conclusions of this work are presented and future directions
for this research topic are discussed.

1.5

Notations

In all expressions and equations of this thesis, lowercase non-bold letters
represent scalar values, whereas bold lowercase and upper case letters represent
vectors and matrices, respectively. (·)∗, (·)T , (·)−1 and (·)H denote the complex
conjugate operator, the transpose operator, the matrix inversion operator and
the Hermitian transpose operator, respectively. |·| , ‖ · ‖2 and ‖ · ‖F denote the
absolutely value of a scalar, the Euclidean norm of a vector and the Frobenius
norm of a matrix, respectively. vec (·) stands for the vectorization function, �
represents the Khatri-Rao product, E [·] denotes the expectations and Tr (·)
and diag (·) denote the trace and the diagonal entry of a matrix, respectively.
An identity matrix of size (·) is represented by I(·).
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2

Literature Review and Background Theory

2.1

Introduction

This chapter briefly reviews direction finding basics and existing algorithms
[1–32], which form the basis for the development of new techniques for DOA
estimation. In direction finding basics, we will describe the sensor array
processing and its main geometries, a discrete-time sensor array model and
the concept of beamforming. Thereafter, we revisit some of the most used
estimation techniques for DOA estimation. Thus, we shortly examine the
maximum likelihood technique, the Capon algorithm, which can be considered
the most significant of the conventional class of direction finding methods, and
the subspace based methods, including the Krylov subspace-based one, termed
Conjugate Gradient (CG). Lastly, we review the theoretical foundations of the
use of prior knowledge for sensor array signal processing.

2.1.1

Sensor Array Processing

Sensor array processing aims to process data collected at sensor elements
in order to extract useful information, suppress interference and estimate
parameters. In order to extract information such as the location of a signal
source or the content of the signal, we often have to deal with the presence
of the signal and interference. A single sensor with the ability to spatially
discriminate signals coming from different directions can carry out this task.
Such single-sensor systems can process signals using a continuous spatial extent
known as aperture using, for instance, a parabolic dish. The signals are reflected
in the aperture in such a way that signals from the direction in which the dish is
pointed are emphasized. The ability of a sensor to perform spatial processing is
known a directivity and is governed by the shape and physical characteristics of
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its geometric structure. However a single sensor system has several limitations.
Since this sensor relies on mechanical pointing for directivity, it can only
extract signals from only one direction at a time. Such sensor cannot adapt
its response, which would require physically changing the aperture, in order to
reject potentially strong interferers.

An array of sensors has the ability to overcome these shortcomings of a
single sensor. The signals received by a sensor array can be combined in
such a way that a particular direction is emphasized. However, since the
direction in which the array points is almost independent of its orientation,
the sensors can be combined in distinct ways so as to emphasize different
directions and signals of interest. For this reason, multiple signals can be
extracted simultaneously through separate signal processing operations per
signal. Spatial signals propagate through space and arrive at an array of sensors
that spatially samples the waveforms. A processor then collects the data from
the sensor array in order to extract information.

The propagation of spatial signals is governed by the wave equation. For
electromagnetic signals the wave equation can be deduced from Maxwell’s
equations, while for sound waves the solution is governed by the basic laws of
acoustics. However, in either case, for a propagating wave emitted by a source
at r0, one solution is a single-frequency wave given by

s(t, r) = A

‖ r− r0 ‖2
exp

[
−j 2 π fc

(
t− ‖ r− r0 ‖2

c

)]
, (2-1)

where A is the complex amplitude, ‖r‖2 represents the range or distance
from the origin, fc is the carrier frequency of the wave and c is the speed
of propagation of the wave. It can be ignored the singularity of the source
s(t, r0) =∞, and the equation suppresses the dependencies on elevation and
azimuth angles, since the wave propagates radially from the source. The signals
travel in time, where the spatial propagation is determined by the direct
coupling between space and time in order to satisfy the wave propagation.
The wavelength of the propagating wave is given by λ = c

fc
, where c is the

speed of the light. Our development relies on further assumptions. We assume
that the propagating signals are produced by a point source, which means
that the size of the source is small with respect to the distance between the
source and the sensors that measure the signals. Another assumption is that
the source is in the far field, which means it is at a sufficiently large distance to
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the the sensor array so that the spherically propagating wave can be reasonably
approximated by a plane wave. In order to transmit and receive signals in space,
a designer must employ modulation and demodulation operations that allow
the transmission of signals s (t) using carrier waves centered at the frequency
fc and the processing of those signals with the extraction of sufficient statistics
in discrete-time form x [i], as illustrated in Fig. 2.1.

sensors
carrier Low-

pass
I - phase
Q - quadrature

Proce
ssor

A/D
Discrete/
complex

S(t)

XI(t)

XQ(t)

XI(i)

XQ(i)

X[i]
φS

e−j2πfc

Figure 2.1: Analog-Digital converter

2.1.1.1

Standard Geometries

A sensor array can be organized with M sensors placed according to a
particular geometry that affects its radiating properties. The most common
array geometries are the uniform linear array (ULA), the uniform circular
array (UCA) and the uniform planar array (UPA). In what follows, without
loss of generality, we will describe several properties of the first and the
latest geometries which are the most often used in practice. They receive
signal waveforms whose components at each sensor are delayed replicas of
the associated signal waveform.

Uniform Linear Array

Consider a plane wavefront with the waveform s(t) impinging on a ULA
of M sensors at an angle θ, as illustrated in the Fig. 2.2.

The incident angle on the array is known as the direction of arrival (DOA)
of the signal. Since in a ULA all elements are equally spaced, the signal is
given by any two successive sensors with a time delay given by τ = d sin(θ)

c
,

where d is the spacing between sensor elements and d sin(θ) is the distance
in propagation for the signal s(t) to reach successive sensors. As a result, the
delay of the mth with respect to the first element in the sensor array is given
by τm = (m− 1) d sin(θ)

c
.
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θ

θ

1 2 3 4 5 M

s(t)

Figure 2.2: Uniform Linear Array

By multiplying the signal s(t) by the carrier e−j 2 π fc and using the first sensor
as a reference, we obtain s1(t) = s(t) e−j 2 π fc t.

The generalization of the above result to the mth sensor yields sm(t) =
s(t) e−j 2 π fc τm = s(t) e−j 2 π fc (m−1) d sin(θ)

c = s(t) e−j 2 π (m−1) d sin(θ)
λ , where

λ = c
fc . Based on the preceding equations, we can write the ith snapshot of he

received signal for the ULA as

x [i] =


1

e−j 2 π d sin(θ)
λ

...
e−j 2 π (M−1) d sin(θ)

λ

 s [i] + n [i] = a (θ) s [i] + n [i] , (2-2)

where the [Mx1] vector a (θ) is the steering vector of the ULA and n [i] is the
noise vector.

Uniform Planar Array

Let us now consider a signal that impinges on a UPA of M = M1 x M2

sensors at an azimuth angle φ and at an elevation angle θ as depicted in Fig.
2.3. The distances between the sensors are d1 and d2.

x

d2

d1z

S(t) Z

Y

X

φ

θ

Figure 2.3: Uniform Planar Array
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In this situation, the azimuth and elevation angles of the waveform s(t) are the
DOAs of the signal. The delay introduced in the (m1, m2)th sensor is given by
τm1, m2 = m1 d1

c
sin(θ) cos(φ) + m2 d2

c
sin(θ) sin(φ), where m1 and m2 are the

indexes of the sensors.

After multiplication by e−j 2 π fc , the signal s(t) that arrives at the
(m1, m2)th sensor is given by s(m1, m2)(t) = s(t) e−j 2 π fc (τm1,m2) =
s(t) e−j 2 π (m1 d1

λ
sin(θ) cos(φ) + m2 d2

λ
sin(θ) sin(φ)). The received signal for the UPA

can be writen as

x [i] =



1
e−j 2 π (m1 d1

λ
sin(θ) cos(φ) + m2 d2

λ
sin(θ) sin(φ))

...

e
−j 2 π

(
(M1−1) d1

λ
sin(θ) cos(φ) + (M2−1) d2

λ
sin(θ) sin(φ)

)

 s [i] + n [i]

= a (θ, φ) s [i] + n [i] (2-3)

where the [M× 1] vector a (θ, φ) is the steering vector of the UPA and n [i] is
the noise vector.

Other geometries such as sparse arrays and volumetric arrangements (3D)
can be used by system designers. Besides, it is also possible to employ or
form distributed arrays composed of single sensor and subarrays, which offer
an advantage in terms of manufacturing. UPAs are used for large systems in
radar.

Concerning the spacing of elements d and (d1 , d2 ), the former for ULAs and
the latter for UPAs, it is customary to set them to λ

2 to avoid coupling effects.
However, the use of compact antenna arrays is often associated with closely
spaced elements (λ2 ,

λ
4 ,

λ
8 , etc), which requires extra care with the couple

effects.

2.1.1.2

Discrete-time Models

This sub-subsection aims to deal with discrete-time models for arbitrary sensor
arrays that have the objective of extracting a desired signal embedded in
interference. The models are general and can be used for any sensor array
geometry, as illustrated in Fig.2.4.
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Sensor Array

SD(t)

Sd(t)

S1(t)

Figure 2.4: Sensor array geometry for discrete-time models

The schematic above considers an arbitrary sensor array that aims to extract
the desired signal sd(t) in the presence of (D− 1) interfering signals. The
sensor array has M elements and processes the incoming signal, resulting in
the following discrete model:

x [i] = sd [i] a (θd, φd) +
D∑

k=1, k 6=d
sk [i] a (θk, φk) + n [i]

= A (θ, φ) s [i] + n [i] (2-4)

where the [Mx1] vectors a (θd, φd) correspond to the array responses of the
signals and the [MxD] matrix A (θ, φ) contains all the steering vectors. The
discrete-time desired signal sd [i] is perturbed by the (D − 1) interfering signals
sk [i], k 6= d, k = 1 , 2 , · · · ,D, and these D impinging signals are represented
by the [Dx1] vector s [i]. The [Mx1] noise vector n [i] is assumed to be drawn
from complex Gaussian random variables with zero mean and variance σ2

n.

A particular case of this model for a ULA is described by

x [i] = sd [i] a (θd) +
D∑

k=1, k 6=d
sk [i] a (θk) + n [i] (2-5)

= A (θ) s [i] + n [i] (2-6)

where a (θk) are the steering vectors of a ULA for k = 1 , 2 , · · · ,D. As
described by these models, a sensor array system depends on the structure
of the array, the DOAs θk (and φk) and the processing required to extract
desired information for retrieving sd [i]. Except as otherwise specified in this
work, our study on beamforming algorithms to extract sd [i] from x [i] will be
done by assuming the knowledge of θk (and φk). Then, we will develop direction
finding methods to estimate θk (and φk).
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2.1.1.3

Beamforming

In many applications, the desired information to be extracted from an array of
sensors is the content of a spatially propagating signal from a certain direction.
The content may be a message contained in the signal, such as communications
applications, or merely the existence of the signal, as in radar and sonar
systems. To this end, we want to linearly combine the signals from all the
sensors with a certain weighting, so as to examine signals arriving from a
specific angle. This operation is known as beamforming and is illustrated in
Fig. 2.5.

Sd(t)

Sd2(t)

Sd1(t)θ

x1[i] x2[i] x3[i] xM [i]

w1
∗ w2

∗ w3
∗

wM
∗

P
= y[i]

impinging
signals

discrete

complex
signals

weighting

weighting vector = beamformer

w = [w1 w2 : : :wM]
T

Figure 2.5: Beamforming

The weighting process emphasizes signals from a particular direction while
attenuating those from other directions and can be thought as forming a
beam. In this sense, a beamformer is a spatial filter that places nulls in the
direction of interfering signals. Beamforming can also be viewed as an electronic
steering since the weights wm, m = 1 , 2 , · · · ,M are applied using digital signal
processing following the reception of the signal for the purpose of steering the
array in a particular direction.

The output is formed by a weighted combination of signals from the N elements
of the sensor array, as follows:

y [i] =
M∑
m=1

w∗mxm [i]

= wHx [i] (2-7)
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where w = [w1 w2 · · · wM ]T is the [Mx1] vector of beamforming weights,
which must be computed by an algorithm.

An important concept for beamforming techniques is that of beam response,
which is the response of a beamformer w as a function of θ. This beam response
can be computed by applying it to a set of array steering vectors a (θ) from
all possible angles as given by

B (θ) = wH a (θ) , (2-8)

where θmin ≤ θ ≤ θmax.

Optimum beamformer

An improved concept of the previously described weighting process, which
is classified as the optimum, consider methods that employ the statistics
of the data to derive the beamforming weights. In particular, we refer to
optimum beamformers as those that optimize a certain criterion based on the
knowledge of the statistics of the data and we refer to adaptive beamformers
as the techniques that employ estimates of the statistics of the data.

The optimum beamformer can be derived based on a signal model for a ULA,
containing interference in addition to the desired signal and noise, as given in
equation (2-6), as follows

x [i] = sd [i] a (θd) +
D∑

k=1, k 6=d
sk [i] a (θk) + n [i] , (2-9)

where sd [i] is the desired signal. Moreover, the desired power received by the
element is expressed by E [|sd [i]|2 ] = σ2

s .

The interference-plus-noise component of the signal is defined as xj+n [i] =
j [i] + n [i], which are both modeled as zero-mean stochastic processes. The
interference has spatial correlation according to the angles of the contributing
interferers, while the noise is spatially uncorrelated and has zero mean and
variance σ2

n. We assume that the components of the signal vector and the
components of the noise vector are uncorrelated each other. As a result, the
correlation matrix is given by

R = E [x[i] xH [i]] = σ2
s a (θd) aH (θd) + Rj + Rn, (2-10)
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where Rj = E
[
j[i] jH [i]

]
and Rn = E [n[i] nH [i]] are the interference and the

noise correlation matrices, respectively. The interference-plus-noise correlation
matrix is the sum of these latter two matrices, that is to say Rj+n =
Rj + Rn, where Rn = E [n[i] nH [i]] = σ2

nI, since the noise is assumed spatially
uncorrelated.

The signal-to-interference-plus-noise ratio (SINR) at the beamformer output
is described by

SINRout =
E
[
wH s[i] sH [i] w

]
E
[
wH xj+n[i] xHj+n[i] w

] = wH Rs w
wH Rj+n w

(2-11)

where Rs = E
[
s[i] sH [i]

]
is the desired signal correlation matrix.

The optimum beamformer can be derived by minimizing the interference-plus-
noise power at the beamformer output, that is, Rj+n w, while keeping the
desired signal response wH Rs w. This results in the optimization problem, as
follows:

min wH Rj+n w subjected to wHa (θd) = constant (2-12)

The solution to this optimization problem is known as the minimum-variance
distortionless response (MVDR) beamformer. The MVDR beamformer max-
imizes the SINR by matching the response of signals impinging on the array
from a direction a (θd) and can be considered an optimum spatial filter. As in
practice Rj+n is difficult to be obtained, the standard MVDR is formulated
by replacing Rj+n with R and employing a similar optimization.

The MVDR beamformer optimization with R is given by

min wH R w subjected to wHa (θd) = 1 (2-13)

and its solution can be obtained with the method of Lagrange multipliers,
which results in the desired weight vector

wo = R−1 a (θd)
aH (θd) R−1 a (θd)

(2-14)

The minimum variance associated to the preceding solution can be obtained
by substituting wo into the cost function [5]

J (wo) = wH
o R wo, (2-15)

resulting in the power spectrum in Eq.(2-16), also known as Capon’s spatial
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spectrum.
J (wo) = 1

aH (θd) R−1 a (θd)
= PCap (θd) (2-16)

2.1.2

Maximum Likelihood estimation

Maximum Likelihood-type method (ML) is one of the first techniques devel-
oped for DOA estimation. As mentioned in section 1.1, ML is based on a
parametric approach. Despite its computational intensity that makes it less
attractive than other conventional methods, ML estimation plays an essential
role in DOA estimation by providing the Cramer-Rao lower bound (CRLB),
which is a measure against which any algorithm can be compared.

Let us consider the signal model given in Eq. (2-6) as follows:

x [i] = sd [i] a (θd) +
D∑

k=1, k 6=d
sk [i] a (θk) + n [i] (2-17)

= sd [i] a (θd) + j [i] + n [i] , (2-18)

where it is assumed that the interference j [i] has known statistics, the steering
vectors a (θd) are assumed linearly independent, and the noise is obtained from
a complex Gaussian random process of mean equal to zero and variance σ2

n with
the samples of the noise being statistically independent.

The derivation of the ML estimator employs the joint probability density
function (pdf) of the data x [i] given the parameter θd, as described by

px|θd (x [i] | θd) = 1
πN det (R)
× exp

(
− (x [i]− sd [i] a (θd))H R−1 (x [i] − sd [i] a (θd))

)
(2-19)

where N is the number of snapshots, i.e., samples. The ML estimator computes

θ̂d = arg max
θd

px|θd (x [i] | θd) (2-20)
which is equivalent to maximizing the logarithm of px|θd (x [i] , θd), as follows:
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θ̂d = arg max
θd

ln px|θd (x [i] , θd)

= arg min
θd

(
(x [i] − sd [i] a (θd))H R−1 (x [i] − sd [i] a (θd))

)
= arg max

θd

[
|aH (θd) R−1 x [i] |2
aH (θd) R−1 a (θd)

]
(2-21)

The function

PML (θd) = |aH (θd) R−1 x [i] |2
aH (θd) R−1 a (θd)

, (2-22)

which is inside the braces of (2-21), is the ML estimate of the incoming data
x [i]. The DOA estimate is the angle associated with the maximum of PML (θd).
Despite the optimality of the ML approach, it is impractical in most situations
because the algorithm requires a search to find the peaks of PML (θd) in a dense
grid with small angular spacing.

2.1.2.1

Cramer-Rao lower bound

As mentioned in subsection 2.1.2, the measure of the ML estimation procedure
is the CRLB, which is very useful to provide information about the accuracy
of the DOA estimator. From estimation theory, we know that the variance C
of an unbiased estimate of θ̂d is greater than or equal to its CRLB (CCR), that
is to say

C
(
θ̂d
)
≥ CCR

(
θ̂d
)

, J−1
dd (2-23)

where J−1
dd is the dth diagonal entry of the inverse of the Fisher information

matrix J whose (i, j) th element is given by

Jij = −E
[

δ2

δθi δθj

[
ln px|θd (x | θ)

]]
. (2-24)

Using the signal model for a ULA with m sensors and computing the preceding
partial derivatives, we can obtain the CRLB [17] for D = 1 signal.

C
(
θ̂d
)
≥ 6 σ2

n

σ2
s m (m2 − 1 ) (k d)2 sin θd

= 6
SNR m (m2 − 1 ) (k d)2 sin θd

(2-25)

where SNR = σ2
s
σ2

n
contributes to decreasing the CRLB as it increases. The
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number of sensors also contributes to a reduction of the CRLB. More specific
CRLB in matrix forms taking into account the variation of the number of
snapshots are studied in [18].

2.1.3

Capon algorithm

In 2.1.1.3 it was discussed the MVDR beamformer which is identical to the
Capon’s method. In order to estimate the DOA, we compute Eq. 2-16 over the
whole range of θd and locate its peaks as described by

θ̂d = arg max
θd

PCap (θd) , d = 1 , 2 , · · · ,D (2-26)

where the cost of the required search depends on the angle spacing.

Among the disadvantages of Capon’s method are that it requires a search, it
fails for correlated signals [53] and provides poor resolution for closely spaced
sources. These drawbacks can be seen in a scenario in which a ULA with 10
sensors inter-element spaced by ∆ = λc

2 receives two impinging uncorrelated
complex Gaussian signals with equal power. The sources are separated by
2.8o, at (88.6o, 91.4o), and the number of available snapshots is N=40. The
probability of resolution obtained using 100 trials is depicted in Fig. 2.6.

The same scenario will be employed to compare Capon algorithm, with
MUSIC, ESPRIT and CG algorithms in the next sections.

2.1.3.1

Root-Capon

An approach that circumvent the need for a search and improve the perfor-
mance of the Capon’s method is to employ a root version of the algorithm.
This is limited to the case of a ULA. In the root-Capon algorithm, we consider
the spatial spectrum given by

Proot−Cap (θd) = 1
aH (θd) R−1 a (θd)

= 1
C (θd) (2-27)

where C (θd) = aH (θd) R−1 a (θd) is the null spectrum.
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Figure 2.6: Probability of resolution versus SNR for 2 uncorrelated sources, 2.8
degrees, ULA-10 sensors, 40 snapshots, 100 runs

The algorithm constructs the null spectrum and computes its zd roots,
d = 1 , 2 , · · · ,D, inside and closest to the unit circle. Then, we have

θ̂d = sin−1
[(

λ

2 π d

)
arg zd

]
(2-28)

2.1.4

MUSIC

The Multiple Signal Classification (MUSIC) algorithm proposed by [8] in 1979
is a popular high resolution based on eigenstructure technique. The main idea
behind this DOA algorithm is that of performing eigenvalue decomposition
of the correlation matrix, separating it into two subspaces: signal subspace
and noise subspace. Since the signal subspace is spanned by the array steering
vector of the received signals, this makes the steering vector orthogonal to the
noise subspace. Therefore, the product of the array steering vector and the
noise subspace is a null for a particular angle of arrival.

Let us consider the problem of model order selection, i.e., of estimating the
number of signals D in a ULA with M elements. For this aim, we can take
into account the received data model in Eq. (2-6). Without loss of generality,
we do not consider interferers, which results in the model
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x [i] =
D∑
d=1

sd [i] a (θd) + n [i] (2-29)

= A (θ) s [i] + n [i] (2-30)

where the [MxD] array manifold A (θd) contains the [Mx1] steering vectors
a (θd) of the D signals and the vector s [i] has the D signals. The [Mx1] noise
vector n [i] has spatially uncorrelated samples of a complex Gaussian random
process of zero mean and covariance matrix σ2

n I. The correlation matrix R of
the received data is given by

R = E
[
x [i] xH [i]

]
= A E

[
s [i] sH [i]

]
AH + E

[
n [i] nH [i]

]
= A Rs AH + σ2

n I (2-31)

where the [MxM] R matrix has full rank, σ2
n is the noise power and the Rs has

dimensions [DxD]. The matrix R can be estimated by taking sample averages
as given

R̂ [l] = 1
i

i∑
l=1

x [l] xH [l] (2-32)

and
Rs = E

[
x [i] xH [i]

]
= diag

{
σ2

1 , · · · , σ2
D

}
(2-33)

R has M eigenvalues [λ1, λ2, · · · , λM ] and M associated eigenvectors, spanning
a subspace Ē = [̄e1 , · · · , ēM ]. Sorting the M eigenvalues from the largest to
the smallest, the subspace Ē can be decomposed into two subspaces:

Ē = [ē1, · · · , ēD ēD+1, · · · , ēM ]

=
[
ĒS ĒN

]
(2-34)

ĒN is the [M x (M−D)] noise subspace composed of the eigenvectors associ-
ated with noise, whereas ĒS is the [M x D] signal subspace composed of the
eigenvectors associated with the arriving signal.

Due to the orthogonality of the noise subspace and the array steering vector at
the angles of arrival (θ1, θ2, · · · , θD), the matrix product aH (θd) ĒN Ē

H

N a (θd)
is zero for this angles. The reciprocal of this matrix product creates sharp
peaks at the angles of arrival. Thus the MUSIC spatial spectrum is given as

PMU (θd) = 1
‖aH (θd) ĒN Ē

H

N a (θd) ‖
(2-35)
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In order to estimate the DOA, we compute PMU (θd) over the whole range of
θd and locate the peaks as described by

θ̂d = arg max
θd

PMU (θd) , d = 1 , 2 , · · · ,D (2-36)
Despite MUSIC performs better than Capon algorithm for closely-spaced
sources in terms of probability and RMSE, its performance in this scenario,
i.e., at low and medium levels of SNR, is poor, as can be seen in Figs. 2.7 and
2.8.
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Figure 2.7: Probability of resolution versus SNR for 2 uncorrelated sources, 2.8
degrees, ULA 10 sensors, 40 snapshots, 100 runs.
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Figure 2.8: RMSE versus SNR for 2 uncorrelated sources, 2.8 degrees, ULA 10
sensors, 40 snapshots, 100 runs
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Root-MUSIC

Instead of plotting the spatial spectrum against the angles and searching
for the peaks, this variant of MUSIC algorithm involves finding the roots of
a polynomial. Root-MUSIC is limited to the case of a ULA while MUSIC is
not [53]. Starting with the spatial spectrum of MUSIC in (2-35), and defining
C = ĒN Ē

H

N , its denominator can be writen as

PMU (θd) = 1
‖aH (θd) C a (θd) ‖

(2-37)

The mth element am (θd) of the array steering vector is defined as

am (θd) = e−j k d m sin(θd), (2-38)

where m = 0 , 1 , · · · ,M − 1 and k = 2π
λ
.

The denominator, thus can be rewritten as

aH (θd) C a (θd) =
M−1∑
m=0

M−1∑
n=0

e−j k d m sin(θd) Cmn e
j k d n sin(θd)

=
N−1∑

l=−(N−1)
Cl e

j k d l sin(θd), (2-39)

where Cnm is the entry in the mth row and nth column of C and Cl =∑
m−n=l Cmn is the sum of the elements along the lth diagonal of C. Letting

z = ej k d sin(θd), Eq.(2-39) simplifies to

D (z) =
M−1∑

l=−M+1
Cl z l (2-40)

The roots of D (z) that lie closest to the unit circle correspond to the poles of
the MUSIC spatial spectrum. These 2 (M − 1 ) roots can be written as

zi = ej arg(zd), i = 1 , 2 , · · · , 2 (M − 1 ) (2-41)

Choosing those roots inside the unit circle whose magnitude are |zi | ' 1, and
comparing ej arg(zi) to e−j k d sin(θi), gives

θ̂i = − sin−1
{arg zi

k d

}
(2-42)
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2.1.5

ESPRIT

The estimation of signal parameters via rotational invariance (ESPRIT) al-
gorithm [10], reduces the computational and storage requirements of MUSIC
and avoids an exhaustive search. The key idea is to decompose an M element
array into two identical centro-symetric subarrays, each of them with S ele-
ments. The objective of ESPRIT algorithm is to estimate the angle of arrival
by determining the rotation operator Φ. The separation distance between the
two sensors is assumed to be λ

2 . In this case, the first element in the original
array is the first element of the first subarray whereas the second element of
the original array is the first element in the second subarray. Fig.2.9 shows a
M element linear array and one of the possible configurations.

0 0 0 0 0 0 0 0 . . . 0

1 2 3 4 5 6 7 8 . . .M sensors

0 0 0 0 . . . 0 first subarray : M=2 sensors

0 0 0 . . . 0 second subarray : M=2 sensors

centro - simmetry

4

Figure 2.9: ULA decomposition in ESPRIT algorithm

Let us consider D signals hitting the subarrays. Also letting x1 [i] and x2 [i] be
the received signal in the two subarrays, corrupted by additive Gaussian noise
n1 [i] and n2 [i], respectively.

x1 [i] = A s [i] + n1 [i]

x2 [i] = A Φ s [i] + n2 [i] (2-43)

where x1 [i], x2 [i], n1 [i] and n1 [i] are [Sx1] vectors. A is the [SxD] steering
matrix and the variable Φ is a [DxD] diagonal matrix called rotation operator

Φ = diag
{

ejψ1 , ejψ2 , · · · , ejψD
}

(2-44)
where ψd = −2 k∆ sin θd , d = 1 , 2 , · · · ,D and ∆ measured in wavelengths.
From Eq.(2-43), correlation matrices R11 and R22 of the signals in the two
subarrays can be estimated as

R11 = E
[
x1 [i] xH1 [i]

]
R22 = E

[
x2 [i] xH2 [i]

]
(2-45)
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By eigen-decomposing R11 and R22, we can obtain two signal subspaces Υ1

and Υ2, respectively. Defining a [2Dx2D] matrix C from the two subspaces
such that

C =
ΥH1
ΥH2

 [
Υ1 Υ2

]
= ΥC Λ ΥHC (2-46)

ΥC is a [2Dx2D] matrix obtained by eigenvalue decomposition of C such that
λ1 ≥ λ2 ≥ · · · ≥ λ2D and Λ = diag {λ1 λ2 · · ·λ2D} By partitioning ΥC into
four [DxD] submatrices such that

ΥC =
Υ11 Υ12

Υ21 Υ22,

 (2-47)

the rotation operator can be estimated as Φ = −Υ12 Υ
−1
22 . From D eigenvalues

of Φ, angles of arrival can be estimated as

θ̂d = sin−1
{

arg λd

k ∆

}
, k = 2 π

λ
(2-48)

ESPRIT performs better than MUSIC and Capon algorithms for closely-spaced
sources in terms of probability and RMSE, as can be seen in Figs. 2.10 and
2.11.
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Figure 2.10: Probability of resolution versus SNR for 2 uncorrelated sources,
2.8 degrees, ULA 10 sensors, 40 snapshots, 100 runs
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Figure 2.11: RMSE versus SNR for 2 uncorrelated sources, 2.8 degrees, ULA
10 sensors, 40 snapshots, 100 runs

2.1.6

Conjugate gradient

Let us now assume that P narrowband signals from far-field sources are
impinging on a uniform linear array (ULA) of M (M > P) sensor elements
with the unknown directions θ = [θ1, . . . , θP ]T . The ith data snapshot of the
(M × 1)-dimensional array output vector can be modeled as

x(i) = A(Θ)s(i) + n(i), i = 1, 2, . . . , N, (2-49)

where s(i) = [s1(i), . . . , sP (i)]T ∈ CP×1 represents the zero-mean source data
vector, n(i) ∈ CM×1 is the vector of white circular complex Gaussian noise with
zero mean and variance σ2

n, and N denotes the number of available snapshots.
The matrix A(Θ) = [a(θ1), . . . ,a(θP )] ∈ C

M×P contains the array steering
vectors a(θj) corresponding to the nth source, which can be expressed as

a(θn) = [1, ej2π
d
λc

sin θn , . . . , ej2π(M−1) d
λc

sin θn ]T , (2-50)

where n = 1, . . . , P , d denotes the interelement spacing of the ULA and λc is
the signal wavelength.

Using the fact that s(i) and n(i) are modeled as uncorrelated linearly inde-
pendent variables, the M ×M signal covariance matrix is calculated by

R = E

[
x(i)xH(i)

]
= A(Θ)RssA

H(Θ) + σ2
nIM , (2-51)

where Rss = E[s(i)sH(i)], which is diagonal if the sources are uncorrelated
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and non-diagonal for partially correlated sources, and E[n(i)nH(i)] = σ2
nIM

with IM being the M ×M identity matrix. Since the true signal covariance
matrix is unknown, it must be estimated and a widely-adopted approach is
the sample average formula given by

R̂ = 1
N

N∑
i=1
x(i)xH(i), (2-52)

whose estimation accuracy is dependent on N .

The Conjugate Gradient method (CG) [15] is used to minimize a cost function,
or analogously, to solve a linear system of equations by approaching the optimal
solution step by step via a line search along successive directions, which are
sequentially determined at each direction [19]. As a result of the application
of the CG algorithm to direction finding, we have a system of equations that
is iteratively solved for w at each search angle:

Rw = b(θ), (2-53)

where R is the covariance matrix and b(θ) is the initial vector defined as

b(θ) = R a(θ)
‖R a(θ)‖ , (2-54)

where a(θ) is the search vector.

The extended signal subspace of rank P is obtained by means of the CG
algorithm summarized in Table 2.1. The set of orthogonal residual vectors

Table 2.1: Conjugate Gradient Algorithm

w0 = 0, d1 = gcg,0 = b, ρ0 = gHcg,0gcg,0
for i=1 to P do:

vi = R di
αi = ρi−1 / dHi vi
wi = wi−1 + αidi

gcg,i = gcg,i−1 - αivi
ρi = gHcg,igcg,i
βi = ρi / ρi−1 = ‖gcg,i‖2 / ‖gcg,i−1‖2

di+1 = gcg,i + βidi
end for
form Gcg,P+1(θ) (2-55)
compute PK(θ(n)) (2-57)
find P̂ largest peaks of PK(θ(n)) to obtain

estimates θ̂l of the DOA, l = 1 , 2 , · · · ,P
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Gcg,P+1(θ) = [gcg,0(θ),gcg,1(θ), . . . ,gcg,P (θ)], (2-55)

where b(θ)= g0(θ) generates the well-known extended Krylov subspace com-
prised of the true signal subspace of dimension P and the search vector
itself. All the residual vectors are normalized except for the last one. If
θ ∈ {θ1, . . . θP}, the initial vector b(θ) lies in the true signal subspace space
spanned by the [gcg,0(θ),gcg,1(θ), . . . ,gcg,P−1(θ)] basis vectors of the extended
Krylov subspace. Therefore, the rank of the generated signal subspace drops
from P+1 to P and we have

gcg,P (θ) = 0, (2-56)

where gcg,P is the last unnormalized residual vector.

In order to exploit this behavior, the CG algorithm makes use of the spectral
function defined in [13]:

PK(θ(n)) = 1
‖gHcg,P (θ(n))Gcg,P+1(θ(n−1))‖2 , (2-57)

where θ(n)denotes the search angle in the whole angle range {−90o, . . . , 90o}
with θ(n) = n∆o − 90o, where ∆o is the search step and n = 0, 1, . . . , 180o/∆o.
The matrix Gcg,P+1(θ(n−1)) contains all residual vectors at the (n− 1)th angle
and gcg,P (θ(n)) is the last residual vector calculated at the current search step n.
If θ(n) ∈ {θ1, . . . , θP}, gcg,P (θ(n)) = 0 and we can expect a peak in the spectrum.
Taking into account that R̂ in (2-52) is only a sample average estimate of the
true covariance matrix, which is unknown in practical applications, gcg,P (θ(n))
and Gcg,P+1(θ(n−1)) become approximations. Hence the spectral function in
(2-57) can just provide very large values but they do not tend to infinity as for
the original covariance matrix. In this specific scenario, in which the sources
are separated by 2.8 degrees CG performs better than MUSIC and Capon
algorithms for closely-spaced sources in terms of probability and RMSE, as
can be seen in Figs. 2.10 and 2.11. In spite of performing worse than ESPRIT
in this particular scenario, CG performance tends to overcome ESPRIT one as
the space between the sources becomes smaller and the number of snapshots
increases, as can be seen in the next sections.

2.1.7

Prior knowledge-based direction of arrival estimation

The problem of obtaining more accurate estimates by using prior-knowledge
is closely related to the way of collecting it. The traditional approach to deal
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Figure 2.12: Probability of resolution versus SNR 2 uncorrelated sources, 2.8
degrees, ULA 10 sensors, 40 snapshots, 100 runs
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Figure 2.13: RMSE versus SNR, 2 uncorrelated sources, 2.8 degrees, ULA 10
sensors, 40 snapshots, 100 runs

with this question, which is termed KAv, makes use of available known DOAs
to form a known covariance matrix to be optimally combined with the data
covariance matrix, i.e., in a minimum mean squared error sense, resulting in an
enhanced matrix which can be the basis for several DOA estimation methods.
A new preliminary approach, which we have proposed in [30], instead of using
that accessible known DOAs, makes use of previous estimates. As expected,
in order to have good performance, the method requires that these previous
estimates are sufficiently accurate. To achieve this goal, most methods may
require a significant number of samples to obtain accurate statistical estimates.
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The concept of prior-knowledge obtained on line applied to DOA estimation
will be exploited in the methods discussed in the next chapters.

2.1.7.1

Problem formulation

Despite the numerous parameter estimation techniques developed over the last
decades, their estimation accuracy depends on the [MxM] dimensional signal
covariance matrix of the sensor array data vector x(i), which is defined for the
ith snapshot as

R = E

[
x(i)xH(i)

]
, i = 1, . . . , N, (2-58)

where N is the number of available snapshots. In practice, the true signal
covariance matrix in (2-58) is unknown, but can be estimated via the widely
used sample-average formula given by

R̂ = 1
N

N∑
i=1
x(i)xH(i). (2-59)

Applying the covariance matrix estimate in (2-59), the estimation accuracy is
essentially determined by the data record size N . Thus, in applications where
the number of available sensors M is small, the increase in the number of
snapshots become more significant.

In practical scenarios with low signal-to-noise ratio (SNR), stationary and
non-stationary sources whose DOAs are to be estimated, the knowledge of the
directions of strong consistent users can be effectively exploited in order to
increase the estimation accuracy of non-stationary sources, which enter the
system. The knowledge of previously estimated DOAs can be exploited in the
form of a known covariance matrixC. Knowledge-aided (KA) signal processing
techniques, which make use of a priori knowledge of key parameters of interest
such as the existence of strong interferers, cognitive users and geographical
localization of users [20] have recently gained significant attention [21–25].
In KA techniques, the key issues are how to obtain a priori knowledge
about the parameters of interest and how to exploit them. Prior work on
KA algorithms has considered the design of space-time adaptive processing
(STAP) techniques [21]- [22], [24,25] and beamforming algorithms [23]. These
methods have shown superior performance to conventional approaches that do
not rely on KA techniques when the limited sample support is used in highly
non-stationary environments.
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Let us assume the same system model of subsection 2.1.6. The main idea of
prior knowledge-based direction of arrival estimation is to replace the sample
covariance matrix with an enhanced one that linearly combines the original
sample matrix with a known rank deficient matrix. In order to obtain an
enhanced covariance matrix estimate R̃, we assume that the a priori knowledge
matrix C is nonrandom, according to [28], and perform a linear combination
of C and the sample covariance matrix R̂ by applying the weight factors α
and β, which are formulated as

R̃ = αC + βR̂, (2-60)

where the combination factors are constrained to α > 0 and β > 0, and
C is restricted to be positive semidefinite to ensure that R̃ is also positive
semidefinite. Then it is possible to find optimal estimates of the weight factors
α and β, which efficiently combine C and R̂ depending on the scenario. One
of the most common criteria is the minimization of the parameters in a mean
squared error (MSE) sense, that is

min
α,β

MSE = E

[
‖R̃−R‖2

F

]
s.t. R̃ = αC + βR̂,

(2-61)

where ‖ · ‖F denotes the Frobenius matrix norm. T The optimization problem
is solved by minimizing the MSE with respect to the two parameters α and β,
which as expected depend on each other and the unknown true covariance
matrix R. Another widely used criterion to reduce the complexity of the
optimization problem, which can be considered a special case of the function
(2-61), is the optimization described by (2-62):

min
α

MSE = E

[
‖R̃−R‖2

F

]
s.t. R̃ = αC + (1− α)R̂

(2-62)

with α being restricted to α ∈ (0, 1) to ensure the positive semi-definiteness
of R̃. Both types of optimization are briefly discussed and applied to the
simulations in the next sections.
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2.1.7.2

Computation of the optimal weight factors

Assuming the knowledge of the DOAs of k signals that are impinging on the
array from the known directions θ̄ = [θ1, . . . , θk]T , the a priori covariance
matrix C can be calculated by

C =
k∑
l=1
a(θl)aH(θl)σl, (2-63)

where a(θl) is the array steering vector of the lth known DOA and σl is the
power of the lth signal.

Let α0 and β0 denote the optimal values α and β that satisfy (2-61) or (2-62).
The estimates α̂0 and β̂0, of α0 and β0, obtained from the available data, can
be compactly expressed by means of two approaches, as follows:

KA-General Linear Combination

In this case, the estimates given of the two weight factors

β̂o = γ̂

ρ̂+ γ̂
, (2-64)

α̂o = ν̂(1− β̂opt), (2-65)

to be applied to (2-60) and γ̂, ν̂, and ρ̂ are defined as

γ̂ = ‖ν̂C − R̂‖2
F , (2-66)

ν̂ = Tr{CHR̂}
‖C‖2

F

, (2-67)

ρ̂ = 1
N2

N∑
i=1
‖x(i)‖4

F −
1
N
‖R̂‖2

F . (2-68)

KA-Convex Combination

In this case, the estimate of α is the the sole weight factor

α̂0 = ρ̂

ρ̂+ ‖R̂−C‖2
F

, (2-69)
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to be applied to (2-62), and ρ̂ is defined as (2-68).

2.1.7.3

Knowledge-aided methods

Despite the existence of knowledge-aided algorithms (KAv), which make use
of available known DOAs combined with classical algorithms for parameter
estimation like MUSIC and ESPRIT, KA methods have not been combined
with high-resolution source localization algorithms like CG [15] so far. In
order to fulfill the expectations of works in this specific field of research, as a
preliminary study, we formulated a new knowledge-aided parameter estimation
technique, termed as KAv-CG [30], that combines the (CG) algorithm [15,16,
27] and a priori knowledge of part of the directions of arrivals of source signals.
Since KAv-CG follows the same approach employed in MUSIC and ESPRIT,
without loss of generality it can give an idea of how the KAv-algorithm class
works.

Knowledge-aided CG algorithm based on available known DOA

The KAv-CG algorithm, which we developed for complex-valued data, follows
a similar approach to [12] and considers the general case [18], where the
knowledge-aided covariance C of (2-63) is rank deficient and the noise power
is assumed to be unknown. This new KAv-CG method also replaces the origi-
nal sample covariance matrix with an enhanced covariance matrix, which is a
combination of the original weighted sample covariance matrix and a weighted
knowledge-aided covariance matrix, similarly to the existing KAv applied to
subspace-based methods [12]. KAv-CG can be summarized as shown in Table
2.2.

In order to develop KAv-CG, we make use of the same system model of
subsection 2.1.6 also used in sub-subsection2.1.7.1, in which it is assumed the
knowledge of the DOAs of k signals that are impinging on the array from the
known directions θ̄ = [θ1, . . . , θk]T .

The aim of the proposed KAv-CG algorithm is to exploit a priori knowledge
in the form of the enhanced signal covariance matrix R̃ in (2-60) and process
it using the CG algorithm. As can be seen in [18], one can calculate the a
priori covariance matrix C in (2-63) by means of the steering vectors in
(2-50) based on the known directions of impinging signals. The proposed
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Table 2.2: Proposed KAv-Conjugate Gradient Algorithm

Inputs:
M , d, λ, N , P
Received vectors x(1), x(2),· · · , x(N)
Prior knowledge → known DOAs: θ1, θ2, · · · ; θk, 1 ≤ k < P
Outputs:
Estimates θ̂k+1 , θ̂k+2 ,· · · , θ̂P

First stage:
compute C (2-63), for the k known DOAs
compute α̂0 (2-69) for convex combination or β̂0 (2-64) and α̂0

(2-65) for general linear combination
compute R̃ (2-61) or (2-62) according to the combination in use as

previously mentioned
Second stage:

w0 = 0, d1 = gcg,0 = b, ρ0 = gHcg,0gcg,0
for i=1 to P do:

vi = R̃ di
αi = ρi−1 / dHi vi
wi = wi−1 + αidi

gcg,i = gcg,i−1 - αivi
ρi = gHcg,igcg,i
βi = ρi / ρi−1 = ‖gcg,i‖2 / ‖gcg,i−1‖2

di+1 = gcg,i + βidi
end for
form Gcg,P+1(θ) (2-55)
compute PK(θ(n)) (2-57)
find P̂ largest peaks of PK(θ(n)) to obtain

estimates θ̂k of the DOA
DOAs = {θ1, · · · , θk, θ̂k+1 , · · · , θ̂P}

alternative method is composed of two stages. The first stage encompasses
three substeps.The first substep is to calculate the a priori covariance matrix
C, using the steering vectors of known DOAs. The second substep is to
compute the weight factors according to the combination to be applied. For
KA-General Linear Combination (KA-GLC), the factors are α̂o (2-65) and β̂o

and (2-64). In the case of KA-Convex Combination (KA-CC), α̂0 is given by
(2-69). Our proposed KA-CG algorithm makes use of the latter approach. In
both cases, the covariance matrix to be applied to the first stage of the KA-CG
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algorithm is obtained by the sample average formula given in (2-59). The third
substep is to calculate the enhanced covariance matrix R̃ in (2-61) or (2-62)
according to the chosen combination. The last stage includes two substeps. The
first is to compute the estimates by processing the CG algorithm described in
subsection 2.1.6 and Table 2.1. For this purpose, we use the enhanced signal
covariance matrix R̃ instead of the sample covariance matrix R̂ (2-32). The last
substep is to form the solution set containing the subset including the known
DOAs and the subset encompassing the estimates of the unknown DOAs.

Simulations

The simulations of MUSIC, ESPRIT, CG and their knowledge-aided ver-
sions, termed KAv-ESPRIT, KAv-MUSIC and KAv-CG, respectively, are
based upon a scenario with P = 2 two uncorrelated closely-spaced signals
at (89.05, 90.95)◦ impinging on a ULA with M = 12 sensors equally spaced
by half wavelength. The sample matrix (2-59) has been computed with 180
snapshots and the simulated curves are obtained by averaging the results over
200 independent trials. The a priori covariance matrix C has been obtained
using the steering vectors of the second DOA (90.95◦), supposed to be known.
In order to assess the accuracy in terms of probability of resolution, we take
into account the criterion suggested in [29], [13], in which two sources with
DOA θ1 and θ2 are said to be resolved if their respective estimates θ̂1 and θ̂2

are such that both
∣∣∣θ̂1 − θ1

∣∣∣ and ∣∣∣θ̂2 − θ2

∣∣∣ are less than |θ1 − θ2| /2.

Figure 2.14 depicts the probability of resolution of CG, KAv-CG, MUSIC,
KAv-MUSIC, ESPRIT and KAv-ESPRIT. It can be noticed tha the original
versions are outperformed by their KAv versions, respectively. It can be noticed
that KAv-CG outperforms KAv-ESP in ' [0.3 7.0 dB]. The gap between the
corresponding versions make clear the potential of the original versions to
be exploited in terms of probability of resolution. The KAv-versions of CG,
MUSIC and ESPRIT can be viewed as upper bounds of their original versions,
i.e, CG, MUSIC and ESPRIT.

Knowledge-aided CG algorithm based on DOAs obtained on line

The previous approaches to process knowledge make use of available known
DOAs to yield the a priori knowledge matrix C, responsible for upgrad-
ing the sample covariance matrix. Now, we will discuss a new approach to
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Figure 2.14: Probability of resolution of CG, MUSIC, ESPRIT and their
knowledge-aided versions versus SNR with M = 12, N = 180, P = 2, L = 200
runs, unknown uncorrelated sources at (89.05, 90.95)◦

knowledge-aided parameter estimation based on CG algorithm called KA-CG
as mentioned in 2.1.7. This approach is summarized in Table 2.3 and, simi-
larly to KAv-CG, has been presented in [30]. The main idea of this algorithm,
which is composed of three stages, is to process the CG algorithm described
in Table 2.1 twice. The first time in which CG is processed aims to obtain
initial estimates, from which some are considered as if they were true DOAs.
These estimates are the basis for computing the a priori knowledge matrix C
in the second stage. Thus, differently from KAv versions, which make use of
available known DOAs to form C, this procedure can be considered knowledge
acquisition on line since that matrix is calculated by using steering vectors of
previous estimates. The last time in which CG is processed has the purpose
of computing the final DOA estimates making use of the enhanced covariance
matrix estimate R̃ of (2-61) or (2-62).

Simulations

Let us now evaluate the performance of our proposed Knowledge-Aided
Conjugate Gradient (KA-CG) algorithm for direction finding and localization
techniques. Specifically, we evaluate the probability of resolution of two adja-
cent signals. For this purpose, we compare the KA-CG, the KA-ESPRIT and
the KA-MUSIC, where the a priori covariance matrices C (2-63) are based
on estimates, to their original versions and also to their KAv versions, in
which C is constructed with known DOAs. All experiments are based upon a
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Table 2.3: Proposed KA-Conjugate Gradient Algorithm

First stage:
w0 = 0, d1 = gcg,0 = b, ρ0 = gHcg,0gcg,0

for i=1 to P do:
vi = R di
αi = ρi−1 / dHi vi
wi = wi−1 + αidi

gcg,i = gcg,i−1 - αivi
ρi = gHcg,igcg,i
βi = ρi / ρi−1 = ‖gcg,i‖2 / ‖gcg,i−1‖2

di+1 = gcg,i + βidi
end for
form Gcg,P+1(θ) (2-55)
compute PK(θ(n)) (2-57)
find P̂ largest peaks of PK(θ(n)) to obtain

estimates θ̂l of the DOA
Second stage:
compute C (2-63), for θl = θ̂l , l < P
compute α̂0 (2-69) for convex combination or β̂0 (2-64) and α̂0

(2-65) for general linear combination
compute R̃ (2-61) or (2-62) according to the combination in use as

previously mentioned
Last stage:
Repeat the first stage to obtain enhanced estimates of DOA

making use of R̃ instead of R̂

scenario identical to the simulations used for MUSIC, KAv-MUSIC, ESPRIT
and KAv-ESPRIT, i.e., with P = 2 two uncorrelated closely-spaced signals at
(89.05, 90.95)◦ impinging on a ULA with M = 12 sensors equally spaced by
half wavelength. The sample matrix (2-59) is computed with 180 snapshots
and the simulated curves are obtained by averaging the results over 200
independent trials. In order to assess the accuracy in terms of probability of
resolution, we take into account the same criterion described in sub-subsection
2.1.7.3.

In our experiment, we compare the probability of resolution of the KA-CG,
KA-ESPRIT and KA-MUSIC, to their KAv versions, in which the a priori
covariance matrices C (2-63) are obtained from the steering vector of the
second DOA, which is supposed to be known. The covariance matricesC (2-63)
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for KA versions were obtained from the steering vector of the estimate of the
second DOA. The results depicted in Fig.2.15 show the best performance of
each KAv version, in which C is obtained by the configuration with one known
DOA, over its KA version, where C is calculated using one of the estimates.
Each KAv-version can be considered an upper bound of its KA version. Thus,
it can be noticed that the small area limited by KA-CG and KAv-CG shows
that the former already exploits its potential close to the effective optimal
performance. The gap available to improvements is situated within [-1.9, 1.6]
SNR(dB) where the probability of resolution is lower than 0.88. Differently
from the previous KA-CG case, there is a larger area limited by KA-ESPRIT
and KAv-ESPRIT that is available to enhancements. It can also be seen that
their effective optimal performance (KAv-ESPRIT) is outperformed by both
KAv-CG and KA-CG. The area limited by KA-MUSIC and KAv-MUSIC shows
that most of the potential to be exploited is situated at the lower levels of the
probability of resolution and that the potential of improvement of the KA-
MUSIC is poor at higher ones.

−2 0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

SNR (dB)

P
ro

ba
bi

lit
y 

of
  R

es
ol

ut
io

n

 

 

KA−CG

KAv−CG

KA−ESP

KAv−ESP

KA−MU

KAv−MU

Figure 2.15: Probability of resolution of the KA versions and KAv versions of
CG, ESPRIT and MUSIC versus SNR withM = 12, N = 180, P = 2, L = 200
runs, unknown uncorrelated sources at (89.05, 90.95)◦
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3

Multi-Step Knowledge-aided Iterative ESPRIT algorithm

3.1

Introduction

Traditional high-resolution methods for DOA estimation such as the multiple
signal classification (MUSIC) method [8], the root-MUSIC algorithm [9], the
estimation of signal parameters via rotational invariance techniques (ESPRIT)
[10] and other recent subspace techniques [20,31,32] exploit the eigenstructure
of the input data matrix. These techniques may fail for reduced data sets or
low signal-to-noise ratio (SNR) levels where the expected estimation error is
not asymptotic to the Cramér-Rao bound (CRB) [33]. The accuracy of the
estimates of the covariance matrix is of fundamental importance in parameter
estimation. Low levels of SNR or short data records can result in significant
divergences between the true and the sample data covariance matrices. In
practice, only a modest number of data snapshots is available and when the
number of snapshots is similar to the number of sensor array elements, the
estimated and the true subspaces can differ significantly. Several approaches
have been developed with the aim of enhancing the computation of the
covariance matrix [34–43].

Diagonal loading [34] and shrinkage [35–37] techniques can enhance the
estimate of the data covariance matrix by weighing and individually increasing
its diagonal by a real constant. Nevertheless, the eigenvectors remain the same,
which leads to unaltered estimates of the signal and noise projection matrices
obtained from the enhanced covariance matrix. Additionally, an improvement
of the estimates of the covariance matrix can be achieved by employing
forward/backward averaging and spatial smoothing approaches [38, 39]. The
former leads to twice the number of the original samples and its corresponding
enhancement. The latter extracts the array covariance matrix as the average
of all covariance matrices from its sub-arrays, resulting in a greater number of
samples. Both techniques are employed in signal decorrelation. An approach to

DBD
PUC-Rio - Certificação Digital Nº 1412790/CA



Chapter 3. Multi-Step Knowledge-aided Iterative ESPRIT algorithm 56

improve MUSIC dealing with the condition in which the number of snapshots
and the sensor elements approach infinity was presented in [40]. Nevertheless,
this technique is not that effective for reduced number of snapshots. Other
approaches to deal with reduced data sets or low SNR levels [41, 43] consist
of reiterating the procedure of adding pseudo-noise to the observations which
results in new estimates of the covariance matrix. Then, the set of solutions is
computed from previously stored DOA estimates. In [44], two aspects resulting
from the computation of DOAs for reduced data sets or low SNR levels have
been studied using the root-MUSIC technique. The first aspect dealt with
the probability of estimated signal roots taking a smaller magnitude than the
estimated noise roots, which is an anomaly that leads to wrong choices of the
closest roots to the unit circle. To mitigate this problem, different groups of
roots are considered as potential solutions for the signal sources and the most
likely one is selected [45]. The second aspect previously mentioned, shown
in [46], refers to the fact that a reduced part of the true signal eigenvectors
exists in the sample noise subspace (and vice-versa). Such coexistence has
been expressed by a Frobenius norm of the related irregularity matrix and
introduced its mathematical foundation. An iterative technique to enhance
the efficacy of root-MUSIC by reducing this anomaly making use of the
gradual reshaping of the sample data covariance matrix has been reported.
Inspired by the work in [44], we have developed an ESPRIT-based method
known as Two-Step KAI-ESPRIT (TS-ESPRIT) [47], which combines that
modifications of the sample data covariance matrix with the use of prior
knowledge [12, 21, 48–50] about the covariance matrix of a set of impinging
signals to enhance the estimation accuracy in the finite sample size region. In
practice, this prior knowledge could be from the signals coming from known
base stations or from static users in a system. TS-ESPRIT determines the
value of a correction factor that reduces the undesirable terms in the estimation
of the signal and noise subspaces in an iterative process, resulting in better
estimates.

In [51], we presented preliminary results of the Multi-Step KAI ESPRIT
(MS-KAI-ESPRIT) approach that refines the covariance matrix of the input
data via multiple steps of reduction of its undesirable terms. This chapter
presents the MS-KAI-ESPRIT in further detail, an analysis of the mean
squared error (MSE) of the data covariance matrix free of undesired terms
(side effects), a more accurate study of the computational complexity and a
comprehensive study of MS-KAI-ESPRIT and other competing techniques for
scenarios with both uncorrelated and correlated signals. Unlike TS-ESPRIT,
which makes use of only one iteration and available known DOAs, MS-KAI-
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ESPRIT employs multiple iterations and obtains prior knowledge on line. At
each iteration of MS-KAI-ESPRIT, the initial Vandermonde matrix is updated
by replacing an increasing number of steering vectors of initial estimates with
their corresponding refined versions. In other words, at each iteration, the
knowledge obtained on line is updated, allowing the direction finding algorithm
to correct the sample covariance matrix estimate, which yields more accurate
estimates.

3.2

Proposed MS-KAI-ESPRIT Algorithm

In this section, we present the proposed MS-KAI-ESPRIT algorithm [52] and
detail its main features. For this purpose we make use of the same system model
described in subsection 2.1.6. We start by expanding (2-52) using (2-49), as
derived in [44]:

R̂ = 1
N

N∑
i=1

(A s(i) + n(i)) (A s(i) + n(i))H

= A

{
1
N

N∑
i=1
s(i)sH(i)

}
AH + 1

N

N∑
i=1
n(i)nH(i)

+A
{

1
N

N∑
i=1
s(i)nH(i)

}
+
{

1
N

N∑
i=1
n(i)sH(i)

}
AH

︸ ︷︷ ︸
"undesirable terms"

(3-1)

The first two terms of R̂ in (3-1) can be considered as estimates of the two
summands of R given in (2-51), which represent the signal and the noise
components, respectively. The last two terms in (3-1) are undesirable side
effects, which can be seen as estimates for the correlation between the signal
and the noise vectors. The system model under study is based on noise vectors
which are zero-mean and also independent of the signal vectors. Thus, the
signal and noise components are uncorrelated to each other. As a consequence,
for a large enough number of samples N , the last two terms of (3-1) tend to
zero. Nevertheless, in practice the number of available samples can be limited.
In such situations, the last two terms in (3-1) may have significant values, which
causes the deviation of the estimates of the signal and the noise subspaces from
the true signal and noise subspaces.

The key point of the proposed MS-KAI-ESPRIT algorithm is to modify
the sample data covariance matrix estimate at each iteration by gradually
incorporating the knowledge provided by the newer Vandermonde matrices
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which progressively embody the refined estimates from the preceding iteration.
Based on these updated Vandermonde matrices, refined estimates of the
projection matrices of the signal and noise subspaces are calculated. These
estimates of projection matrices associated with the initial sample covariance
matrix estimate and the reliability factor are employed to reduce its side effects
and allow the algorithm to choose the set of estimates that has the highest
likelihood of being the set of the true DOAs. The modified covariance matrix
is obtained by computing a scaled version of the undesirable terms of R̂, as
pointed out in (3-1).

The steps of the proposed algorithm are listed in Table 3.1.The algorithm starts
by computing the sample data covariance matrix (2-52). Next, the DOAs are
estimated using the ESPRIT algorithm. The superscript (·)(1) refers to the
estimation task performed in the first step. Now, a procedure consisting of
n = 1 : P iterations starts by forming the Vandermonde matrix using the
DOA estimates. Then, the amplitudes of the sources are estimated such that
the square norm of the differences between the observation vector and the
vector containing estimates and the available known DOAs is minimized. This
problem can be formulated [44] as:

ŝ(i) = arg min
s
‖ x(i)− Âs ‖2

2 . (3-2)

The minimization of (3-2) is achieved by using the least squares technique and
the solution is described by

ŝ(i) = (ÂH Â)−1 Â x(i) (3-3)

The noise component is then estimated as the difference between the estimated
signal and the observations made by the array, as given by

n̂(i) = x(i) − Â ŝ(i). (3-4)

After estimating the signal and noise vectors, the third term in (3-1) can be
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computed as:

V , Â

{
1
N

N∑
i=1

ŝ(i)n̂H(i)
}

= Â

{
1
N

N∑
i=1

(ÂH Â)−1ÂHx(i)× (xH(i)− xH(i)Â(ÂHÂ)−1 ÂH)
}

= Q̂A

{
1
N

N∑
i=1
x(i)xH(i)

(
IM − Q̂A

)}

= Q̂A R̂ Q̂⊥A, (3-5)

where
Q̂A , Â (ÂH Â)−1 ÂH (3-6)

is an estimate of the projection matrix of the signal subspace, and

Q̂⊥A , IM − Q̂A (3-7)

is an estimate of the projection matrix of the noise subspace.

Next, as part of the procedure consisting of n = 1 : P iterations, the modified
data covariance matrix R̂(n+1) is obtained by computing a scaled version of
the estimated terms from the initial sample data covariance matrix as given
by

R̂(n+1) = R̂ − µ (V(n) + V(n)H), (3-8)
where the superscript (·)(n) refers to the nth iteration performed. The scaling
or reliability factor µ increases from 0 to 1 incrementally, resulting in modified
data covariance matrices. A typical value of the related increment ι is 0.0625.
Each of the mentioned modified data covariance matrices gives origin to new
estimated DOAs also denoted by the superscript (·)(n+1) by using the ESPRIT
algorithm, as briefly described ahead.

The rank P is assumed to be known, which is an assumption frequently found
in the literature. Alternatively, the rank P could be estimated by model-
order selection schemes [53] such as Akaike’s Information Theoretic Criterion
(AIC) [54] and the Minimum Descriptive Length (MDL) Criterion [55].

In order to estimate the signal and the orthogonal subspaces from the data
records, we may consider two approaches [56,57]: the direct data approach and
the covariance approach. The direct data approach makes use of singular value
decomposition(SVD) of the data matrix X, composed of the ith data snapshot
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Table 3.1: Proposed MS-KAI-ESPRIT Algorithm

Inputs:
M , d, λ, N , P
Received vectors x(1), x(2),· · · , x(N)
Outputs:
Estimates θ̂(n+1 )

1 (µ opt), θ̂(n+1 )
2 (µ opt),· · · , θ̂(n+1 )

P (µ opt)

First step:

R̂ = 1
N

N∑
i=1
x(i)xH(i)

{θ̂(1)
1 , θ̂

(1)
2 , · · · , θ̂(1)

P } ESPRIT←−−−−−− (R̂, P, d, λ)

Â(1) =
[
a(θ̂(1 )

1 ), a(θ̂(1 )
2 ), · · · , a(θ̂(1 )

P )
]

Second step:
for n = 1 : P
Q̂(n)
A = Â(n) (Â(n)H Â(n))−1 Â(n)H

Q̂(n)⊥
A = IM − Q̂(n)

A

V(n) = Q̂(n)
A R̂ Q̂(n)⊥

A

for µ = 0: ι : 1
R̂(n+1) = R̂ − µ (V(n) + V(n)H)

{θ̂(n+1)
1 , θ̂

(n+1)
2 , · · · , θ̂(n+1)

P } ESPRIT←−−−−−− (R̂(n+1), P, d, λ)

B̂(n+1) =
[
a(θ̂(n+1 )

1 ), a(θ̂(n+1 )
2 ), · · · , a(θ̂(n+1 )

P )
]

Q̂(n+1)
B = B̂(n+1) (B̂(n+1)H B̂(n+1))−1 B̂(n+1)H

Q̂(n+1)⊥
B = IM − Q̂(n+1)

B

U (n+1 )(µ) = ln det
Q̂(n+1)

B R̂ Q̂(n+1)
B + Trace{Q̂⊥ (n+1)

B R̂}
M− P Q̂ (n+1)⊥

B


µ

(n+1)
opt = arg min U (n+1 )(µ)

DOAs(n+1) = {θ̂(n+1 )
1 (µ opt), θ̂(n+1 )

2 (µ opt),· · · , θ̂(n+1 )
P (µ opt)}

Â(n+1) =
{
a
(
θ̂

(n+1 )
{1 ,··· ,n} (µ opt)

)}⋃{a(θ̂(1 )
{1 ,··· ,P}−{1 ,··· ,n})

}
end for
end for

(2-49) of the M -dimensional array data vector:

X =[x(1),x(2), . . . ,x(N)]

=A[s(1), s(2), . . . , s(N)] + [n(1),n(2), . . . ,n(N)]

=A(Θ) S + N ∈ CM×N (3-9)
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Since the number of the sources is assumed known or can be estimated by
AIC [54] or MDL [55] , as previously mentioned, we can write X as:

X =
[

Ûs Ûn

]  Γ̂s 0
0 Γ̂n

 ÛH
s

ÛH
n

 , (3-10)

where the diagonal matrices Γ̂s and Γ̂n contain the P largest singular values
and the M − P smallest singular values, respectively. The estimated signal
subspace Ûs ∈ CM×P consists of the singular vectors corresponding to Γ̂s and
the orthogonal subspace Ûn ∈ CM×(M−P) is related to Γ̂n. If the signal subspace
is estimated, a rank-P approximation of the SVD can be applied.

The covariance approach applies the eigenvalue decomposition (EVD) of the
sample covariance matrix (2-59), which is related to the data matrix (3-9):

R̂ = 1
N

N∑
i=1
x(i)xH(i) = 1

N
XXH ∈ CM×M (3-11)

Then, the EVD of (3-11) can be carried out as follows:

R̂ =
[

Ûs Ûn

]  Λ̂s 0
0 Λ̂n

  ÛH
s

ÛH
n

 , (3-12)

where the diagonal matrices Λ̂s and Λ̂n contain the P largest and the M-P
smallest eigenvalues, respectively. The estimated signal subspace Ûs ∈ CM×P

corresponding to Γ̂s and the orthogonal subspace Ûn ∈ C
M×(M−P) complies

with Γ̂n. If the signal subspace is estimated, a rank-P approximation of
the EVD can be applied. With infinite precision arithmetic, both SVD and
EVD can be considered equivalent. However, as in practice, finite precision
arithmetic is employed, ’squaring’ the data to obtain the GramianXXH (3-11)
can result in round-off errors and overflow. These are potential problems to be
aware when using the covariance approach.

Now, we can briefly review ESPRIT. We start by forming a twofold subarray
configuration, as each row of the array steering matrix A(Θ) corresponds to
one sensor element of the antenna array. The subarrays are specified by two
(s ×M )-dimensional selection matrices J1 and J2 which choose s elements of
the M existing sensors, respectively, where s is in the range P ≤ s < M . For
maximum overlap, the matrix J1 selects the first s = M − 1 elements and the
matrix J2 selects the last s = M − 1 rows of A(Θ).

Since the matrices J1 and J2 have now been computed, we can estimate the
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operator Ψ by solving the approximation of the shift invariance equation (3-13)
given by

J1 Ûs Ψ ≈ J2 Ûs, (3-13)
where Ûs is obtained in (3-12).

Using the least squares (LS) method, which yields

Ψ̂ = arg min
Ψ
‖ J2 Ûs − J1 Ûs Ψ ‖F =

(
J1 Ûs

)†
J2 Ûs, (3-14)

where ‖ · ‖F denotes the Frobenius norm and (·)† stands for the pseudo-inverse.

Lastly, the eigenvalues λi of Ψ̂ contain the estimates of the spatial frequencies
γi computed as:

γi = arg (λi) , (3-15)
so that the DOAs can be calculated as:

θ̂i = arcsin
(
γi λc
2π d

)
(3-16)

where for (3-15) and (3-16) i = 1, · · · ,P.

Then, a new Vandermonde matrix B̂(n+1) is formed by the steering vectors
of those refined estimates of the DOAs. By using this updated matrix, it is
possible to compute the refined estimates of the projection matrices of the
signal Q̂(n+1)

B and the noise Q̂(n+1)⊥
B subspaces.

Next, employing the refined estimates of the projection matrices, the initial
sample data matrix, R̂, and the number of sensors and sources, the stochastic
maximum likelihood objective function U (n+1 )(µ) [45] is computed for each
value of µ at the nth iteration, as follows:

U (n+1 )(µ) = ln det
(
Q̂(n+1)
B R̂ Q̂(n+1)

B (3-17)

+ Trace{Q̂⊥ (n+1)
B R̂}

M− P Q̂ (n+1)⊥
B

)
. (3-18)

The previous computation selects the set of unavailable DOA estimates that
have a higher likelihood at each iteration. Then, the set of estimated DOAs
corresponding to the optimum value of µ that minimizes (3-18) also at each nth

iteration is determined. Finally, the output of the proposed MS-KAI-ESPRIT
algorithm is formed by the set of the estimates obtained at the P th iteration,
as described in Table 3.1.

The proposed approach will be investigated further and extended for an
arbitrary number of iterations in the next chapters.
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3.3

Analysis

In this section, we carry out an analysis of the MSE of the data covariance
matrix free of side effects along with a study of the computational complexity
of the proposed MS-KAI-ESPRIT and existing direction finding algorithms.

3.3.1

MSE Analysis

In this subsection we show that at the first of the P iterations, the MSE of the
data covariance matrix free of side effects R̂(n+1) is less than or equal to the
MSE of the original one R̂. This can be formulated as:

MSE
(
R̂(n+1)

) ∣∣∣
n=1
≤ MSE

(
R̂
)

(3-19)

or, alternatively, as

MSE
(
R̂(n+1)

) ∣∣∣
n=1
−MSE

(
R̂
)
≤ 0 (3-20)

In what follows, we provide the proof of this inequality.

We start by expressing the MSE of the original data covariance matrix (2-59)
as:

MSE
(
R̂
)

= E

[
‖R̂ −R‖2

F

]
. (3-21)

where R is the true covariance matrix. Similarly, the MSE of the data
covariance matrix free of side effects R̂(n+1) can be expressed for the first
iteration n = 1 by making use of (5-21), as follows

MSE
(
R̂(n+1)

) ∣∣∣
n=1

= MSE
(
R̂(2)

)
= E

[
‖R̂(2) −R‖2

F

]
= E

[
‖R̂ − µ (V(1) + V(1)H)−R‖2

F

]
= E

[
‖
(
R̂ −R

)
− µ (V(1) + V(1)H)‖2

F

]
(3-22)

where for the sake of simplicity, from now on we omit the superscript (1), which
refers to the first iteration. In order to expand the result in (3-22), we make
use of the following proposition:
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Lemma 1: The squared Frobenius norm of the difference between any two
matrices A ∈ Cm×m and B ∈ Cm×m is given by

‖A−B‖2
F = ‖A‖2

F + ‖B‖2
F −

(
Tr AHB + Tr ABH

)
(3-23)

Proof of Lemma 1:
The Frobenius norm of any D ∈ Cm×m matrix is defined [1] as

‖D‖F =
 m∑
i=1

m∑
j=1
|dij|2

 1
2

=
[
Tr
(
DHD

)] 1
2 (3-24)

We express D as a difference between two matrices A and B, both also ∈ Cm×m.
Making use of Lemma1 and the properties of the trace, we obtain

‖A−B‖2
F = Tr

[
(A−B)H (A−B)

]
= Tr

[(
AH −BH

)
(A−B)

]
= Tr

(
AHA

)
− Tr

(
AHB

)
− Tr

(
BHA

)
+ Tr

(
BHB

)
= ‖A‖2

F + ‖B‖2
F −

(
Tr AHB + Tr ABH

)
, (3-25)

which is the desired result.

Now, assuming that the true R [5] and the data covariance matrices R̂ [5] are
Hermitian and using (3-22) combined with Lemma1, the cyclic property [58]
of the trace and the linearity property [59] of the expected value, we get

MSE
(
R̂(2)

)
= E

{
‖R̂ −R‖2

F + µ2 ‖V + VH‖2
F

−Tr
[(

R̂ −R
)H

µ
(
V + VH

)]
−Tr

[
µ
(
V + VH

)H (
R̂ − R

)]}
= E

{
‖R̂ −R‖2

F + µ2 ‖V + VH‖2
F

−µTr
[(

R̂ −R
)H (

V + VH
)]

−µTr
[(

V + VH
)H (

R̂ − R
)]}

= E

{
‖R̂ −R‖2

F + µ2 ‖V + VH‖2
F

−µTr
[(

R̂ −R
) (

V + VH
)]

−µTr
[(

VH + V
) (

R̂ − R
)]}
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= E

{
‖R̂ −R‖2

F + µ2 ‖V + VH‖2
F

−µTr
[(

R̂ −R
) (

V + VH
)]

−µTr
[(

R̂ − R
) (

V + VH
)]}

= E

{
‖R̂ −R‖2

F

}
+ µ2

E

{
‖V + VH‖2

F

}
− 2µE

{
Tr
[(

R̂ −R
) (

V + VH
)]}

= MSE
(
R̂
)

+ µ2
E

{
‖V + VH‖2

F

}
− 2µE

{
Tr
[(

R̂ −R
) (

V + VH
)]}

(3-26)

By moving the first summand of (3-26) to its first element, we obtain the
intended expression for the difference between the MSEs of the data covariance
matrix free of perturbations and the original one, i.e.:

MSE
(
R̂(n+1)

) ∣∣∣
n=1
−MSE

(
R̂
)

= µ2
E

{
‖V + VH‖2

F

}
− 2µE

{
Tr
[(

R̂ −R
) (

V + VH
)]}

. (3-27)

Now, we expand the expressions inside braces of the second member of (3-27)
individually. We start with the first summand

‖V + VH‖2
F = ‖V‖2

F + ‖VH‖2
F + Tr

(
VHVH

)
+ Tr

(
(VH )HV

)
= ‖V‖2

F + ‖VH‖2
F + Tr

(
VHVH

)
+ Tr (VV) . (3-28)

Equation (3-28) can be computed by using the projection matrices of the signal
and the noise subspaces and the data covariance matrix by using (3-6), (3-7),
the idempotence [1] [58] of Q̂A and the cyclic property [58] of the trace. Starting
with the computation of its fourth summand, we have

Tr (VV) = Tr
[(

Q̂A R̂ Q̂⊥A
) (

Q̂A R̂ Q̂⊥A
)]

= Tr
[
Q̂A R̂

(
IM − Q̂A

)
Q̂A R̂

(
IM − Q̂A

)]
= Tr

[(
Q̂A R̂ − Q̂A R̂ Q̂A

) (
Q̂A R̂ − Q̂A R̂ Q̂A

)]
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= Tr
[
Q̂A R̂ Q̂A R̂ − Q̂A R̂ Q̂A R̂ Q̂A

−Q̂A R̂ Q̂AQ̂A R̂ + Q̂A R̂ Q̂AQ̂A R̂ Q̂A

]
= Tr

(
Q̂A R̂ Q̂A R̂

)
− Tr

(
Q̂A R̂ Q̂A R̂ Q̂A

)
− Tr

(
Q̂A R̂ Q̂AQ̂A R̂

)
+ Tr

(
Q̂A R̂ Q̂AQ̂A R̂ Q̂A

)
= Tr

(
Q̂A R̂ Q̂A R̂

)
− Tr

(
Q̂A R̂ Q̂A R̂

)
− Tr

(
Q̂A R̂ Q̂A R̂

)
+ Tr

(
Q̂A R̂ Q̂A R̂

)
= 0. (3-29)

Taking into account that the data covariance matrix R̂ and the estimate of
the projection matrix of the noise subspace Q̂⊥A are Hermitian, we can evaluate
the third summand of (3-28) as follows:

Tr
(
VHVH

)
= Tr

[(
Q̂A R̂ Q̂⊥A

)H (
Q̂A R̂ Q̂⊥A

)H]
= Tr

{[(
Q̂⊥A

)H
R̂H Q̂H

A

] [(
Q̂⊥A

)H
R̂H Q̂H

A

]}
= Tr

{[
Q̂⊥A R̂ Q̂A

] [
Q̂⊥A R̂ Q̂A

]}
= Tr

{[(
IM − Q̂A

)
R̂ Q̂

A

] [ (
IM − Q̂A

)
R̂ Q̂

A

]}
= Tr

{[
R̂ Q̂A − Q̂A R̂ Q̂A

] [
R̂ Q̂A − Q̂A R̂ Q̂A

]}
= Tr

{
R̂ Q̂A R̂ Q̂A − R̂ Q̂AQ̂A R̂ Q̂A

−Q̂A R̂ Q̂A R̂ Q̂A + Q̂A R̂ Q̂AQ̂A R̂ Q̂A

}
= Tr

(
R̂ Q̂A R̂ Q̂A

)
− Tr

(
R̂ Q̂AQ̂A R̂ Q̂A

)
− Tr

(
Q̂A R̂ Q̂A R̂ Q̂A

)
+ Tr

(
Q̂A R̂ Q̂AQ̂A R̂ Q̂A

)
= Tr

(
R̂ Q̂A R̂ Q̂A

)
− Tr

(
R̂ Q̂A R̂Q̂A

)
− Tr

(
Q̂A R̂ Q̂A R̂

)
+ Tr

(
Q̂A R̂ Q̂A R̂

)
= 0. (3-30)

By using (3-24), we can expand the first and the second summands of (3-28)
as follows:

‖V‖2
F + ‖VH‖2

F = Tr
(
VHV

)
+ Tr

((
VH

)H
VH

)
= Tr

(
VHV

)
+ Tr

(
VVH

)
= Tr

(
VVH

)
+ Tr

(
VVH

)
= 2 Tr

(
VVH

)
. (3-31)

Equation (3-31) can be expressed in terms of the projection matrices of the
signal and the noise subspaces and the data covariance, in a similar way as for
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the third and fourth summands of (3-28), as follows:

2 Tr
(
VVH

)
= 2 Tr

[(
Q̂A R̂ Q̂⊥A

) (
Q̂A R̂ Q̂⊥A

)H]
= 2 Tr

{
Q̂AR̂

(
IM − Q̂A

) [
Q̂AR̂

(
IM − Q̂A

)]H}
= 2 Tr

{(
Q̂AR̂ − Q̂AR̂Q̂A

) (
Q̂AR̂ − Q̂AR̂Q̂A

)H}
= 2 Tr

{
Q̂AR̂R̂Q̂A − Q̂AR̂Q̂AR̂

−Q̂AR̂Q̂AR̂Q̂A + Q̂AR̂Q̂AQ̂AR̂
}

= 2
{

Tr
(
Q̂AR̂R̂Q̂A

)
− Tr

(
Q̂AR̂Q̂AR̂

)
−Tr

(
Q̂AR̂Q̂AR̂Q̂A

)
+ Tr

(
Q̂AR̂Q̂AQ̂AR̂

)}
= 2

{
Tr
(
Q̂AQ̂AR̂R̂

)
− Tr

(
Q̂AR̂Q̂AR̂

)
−Tr

(
Q̂AR̂Q̂AR̂

)
+ Tr

(
Q̂AR̂Q̂AR̂

)}
= 2

{
Tr
(
Q̂AQ̂AR̂R̂

)
− Tr

(
Q̂AR̂Q̂AR̂

)}
(3-32)

From (3-28), (3-29), (3-30), (3-31) and (3-32), we obtain the first summand of
(3-27), as follows:

µ2
E

{
‖V + VH‖2

F

}
= 2µ2

E

{
Tr
(
Q̂AQ̂AR̂R̂

)
− Tr

(
Q̂AR̂Q̂AR̂

)}
(3-33)

In order to finish the expansion of the expressions inside braces of the second
member of (3-27), now we deal with its second summand, in which we make
use of the cyclic property [58] of the trace and the idempotence of Q̂A [1] [58].
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Tr
[(

R̂ −R
) (

V + VH
)]

=
{

Tr
(
R̂ −R

) [
Q̂A R̂ Q̂⊥A +

(
Q̂A R̂ Q̂⊥A

)H]}
= Tr

{(
R̂ −R

) [
Q̂AR̂

(
IM − Q̂A

)
+
(
Q̂AR̂

(
IM − Q̂A

))H]}
= Tr

{(
R̂ −R

) [
Q̂AR̂ − Q̂AR̂Q̂A

+
(
Q̂AR̂ − Q̂AR̂Q̂A

)H]}
= Tr

{(
R̂ −R

) [
Q̂AR̂ − Q̂AR̂Q̂A + R̂Q̂A − Q̂AR̂Q̂A

]}
= Tr

{
R̂Q̂AR̂ + R̂R̂Q̂A − 2R̂Q̂AR̂Q̂A

−RQ̂AR̂ −RR̂Q̂A + 2RQ̂AR̂Q̂A

}
= Tr R̂Q̂AR̂ + Tr R̂R̂Q̂A − 2 Tr R̂Q̂AR̂Q̂A

− Tr RQ̂AR̂ − Tr RR̂Q̂A + 2 Tr RQ̂AR̂Q̂A

= Tr Q̂AR̂R̂ + Tr Q̂AR̂R̂ − 2 Tr Q̂AR̂Q̂AR̂

− Tr RQ̂AR̂ − Tr Q̂ARR̂ + 2 Tr Q̂ARQ̂AR̂

= 2 Tr Q̂AR̂R̂ − 2 Tr Q̂AR̂Q̂AR̂ − Tr RQ̂AR̂

− Tr Q̂ARR̂ + 2 Tr Q̂ARQ̂AR̂

= 2 Tr Q̂AQ̂AR̂R̂ − 2 Tr Q̂AR̂Q̂AR̂ − Tr RQ̂AQ̂AR̂

− Tr Q̂AQ̂ARR̂ + 2 Tr Q̂ARQ̂AR̂ (3-34)

By using (3-34), we can straightforwardly write the second summand of the
second member of (3-27) in terms of the projection matrices of the signal and
the noise subspaces and the data covariance matrix as follows:

− 2µE
{

Tr
[(

R̂ −R
) (

V + VH
)]}

= −2µE
{

2 Tr Q̂AQ̂AR̂R̂ − 2 Tr Q̂AR̂Q̂AR̂ − Tr RQ̂AQ̂AR̂

−Tr Q̂AQ̂ARR̂ + 2 Tr Q̂ARQ̂AR̂
}

= −4µE
{

Tr Q̂AQ̂AR̂R̂ − Tr Q̂AR̂Q̂AR̂
}

− 2µ
{
−TrE

[
RQ̂AQ̂AR̂

]
− TrE

[
Q̂AQ̂ARR̂

]
+2 TrE

[
Q̂ARQ̂AR̂

]}
= −4µE

{
Tr Q̂AQ̂AR̂R̂ − Tr Q̂AR̂Q̂AR̂

}
− 2µ

{
−TrRQ̂AQ̂AE

[
R̂
]
− Tr Q̂AQ̂ARE

[
R̂
]

+2 Tr Q̂ARQ̂AE

[
R̂
]}

(3-35)
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Now, by using (3-33) and (3-35), and assuming that E
[
R̂
]
is an unbiased

estimate of R̂, i.e., E
[
R̂
]

= R, we can rewrite (3-27) as follows:

MSE
(
R̂(n+1)

) ∣∣∣
n=1
−MSE

(
R̂
)

= µ2
E

{
‖V + VH‖2

F

}
− 2µE

{
Tr
[(

R̂ −R
) (

V + VH
)]}

= 2µ2
E

{
Tr Q̂AQ̂AR̂R̂ − Tr Q̂AR̂Q̂AR̂

}
− 4µE

{
Tr Q̂AQ̂AR̂R̂ − Tr Q̂AR̂Q̂AR̂

}
− 2µ

{
−Tr RQ̂AQ̂AR − Tr Q̂AQ̂ARR

+2 Tr Q̂ARQ̂AR
}

= 2µ2
E

{
Tr Q̂AQ̂AR̂R̂ − Tr Q̂AR̂Q̂AR̂

}
− 4µE

{
Tr Q̂AQ̂AR̂R̂ − Tr Q̂AR̂Q̂AR̂

}
− 2µ

{
−2 Tr RQ̂AQ̂AR + 2 Tr Q̂ARQ̂AR

}
= 2µ2

E

{
Tr Q̂AQ̂AR̂R̂ − Tr Q̂AR̂Q̂AR̂

}
− 4µE

{
Tr Q̂AQ̂AR̂R̂ − Tr Q̂AR̂Q̂AR̂

}
− 4µ

{
Tr Q̂AQ̂ARR − Tr Q̂ARQ̂AR

}
=
(
2µ2 − 4µ

)
E

{
Tr Q̂AQ̂AR̂R̂ − Tr Q̂AR̂Q̂AR̂

}
− 4µ

{
Tr Q̂AQ̂ARR − Tr Q̂ARQ̂AR

}
(3-36)

Next, we will discuss equation (3-36). For this purpose, we assume that the
estimate of the projection matrix of the signal subspace Q̂A [1], the true R [5]
and the data covariance matrices R̂ [5] are Hermitian. For the next steps we
will make use of the following Theorem which is proved in [60]:

Theorem 1: For two Hermitian matrices A and B of the same order,

Tr (AB)2k ≤ Tr
(
A2kB2k

)
, (3-37)

where k is an integer.

By replacing A with Q̂A and B with R̂ in (3-37) and also considering k = 1,
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we have

Tr
(
Q̂AR̂

)2
≤ Tr

(
Q̂2
AR̂2

)
∴ Tr Q̂AR̂Q̂AR̂ ≤ Tr Q̂AQ̂AR̂R̂

⇒ Tr Q̂AQ̂AR̂R̂ − Tr Q̂AR̂Q̂AR̂ ≥ 0 (3-38)

Similarly, making A = Q̂A and B = R for k = 1, we obtain

Tr
(
Q̂AR

)2
≤ Tr

(
Q̂2
AR2

)
∴ Tr Q̂ARQ̂AR ≤ Tr Q̂AQ̂ARR

⇒ Tr Q̂AQ̂ARR − Tr Q̂ARQ̂AR ≥ 0 (3-39)

Next, we analyze the behavior of the expressions −4µ and (2µ2 − 4µ) based
on the reliability factor µ ∈ [0 1], as defined in (3-8). In order to illustrate the
case being studied, we assume that both expressions are continuous functions
as depicted in Fig. 3.1. It can be seen that in the range [0 1] both expressions

0 0.2 0.4 0.6 0.8 1
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

 

 

X: 1
Y: −2

µ

f (
µ)

X: 1
Y: −4

X: 0
Y: 0

(2µ2− 4µ)

− 4µ

Figure 3.1: Behavior of (2µ2 − 4µ) and −4µ for µ ∈ [0 1].

assume values f(µ) ≤ 0, i.e.:

For µ ∈ [0 1] :


(
2µ2 − 4µ

)
≤ 0

− 4µ ≤ 0
(3-40)

Now, we can consider the traces which form the subtraction in (3-38) as
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different random variables y (ω) and x (ω), i.e.:

Tr Q̂AQ̂AR̂R̂ = y (ω)

Tr Q̂AR̂Q̂AR̂ = x (ω)

 , ∀ ω ∈ Ω. (3-41)

In addition, we can suppose that there is a random variable z (ω) always greater
than zero, i.e., z (ω) ≥ 0, so that

z (ω) = y (ω)− x (ω) ≥ 0, ∀ ω ∈ Ω (3-42)

Taking the expectation of (3-42) and applying its properties of linearity and
monotonicity [59,61], we obtain

E [z (ω)] = E [y (ω)− x (ω)] ≥ 0, (3-43)

which, by making use of (3-41), results in

E [z (ω)] = E [y (ω)− x (ω)]

= E

{
Tr Q̂AQ̂AR̂R̂ − Tr Q̂AR̂Q̂AR̂

}
≥ 0 (3-44)

Next, we can combine the inequalities (3-40) with (3-44) to compute the second
member of (3-36), for µ ∈ [0 1].

For its first summand, we combine (3-40) and (3-44), as follows:

E

{
Tr Q̂AQ̂AR̂R̂ − Tr Q̂AR̂Q̂AR̂

}
≥ 0(

2µ2 − 4µ
)
≤ 0, µ ∈ [0 1],

(3-45)

to obtain in a straightforward way

(
2µ2 − 4µ

)
E

{
Tr Q̂AQ̂AR̂R̂ − Tr Q̂AR̂Q̂AR̂

}
≤ 0 (3-46)

Similarly, we can compute its second summand, by combining (3-40) and
(3-39), as described by

Tr Q̂AQ̂ARR − Tr Q̂AR̂Q̂AR̂ ≥ 0

− 4µ ≤ 0, µ ∈ [0 1],
(3-47)

to obtain also straightforwardly the expression given by

− 4µ
{

Tr Q̂AQ̂ARR − Tr Q̂ARQ̂AR
}
≤ 0 (3-48)
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By combining the inequalities (3-46) and (3-48) with (3-36), we have

MSE
(
R̂(n+1)

) ∣∣∣
n=1
−MSE

(
R̂
)

=
(
2µ2 − 4µ

)
E

{
Tr Q̂AQ̂AR̂R̂ − Tr Q̂AR̂Q̂AR̂

}
︸ ︷︷ ︸

≤ 0

−4µ
{

Tr Q̂AQ̂ARR − Tr Q̂ARQ̂AR
}

︸ ︷︷ ︸
≤ 0

∴ MSE
(
R̂(n+1)

) ∣∣∣
n=1
−MSE

(
R̂
)
≤ 0, (3-49)

which is the desired result.

3.3.2

Computational Complexity Analysis

In this subsection, we evaluate the computational cost of the proposed MS-
KAI-ESPRIT algorithm which is compared to the following classical subspace
methods: ESPRIT [10], MUSIC [8], Root-MUSIC [9], Conjugate Gradient
(CG) [15,16], Auxiliary Vector Filtering (AVF) [13] and TS-ESPRIT [47]. The
ESPRIT and MUSIC-based methods use the Singular Value Decomposition
(SVD) of the sample covariance matrix (2-59). The computational complexity
of MS-KAI-ESPRIT in terms of number of multiplications and additions is
depicted in Table 3.2, where τ = 1

ι
+1. The increment ι is defined in Table 3.1.

Typical values of this parameter are 0.1 and 0.0625, however smaller values
can also be employed at the cost of heavier computational burdens.

Table 3.2: Computational complexity - MS-KAI-ESPRIT [52]

Multiplications
P τ [10

3 M3 + M2(3P + 2) + M(5
2P2 + 1

2P + 8N2) +P2(17
2 P + 1

2)]
+P [2M3 + M2(P) + M(3

2P2 + 1
2P) + P2(P

2 + 3
2)]

+2M2(P) + M(P2 − P + 8N2) + P2(8P− 1)
Additions
P τ [10

3 M3 + M2(3P− 1) + M(5
2P2 − 9

2P + 8N2) +P(8P2 − 2P− 5
2)]

+P [2M3 + M2(P− 2) + M(3
2P2 − 1

2P)− P(P + 1
2)]

+2M2(P) + M(P2 − 4P + 8N2) + P(8P2 − P− 2)
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For the specific configuration used in the simulations in section 3.4, i.e., P =
4,M = 40, N = 25, MS-KAI-ESPRIT shows a relatively high computational
burden with O(Pτ(10

3 M 3 + 8MN 2 )), where τ is typically an integer that
ranges from 2 to 20. The terms 10

3 M
3 and 8MN2 are comparable, resulting in

two dominant terms. It can also be seen that the number of multiplications
required by the proposed algorithm is more significant than the number of
additions. For this reason, in Table 3.3, we computed only the computational
burden of the previously mentioned algorithms in terms of multiplications for
the purpose of comparisons. In that table, ∆ stands for the search step.

Table 3.3: Computational complexity - other algorithms

Algorithm Multiplications
MUSIC [8] 180

∆ [M2 + M(2− P)− P] + 8MN2

root-MUSIC [9] 2M3 −M2P + 8MN2

AVF [13] 180
∆ [M2(3P + 1) + M(4P− 2) + P + 2]

+M2N
CG [15] 180

∆ [M2(P + 1) + M(6P + 2) + P + 1] + M2N
ESPRIT [10] 2M2P + M(P2 − 2P + 8N2) + 8P3 − P2

τ [3M3 + M2(3P + 2) + M(5
2P2 − 3

2P + 8N2)
+P2(17

2 P + 1
2) + 1]

TS-ESPRIT [47]* +[2M3 + M2(3P) + M(5
2P2 − 3

2P + 8N2)
+P2(17

2 P + 1
2)]

Next, we will evaluate the influence of the number of sensor elements on the
number of multiplications based on Tables 3.2 and 3.3, respectively. Supposing
P = 4 narrowband signals impinging on a ULA of M sensor elements and
N = 25 available snapshots, we obtain Fig. 3.2. We can see the main trends in
terms of computational cost measured in multiplications of the proposed and
analyzed algorithms. By examining Fig. 3.2, it can be noticed that in the range
M = [20 70] sensors, the curves describing the exact number of multiplications
in MS-KAI-ESPRIT and AVF tend to merge. For M = 40, this ratio tends to
1, i.e. their numbers of multiplications are almost equivalent.

3.4

Simulations

In this section, we examine the performance of the proposed MS-KAI-ESPRIT
in terms of probability of resolution (PR) and root mean squared error (RMSE)
and compare them to the standard ESPRIT [10], the Iterative ESPRIT
(IESPRIT), which is also implemented here by combining the approach in [44]
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Figure 3.2: Number of multiplications versus number of sensors for P = 4,
N = 25.

that exploits knowledge of the structure of the covariance matrix and its
perturbation terms, the Conjugate Gradient (CG) [15], the Root-MUSIC [9],
and the MUSIC [8] algorithms. Despite TS-ESPRIT is based on the knowledge
of available known DOAs, i.e., based on part of the DOAs which are known,
and the proposed MS-KAI-ESPRIT does not have access to prior knowledge,
TS-ESPRIT is plotted with the aim of illustrating the comparisons. For a
fair comparison in terms of RMSE and probability of resolution of all studied
algorithms, we suppose that we do not have prior knowledge, that is to say
that although we have available known DOAs, we compute TS-ESPRIT as
they were unavailable. We employ a ULA with M=40 sensors, inter-element
spacing ∆ = λc

2 and assume there are four uncorrelated complex Gaussian
signals with equal power impinging on the array. The closely-spaced sources
are separated by 2.4o, at (10.2o, 12.6o, 15o, 17.4o), and the number of available
snapshots is N=25. For TS-ESPRIT, as previously mentioned, we presume a
priori knowledge of the last true DOAs (15o, 17.4o).

In Fig. 3.3, we show the probability of resolution versus SNR. We take into
account the criterion [29], in which two sources with DOA θ1 and θ2 are
said to be resolved if their respective estimates θ̂1 and θ̂2 are such that
both

∣∣∣θ̂1 − θ1

∣∣∣ and ∣∣∣θ̂2 − θ2

∣∣∣ are less than |θ1 − θ2| /2. The proposed MS-KAI-
ESPRIT algorithm outperforms IESPRIT implemented here, based on [44,62],
and the standard ESPRIT [10] in the range between −6 and 5dB and MUSIC
[8] from −6 to 8.5dB. MS-KAI-ESPRIT also outperforms CG [15, 16] and
Root-Music [9] throughout the whole range of values. The poor performance

DBD
PUC-Rio - Certificação Digital Nº 1412790/CA



Chapter 3. Multi-Step Knowledge-aided Iterative ESPRIT algorithm 75

of the latter could be expected from the results for two closed signals obtained
in [44, 62]. When compared to TS-ESPRIT, which as previously discussed,
was supposed to have the best performance, the proposed MS-KAI-ESPRIT
algorithm is outperformed by the former only in the range between −6 and
−2.5dB. From this last point to 20dB its performance is superior or equal to
the other algorithms.

In Fig. 3.4, it is shown the RMSE in dB versus SNR, where the term CRB
refers to the square root of the deterministic Cramér-Rao bound [18]. The
RMSE is defined as:

RMSE =

√√√√ 1
L P

L∑
l=1

P∑
p=1

(θp − θ̂p(l))2, (3-50)

where L is the number of trials.

The results show the superior performance of MS-KAI-ESPRIT in the range
between −2.5 and 5 dB. From this last point to 20 dB, MS-KAI-ESPRIT,
IESPRIT, ESPRIT and TS-ESPRIT have similar performance. The only range
in which MS-KAI-ESPRIT is outperformed lies in the range between −6 and
−2.5 dB. From this last point to 20 dB its performance is better or similar to
the others.
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Figure 3.3: Probability of resolution versus SNR with P = 4 uncorrelated
sources, M = 40, N = 25, L = 100 runs.

Now, we focus on the performance of MS-KAI-ESPRIT under more severe
conditions, i.e., we analyze it in terms of RMSE when at least two of the
four equal-powered Gaussian signals are strongly correlated, as shown in the
following signal correlation matrix Rss (3-51):
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Figure 3.4: RMSE and the square root of CRB versus SNR with P = 4
uncorrelated sources, M = 40, N = 25, L = 100 runs.

Rss = σ2
s


1 0.9 0.6 0

0.9 1 0.4 0.5
0.6 0.4 1 0
0 0.5 0 1

 . (3-51)

The signal-to-noise ratio (SNR) is defined as SNR , 10 log10

(
σ2
s

σ2
n

)
. In Fig.
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Figure 3.5: RMSE and the square root of CRB versus SNR with P = 4
correlated sources, M = 40, N = 25, L = 250 runs.

3.5, we can see the performance of the same algorithms plotted in Fig. 3.4
in terms of RMSE(dB) versus SNR computed after 250 runs, when the signal
correlation matrix is given by (3-51). As can be seen, the superior performance
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of MS-KAI-ESPRIT occurs in the whole range between 4.0 and 12 dB, which
can be considered a small but consistent gain. From 12dB to 20dB MS-KAI-
ESPRIT, TS-ESPRIT, IESPRIT and ESPRIT have similar performance. The
values for which MS-KAI-ESPRIT is outperformed are in the range between
−6.0 and 4.0dB.

In Fig. 3.6, we have provided further simulations to illustrate the performance
of each iteration of MS-KAI ESPRIT in terms of RMSE. The resulting
iterations can be compared to each other and to the original ESPRIT, which
corresponds to the first step of MS-KAI ESPRIT. For this purpose, we have
considered the same scenario employed before, except for the number of the
trials, which is L = 200 runs for all simulations. In particular, we have
considered the case of correlated sources. From Fig. ??, which is a magnified
detail of Fig. 3.6, it can be seen that the estimates become more accurate with
the increase of iterations.
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Figure 3.6: RMSE for each iteration of MS-KAI ESPRIT,original ESPRIT and
CRB versus SNR with P = 4 correlated sources, M = 40, N = 25, L = 200
runs.
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Multi-Step Knowledge-aided Iterative Conjugate Gradient
algorithm

4.1

Introduction

In this chapter, we present the Multi-Step Knowledge-Aided Iterative Conju-
gate Gradient (MS-KAI-CG) [66] algorithm, whose preliminary results have
been shown in [65]. Both works combine distinct but complementary ap-
proaches developed in [30] and [47]. The former approach, termed KA-CG [30],
introduced a method that replaces the available known DOAs employed to
compute the a priori knowledge matrix, which is employed in the traditional a
priori knowledge [49] approach, with previous estimates obtained via the CG
algorithm. This a priori knowledge matrix combined with the data covariance
matrix results in an enhanced covariance matrix, which, after being processed
by the CG algorithm, results in more accurate estimates. This approach is not
restricted to CG. It can be combined with other types of algorithms and can
also be viewed as obtaining knowledge on line. The latter and more modern
approach [47], which is termed TS-KAI, makes use of ESPRIT and was the first
step toward the MS-KAI techniques. Similarly to the MS-KAI technique, TS-
KAI (ESPRIT) employs refinements of the covariance matrix combined with
incorporation of knowledge to improve the accuracy of DOA estimation. How-
ever, these approaches differ in two key aspects: instead of using multiple steps,
TS-KAI makes use of only two of them; and instead of acquiring knowledge
on line like MS-KAI approach, which can be viewed as its evolution, TS-KAI
employs available knowledge of DOAs, like those from base stations or static
users. MS-KAI-CG follows the MS-KAI approach applied to ESPRIT, which
was described in Chapter 3, and is complemented by its version equipped with
forward-backward spatial smoothing, denoted as MS-KAI-CG-FB, which can
deal with correlated signals. Unlike prior KAI approaches, MS-KAI-CG and
MS-KAI-CG-FB are no longer limited to P iterations, where P is the number
of source signals. Moreover, the CG-based algorithms are particularly effective
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for scenarios with very few source signals and closely-spaced angles of arrival.
For these situations, the MS-KAI-CG approach is particularly appealing and
addresses some of the weaknesses of existing CG-based approaches by improv-
ing the quality of the covariance matrix estimates. At the end of this chapter,
carry out an analysis of the computational complexity of the proposed and ex-
isting direction finding algorithms along with a simulation study for scenarios
with closely-spaced source signals.

4.2

Proposed MS-KAI-CG Algorithm

In this section, we present the proposed MS-KAI-CG algorithm [66] applied to
uncorrelated sources and detail its main features. For this purpose we make use
of the same system model described in subsection 2.1.6. We start by expanding
the estimate of the data covariance matrix (2-52), which here is denoted by
R̂o, using (2-49), as derived in section 3.2:

R̂o = 1
N

N∑
i=1

(A s(i) + n(i)) (A s(i) + n(i))H

= A

{
1
N

N∑
i=1
s(i)sH(i)

}
AH + 1

N

N∑
i=1
n(i)nH(i)

+A
{

1
N

N∑
i=1
s(i)nH(i)

}
+
{

1
N

N∑
i=1
n(i)sH(i)

}
AH

︸ ︷︷ ︸
"undesirable by-products"

(4-1)

Similarly to section 3.2, the first two terms of R̂o in (4-1) can be considered
as estimates of the two summands of R given in (2-51), which represent the
signal and the noise components, respectively. The last two terms in (4-1) are
undesirable by-products, which can be seen as estimates for the correlation
between the signal and the noise vectors. The system model under study is
based on noise vectors which are zero-mean and also independent of the signal
vectors. Therefore, the signal and noise components are uncorrelated to each
other. As a consequence, for a large enough number of samples N , the last two
terms pointed out in (4-1) tend to zero. However, in practice the number of
available samples can be limited. In such situations, the last two terms in (4-1)
may have non negligible values, which causes the deviation of the estimates of
the signal and the noise subspaces from the true signal and noise ones.
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The key approach of the proposed MS-KAI-CG algorithm is to reshape the
sample data covariance matrix estimate at each iteration by gradually in-
corporating the knowledge provided by the updated Vandermonde matrices
which progressively incorporate the newer estimates from the preceding itera-
tion. Based on these updated Vandermonde matrices, refined estimates of the
projection matrices of the signal and noise subspaces are calculated. These
estimates of projection matrices associated with the initial sample covariance
matrix estimate and the reliability (scaling) factor employed to reduce its by-
products allow to choose the set of estimates that has the minimum value
of the stochastic maximum likelihood objective function (SMLOF), i.e., the
highest likelihood of being the set of the true DOAs. The modified covariance
matrix is computed by deriving a scaled version of the undesirable terms from
R̂o, which are pointed out in (4-1).

The steps of the proposed algorithm are listed in Table 4.1. The algorithm
starts by computing the sample data covariance matrix (2-52). Next, the DOAs
are estimated using the CG direction finding algorithm reported in [15,16,27].

In this chapter, the rank P is assumed to be known, which is an assumption
frequently found in the literature. Alternatively, the rank P could be estimated
by model-order selection schemes [53] such as Akaike’s Information Theoretic
Criterion (AIC) [54] and the Minimum Descriptive Length (MDL) Criterion
[55]. The CG method, from which the first and the last steps of the MS-KAI-
CG are based on, is used to minimize a cost function, or analogously, to solve
a linear system of equations by approaching the optimal solution step by step
via a line search along successive directions, which are sequentially determined
at each direction [19]. As a result of the application of the CG algorithm to
direction finding, we have a system of equations that is iteratively solved for
w at each search angle:

Rw = b(θ), (4-2)
where R is the covariance matrix and b(θ) is the initial vector defined as

b(θ) = R a(θ)
‖R a(θ)‖ , (4-3)

where a(θ) is the search vector.

The extended signal subspace of rank P is obtained by means of the CG
algorithm, which is summarized in table 2.1. The content of that table is
repeated in 4.2 for convenience. The set of orthogonal residual vectors
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Gcg,P+1(θ) = [gcg,0(θ), gcg,1(θ), . . . , gcg,P (θ)], (4-4)

where b(θ)= g0(θ) generates the well-known extended Krylov subspace com-
prised of the true signal subspace of dimension P and the search vector
itself. All the residual vectors are normalized except for the last one. If

Table 4.1: Proposed MS-KAI-CG Algorithm

Inputs:
M , d, λ, N , I
Received vectors x(1), x(2),· · · , x(N)
Outputs:
Estimates θ̂(n+1 )

1 (µ opt), θ̂(n+1 )
2 (µ opt),· · · , θ̂(n+1 )

P (µ opt)
First step:

R̂o = 1
N

N∑
i=1
x(i)xH(i)

{θ̂(1)
1 , θ̂

(1)
2 , · · · , θ̂(1)

P } CG←− (R̂o, P, d, λ)
Â(1) =

[
a(θ̂(1 )

1 ),a(θ̂(1 )
2 ), · · · ,a(θ̂(1 )

P )
]

Second step:
for n = 1 : I
Q̂

(n)
A = Â(n) (Â(n)H Â(n))−1 Â(n)H

Q̂
(n)⊥
A = IM − Q̂

(n)
A

V (n) = Q̂
(n)
A R̂o Q̂

(n)⊥
A

for µ = 0 : increment : 1
R̂(n+1) = R̂o − µ (V (n) + V (n)H)
{θ̂(n+1)

1 , θ̂
(n+1)
2 , · · · , θ̂(n+1)

P } CG←− (R̂(n+1), P, d, λ)
B̂(n+1) =

[
a(θ̂(n+1 )

1 ),a(θ̂(n+1 )
2 ), · · · ,a(θ̂(n+1 )

P )
]

Q̂
(n+1)
B = B̂(n+1) (B̂(n+1)H B̂(n+1))−1 B̂(n+1)H

Q̂
(n+1)⊥
B = IM − Q̂

(n+1)
B

U (n+1 )(µ) = ln det
Q̂(n+1)

B R̂o Q̂
(n+1)
B + Trace{Q̂⊥ (n+1)

B R̂o}
M − P Q̂

(n+1)⊥
B


µ(n+1)

o = arg min U (n+1 )(µ)
DOAs(n+1) = {θ̂(n+1 )

1 (µo), θ̂(n+1 )
2 (µo),· · · , θ̂(n+1 )

P (µo)}
if n <= P
Â(n+1) =

{
a(θ̂(n+1 )

{1 ,··· ,n}(µo))
}⋃{

a(θ̂(1 )
{1 ,··· ,P}−{1 ,··· ,n})

}
else
Â(n+1) =

[
a(θ̂(n+1 )

1 (µo)),a(θ̂(n+1 )
2 (µo)), · · · ,a(θ̂(n+1 )

P (µo))
]

end if
end for
end for

θ ∈ {θ1, . . . , θP}, the initial vector b(θ) lies in the true signal subspace space
spanned by the [gcg,0(θ), gcg,1(θ), . . . , gcg,P−1(θ)] basis vectors of the extended
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Krylov subspace. Thus, the rank of the generated signal subspace drops from
P + 1 to P and we have

gcg,P (θ) = 0, (4-5)
where gcg,P is the last unnormalized residual vector. In order to exploit this
behavior, the proposed KA-CG algorithm makes use of the spectral function
defined in [13]:

PK(θ(n)) = 1
‖gHcg,P (θ(n))Gcg,P+1(θ(n−1))‖2 , (4-6)

where θ(n)denotes the search angle in the whole angle range {−90o, . . . , 90o}
with θ(n) = n∆o − 90o, where ∆o is the search step and n = 0, 1, . . . , 180o/∆o.
The matrix Gcg,P+1(θ(n−1)) contains all residual vectors at the (n−1)th vector
calculated at the current search step n. If θ(n) ∈ {θ1, . . . , θP}, gcg,P (θ(n)) = 0
and we can expect a peak in the spectrum. Taking into account that R̂o

in (2-52) and (4-1) is only a sample average estimate, which is unknown in
practical applications, gcg,P (θ(n)) and Gcg,P+1(θ(n−1)) become approximations.
Hence the spectral function in (4-6) can just provide very large values but they
do not tend to infinity as for the original covariance matrix.

Table 4.2: Summary of the Conjugate Gradient Algorithm

w0 = 0, d1 = gcg,0 = b, ρ0 = gHcg,0gcg,0

for i=1 to P
vi = R di

αi = ρi−1 / d
H
i vi

wi = wi−1 + αidi

gcg,i = gcg,i−1 - αivi
ρi = gHcg,igcg,i

βi = ρi / ρi−1 = ‖gcg,i‖2 / ‖gcg,i−1‖2

di+1 = gcg,i + βidi

end for
form Gcg,P+1(θ) (4-4)
compute PK(θ(n)) (4-6)
find P̂ largest peaks of PK(θ(n)) to obtain

estimates θ̂l of the DOA

The superscript (·)(1) refers to the estimation task performed in the first step.
Now, a procedure consisting of n = 1 : I iterations starts by forming the
Vandermonde matrix using the DOA estimates. Then, the amplitudes of the
sources are estimated such that the square norm of the differences between
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the observation vector and the vector containing estimates and the available
known DOAs is minimized. This problem can be formulated [44] as:

ŝ(i) = arg min
s
‖ x(i)− Âs ‖2

2 . (4-7)

The minimization of (4-7) is achieved using the least squares technique and
the solution is described by

ŝ(i) = (ÂH Â)−1 Â x(i) (4-8)

The noise component is then estimated as the difference between the estimated
signal and the observations made by the array, as given by

n̂(i) = x(i) − Â ŝ(i). (4-9)

After estimating the signal and noise vectors, the third term in (4-1) can be
computed as

V , Â

{
1
N

N∑
i=1
ŝ(i)n̂H(i)

}

= Â

{
1
N

N∑
i=1

(ÂH Â)−1ÂHx(i)

×(xH(i)− xH(i)Â(ÂHÂ)−1 ÂH)
}

= Q̂A

{
1
N

N∑
i=1
x(i)xH(i)

(
IM − Q̂A

)}

= Q̂A R̂ Q̂
⊥
A, (4-10)

where
Q̂A , Â (ÂH Â)−1 ÂH (4-11)

is an estimate of the projection matrix of the signal subspace, and

Q̂⊥A , IM − Q̂A (4-12)

is an estimate of the projection matrix of the noise subspace.

Subsequently, as part of the procedure with n = 1 : I iterations, the modified
data covariance matrix R̂(n+1) is calculated by computing a scaled version of
the estimated terms from the initial sample data covariance matrix as given

R̂(n+1) = R̂o − µ (V (n) + V (n)H), (4-13)

where the superscript (·)(n) refers to the nth iteration performed. The scaling
or reliability factor µ increases from 0 to 1 incrementally, resulting in modified
data covariance matrices. Each of them gives origin to new estimated DOAs
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denoted by the superscript (·)(n+1) by using the CG algorithm, which was
previously described. Then, a new Vandermonde matrix B̂(n+1) is formed by
the steering vectors of those newer estimated DOAs. By using this new matrix,
it is possible to compute the newer estimates of the projection matrices of the
signal Q̂(n+1)

B and the noise Q̂(n+1)⊥
B subspaces.

Next, employing the refined estimates of the projection matrices, the initial
sample data matrix, R̂o, and the number of sensors and sources, the stochastic
maximum likelihood objective function (SMLOF) U (n+1 )(µ) [45] is computed
for each value of µ at the nth iteration, as follows:

U (n+1 )(µ) = ln det (·) , (4-14)

where

(·) =
Q̂(n+1)

B R̂o Q̂
(n+1)
B + Trace{Q̂⊥ (n+1)

B R̂o}
M − P Q̂

(n+1)⊥
B


The previous computation selects the set of unavailable DOA estimates that
have a higher likelihood at each iteration. Then, the set of estimated DOAs
corresponding to the optimum value of µ that minimizes (4-14) also at each
nth iteration is determined. Finally, the output of the proposed MS-KAI-CG
algorithm is formed by the set of the estimates obtained at the I th iteration,
as described in Table 4.1.

4.3

Proposed MS-KAI CG-FB Algorithm

Most direction finding algorithms experience performance degradation in the
presence of correlated signals. This is also verified for the proposed MS-KAI-
CG algorithm, as will be shown in section 4.5 via simulations. In this section,
we present an approach that combines the proposed MS-KAI-CG algorithm
and the well-known forward-backward spatial smoothing (FBSS) [38, 63, 64]
technique, denoted as MS-KAI-CG-FB algorithm, for dealing with correlated
signals. In the proposed MS-KAI-CG-FB algorithm, the FBSS covariance
matrix (4-15) is obtained from the initial sample covariance matrix (2-52),
which is here denoted by R̂o for convenience, as follows:

R̂ = 1
K

K∑
k=1
Zk R̃ Z

T
k , (4-15)

where the number of its subarrays is obtained by
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K = M − L + 1 , (4-16)

In (4-16), L means the number of sensors of the subarrays and M the number
of sensors of the original ULA. The matrix Zk is given by

Zk =
[
0L×(k−1) | IL×L | 0L×M−(L+k−1)

]
(4-17)

The forward-backward modified matrix R̃ is defined as:

R̃ = 1
2
(
R̂o + J R̂∗o J

)
, (4-18)

where J is is an off-diagonal exchange matrix

J =


0 1

...
1 0

 , (4-19)

and (∗) means the complex conjugate.

Next, we expand (4-15) using (2-49) as follows:

R̂ = 1
N

N∑
i=1

(A s(i) + n(i)) (A s(i) + n(i))H

= A

{
1
N

N∑
i=1
s(i)sH(i)

}
AH + 1

N

N∑
i=1
n(i)nH(i)

+A
{

1
N

N∑
i=1
s(i)nH(i)

}
+
{

1
N

N∑
i=1
n(i)sH(i)

}
AH

︸ ︷︷ ︸
"undesirable by-products"

(4-20)

The first two terms of R̂ in (4-20) can be considered as estimates of the two
summands of R given in (2-51), which represent the signal and the noise
components, respectively. The last two terms in (4-20) are undesirable by-
products, which can be seen as estimates for the correlation between the signal
and the noise vectors. Moreover, the last two terms in (4-20) may have large
values, which results in estimates of the signal and the noise subspaces different
from the actual subspaces.

The key aspect of the proposed MS-KAI-CG-FB algorithm is to modify the
FBSS covariance matrix estimate R̂ (4-15) at each iteration by gradually
incorporating the knowledge provided by the newer Vandermonde matrices
which progressively embody the newer estimates from the preceding iteration.
Based on these updated Vandermonde matrices, refined estimates of the
projection matrices of the signal and noise subspaces are calculated. These
estimates of projection matrices associated with the FBSS covariance matrix
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estimate R̂ and the reliability factor employed to reduce its by-products allow
to choose the set of estimates that has the minimum value of the SMLOF,
i.e., the highest likelihood of being the set of the true DOAs. The modified
covariance matrix is computed by deriving a scaled version of the undesirable
terms from R̂, which are pointed out in (4-20).

The steps of the proposed MS-KAI-CG-FB algorithm are listed in Table 4.3.
The algorithm starts by computing the initial sample data covariance matrix
(2-52). Then, the FBSS covariance matrix estimate (4-15) is calculated. Sub-
sequently, the DOAs are estimated using the original CG algorithm described
in subsection 2.1.6 and summarized in section 4.2. The superscript (·)(1) refers
to the estimation task performed in the first step. Next, a procedure consist-
ing of n = 1 : I iterations starts by forming the Vandermonde matrix using
the DOA estimates. Then, the amplitudes of the sources are estimated such
that the square norm of the differences between the observation vector and the
vector containing estimates and the available known DOAs is minimized. This
problem can be formulated as

ŝ(i) = arg min
s
‖ x(i)− Âs ‖2

2 . (4-21)

The minimization of (4-21) is achieved using the least squares technique and
the solution is described by

ŝ(i) = (ÂH Â)−1 Â x(i) (4-22)

The noise component is then estimated as the difference between the estimated
signal and the observations made by the array, as given by

n̂(i) = x(i) − Â ŝ(i). (4-23)

After estimating the signal and noise vectors, the third term in (4-20) can be
computed as

V , Â

{
1
N

N∑
i=1
ŝ(i)n̂H(i)

}

= Â

{
1
N

N∑
i=1

(ÂH Â)−1ÂHx(i)

×(xH(i)− xH(i)Â(ÂHÂ)−1 ÂH)
}

= Q̂A

{
1
N

N∑
i=1
x(i)xH(i)

(
IM − Q̂A

)}

= Q̂A R̂ Q̂
⊥
A, (4-24)
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where
Q̂A , Â (ÂH Â)−1 ÂH (4-25)

is an estimate of the projection matrix of the signal subspace, and

Q̂⊥A , IM − Q̂A (4-26)

is an estimate of the projection matrix of the noise subspace.

Next, also as part of the procedure of n = 1 : I iterations, the modified data
covariance matrix R̂(n+1) is calculated by computing a scaled version of the
estimated terms from the FBSS covariance matrix estimate (4-15), as given

R̂(n+1) = R̂ − µ (V (n) + V (n)H), (4-27)

where the superscript (·)(n) refers to the nth iteration performed. The scaling
or reliability factor µ increases from 0 to 1 incrementally, resulting in modified
data covariance matrices. Each of them gives origin to new estimated DOAs
also denoted by the superscript (·)(n+1) by using the standard CG algorithm,
which was described in subsection 2.1.6. Then, a new Vandermonde matrix
B̂(n+1) is formed by the steering vectors of those newer estimated DOAs. By
using this new matrix, it is possible to compute the newer estimates of the
projection matrices of the signal Q̂(n+1)

B and the noise Q̂(n+1)⊥
B subspaces.

Afterwards, employing the newer estimates of the projection matrices, the
FBSS covariance matrix estimate R̂ (4-15), the number of sensors of the
subarrays obtained in the FBSS technique L (4-16) and the number of the
sources P, the stochastic maximum likelihood objective function U (n+1 )(µ) [45]
is computed for each value of µ at the nth iteration, as follows:

U (n+1 )(µ) = ln det (·) , (4-28)

where

(·) =
Q̂(n+1)

B R̂ Q̂
(n+1)
B + Trace{Q̂⊥ (n+1)

B R̂}
L − P Q̂

(n+1)⊥
B


The preceding computation selects the set of unavailable DOA estimates that
have a higher likelihood at each iteration. Then, the set of estimated DOAs
corresponding to the optimum value of µ that minimizes (4-28) also at each nth

iteration is determined. Finally, the output of the proposed MS-KAI-CG-FB
algorithm is formed by the set of the estimates obtained at the I th iteration,
as described in Table 4.3.
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Table 4.3: Proposed MS-KAI-CG-FB Algorithm

Inputs:
M , d, λ, N , P
Received vectors x(1), x(2),· · · , x(N)
Outputs:
Estimates θ̂(n+1 )

1 (µ opt), θ̂(n+1 )
2 (µ opt),· · · , θ̂(n+1 )

P (µ opt)
First step:

R̂o = 1
N

N∑
i=1
x(i)xH(i)

R̂ FBSS←−−−− R̂o

{θ̂(1)
1 , θ̂

(1)
2 , · · · , θ̂(1)

P } CG←− (R̂, P, d, λ)
Â(1) =

[
a(θ̂(1 )

1 ),a(θ̂(1 )
2 ), · · · ,a(θ̂(1 )

P )
]

Second step:
for n = 1 : I
Q̂

(n)
A = Â(n) (Â(n)H Â(n))−1 Â(n)H

Q̂
(n)⊥
A = IM − Q̂

(n)
A

V (n) = Q̂
(n)
A R̂ Q̂

(n)⊥
A

for µ = 0 : ι : 1
R̂(n+1) = R̂ − µ (V (n) + V (n)H)

{θ̂(n+1)
1 , θ̂

(n+1)
2 , · · · , θ̂(n+1)

P } CG←− (R̂(n+1), P, d, λ)

B̂(n+1) =
[
a(θ̂(n+1 )

1 ),a(θ̂(n+1 )
2 ), · · · ,a(θ̂(n+1 )

P )
]

Q̂
(n+1)
B = B̂(n+1) (B̂(n+1)H B̂(n+1))−1 B̂(n+1)H

Q̂
(n+1)⊥
B = IM − Q̂

(n+1)
B

U (n+1 )(µ) = ln det
Q̂(n+1)

B R̂ Q̂
(n+1)
B + Trace{Q̂⊥ (n+1)

B R̂}
L − P Q̂

(n+1)⊥
B


µ(n+1)

o = arg min U (n+1 )(µ)
DOAs(n+1) = {θ̂(n+1 )

1 (µo), θ̂(n+1 )
2 (µo),· · · , θ̂(n+1 )

P (µo)}
if n <= P
Â(n+1) =

{
a(θ̂(n+1 )

{1 ,··· ,n}(µo))
}⋃{

a(θ̂(1 )
{1 ,··· ,P}−{1 ,··· ,n})

}
else
Â(n+1) =

[
a(θ̂(n+1 )

1 (µo)),a(θ̂(n+1 )
2 (µo)), · · · ,a(θ̂(n+1 )

P (µo))
]

end if
end for
end for

4.4

Computational Complexity Analysis

In this section, we evaluate the computational cost of the proposed MS-
KAI-CG and MS-KAI-CG-FB [66] algorithms which are compared to the
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following classical subspace methods: ESPRIT [10], MUSIC [8], Root-MUSIC
[9], Conjugate Gradient (CG) [15], Auxiliary Vector Filtering (AVF) [13]
and TS-ESPRIT [47]. The ESPRIT and MUSIC-based methods use the
Eigen Value Decomposition (EVD) of the sample covariance matrix (2-59).
The computational complexity of MS-KAI-CG/MS-KAI-CG-FB in terms of
number of multiplications is depicted in Table 4.4, where τ = 1

ι
+ 1. The

increment ι is defined in Table 4.3. Typical values of this parameter have been
defined in subsection 3.3.2.

Considering the number of multiplications, it can be seen that for the spe-
cific configuration used in the simulations presented in section 3.4 MS-
KAI-CG and MS-KAI-CG-FB show a relatively high computational bur-
den with O(Pτ

[
180
∆ (M 2 (P + 1 ) + M (6P + 2 ))

]
), where τ is typically an

integer that ranges from 2 to 20. Similarly, the order of additions reaches
O(Pτ

[
180
∆ (M 2 (P + 1 ) + M (5P + 1 ))

]
). By examining the expressions for

multiplications and additions for the proposed algorithms, one verifies that
the number of multiplications required by the proposed algorithms is more
significant than the number of additions and serves as an appropriate indica-
tor of the computational complexity of the proposed and existing algorithms.
For this reason, in Table 4.4, we consider the computational burden of the
proposed and previously reported algorithms in terms of multiplications for
the purpose of comparisons. In that table, ∆ stands for the search step.

Next, based on Table 4.4, we have evaluated the influence of the number
of sensor elements on the number of multiplications based on the specific
configuration composed of P = 4 narrowband signals impinging on a ULA
of M sensor elements and N = 100 available snapshots. In Fig. 4.1, we can see
the main trends in terms of computational cost measured in multiplications
of the proposed and analyzed algorithms. By examining Fig. 4.1, it can be
noticed that in the whole range M = [0 100] sensors, the curves describing the
exact number of multiplications computed in MS-KAI-CG-FB and MS-KAI-
CG have been merged, which means equivalent burden in terms of this kind of
operation. It can also be noticed that in the range M = [5 20], MS-KAI-CG-
FB, MS-KAI-CG and MS-KAI-ESPRIT require a similar cost.
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Table 4.4: Computational complexity- MS-KAI-CG and MS-KAI-CG-FB

P τ{180
∆ [M 2 (P + 1 ) + M (6P + 2 ) + P + 1 ]

+10
3 M 3 + M 2 (N + P + 3 ) + M (3

2 P2 + 1
2 P)

MS-KAI-CG [65] +P2 (1
2 P + 3

2 )}
∼ +P [2M 3 + M 2 (P) + M (1

2 P) + P2 (P
2 + 3

2 )]
MS-KAI-CG +180

∆ [M 2 (P + 1 ) + M (6P + 2 ) + P + 1 ]
-FB [65] +M 2 (N + 2 ) + MP

MUSIC [8] 180
∆ [M 2 + M (2 − P)− P] + 8MN 2

Root-MUSIC [9] 2M 3 −M 2 P + 8MN 2

AVF [13] 180
∆ [M 2 (3P + 1 ) + M (4P − 2 ) + P + 2 ]

+M 2 N
CG [15] 180

∆ [M 2 (P + 1 ) + M (6P + 2 ) + P + 1 ] + M 2 N
ESPRIT [10] 2M 2 P + M (P2 − 2P + 8N 2 ) + 8P3 − P2

τ [3M 3 + M 2 (3P + 2 ) + M (5
2 P2 − 3

2 P + 8N 2 )
+P2 (17

2 P + 1
2 ) + 1 ]

TS-ESPRIT [47] +[2M 3 + M 2 (3P) + M (5
2 P2 − 3

2 P + 8N 2 )
+P2 (17

2 P + 1
2 )]
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Figure 4.1: Number of multiplications versus number of sensors for P = 4,
N = 100.

4.5

Simulations

In this section, we evaluate the performance of the proposed MS-KAI CG-FB
and MS-KAI-CG algorithms, the standard CG [15, 16, 27] and the forward-
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backward spatially smoothed CG (CG-FB) [15, 38], the ESPRIT [10], and
the MUSIC [8] algorithms in terms of root mean squared error(RMSE) and
probability of resolution (PR). The RMSE is defined as

RMSE =

√√√√ 1
S P

S∑
s=1

P∑
p=1

(θp − θ̂p(s))2, (4-29)

where S is the number of trials. The signal-to-noise ratio (SNR) is defined
as SNR , 10 log10

(
σ2
s

σ2
n

)
. For comparisons in terms of RMSE (dB), we have

computed and plotted the square root of the deterministic CRB [28]. To assess
the performance in terms of PR, we take into account the criterion of [29], in
which two sources with DOA θ1 and θ2 are said to be resolved if their respective
estimates θ̂1 and θ̂2 are such that both

∣∣∣θ̂1 − θ1

∣∣∣ and ∣∣∣θ̂2 − θ2

∣∣∣ are less than
|θ1 − θ2| /2. We have set the search step to ∆ = 0.2o in all algorithms that
make use of peak search. We first consider a scenario with P = 2 uncorrelated
complex Gaussian signals with equal power impinging on a ULA with N = 12
sensors. The sources have been separated by ξ (θ) = 2.0o, at (15o, 17o), and the
number of available snapshots was set to N = 100. The computations of RMSE
have used 150 independent trials. In Fig. 4.2, we show the PR against the SNR,
whereas in Fig. 4.3 the RMSE performance against the SNR is depicted. From
the curves it can be noticed the improvement of the performance of MS-KAI-
CG in terms of both PR and RMSE as a result of the improved covariance
matrix estimates.
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Figure 4.2: Probability of resolution versus SNR with P = 2,M = 12, N = 100,
L = 150 runs, ξ (θ) = 2.0o.

In Fig. 4.4, we show the influence of the iterations carried out at the second
step. It can be noticed the gradual and consistent improvement of the perfor-
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Figure 4.3: RMSE in degrees versus SNR with P = 2, M = 12, N = 100,
L = 150 runs, ξ (θ) = 2.0o.

mance of MS-KAI-CG in terms of RMSE as a result of the increasing number
of iterations.
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Figure 4.4: Influence of the iterations in terms of RMSE in degrees versus SNR
with P = 2, M = 12, N = 100, L = 150 runs, ξ (θ) = 2.0o.

In the next examples, we have examined the performance of the proposed MS-
KAI-CG-FB when employed to estimate strongly correlated closely spaced
sources. To this end, we consider a scenario composed of Gaussian signals
with equal power impinging on a ULA. In particular, we have P = 2 sources
separated by ξ (θ) = 2.0o, at (15o, 17o),M = 12 sensors and N = 70 snapshots.
We have employed L = 150 trials for these simulations. The source signals have
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been correlated according to the following correlation matrix:

Rss = σ2
s

 1 0.9
0.9 1

 . (4-30)

In Fig. 4.5, we can notice that in terms of PR the proposed MS-KAI-CG-
FB outperforms the standard CG algorithm equipped with forward-backward
spatial smoothing, denoted as CG-FB, the standard CG algorithm, MUSIC
and ESPRIT in most of the considered range of SNR values. In Fig. 4.6, we
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Figure 4.5: Probability of resolution versus SNR with P = 2,M = 12, N = 70,
L = 150 runs, ξ (θ) = 2.0o.

can see that in terms of RMSE the proposed MS-KAI-CG-FB provides the
best performance in the range [1.8 16] dB. It can also be seen that in the
ranges [−6 1.8) dB and (16 20] dB its performance is similar to the best. This
performance can be better noticed in Fig. 4.7, which shows the RMSE in terms
of dB.
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Figure 4.6: RMSE in degrees versus SNR with P = 2, M = 12, N = 70,
L = 150 runs, ξ (θ) = 2.0o.
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Figure 4.7: RMSE and the square root of CRB in dB versus SNR with P = 2,
M = 12, N = 70, L = 150 runs, ξ (θ) = 2.0o.
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5

Multi-Step Knowledge-Aided Iterative MUSIC for Nested
Sensor Arrays

5.1

Introduction

In the previous chapters of this thesis, we have presented algorithms based on
a ULA system model, whose major applications such as DOA estimation and
beamforming suffer from a key limitation: the number of sources that can be
resolved with an N element ULA using conventional subspace based methods
like MUSIC [1], [8] is N-1. Over the years, the question of detecting more
sources than sensors has been dealt with by different approaches. In [67, 68],
the use of minimum redundancy arrays (MRA) [69] and the construction of
an enlarged covariance matrix for achieving higher degrees of freedom (DOF)
has not been successful. In [70,71], an approach to convert the enlarged matrix
into an appropriate positive definite Toeplitz matrix has been proposed and
relies on MRA. Despite those efforts to achieve more DOF to process more
sources than sensors, there is no closed form expression for the array geometry.
Moreover, such arrays demand hard designs which are limited to computer
simulations or complex algorithms for locating the sensors [72–76]. In [77–79],
it was shown that an approach [80] using fourth-order cumulants succeeded in
increasing the DOF, however it is limited to non-Gaussian sources. In [81,82],
by using the Khatri-Rao (KR) product and the hypothesis of quasi-stationary
sources, which finds applications in microphone array processing of speech [83],
one can recognize 2N-1 sources through a N element ULA without the need
for high-order statistics. In [84], the increase of the DOF results from building
a virtual array making use of a MIMO radar. Since the creation of that
array relies on active sensing, the method is not suitable for passive sensing.
In [85, 86], by exploiting the class of non-uniform arrays, a structure called
nested has been introduced, which is formed by combining two or more ULAs,
to obtain a difference co-array. This structure can provide an increase of DOF
and, therefore, can resolve more sources than the number of sensors. In a
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subsequent work [87], linear nested arrays were employed to estimate DOAs
of distributed sources. Moreover, in [88] robust beamforming for these arrays
based on interference-plus-noise reconstruction and steering vector estimation
has been developed. The studies in [85–88] focus on scenarios with multiple
but not necessarily closely spaced sources in order to assess their performance.
To this end, their signal models assume that the sources are uncorrelated.
However, the required vectorization of the initial covariance matrix resulting
from uncorrelated sources already leads to an equivalent source signal vector
whose powers of their sources behave like fully coherent ones. For this reason,
these methods require spatial smoothing.

In Chapter 3, we have presented Multi-Step KAI-ESPRIT [51, 52], and in
Chapter 4, the Krylov subspace based Multi-Step KAI-Conjugate Gradient
[65, 66]. Both perform refinements of the covariance matrix estimates via
cancellation [44,62] of their undesirable terms. However, neither MUSIC-type
algorithms nor non-uniform arrays have yet been considered with the MS-KAI
approach.

In this chapter, in order to satisfy such needs, we present a MUSIC-type algo-
rithm for DOA estimation using nested arrays, denoted multi-step knowledge-
aided iterative MUSIC method [89] (MS-KAI-MUSIC). The basic idea of MS-
KAI-MUSIC is to exploit prior knowledge about the signals and the mathemat-
ical structure of the spatially smoothed [38,90,91] covariance matrix of the data
of nested arrays, which are obtained online. An iterative procedure to perform
cancellation of undesirable terms of the estimate of the spatially smoothed co-
variance matrix is then developed. Unlike existing knowledge-aided methods
applied to ULAs, which exploit available known DOAs to improve the esti-
mation of the covariance matrix of the input data, MS-KAI-MUSIC exploits
knowledge of the structure of the spatially smoothed covariance matrix ob-
tained from part of a difference co-array of a two-level nested array and the
gradual incorporation of prior knowledge, which is obtained on line.

In this Chapter, after describing the nested arrays system model and method,
we present the MS-KAI-MUSIC technique. We also discuss its computational
complexity and present simulations, which show its performance.
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5.2

System Model

Let us consider a two-level nested sensor array composed of M sensors,
which is a concatenation of two ULAs. The inner ULA has M1 sensors
with intersensor spacing d1 and the outer has M2 sensors with intersensor
spacing d2 = (M1 + 1) d1. Specifically, it consists of a linear array with sensors
positions obtained by the union of the sets Inner = {md1 | m = 1, 2, . . . ,M1}
and Outer = {n {M1 + 1} d1 | n = 1, 2, . . . ,M2}. Fig. 5.1 illustrates a two-level
nested array composed of 6 sensors. Assuming P uncorrelated narrowband

Figure 5.1: A two level nested array with 3 sensors at each level.

signals from far-field sources at directions {θp, p = 1, 2, . . . , P} impinging on
this array, the ith data snapshot of the M -dimensional array output vector
can be modeled as

y(i) = F s(i) + n(i), i = 1, 2, . . . , N, (5-1)

where y(i) = [y1(i), y2(i), . . . , yM(i)]T is the received signal vector at the snap-
shot i, s(i) = [s1(i), s2(i), . . . , sP (i)]T is the source signal vector and sp(i) ∼
NC

(
0, σ2

p

)
. Additionally, we assume that n(i) = [n1(i), n2(i), . . . , nM(i)]T is

the white Gaussian noise vector with power σ2
n and that its components and

the source vector ones are uncorrelated to each other. We also consider that
f(θp) =

{
e−j2π

d1
λc
rn sin θp | n = 1, 2, . . . ,M

}
denotes the steering vector of the

pth signal, where λc stands for the carrier wavelength and

{rn | n = 1, 2, . . . ,M} = {0, 1, . . . ,M1 − 1,M1,

2 (M1 + 1)− 1, . . . ,

M2 (M1 + 1)− 1} (5-2)

is a vector that contains the location of the sensors. Next, the array manifold
containing the steering vectors of the signals can be formed as

F (Θ) = [f(θ1),f(θ2), . . . ,f(θP )] (5-3)
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By averaging the N collected snapshots over time, we can express the sample
covariance matrix as

R̂1 = 1
N

N∑
i=1
y (i)yH (i)

≈ E

[
y (i)yH (i)

]
= F RsF

H + σ2
nI

= F


σ2

1

σ2
2

. . .
σ2
P

F
H + σ2

nI (5-4)

Next, following [81], by the vectorization of R̂1 (5-4), one can obtain a long
vector z1, as shown bellow:

z1 = vec
(
R̂1

)
= vec

[
N∑
i=1

σ2
i

(
f(θ1)f(θH1 )

)]
+ σ2

n

−→1 n

= (F ∗ � F ) p+ σ2
n

−→1 n, (5-5)

where

p =
[
σ2

1, σ
2
2, . . . , σ

2
P

]T
, (5-6)

−→1 n =
[
eT1 , e

T
2 · · · eTM

]T
(5-7)

and � means the Khatri-Rao product [1].

Since in the long vector (5-5) some elements appear more than once, one can
remove duplicated rows and sort them so that the ith row corresponds to the
sensor located at

(
−M̄ + i

)
d1, where M̄ = (M2/4 +M/2). Then, we can

obtain the following new vector:

z = Gp+ σ2
ne, (5-8)

where
G(Θ) = [g(θ1), g(θ2), . . . , g(θP )], (5-9)
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in which

g(θp) =
[
e−j2π

d1
λc

(−M̄+1) sin θp , e−j2π
d1
λc

(−M̄+2) sin θp ,

. . . , e−j2π
d1
λc

(M̄−2) sin θp , e−j2π
d1
λc

(M̄−1) sin θp
]T
, (5-10)

e ∈ R(2M̄−1)×1 (5-11)
is a vector of all zeros, except for a 1 at the center position and p has already
been given by (5-6).

By comparing (5-8) with (5-1), we can notice that z in (5-8) behaves like
the signal received by a longer difference coarray [92], whose sensors locations
can be determined by the distinct values in the set {ri − rj | 1 ≤ i, j ≤M}.
The equivalent source signal vector p (5-6) consists of powers σ2

p of the actual
sources and thus they behave like fully coherent sources [85,86]. This, combined
with the fact that the difference coarray is a filled ULA, motivates to apply
spatial smoothing to z (5-8) to obtain a full rank covariance matrix R̃ as
follows:

R̃ = 1
M2/4+M/2

M2/4+M/2∑
i=1

ziz
H
i

= 1
M2/4+M/2

(
G1RsG

H
1 + σ2

nI
)2
, (5-12)

where zi corresponds to the

(
M2/4 +M/2− i+ 1

)
th to

((
M2 − 2

)
/2 +M − i+ 1

)
th (5-13)

rows of z and G1 is a manifold array composed of the last M̄ rows of G. It can
be shown [86] that the smoothed covariance matrix R̃ (5-12) can be expressed
as R̃ = R̂2, where R̂ has the same form as the covariance received by a longer
ULA composed of M2/4 +M/2 sensors. Since R̂ and R̃ share the same set of
eigenvectors and the eigenvalues of R̂ are the square roots of those of R̃, by
eigendecomposition of R̃, we can find the eigenvectors corresponding to the
smallest (M2/4 +M/2)−P eigenvalues of R̂. Due to the previously mentioned
reasons and also for being positive semidefinite (PSD) by construction, which
results from the sum of vector outer products, the spatially smoothed matrix
R̃ can be used as the basis for the proposed MS-KAI-MUSIC algorithm.
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5.3

Proposed MS-KAI-MUSIC algorithm

The idea behind the MS-KAI-Nested-MUSIC algorithm is to expand the
estimated spatially smoothed covariance matrix R̃ (5-12) as if it were generated
by i data snapshots of L = (M2/4 +M/2) -dimensional array output vectors,
where, as explained in section 5.2, M is the number of physical sensors of
the nested array. That is to say that we can employ the estimated spatially
smoothed covariance matrix R̃ as if it were the estimate provided by the sample
average formula. Since, as mentioned before, the resulting smoothed covariance
matrix is generated by part of a coarray, which is a filled ULA, from now on,
our method will make use of the ULA model.

Therefore, after setting R̃ in (5-12) equal to R̂ = 1
N

N∑
i=1
x(i)xH(i) (2-52), we

can expand (5-12) as follows:

R̃ = 1
N

N∑
i=1

(A s(i) + n(i)) (A s(i) + n(i))H

= A

{
1
N

N∑
i=1
s(i)sH(i)

}
AH + 1

N

N∑
i=1
n(i)nH(i)

+A
{

1
N

N∑
i=1
s(i)nH(i)

}
+
{

1
N

N∑
i=1
n(i)sH(i)

}
AH

︸ ︷︷ ︸
"undesirable by-products"

(5-14)

In a similar way to MS-KAI-ESPRIT and MS-KAI-CG, in Chapters 3 and
4, the first two terms of R̃ in (5-14) can be considered as estimates of the
two summands of R = ARssA

H + σ2
nIL, which represent the signal and the

orthogonal subspaces, respectively. The last two terms in (5-14) are undesirable
by-products, which can be seen as estimates for the correlation between the
signal and the noise vectors. The system model under study is based on noise
vectors which are zero-mean and statistically independent of the signal vectors.
As a consequence, for a large enough number of samples N , the last two
terms expressed in (5-14) tend to zero. Nevertheless, in practice the number of
available samples can be limited. In such situations, the last two terms in (5-14)
may have significant values, which causes the deviation of the estimates of the
signal and the noise subspaces from the true signal and noise ones. The key
point of the proposed MS-KAI-MUSIC algorithm is to modify the smoothed
covariance matrix estimate at each iteration by gradually incorporating the
knowledge provided by the updated Vandermonde matrices which progressively
incorporate the newer estimates from the preceding iteration. Based on these
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updated Vandermonde matrices, refined estimates of the projection matrices
of the signal and noise subspaces are calculated. These estimates of projection
matrices associated with the initial smoothed covariance matrix estimate and
the reliability factor employed to reduce its by-products allow to choose the set
of estimates that has the minimum value of the stochastic maximum likelihood
objective function (SMLOF), i.e., the highest likelihood of being the set of the
true DOAs. The modified smoothed covariance matrix estimate is computed
by deriving a scaled version of the undesirable terms from R̃, which are pointed
out in (5-14).

MS-KAI-MUSIC starts by computing the spatially smoothed covariance ma-
trix estimate (5-12). Next, the DOAs are estimated using the original MU-
SIC [8] algorithm. The superscript (·)(1) refers to the estimation task performed
in the 1st step. Now, a procedure composed of n = 1 : I iterations starts by
forming the Vandermonde matrix using the DOA estimates. Then, the ampli-
tudes of the sources are estimated such that the squared norm of the differences
between the observation vector and the vector containing estimates and the
available known DOAs is minimized. This problem can be formulated as

ŝ(i) = arg min
s
‖ x(i)− Âs ‖2

2 . (5-15)

The minimization of (5-15) is achieved using the least squares technique and
the solution is described by

ŝ(i) = (ÂH Â)−1 Â x(i). (5-16)

The noise component is then estimated as the difference between the estimated
signal and the observations made by the array, as given by

n̂(i) = x(i) − Â ŝ(i). (5-17)

After estimating the signal and the noise vectors, the third term in (5-14) can
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be computed as

V , Â

{
1
N

N∑
i=1

ŝ(i)n̂H(i)
}

= Â

{
1
N

N∑
i=1

(ÂH Â)−1ÂHx(i)

×(xH(i)− xH(i)Â(ÂHÂ)−1 ÂH)
}

= Q̂A

{
1
N

N∑
i=1
x(i)xH(i)

(
IM − Q̂A

)}

= Q̂A R̃ Q̂⊥A, (5-18)

where
Q̂A , Â (ÂH Â)−1 ÂH (5-19)

is an estimate of the projection matrix of the signal subspace, and

Q̂⊥A , IL − Q̂A (5-20)

is an estimate of the projection matrix of the noise subspace.

Next, as part of the process of n = 1 : I iterations, the modified data covariance
matrix R̃(n+1) is calculated by computing a scaled version of the estimated
terms from the initial smoothed covariance matrix as given

R̃(n+1) = R̃ − µ (V(n) + V(n)H), (5-21)

where the superscript (·)(n) refers to the nth iteration performed. The scaling
or reliability factor µ increases from 0 to 1 incrementally, resulting in modified
smoothed covariance matrix estimates. Each of them gives origin to new DOAs
estimates also denoted by the superscript (·)(n+1) using the MUSIC algorithm.
Here, the rank P is assumed to be known, which is an assumption frequently
found in the literature. Alternatively, the rank P could be estimated by model-
order selection schemes [53] such as Akaike’s Information Theoretic Criterion
(AIC) [54] and the Minimum Descriptive Length (MDL) Criterion [55].

Then, a new Vandermonde matrix B̂(n+1) is formed by the steering vectors
of those new DOAs estimates. By using B̂(n+1), it is possible to compute the
newer estimates of the projection matrices of the signal Q̂(n+1)

B and the noise
Q̂(n+1)⊥
B subspaces.

Afterwards, employing the newer estimates of the projection matrices, the ini-
tial smoothed covariance matrix estimate, R̃, the number of its corresponding
sensors and the number of sources, the stochastic maximum likelihood objec-
tive function U (n+1 )(µ) [45] is computed for each value of µ at the nth iteration,
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as follows:
U (n+1 )(µ) = ln det (·) , (5-22)

where

(·) =
Q̂(n+1)

B R̃ Q̂(n+1)
B + Trace{Q̂⊥ (n+1)

B R̃}
L− P Q̂ (n+1)⊥

B


The preceding computation selects the set of unavailable DOA estimates that
have a higher likelihood at each iteration. Then, the set of estimated DOAs
corresponding to the optimum value of µ that minimizes (5-22) also at each nth

iteration is determined. Lastly, the output of the proposed MS-KAI-MUSIC
algorithm is formed by the set of the estimates obtained at the I th iteration,
as described in Table 5.1.

5.4

Computational Complexity Analysis

In this section, we evaluate the approximate computational cost of the pro-
posed MS-KAI-MUSIC algorithm in terms of multiplications and additions.
For this purpose, we make use of Table 5.2, where τ = 1

ι
+ 1. The increment ι

is defined in Table 5.1.

From Table 5.2, it can be seen that assuming the specific configuration
used in the simulations, in section 5.5, MS-KAI-Nested-MUSIC shows a
roughly similar computational burden in terms of multiplications and also of
additions with O

{
Iτ
[

180
∆

(
M2

4 + M
2

)2
]

+
(
M2

4 + M
2

)
8N2

}
, where τ is typically

an integer that ranges from 2 to 20, ∆ stands for the search step and I is the
number of iterations at the 2nd step. The relatively high costs come from the
two nested loops for computing I×τ times two subprocesses at its second step.
These nested loops, from which the last is the most significant, concentrate
most of the required operations. For this reason it is responsible for most of
the cost of MS-KAI-MUSIC.

5.5

Simulations

In this section, we examine the performance of the proposed MS-KAI-MUSIC
algorithm in terms of probability of resolution (PR) and compare it to the
corresponding performances of MUSIC for nested arrays (Nested-MUSIC) [86]
and of the original MUSIC [8] for ULAs. We focus on the specific case of closely-
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Table 5.1: MS-KAI-MUSIC algorithm

Inputs:
M1 , M2 , d1, λ, N , P
Received vectors y (1), y (2),· · · , y (N)
Outputs:
Estimates θ̂(n+1 )

1 (µ opt), θ̂(n+1 )
2 (µ opt),· · · , θ̂(n+1 )

P (µ opt)
First step:

{θ̂(1)
1 , θ̂

(1)
2 , · · · , θ̂(1)

P } MUSIC←−−−−− (R̃, P, d, λ)
Â(1) =

[
a(θ̂(1 )

1 ),a(θ̂(1 )
2 ), · · · ,a(θ̂(1 )

P )
]

Second step:
for n = 1 : I
Q̂

(n)
A = Â(n) (Â(n)H Â(n))−1 Â(n)H

Q̂
(n)⊥
A = IL − Q̂

(n)
A

V (n) = Q̂
(n)
A R̃ Q̂

(n)⊥
A

for µ = 0 : ι : 1
R̃(n+1) = R̃ − µ (V (n) + V (n)H)

{θ̂(n+1)
1 , θ̂

(n+1)
2 , · · · , θ̂(n+1)

P } MUSIC←−−−−− (R̃(n+1), P, d, λ)

B̂(n+1) =
[
a(θ̂(n+1 )

1 ),a(θ̂(n+1 )
2 ), · · · ,a(θ̂(n+1 )

P )
]

Q̂
(n+1)
B = B̂(n+1) (B̂(n+1)H B̂(n+1))−1 B̂(n+1)H

Q̂
(n+1)⊥
B = IL − Q̂

(n+1)
B

U (n+1 )(µ) = ln det
Q̂(n+1)

B R̃ Q̂
(n+1)
B + Trace{Q̂⊥ (n+1)

B R̃}
L − P Q̂

(n+1)⊥
B


µ(n+1)

o = arg min U (n+1 )(µ)

DOAs(n+1) = {θ̂(n+1 )
1 (µo), θ̂(n+1 )

2 (µo),· · · , θ̂(n+1 )
P (µo)}

if n <= P
Â(n+1) =

{
a(θ̂(n+1 )

{1 ,··· ,n}(µo))
}⋃{

a(θ̂(1 )
{1 ,··· ,P}−{1 ,··· ,n})

}
else
Â(n+1) =

[
a(θ̂(n+1 )

1 (µo)),a(θ̂(n+1 )
2 (µo)), · · · ,a(θ̂(n+1 )

P (µo))
]

end if
end for
end for

spaced sources. We employM = 8 sensors in the algorithms based on two-level
nested array and, in the original MUSIC, we use a ULA with M = 20 sensors,
which is also the same number of sensors (M2/4 +M/2) of the filled ULA
obtained from part of the difference coarray, which is the effective number
of sensors employed in the MUSIC for nested arrays and MS-KAI-MUSIC
algorithms. The choice of the number of the sensors of each algorithm is a
strategy to assess the employment of sensor arrays with a reduced number
of sensors. We assume the shortest inter-element spacing d1 = λc

2 and also
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Table 5.2: Computational complexity - MS-KAI-MUSIC

Multiplications

≈ Iτ
{

180
∆ [
(
M2

4 + M
2

)2
+
(
M2

4 + M
2

)
(2− P )− P ]

+
(
M2

4 + M
2

)
8N2+10

3

(
M2

4 + M
2

)3
+
(
M2

4 + M
2

)2
(P + 2)

+
(
M2

4 + M
2

)
(P 2 + 2P ) + P 3

2 + 3P 2

2

}
Additions

≈ Iτ
{

180
∆ [
(
M2

4 + M
2

)2
−
(
M2

4 + M
2

)
(P − 1)]

+
(
M2

4 + M
2

)
8N2+10

3

(
M2

4 + M
2

)3
+
(
M2

4 + M
2

)2
(P − 1)

+
(
M2

4 + M
2

) (
3P 2

2 + 5P
2 − 1

)
− P 2 − P

2

}

that there are two uncorrelated complex Gaussian signals with equal power
impinging on the arrays. The closely-spaced sources are separated by 2o, at
(15o, 17o). In all simulations described in this section, we have set the search
step to ∆ = 0.1o.

In Fig. 5.2, we show PR versus SNR under N = 150 snapshots and Lr = 250
trials. We take into account the criterion [29], in which two sources with
DOAs θ1 and θ2 are said to be resolved if their respective estimates θ̂1 and
θ̂2 are such that both

∣∣∣θ̂1 − θ1

∣∣∣ and ∣∣∣θ̂2 − θ2

∣∣∣ are less than |θ1 − θ2| /2. It can be
seen the superior performance of the proposed MS-KAI-MUSIC in the range
(−10 7) dB. From this point on, all considered algorithms provide similar
performance. The gap between the proposed MS-KAI-MUSIC and MUSIC
with nested arrays [86] shows a significant improvement achieved in terms of
PR. It can be noticed a bigger gap between the proposed MS-KAI-MUSIC and
the original MUSIC [8], whose number of physical sensors is 2.5× the number
of the physical sensors of the other two-level nested based algorithms under
comparison, which means an important saving of sensors.

In Fig. 5.3, it is shown the RMSE in degrees versus SNR under the same condi-
tions described before for Fig. 5.2. The RMSE, repeated here for convenience,
is defined as
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Figure 5.2: Probability of resolution versus SNR with P = 2,
MMS−KAI−MUSIC = 8,MNested−MUSIC = 8,MMUSIC = 20, N = 150, Lr = 250
runs

RMSE =

√√√√√ 1
Lr P

Lr∑
l=1

P∑
p=1

(θp − θ̂p(l))2, (5-23)

where Lr is the number of trials.

It can be noticed that the MS-KAI-MUSIC outperforms Nested-MUSIC,
in the whole range under consideration. In the range [−10 − 1.8) dB, it is
outperformed by conventional MUSIC, however, it can be noticed that the
achieved level shows a clear trend to improvement in accuracy. From −1.8 to
6.7 dB MS-KAI-MUSIC is superior to MUSIC. From 10 dB on, all algorithms
have similar performance. As mentioned before, it must be highlighted that in
this specific case MUSIC makes use of a ULA whose number of physical sensors
is 2.5× the number of the physical sensors of the other two-level nested based
algorithms under comparison.

In Fig. 5.4, it is shown the influence of the number of snapshots on PR. For this
purpose we have set the SNR at 3.33 dB and employed 500 trials. From the
curves, it can be noticed the superior performance of MS-KAI-MUSIC in the
range of 25 to 250 snapshots. From this point on, all algorithms have similar
performance.

In Fig.5.5, it is shown the influence of the number of snapshots on RMSE.
In this case, we also set the SNR at 3.33 dB and employed 500 trials. It can
be seen that the performance of the MS-KAI-MUSIC is superior to Nested-
MUSIC. It can also be noticed that except for the range 25 to 50, in which the
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Figure 5.3: RMSE in degrees versus SNR with with P = 2,MMS−KAI−MUSIC =
8, MNested−MUSIC = 8, MMUSIC = 20, N = 150, Lr = 250 runs.
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Figure 5.4: Probability of resolution versus snapshots with P = 2,
MMS−KAI−MUSIC = 8, MNested−MUSIC = 8, MMUSIC = 20, SNR = 3.33 dB,
Lr = 500 runs.

RMSE has high levels, the performance of MS-KAI-MUSIC is also superior to
the original MUSIC [8], whose number of physical sensors is 2.5× the number
of the physical sensors of the other two-level nested based algorithms under
comparison.

Finally, from Figures 5.4 and 5.5, respectively, it can be noticed the significant
saving of samples to achieve high probabilities of resolution and reduced
RMSEs.
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Figure 5.5: RMSE versus snapshots with P = 2, MMS−KAI−MUSIC = 8,
MNested−MUSIC = 8, MMUSIC = 20, SNR = 3.33 dB, Lr = 500 runs.
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6

Conclusions

In this Chapter, conclusions of this thesis are presented and future directions
for this research topic are discussed. It is organized as follows: Section 6.1
summarizes the work and points significant results and Section 6.2 present
points to be worked in the future.

6.1

Summary of the Work

This thesis has been devoted to the investigation of high-resolution direc-
tion finding techniques exploiting prior knowledge. These methods can be
classified into two categories according to the approaches for obtaining this
knowledge. The approach previously available in the literature, termed KAv
(sub-subsection 2.1.7.3) makes use of accessible known DOAs to form a rank-
deficient known covariance, which can be optimally combined with the sample
covariance matrix obtained from snapshots collected by a ULA, resulting in
an enhanced covariance matrix estimate. This estimate, which, in this thesis,
has been applied to CG (KAv-CG), can also be used as the basis for other
several ULA-based algorithms. The KAv approach was the starting point for
the approach developed in this thesis, termed KA (sub-subsection 2.1.7.3),
which also employs the CG algorithm. Instead of using available known DOAs
to compute the mentioned rank-deficient known covariance to be combined
with the sample covariance matrix, the KA approach makes use of initial es-
timates, which can be considered online knowledge acquisition. The resulting
covariance matrix is then processed by the CG algorithm to compute the final
estimates. After checking the feasibility of on-line knowledge acquisition for en-
hancing the data covariance matrix, provided that the initial DOA estimates
are sufficiently accurate, this concept has been extended to a new approach,
described in Chapter 3 and expanded in Chapter 4: the iterative refinement of
the data covariance matrix by progressive incorporation of knowledge on line.
This approach, initially applied to algorithms that processed signals impinging
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on ULAs, has been further extended to a non-ULA-based algorithm such as
MS-KAI-MUSIC (Chapter 5), which makes use of a two-level nested array.

In sub-subsection 2.1.7.3, in a case study involving the CG algorithm applied
to DOA estimation, we introduced the idea of replacing accessible DOAs
with those acquired on-line to form a rank-deficient known covariance matrix,
which combined with the sample covariance matrix in a mean squared error
sense, yields an enhanced covariance matrix. The initial implementation of this
approach has made use of a CG-based algorithm (KA-CG) composed of two
stages: the former for obtaining the mentioned enhanced covariance matrix
and the latter for processing it. The performances of KA-CG and subsequent
versions of the KA approach based on MUSIC (KA-MUSIC) and ESPRIT
(KA-ESPRIT) have been evaluated in terms of PR under a scenario composed
of two signals generated by uncorrelated closely spaced sources impinging on a
ULA and sufficient number of snapshots. For the purpose of comparisons, we
have also plotted the KAv versions of the mentioned algorithms, i.e., instead of
using estimates to form the known covariance, we have used available known
DOAs to do that. The gaps between KAv-versions and their correspondent
KA-versions have shown that most of the potential to be exploited is situated
at middle low signal-to-noise ratios (SNR). Considering that each KAv-version
can be considered an upper bound of its KA version the small gap between
KA-CG and KAv-CG shows that the former already exploits its potential
close to the effective optimal performance. Despite the larger existing gaps
between the corresponding versions of MUSIC and ESPRIT, the specific result
related to CG could be viewed as a preliminary indication of feasibility of
replacing available known DOAs with estimates to form the known covariance,
as suggested in the KA-approach.

In Chapter 3, extending the research about prior knowledge obtained on-line
applied to DOA estimation, we have introduced the Multi-Step KAI approach
applied to ESPRIT algorithm (MS-KAI-ESPRIT). This approach is based on
the gradual incorporation of prior knowledge acquired on line, i.e, an increasing
number of the obtained estimates, to iteratively refine the covariance matrix of
the input data. It has also been presented an analysis of the mean squared error
(MSE) of the data covariance matrix free of undesired terms (side effects) that
results from low levels of SNR or modest number of snapshots. The analysis has
shown that in the first iteration, the MSE of the data covariance matrix free
of side effects is already less than or equal to the MSE of the original one. The
heavy computational burden faced by MS-ESPRIT can be considered a cost to
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be paid for the accuracy achieved, however this is a limitation to be addressed.
The performance of MS-ESPRIT has been assessed in terms of PR and RMSE
under scenarios composed of four signals generated by uncorrelated and highly
correlated closely spaced sources impinging on a ULA and small data set. The
comparisons with existing algorithms have evidenced the superior performance
of the estimate-based MS-KAI-ESPRIT, which rivals and sometimes surpasses
the supposed best performance of an algorithm that makes use of available
known DOAs like TS-KAI-ESPRIT. Lastly, extra simulations have illustrated
the influence of the iterations of MS-KAI-ESPRIT on its performance.

In Chapter 4, we have presented an MS-KAI approach combined with the CG
algorithm, which is an expanded approach of that which has been applied to
ESPRIT in Chapter 3. In this way, unlike the prior KA-ESPRIT approach MS-
KAI-CG versions are no longer limited to P iterations like MS-KAI-ESPRIT
one, where P is the number of source signals. Furthermore, we have provided a
version equipped with forward-backward spatial smoothing, termed MS-KAI-
CG-FB, which can deal with correlated signals. The CG-based algorithms are
particularly effective for scenarios with very few source signals and closely-
spaced angles of arrival. However, under a small number of samples or low
levels of SNR, they suffer from lack of resolution, which can result from false
intermediate peaks in the spectrum. In this case, simulations have shown
that the MS-KAI-CG approach is particularly attractive and addresses this
weakness in existing CG-based approaches by improving the quality of the
covariance matrix estimates. Moreover, as expected, the MS-KAI approach
applied to CG has shown effectiveness in the finite sample region, by reducing
the needed number of snapshots to achieve the same levels of accuracy. MS-
KAI-CG has also shown the heaviest computational burden, resulting not only
from the MS-KAI approach but also from its reliance on structure composed
of peak searches.

Chapter 5 has focused on the development of the MS-KAI approach in
a non-ULA-class-based method from which a two-level nested array is a
representative. It is known that one of the main drawbacks of the spatial
smoothing-based MUSIC algorithm applied to a two-level nested array is
that increasing degrees of freedom can be achieved at the cost of significant
increase of the number of samples. For achieving this purpose, after obtaining
an increased data covariance matrix by vectorization, the method removes
redundancies and decorrelates intermediate sources which emerges during the
process, resulting in a spatially smoothed matrix which is smaller than the
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augmented data covariance matrix but even so is greater than the initial
one. Since this smoothed covariance matrix and its square, which is a longer
ULA, share eigenstructure properties, the MS-KAI approach applied to a two-
level nested array based on SS-MUSIC involves only ULA-based computations.
The performance of MS-KAI-MUSIC has been evaluated in terms of PR and
RMSE against SNR under scenarios composed of two signals generated by
uncorrelated closely spaced sources impinging on a two-level nested array
composed of eight sensors and sufficient small data set. The comparisons
between MS-KAI-MUSIC and existing MUSIC-based algorithms like nested-
MUSIC, which employs the same number of sensors, and the original MUSIC
algorithm, which is based on a a ULA composed of 2.5× the number of
sensors of MS-KAI-MUSIC, have evidenced the superiority of the first over
the others. In what concerns RMSE, MS-KAI-MUSIC is superior to nested-
MUSIC in all considered range, however in specific subranges it rivals the
original MUSIC algorithm based on a ULA composed of 2.5× its number of
sensors. This fact can be viewed as a strategy to employ sensor arrays with
a reduced number of sensors. Under the same mentioned scenario and a SNR
set at 3.33 dB, the evaluation of the performance of the MS-KAI-MUSIC has
shown significant saving of snapshots in terms of PR and RMSE. As expected
from a MS-KAI approach, the computational complexity analysis of MS-KAI-
MUSIC, has revealed a heavy burden, which is intensified by the increase of
operations resulting from the greater dimensions of the matrices involved in
the computations.

6.2

Future Work

For future work, efforts to enhance the KAI-approach and to extend it to
other types of arrays should be considered along with the development of new
algorithms to improve DOA estimation. Some suggestions based on this thesis
are given below.

In Chapters 3, 4 and 5, the MS-KAI-approach combined with ESPRIT,
CG and MUSIC algorithms, respectively, has faced a characteristic heavy
computational burden. This huge number of operations results mainly from
a factor termed τ related to the iterative reduction of the undesired by-
products, which occurs under short data records or low levels of SNR and
can result in considerable deviations of the sample covariance matrix from
the true one. This factor is usually an integer that ranges from 2 to 20
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and is proportional to the reciprocal of the step in which the reduction
of the undesired terms is optimized. Therefore, research involving means of
accelerating this optimization by reducing τ is a point to be considered.

In Chapter 5, it has been shown that it is possible to apply the MS-KAI
approach to a nested-type non-uniform linear array. However, this approach
can also be applied to other types of sensor array geometries. Thus, it is
suggested to extend the research about the MS-KAI approach to other types
of sensor arrays and geometries like co-prime arrays.

Up to this point, we have pointed out a drawback to be addressed and the
feasibility of the application of MS-KAI approach to other geometries of sensor
arrays as possible extensions of the present work. But can the mentioned
approach also be applied to grouped (a set of) sources? This question can
be considered in the form of distributed sources. It is indeed another point
that deserves attention when deciding the expansion of the current work.

The suggestions for future works here presented are limited, however variations
and new extensions are possible.
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