Título: | PROJETO ÓTIMO DE PÓRTICOS PLANOS COM RESTRIÇÃO À FLAMBAGEM | |||||||
Autor: |
ANDERSON PEREIRA |
|||||||
Colaborador(es): |
LUIZ ELOY VAZ - Orientador PAULO BATISTA GONCALVES - Coorientador |
|||||||
Catalogação: | 11/MAR/2003 | Língua(s): | PORTUGUÊS - BRASIL |
|||||
Tipo: | TEXTO | Subtipo: | TESE | |||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
|||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=3332&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=3332&idi=2 |
|||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.3332 | |||||||
Resumo: | ||||||||
O objetivo deste trabalho é apresentar uma formulação e uma
correspondente implementação computacional para otimização
de dimensões de estruturas evitando os problemas de
instabilidade apresentados pela formulação convencional.
Para atingir este objetivo, a formulação utilizada
considera os efeitos da não-linearidade geométrica no
comportamento da estrutura e inclui uma restrição sobre a
carga de colapso. Elementos finitos reticulados planos e a
formulação Lagrangiana Atualizada forma utilizados para
análise de estruturas com comportamento geometricamente não-
linear. As varáveis de projeto são as alturas das seções
transversais dos elementos. O método de Newton-Raphson é
utilizado acoplado a diferentes estratégias de incremento
de carga e de iteração,tais como as que utilizam a
restrição do comprimento de arco e as baseadas no controle
dos deslocamentos generalizados, que permitem a
ultrapassagem de pontos críticos que possam existir ao
longo da trajetória de equilíbrio. Os algoritmos de
programação matemática utilizados neste trabalho empregam os
gradientes da função objetivo e das restrições, que são
calculados com base nos gradientes das respostas da
estrutura. Partindo-se das equações gerais de equilíbrio
válidas para qualquer elemento, foram desenvolvidas
expressões analíticas aproximadas que permitem o cálculo
das sensibilidades em relação as variáveis de projeto
aproveitando as características da análise.
|
||||||||