Título: | UMA ARQUITETURA DE SPLIT AND MERGE PARA PROCESSAMENTO DISTRIBUIDO DE VÍDEO BASEADO EM CLOUD | |||||||
Autor: |
RAFAEL SILVA PEREIRA |
|||||||
Colaborador(es): |
KARIN KOOGAN BREITMAN - Orientador |
|||||||
Catalogação: | 30/JAN/2017 | Língua(s): | INGLÊS - ESTADOS UNIDOS |
|||||
Tipo: | TEXTO | Subtipo: | TESE | |||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
|||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=28899&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=28899&idi=2 |
|||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.28899 | |||||||
Resumo: | ||||||||
O volume de dados existentes aumenta a cada dia, sendo que, armazenar, processar e transmitir esta informação se torna um grande desafio. O paradigma de Map Reduce, proposto por Dean e Ghemawat (10), é uma forma eficiente para o processamento de grandes volumes de dados utilizando um cluster de computadores e, mais recentemente, infraestruturas no Cloud. Entretanto, implementações tradicionais de Map Reduce não apresentam nem a flexibilidade (para escolher entre diferentes técnicas de codificação na etapa de map), nem o controle (capaz de especificar como organizar os resultados na etapa de reduce),
necessários para o processamento de vídeos. Porém, com a proliferação de dispositivos capazes de reproduzir conteúdo em multimídia, e com o aumento da disponibilidade de banda, o consumo deste tipo de conteúdo é cada vez maior, o que mostra a necessidade de termos arquitetura eficientes para lidar com grandes volumes de dados, especificamente vídeos. A arquitetura de Split and Merge, proposta nesta dissertação, generaliza o paradigma de Map Reduce, fornecendo uma solução eficiente que contempla aspectos relevantes às aplicações de processamento intensivo de vídeo. Para validar a arquitetura proposta, são apresentados dois casos de uso onde a mesma foi implementada utilizando uma plataforma de Cloud.
|
||||||||