5 Otimização de Dimensões

5.1 Considerações Gerais

O desejo de se obter o projeto ideal, considerando aspectos relacionados com o consumo, desempenho ou eficiência, tais como quantidades mínimas de peso, volume, massa, sempre foi um dos principais objetivos da engenharia estrutural. Nos projetos atuais as estruturas são cada vez mais esbeltas e complexas, no caso de pórticos as seções são reduzidas para se ganhar espaço interno e diminuir o custo. As técnicas de otimização são ferramentas valiosas na busca desse objetivo.

Um fator impulsionador no campo de otimização foi o desenvolvimento da indústria aeroespacial onde o objetivo principal é se obter estruturas mais leves. Em outras áreas, como a engenharia civil, mecânica e automotiva, o objetivo principal é minimizar o custo da estrutura, embora o peso afete o custo e o comportamento final do projeto.

A otimização de estruturas pode ser dividida em otimização de dimensões, otimização de forma e otimização topológica. O objetivo da otimização topológica é determinar a topologia ótima de uma estrutura através da eliminação de elementos desnecessários e da criação de vazios. Na otimização de forma, buscase determinar a geometria ótima dos contornos externos e internos de estruturas contínuas e das coordenadas nodais de estruturas reticuladas cujas dimensões e topologia são fixas. A otimização de dimensões tem por objetivo determinar a dimensão (seções transversais, espessuras, etc) de cada componente de uma estrutura para a qual a forma e a topologia são fixas.

Durante o processo de otimização busca-se promover o aumento da eficiência na utilização do material da estrutura. Uma otimização com base no comportamento linear (físico e geométrico) gera, para um grande número de casos práticos, uma estrutura com sérios problemas de instabilidade, pois a análise fornece uma incorreta capacidade de carga da estrutura. Esses problemas podem

ser evitados desde que o modelo de otimização seja formulado com o objetivo de evitar problemas de instabilidade. Este é interesse principal deste trabalho.

5.2 Metodologia de Otimização

O problema de otimização a ser considerado neste trabalho consiste em minimizar o peso da estrutura, considerando restrições sobre a carga crítica e sobre os deslocamentos. Esta metodologia de projeto ótimo tem a vantagem de tratar tanto o caso de estruturas que apresentam pontos críticos (ex: pilares) como o de estruturas que apresentam grandes deslocamentos sem problemas de estabilidade (ex: vigas).

Nesta metodologia, dois fatores de carga distintos devem ser considerados. O primeiro corresponde à carga total aplicada ($\lambda_a = 1$), onde os deslocamentos devem ser avaliados, e o segundo corresponde à carga crítica (λ^*) da estrutura. Assim, existe a possibilidade da ocorrência de duas situações, conforme ilustrado na figura 5.1.

Figura 5.1. Situações encontradas na análise estrutural.

Na primeira situação, a carga aplicada é menor que a carga crítica (figura 5.1a). Neste caso, a análise pode ser completada sem problemas. Ao final, as respostas da estrutura e os respectivos gradientes são avaliados.

A outra situação ocorre quando a carga aplicada é superior à carga limite da estrutura (figura 5.1b). Neste caso, a análise não pode ser levada ao fim, pois a carga aplicada não corresponde a nenhum ponto do caminho de equilíbrio. Portanto, é impossível determinar os deslocamentos correspondentes ao nível de

carga desejado. Como conseqüência, é impossível avaliar as sensibilidades destas grandezas, e o algoritmo de programação matemática é incapaz de prosseguir. Diferentes procedimentos podem ser utilizados para contornar este problema (Parente, 2000; Melo, 2000). A idéia é empregar um problema modificado, de maneira a sempre utilizar os deslocamentos avaliados em um nível de carga inferior à carga crítica. Neste trabalho optou-se por uma solução mais simples. Sempre que houver risco da carga crítica ficar abaixo da carga aplicada, utiliza-se o algoritmo de pontos interiores.

Conforme discutido no Capítulo 2, o algoritmo de pontos interiores gera uma seqüência de pontos no interior da região viável com valores decrescentes da função objetivo. Portanto, a carga crítica de todos os projetos gerados é obrigatoriamente maior que a carga aplicada. A única desvantagem deste algoritmo é a necessidade de gerar um projeto inicial viável. Contudo, na maioria das vezes, este não é um problema sério, pois é simples criar uma estrutura com resistência maior que a necessária.

5.3 Formulação do problema de Otimização

O problema de otimização de estruturas geometricamente não lineares, submetidos a carregamento estático, pode ser formulado da seguinte forma:

$$\begin{array}{ll} minimizar & f(x) & x \in \Re^{n} \\ sujeito \ a & c_{j}(x) \leq 0 & j = 1...m \\ & x_{i}^{l} \leq x_{i} \leq x_{i}^{u} & i = 1...nsecs \end{array}$$
(5.1)

O modelo considera dois tipos de restrições: estruturais e geométricas. As restrições estruturais visam garantir que o projeto atenda aos limites especificados para os deslocamentos e a carga crítica. As restrições geométricas têm por objetivo garantir que a geometria do modelo seja válida.

As variáveis de projeto serão as alturas das seções transversais, h_i . Para cada grupo de seções transversais, *nsecs*, tem-se uma variável de projeto. A altura de um elemento qualquer é a medida da seção na direção paralela ao plano da estrutura.

Para tornar a apresentação mais geral será mantido *x* como notação, ficando assim válida para qualquer outra variável de projeto.

A função objetivo adotada será o volume da estrutura, no caso de estruturas compostas por mais de um material, o volume deverá ser substituído diretamente pelo peso da estrutura.

$$f = V = \sum_{i=1}^{ne} b_i h_i l_i$$
 (5.2)

onde b_i é a largura da seção, h_i é a altura da seção, l_i é o comprimento do elemento e o índice i se refere ao elemento.

As restrições sobre os deslocamentos nodais são calculadas com as ações externas de serviço \mathbf{Q} ($\lambda = 1$) e escritas como:

$$c_{j}^{d} = \operatorname{sign}(u_{j})u_{j} - u_{j,\lim} \le 0, \quad j = 1...ndr$$
 (5.3)

onde $u_{j,\lim}$ é o deslocamento máximo permitido e *ndr* é o número de deslocamentos nodais restritos.

O valor do fator de carga crítico é controlado pela restrição:

$$c_{i}^{l} = \overline{\lambda} - \lambda^{*} \le 0 \tag{5.4}$$

onde $\overline{\lambda}$ é o fator de carga limite e λ^* é o fator de carga crítico.

Restrições laterais, na forma de limites diretamente impostos à variável de projeto, são também incluídas:

$$x_i^l \le x_i \le x_i^u \tag{5.5}$$

onde x_i^l é o limite inferior e x_i^u é o limite superior da variável de projeto x_i .

5.3.1 Fatores de escala

A diversidade de medidas presente no problema de otimização pode acarretar diferenças significativas entre as suas magnitudes e causar problemas na estabilidade numérica do algoritmo de solução. Desta forma a variável de projeto, *x*, é definida como a razão entre o valor corrente do parâmetro e o correspondente valor inicial, i. e.,

$$\overline{x}_i = \frac{x_i}{x_i^0}$$
(5.6)

A derivada em relação a \overline{x} é obtida na forma

$$\frac{d(.)}{d\overline{x}} = x^0 \frac{d(.)}{dx}$$
(5.7)

A função objetivo e as restrições ficam definidas em termos da variável de projeto adimensional, onde a função objetivo é agora a relação entre o volume corrente da estrutura (V) e o volume inicial (V_0):

$$\overline{f} = \frac{V}{V_0} \tag{5.8}$$

As restrições são reescritas de forma adimensionalizada, a saber

$$\overline{c}_{j}^{d} = \operatorname{sign}(u_{j}) \frac{u_{j}}{u_{j,\lim}} - 1 \le 0$$
(5.9)

$$\overline{c}^{l} = 1 - \frac{\lambda^{*}}{\overline{\lambda}} \le 0$$
(5.10)

e as restrições laterais

$$\overline{x}_i^l \le \overline{x}_i \le \overline{x}_i^u \tag{5.11}$$

5.3.2 Cálculo dos gradientes

Os algoritmos de programação matemática utilizados neste trabalho precisam dos gradientes da função objetivo e das restrições para a determinação

da direção de busca. Assim, derivando-se a equação (5.8), obtém-se o gradiente da função objetivo:

$$\frac{df}{d\overline{x}_i} = \frac{1}{V_0} \frac{dV}{d\overline{x}_i}$$
(5.12)

onde, conforme (5.7), tem-se

$$\frac{dV}{d\overline{x}_i} = x^0 \frac{dV}{dx_i}$$
(5.13)

Para a variável de projeto x igual a h, a equação (5.12) toma a seguinte forma:

$$\frac{d\bar{f}}{d\bar{h}_{i}} = \frac{1}{V_{0}} \sum_{i=1}^{ne} b_{i} h_{i}^{0} l_{i}$$
(5.14)

Verifica-se que esta expressão é uma função dos valores iniciais de h, desta forma ela é constante durante o processo de otimização.

Partindo-se da equação (5.9), os gradientes das restrições sobre os deslocamentos nodais podem ser escritos como:

$$\frac{d\overline{c}_{j}^{d}}{d\overline{x}_{i}} = \frac{\partial\overline{c}_{j}^{d}}{\partial\overline{x}_{i}} + \frac{\partial\overline{c}_{j}^{d}}{\partial u}\frac{du_{j}}{d\overline{x}_{i}} = \frac{\operatorname{sign}(u_{j})}{u_{j,\operatorname{lim}}}\frac{du_{j}}{d\overline{x}_{i}}$$
(5.15)

onde a derivada do deslocamento resultante é dada pela expressão:

$$\frac{du_{j}}{d\overline{x}_{i}} = x^{0} \frac{du_{j}}{dx_{i}}$$
(5.16)

que é função das sensibilidades dos deslocamentos du_j/dx_i .

Derivando-se a equação (5.10), tem-se o gradiente da restrição de instabilidade, que pode ser escrito como:

$$\frac{d\overline{c}^{i}}{d\overline{x}_{i}} = -\frac{1}{\overline{\lambda}} \frac{d\lambda^{*}}{d\overline{x}_{i}}$$
(5.17)

onde

$$\frac{d\lambda^*}{d\overline{x}_i} = x^0 \frac{d\lambda^*}{dx_i}$$
(5.18)

que é função da sensibilidade do ponto limite $d\lambda^*/dx_i$.

5.4 Implementação da Formulação

A formulação apresentada foi desenvolvida em linguagem FORTRAN 90, a escolha da linguagem é justificada pelo fato do programa de análise não-linear já estar implementado em FORTRAN 77/90. O programa de análise foi inicialmente implementado por Silveira (1995) para problemas de contato e posteriormente expandido por Rocha (2000), que implementou com sucesso algumas estratégias de solução não-linear encontradas recentemente na literatura e Galvão (2000) que implementou formulações de elementos finitos geometricamente não-lineares. O programa foi adaptado ao presente trabalho para incorporar as rotinas de análise de sensibilidade como será visto a seguir.

O sistema computacional desenvolvido neste trabalho é composto basicamente por dois módulos: análise (estrutural e sensibilidade) e otimização. O gerenciamento dos módulos se faz através de um programa principal, conforme será visto abaixo.

5.4.1 Programa Principal

O fluxograma do programa principal é mostrado na figura 5.2. Nele é feita a leitura de dados (1) que define o tipo de análise a ser utilizada, linear ou nãolinear. Neste mesmo arquivo encontram-se as definições do modelo de elemento finito adotado (número de pontos nodais, número de elementos, número de materiais, número de seções, dimensão do problema, número de pontos nodais, coordenadas nodais; incidência nodal, propriedades físicas e geométricas dos elementos, condições de contorno, etc).

Figura 5.2. Fluxograma do programa principal.

Após esta fase, o controle é passado para o algoritmo de programação matemática. Quando necessário este algoritmo vai requisitar os valores da função objetivo, das restrições e dos respectivos gradientes.

5.4.2 Processo de Otimização

O problema de otimização descrito na seção 5.3 tem a forma padrão dos problemas de programação matemática. Portanto, qualquer algoritmo de otimização com restrições de desigualdade pode ser utilizado para sua solução. Contudo, no caso de estruturas não-lineares com problemas de instabilidade, pode ser mais conveniente utilizar o algoritmo de pontos interiores.

A forma geral dos algoritmos de programação matemática é ilustrada na figura 5.3. Estes algoritmos são compostos por duas etapas principais: o cálculo da direção de busca e a determinação do tamanho do passo (busca linear). Para

determinar a direção de busca, os algoritmos utilizam os valores correntes da função objetivo e das restrições, bem como os gradientes destas grandezas em relação às variáveis de projeto. Na etapa de busca linear, apenas os valores da função objetivo e das restrições são utilizados.

Figura 5.3. Forma geral dos algoritmos de PM.

A comunicação entre o algoritmo de otimização e o restante do sistema computacional se dá através de duas funções, denominadas *Análise/Sensibilidade* e *Gradiente*. A primeira é responsável pelo cálculo do valor da função objetivo, das restrições e dos gradientes das respostas da estrutura, enquanto que a segunda é responsável pelo cálculo dos gradientes da função objetivo e gradientes das restrições.

Quando o algoritmo de programação matemática necessita do valor da função objetivo e das restrições, a função *Análise/Sensibilidade* é chamada. As tarefas realizadas por esta função são descritas na figura 5.4. Na análise estrutural dispõe-se de outro arquivo de dados com as informações que controlam a solução incremental-iterativa (número de incrementos de carga, número máximo de iterações, incremento de carga inicial, tolerância para convergência, etc). Detalhes adicionais sobre a implementação da análise estrutural podem ser encontrados em Silveira (1995), Rocha (2000) e Galvão (2000). Finalmente, com base nos resultados da análise, determinam-se os valores da função objetivo e das restrições.

Conforme visto no capítulo 4, a análise de sensibilidade é feita em conjunto com a análise estrutural, a cada passo de carga é atualizada a sensibilidade das forças internas que será utilizada no nível de carga prescrito para cálculo da sensibilidade dos deslocamentos e no ponto limite para cálculo da sensibilidade do ponto limite.

Figura 5.4. Fluxograma da função Análise/Sensibilidade.

A função *Gradiente* é mais simples, pois ela é chamada após uma chamada à função *Análise/Sensibilidade*. Assim, na função *Gradiente*, é necessário apenas avaliar o gradiente da função objetivo e o gradiente das restrições em relação às variáveis de projeto, observando que o gradiente das restrições, equações (5.15)-(5.18), são funções das sensibilidades da estrutura que já retornam da função *Análise/Sensibilidade*.

5.5 Exemplos

Nesta seção serão apresentados exemplos de otimização de dimensões utilizando análises lineares e não-lineares, empregando o sistema computacional desenvolvido neste trabalho. As estruturas foram otimizadas utilizando-se os algoritmos de Programação Quadrática Seqüencial (PQS) desenvolvido por Wilson, Han e Powell e o algoritmo de Pontos Interiores (PI) desenvolvido por Herskovits.

Os dois algoritmos foram apresentados no Capítulo 2, onde foram apresentados os diversos parâmetros que influenciam o desempenho de cada algoritmo. Entre os parâmetros numéricos do algoritmo de PQS estão a tolerância para convergência (tol_1) e a tolerância para violação de restrições (tol_2) . O algoritmo possui ainda dois parâmetros adicionais, b_z e g_z . Os parâmetros numéricos do algoritmo de PI são a tolerância para convergência (tol), os coeficientes de deflexão da direção de busca $(k_a e k_f)$ e o coeficiente para a atualização dos multiplicadores de Lagrange (k_e) .

Os dois algoritmos utilizam os mesmos procedimentos para a atualização da Hessiana da função Lagrangiana e para a busca linear. Os parâmetros de controle destas etapas são o número de iterações para o reinício da matriz **B** (n_r), o valor inicial dos elementos desta matriz (b_0), o coeficiente de decréscimo da função objetivo (γ) e o valor base para a definição da seqüência de valores do tamanho do passo (α).

Os valores usuais dos diversos parâmetros são mostrados na tabela 5.1. Nos exemplos apresentados neste capítulo, alguns destes parâmetros foram variados de maneira a melhorar o desempenho dos algoritmos. Quando valores diferentes dos contidos na tabela 5.1 forem utilizados, eles serão explicitamente indicados.

Valores usuais dos parâmetros.											
n_r	n_r b_0 γ α tol_1 tol_2 b_z g_z tol k_a k_e k_f										
5	0.1	0.1	0.5	10 ⁻⁴	10 ⁻⁴	10 ⁻⁴	10 ²	10 ⁻⁴	0.7	1.0	1.0

Os dois algoritmos requerem que os gradientes sejam calculados uma vez a cada iteração, portanto o número de vezes que as sensibilidades são avaliadas é igual ao número de iterações. Por outro lado, o número de análises é maior ou igual ao número de iterações, pois durante a busca linear pode ser necessário

avaliar a função objetivo e as restrições várias vezes. Portanto, o desempenho de cada algoritmo será avaliado de acordo com o número de iterações para convergência (*nit*) e o número de chamadas à função de análise (*nf*).

5.5.1 Pórtico de Williams

O primeiro exemplo a ser otimizado é o pórtico de Williams. O comportamento desta estrutura foi estudado nos capítulos 3 e 4. O objetivo é determinar as dimensões das barras de maneira a minimizar o volume, impondose restrições sobre os deslocamentos e a carga crítica. A geometria, as condições de contorno e o carregamento da estrutura são mostrados na figura 5.5. Os demais dados do problema são L = 12.943, H = 0.386 e P = 10. A seção transversal do pórtico é retangular com b = 0.753, e o módulo de elasticidade do material (*E*) é 1.03×10^7 .

Figura 5.5. Pórtico de Williams.

O modelo possui 10 variáveis de projeto, sendo cinco por barra, devido a simetria esse número se reduz à metade. O valor inicial das alturas é $h_i^0 = 0.243$, i= 1..5, divididas igualmente da esquerda para a direita. São utilizadas restrições geométricas de maneira que a altura de cada grupo de elementos não seja inferior a 0.05. O volume inicial do pórtico é igual a 4.7387.

TABELA 5.2 Pórtico de Williams – resumo dos resultados								
caso	Vol	$u_{j,\max}$	λ^{*}	nit	nf			
Linear (PI, $b_0 = 1.0$)	1.19062	0.14998	0.1029	8	11			
Não Linear (PI, $b_0 = 1.0$)	2.84012	0.08240	1.2000	11	21			

O volume da estrutura foi minimizado considerando dois procedimentos de análise, linear e não linear. Uma restrição estrutural foi imposta no nó central de forma que o deslocamento vertical seja inferior a 0.15. A malha utilizada para a análise estrutural é formada por 20 elementos de pórtico distribuídos igualmente nas barras. O resumo dos resultados obtidos nos dois casos é mostrado na tabela 5.2.

Na minimização, supondo um comportamento linear, o volume obtido é bastante inferior ao volume inicial, demonstrando o sucesso da otimização, mas a estrutura apresenta instabilidade por ponto limite para um nível de carga muito inferior à carga aplicada quando é feita a análise não-linear da mesma.

Com o objetivo de evitar os problemas encontrados na análise linear, a estrutura foi otimizada utilizando uma análise não linear, incluindo-se a restrição de estabilidade. Esta restrição impõe que a carga crítica seja pelo menos 20% maior que a carga aplicada ($\overline{\lambda} = 1.2$).

Após a otimização, verifica-se que o volume não diminuiu tão sensivelmente quanto no caso anterior, mas a estrutura otimizada apresenta uma carga crítica superior à carga aplicada, o que garante a sua estabilidade. Pode-se notar também que o deslocamento obtido está bem abaixo do limite máximo, ou seja, a restrição estrutural ativa é a restrição sobre a carga crítica.

IABELA 5.3									
Pórtico de Williams – dimensões finais									
caso	h_1	h_2	h_3	h_4	h_5				
Linear	0.063	0.060	0.059	0.060	0.063				
Não Linear	0.150	0.128	0.139	0.162	0.149				

A descrição da situação final das dimensões pode ser vista na tabela 5.3. Com base nestes resultados, verifica-se que a altura da seção transversal é praticamente constante em todo o comprimento do pórtico na análise linear. Com a inclusão da restrição de estabilidade e a consideração da não-linearidade geométrica, há uma variação maior nas dimensões.

Para a análise não-linear utilizou-se a estratégia de iteração comprimento de arco cilíndrico juntamente com o método de Newton-Raphson Padrão ($\zeta = 10^{-3}$), com incremento automático do comprimento de arco ($\Delta \lambda_1^0 = 0.01$).

Os segundo caso descrito foi otimizado através do algoritmo de PI, pois o algoritmo PQS apresentou sérios problemas de convergência.

5.5.2 Pórtico de Lee

A estrutura a ser otimizado agora é o pórtico de Lee. O comportamento desta estrutura foi estudado nos capítulos 3 e 4. O objetivo é determinar as dimensões das barras de maneira a minimizar o volume, impondo-se somente uma restrição na carga crítica. A geometria do pórtico é mostrada na figura 5.6. Os valores numéricos empregados são L = 120, H = 120, Lp = 24 e P = 1. A seção transversal do pórtico é retangular com b = 3, e o módulo de elasticidade do material (*E*) é 720.

Figura 5.6. Pórtico de Lee.

A malha utilizada para a análise estrutural é formada por 20 elementos distribuídos igualmente nas barras. O modelo possui 10 variáveis de projeto, sendo cinco por barra. O valor inicial das alturas é $h_i^0 = 2$, i = 1..10, divididas igualmente de baixo para cima no pilar e da esquerda para a direita na viga.

Como a estrutura apresenta grandes deslocamentos e problemas de instabilidade, as respostas da estrutura são calculadas através de uma análise nãolinear. Para a análise não-linear utilizou-se a estratégia de iteração comprimento de arco cilíndrico juntamente com o método de Newton-Raphson Padrão $(\zeta = 10^{-3})$, com incremento automático do comprimento de arco $(\Delta \lambda_1^0 = 0.01)$.

São utilizadas restrições geométricas de maneira que a altura de cada grupo de elementos não seja inferior a 1. O volume inicial do pórtico é igual a 1440.

No capítulo 3 foi determinada a carga crítica desta estrutura, $\lambda^* = 1.86291$. Pretende-se aqui minimizar o volume considerando uma carga crítica 50% e 100% maior que a da estrutura inicial, ou seja $\overline{\lambda} = 2.79$ e 3.72, valores estes que tornam o projeto inicial inviável, portanto, apenas o algoritmo de PQS será utilizado. A descrição dos resultados se encontra na tabela 5.4.

TABELA 5	TABELA 5.4									
Pórtico de Lee – resumo dos resultados										
$\overline{\lambda}$	Vol	$u_{j,\max}$	λ^{*}	nit	nf					
2.79	1187.8	41.404	2.789	15	33					
3.72	1280.4	37.645	3.721	14	28					

Como não foram impostas restrições de deslocamento, o algoritmo gerou uma estrutura com grandes deslocamentos e, conforme o desejado, com carga crítica superior aos limites impostos, conforme visto na tabela 5.4. As descrições finais das dimensões se encontram nas tabelas 5.5 e 5.6. Uma representação esquemática das dimensões finais e do gráfico do momento fletor é mostrada na figura 5.7.

TABELA 5.5 Pórtico de Lee – dimensões finais - pilar

$\overline{\lambda}$	h_1	h_2	h_3	h_4	h_5
2.79	1.381	1.531	1.000	2.073	2.124
3.72	1.512	1.751	1.000	2.299	2.317

T P	TABELA 5.6 Pórtico de Lee – dimensões finais - viga								
	$\overline{\lambda}$	h_6	h_7	h_8	h_9	h_{10}			
	2.79	2.328	2.458	1.603	1.000	1.000			
	3.72	2.527	2.678	1.699	1.000	1.000			

Figura 5.7. Alturas das seções transversais / momento fletor.

Neste exemplo, observa-se que, mesmo partindo de uma estrutura com carga crítica bastante inferior àquela desejada, o algoritmo de otimização de dimensões foi capaz de reduzir o volume.

5.5.3 Pórtico com três barras

A geometria do pórtico é mostrada na figura 5.8. Uma carga distribuída horizontal (h= κ q) aplicada na mesma região que a carga vertical (q) foi considerada para forçar a flambagem lateral do pórtico, eliminando assim a flambagem simétrica. Os valores numéricos empregados são L = 1000, q = 100, κ =0.001, e E = 21000000. A seção transversal do pórtico é retangular com a base igual a 5.

A geometria da estrutura é modelada com 10 elementos por barra divididos uniformemente. O modelo de otimização é formado por 20 alturas (*h*), sendo 10 para a viga e 5 para cada pilar, para garantir a simetria considerou-se as alturas indicadas na figura 5.8. Assim, o número de variáveis de projeto caiu de 20 para 10. O valor inicial das alturas é $h_i^0 = 20$, i = 1..5 nos pilares, distribuídas igualmente de baixo para cima, e $h_i^0 = 60$ i = 6..10 nas vigas, distribuídas igualmente da esquerda para a direita em $\frac{1}{2}$ vão.

Figura 5.8. Pórtico com três barras.

São utilizadas restrições geométricas de maneira que a altura de cada grupo de elementos não seja inferior a 10. O volume inicial do pórtico é igual a 500000. Os deslocamentos, verticais e horizontais, nos nós *a*, *b*, *c*, *d*, e *e* são limitados ao

valor máximo de 7 em módulo. As coordenadas dos nós restritos estão na tabela 5.7.

TABELA 5.7 Pórtico com três barras – nós restritos								
Nó	А	b	С	d	е	f	g	
х	500	1000	1000	1000	1000	1000	1000	
У	500	1000	900	800	700	600	500	

Os resultados obtidos são apresentados nas tabelas 5.8 a 5.10:

TABELA 5.8 Pórtico com três barras – resumo dos resultados $u_{j,\max}$ Caso nit Vol nf 6.9936 25 Linear 220459.66 18 264968.36 Não Linear 7.0000 16 36

TABELA 5.9
Pórtico com três barras – dimensões finais - pilares

Caso	h_1	h_2	h_3	h_4	h_5
Linear	10.002	10.002	10.002	10.002	10.002
Não-Linear	10.000	12.208	14.942	15.861	15.085

TABELA 5.10									
Pórtico com três barras – dimensões finais - vigas									
Caso	Caso h_6 h_7 h_8 h_9 h_{10}								
Linear	14.968	21.466	25.388	28.312	30.309				
Não-Linear	21.690	24.877	26.606	27.579	28.025				

Observando as dimensões finais do pórtico nota-se que o volume no caso linear poderia ser menor ainda, pois todas as restrições geométricas dos pilares estavam ativas. Verifica-se que a otimização fez com que a altura da viga seja maior no centro, onde o momento fletor é maior.

A estrutura perfeita apresenta bifurcação associada a um modo de flambagem lateral. Com a inclusão da imperfeição o caminho de equilíbrio se afasta do caminho da estrutura perfeita e a mesma deixa de apresentar pontos críticos. A inclusão da carga horizontal, κq, torna os deslocamentos horizontais significativos mesmo para níveis baixos de carregamento.

Uma análise não-linear foi feita para as dimensões finais da otimização considerando o comportamento linear, observa-se na figura 5.9 que o pórtico

apresenta grandes deslocamentos laterais para um nível de carga muito inferior a aplicada. Isto se deve principalmente ao aumento da esbeltez dos pilares e da diminuição da altura da viga. As restrições de deslocamento são violadas para um nível de carga aproximadamente 36% menor que a aplicada.

Figura 5.9. Deslocamento horizontal do ponto a para caso linear e não-linear.

A curva do deslocamento horizontal no ponto *a* para as dimensões obtidas, considerando o comportamento não linear é apresentada na figura 5.9. Verifica-se que, a utilização da análise não linear provocou um aumento de 177% na resistência da estrutura e um aumento de apenas 20 % no volume da estrutura. O aumento da resistência da estrutura é obtido principalmente com o aumento da largura dos pilares.

Neste exemplo utilizou-se, para a análise não-linear, a estratégia de iteração comprimento de arco cilíndrico juntamente com o método de Newton-Raphson Padrão ($\zeta = 10^{-3}$), com incremento automático do comprimento de arco ($\Delta \lambda_1^0 = 0.01$).

Os dois algoritmos foram utilizados com os parâmetros usuais e forneceram resultados semelhantes. Na tabela 5.8 são apresentados os resultados do PQS que apresentou melhores desempenhos neste exemplo. O algoritmo de PI, para o caso não-linear precisou de 44 iterações e 71 análises não-lineares.

5.5.4 Pórtico com 7 barras

A estrutura a ser otimizada agora é um pórtico com 7 barras mostrada na figura 5.10. Os valores numéricos utilizados são L1 = 1000, L2 = 250, L3 = 600, P1 = 30000, P2 = 40000 e E = 21000000. A seção transversal do pórtico é retangular com b = 20.

Figura 5.10. Pórtico com 7 barras.

A geometria da estrutura é modelada com 22 elementos, sendo 2 por pilares e 4 por viga. O modelo de otimização é formado por 7 alturas (h_i) indicadas na figura 5.10. O valor inicial das alturas é $h_i^0 = 40$, i=1..3 (pilares) e $h_i^0 = 20$ i=4..7(vigas). São utilizadas restrições geométricas de maneira que a altura de cada grupo de elementos não seja inferior a 5. O volume inicial do pórtico é igual a 3089242. Os deslocamentos, verticais e horizontais, nos nós *b*, *c*, *d*, *f* e *g* são limitados ao valor máximo de 2 em módulo.

Novamente foram considerados dois procedimentos de análise, linear e não linear. Com o objetivo de evitar os problemas encontrados na análise linear, a estrutura foi otimizada utilizando uma análise não linear, incluindo-se a restrição de estabilidade. Esta restrição impõe que a carga crítica seja pelo menos 20% maior que a carga aplicada ($\overline{\lambda} = 1.2$). No presente problema, foi adotado um procedimento para abortar a análise caso λ seja maior do que 1.5.

O resumo dos resultados obtidos nos dois casos é mostrado na tabela 5.11.

TABELA 5.11									
Pórtico com 7 barras – resumo dos resultados									
Caso	Vol	$u_{j,\max}$	λ^{*}	nit	nf				
Linear	1723523.1	2.000	0.606	7	9				
Não-Linear	2174406.1	2.000	1.848	16	47				

A descrição da situação final das dimensões pode ser vista na tabela 5.12. Com base nestes resultados, verifica-se que, para a análise, linear o volume poderia ser menor ainda, pois algumas restrições geométricas estavam ativas. No caso linear observa-se o aumento nas seções dos pilares das extremidades, já as demais seções, tanto das vigas como o pilar central, foram reduzidas ao valor mínimo. No caso não-linear houve também um aumento nas seções das extremidades, mas as principais diferenças foram nas seções das vigas.

Verifica-se que, a utilização da análise não linear triplicou a carga crítica da estrutura com apenas um aumento de 14 % no volume da estrutura.

TABELA 5.12 Pórtico com 7 barras – dimensões finais

Caso	h_1	h_2	h_3	h_4	h_5	h_6	h_7
Linear	48.806	5.000	55.450	5.000	5.000	5.000	5.007
Não-Linear	47.065	16.985	64.088	12.168	5.160	5.448	8.185

Para a análise não-linear utilizou-se a estratégia de iteração comprimento de arco cilíndrico juntamente com o método de Newton-Raphson Padrão ($\zeta = 10^{-3}$), com incremento automático do comprimento de arco ($\Delta \lambda_1^0 = 0.01$).

Os segundo caso descrito foi otimizado através do algoritmo de PI ($b_0 = 0.1$, $n_r = 5$) pois o algoritmo PQS, apresentou sérios problemas de convergência, já no caso linear o PQS ($b_0 = 0.01$, $n_r = 10$) teve melhor desempenho.