
4. The Split&Merge Architecture 
 

Scalable and fault tolerant architectures that allow distributed and parallel 

processing of large volumes of data in Cloud environments are becoming 

increasingly more desirable as they ensure the needed flexibility and robustness to 

deal with large datasets more efficiently. We are interested in architectures that 

deal with video processing tasks, as they are not fully addressed by existing 

techniques for high performance video processing. In what follows we discuss the 

requirements for such an architecture, focusing in the dynamic deployment of 

additional computer resources, as a means to handle seasonal peak loads. 

The first point we need to address is flexibility. We want the ability to deploy 

the proposed architecture on different commercial Cloud platforms. Therefore, the 

architecture must be simple, componentized, and able to run on a hybrid 

processing structure, that combines machines in a private cluster with resources 

available in the Cloud. With this approach it would be possible, for example, to 

have servers in a local cluster, as well as instances on a public Cloud environment, 

e.g. Amazon EC2, simultaneously processing tasks. Alternatively, all the 

processing can be done on servers in a private cluster, but, using a storage in the 

Cloud. 

To make this possible, all components of the architecture should be service 

oriented, that is, they must implement web services that allow functional 

architectural building-blocks to be accessible over standard Internet protocols, 

independently of platform, and/or programming languages. This is a key feature 

when dealing with services in the Cloud. In the case of Cloud services provided by 

Amazon, for example, it is possible to manipulate data stored in Amazon S3, or 

even to provision resources in the Amazon EC2, enabling the scaling up or down 

using programs that communicate through REST web services [15]. Thus, an 

architecture for task processing should provide a service-oriented interface for 

scheduling and manipulating jobs. The same paradigm must be used to support the 

communication among internal components. This makes deployment more 

flexible, facilitates the extension of existing features, and the addition and/or 

removal of software components, as needed. 
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If we analyze the Map-Reduce paradigm [10] in its essence, we note that 

process optimization is achieved by distributing tasks among available computing 

resources. It is precisely this characteristic that we want to preserve in the proposed 

architecture. The possibility of breaking an input, and processing its parts in 

parallel, is the key to reducing overall processing times [31].    

With a focus on these issues, the proposed Split&Merge architecture borrows 

from key Map-Reduce concepts, to produce a simple, and yet general, 

infrastructure in which to deal with distributed video processing. The intuition 

behind it is the straightforward split-distribute-process-merge process illustrated in 

Figure 8. Similarly to Map-Reduce, this architecture efficiently uses available 

computing resources.  

  
Figure 8. The Split, Process and Merge Concept 

 

It is important to note that the proposed architecture was developed with the 

care to maintain a choice among techniques used in the split, distribute, process 

and merge steps, so that their implementation can be switched and customized as 

needed. That secures flexibility, adaptation, extensibility and the accommodation 

of different applications.  In the case of video processing, it is paramount to allow 

for a choice among different codecs, containers, audio streams, and video splitting 

techniques. Let us take the case where the input video has no temporal 

compression, the MJPEG standard [16, 67] for example, as an illustration. In this 

case, the split can be performed at any frame. Conversely, cases where the input is 

a video encoded using only  p-frame  temporal compression, e.g., H.264 [17] 

Baseline Profile, we must identify the key-frames before splitting. 
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The generalization of this idea, lead to an architecture in which it is possible 

to isolate and diversify the implementation for the split, distribute, process and 

merge steps.  

4.1 The Split&Merge for Video Compression 
 

As discussed in chapter 3, video compression refers to reducing the quantity 

of data used to represent digital video images, and is a combination of spatial 

image compression and temporal motion compensation. Video applications require 

some form of data compression to facilitate storage and transmission. Digital video 

compression is one of the main issues in digital video encoding, enabling efficient 

distribution and interchange of visual information. 

The process of high quality video encoding is usually very costly to the 

encoder, and requires a lot of production time. When we consider situations where 

there are large volumes of digital content, this is even more critical, since a single 

video may require the server’s processing power for long time periods. Moreover, 

there are cases where the speed of publication is critical. Journalism and breaking 

news are typical applications in which the time-to- market the video is very short, 

so that every second spent in video encoding may represent a loss of audience.  

Figure 9 shows the speed of encoding of a scene, measured in frames per 

second, with different implementations of the H.264 compression standard [17]. 

We note that the higher the quality, i.e., the bitrate of the video output, the lower 

the speed of encoding.  
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Figure 9. Encoding speed for different H.264 implementations [69] 

 

In order to speed up encoding times, there are basically two solutions. The 

first one is to augment the investment in encoding hardware infrastructure, to be 

used in full capacity only at peak times. The downside is that probably the 

infrastructure will be idle a great deal of the remaining time. The second solution is 

to try and optimize the use of available resources. The ideal scenario is to optimize 

resources by distributing the tasks among them evenly. In the specific case of 

video encoding, one approach is to break a video into several pieces and distribute 

the encoding of each piece among several servers in a cluster. The challenge of this 

approach is to split, as well as merge video fragments without any perceptible 

degradation as a consequence of this process. 

As described in the previous session, there are several techniques whose goal 

is to perform parallel and distributed processing of large volumes of information, 

such as the Map-Reduce paradigm. However, video files possess characteristics 

that hinder the direct application of distributed processing techniques, without first 

adjusting the way they deal with the information contained in the video. Firstly we 

must remark that a video file is a combination of an audio and a video stream, 

which should be compressed in separate and using different algorithms. These 

processes, however, must be done interdependently, so that the final result is 
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decoded in a synchronized way. This means that the video container must maintain 

the alignment between the two streams (audio and video) at all times. In addition, a 

video stream can be decomposed into sets of frames, which are strongly correlated, 

especially in relation to its subsequent frames. In fact, it is the correlation among 

the frames that allows the reduction of temporal redundancy in certain codecs [17, 

58]. 

  Therefore, without adaptation, the Map-Reduce approach is of very little 

use to video compression. Firstly, a classical Map Reduce implementation would 

divide the tasks using a single mapping strategy. Video encoding requires that we 

use different strategies to compressing video and audio tracks. Secondly, the 

traditional Map-Reduce approach does not take into consideration the order, much 

less the correlation of the pieces processed by individual units processing different 

parts of the video. Video encoding requires that we take into consideration frame 

correlation, and more importantly, the order of frames.  

With a focus on these issues, the proposed architecture provides an 

infrastructure to deal with video processing. That is, for every video received, it is 

fragmented, its fragments are processed in a distributed environment, and finally, 

the result of processing is merged. As in the Map-Reduce, this architecture is able 

to efficiently use the computing resources available, and furthermore, it allows the 

use of more complex inputs, or more specific processing. 

"#$#$!%&'!()*+,!(,')!
 

In what follows we describe a technique for reducing video encoding times, 

based on distributed processing over cluster or cloud environments, implemented 

using the Split&Merge architecture and illustrated in Figure 10. The fragmentation 

of media files and the distribution of encoding tasks in a cluster consists in a 

solution for increasing the performance of encoding, and an evolution of the simple 

distribution of single complete video encoding tasks in a cluster or cloud. The idea 

is to break a media file into smaller files so that its multiple parts can be processed 

simultaneously on different machines, thereby reducing the total encoding time of 

the video file. Furthermore, to avoid synchronization problems between audio and 

video, we must separate the two, so that they can be independently compressed. If 

processed together, chunks containing both audio and video may generate various 
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synchronization problems, since audio frames do not necessarily have the same 

temporal size than video frames. One should thus avoid processing both streams 

together, for it may generate audible glitches, delays and undesirable effects. 

Because the overall impact to the performance is very small, the audio stream is 

processed in one piece (no fragmentation). 

 

  
Figure 10. The proposed Split&Merge approach for video compression 

 

The greatest challenge of video processing, differently from text files, is that 

it is not possible to split a video file anywhere. If the input video already provides 

some form of temporal compression, then it would be necessary to first identify its 

key-frames, so that the cuts are made at their exact positions. This is necessary 

because in the case where there is temporal compression, some frames (b-frames 

and p-frames) require information existing on key-frames to be decoded. Thus, a 

separation of video chunks, when there is temporal compression, which isolates a 

b-frame or p-frame from the key-frame required for its decoding, would derail the 

process of transcoding. To perform the video stream split, considering a temporal 

compression in the input, we can use the following algorithm: 

identify key-frames 
open chunk 
for each frame in input video 

if frame is key-frame and chunkSize > GOP 
  add frame to chunk 
  close chunk 
  open new chunk 
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end 
add frame to chunk 

end 
close chunk 

 

Situations where the original video does not show temporal compression, are 

special cases where the video can be split at specific frame numbers or at regular 

intervals. The important point here is to ensure that no frame coexists in more than 

one chunk, and that no frame is lost.  In the cases where there is temporal 

compression, the duplicated key-frames should be discarded in the merge step. 

A key point in the fragmentation of the input video is to determine the size of 

the chunks to be generated. This decision is closely related with the output that 

should be generated, that is, the video codec and compression parameters passed to 

it in the processing step. This is because, after processing, the chunks will present a 

key-frame in its beginning and in the end. Indiscriminate chunk fragmentation will 

produce an output video with an excess of key-frames, reducing the efficiency of 

compression, as key-frame typically contains much more information than a b or p 

frame. To illustrate this fact, it is frequent the use of 250 frames in between 

consecutive key-frames (GOP size), for a typical 29.97fps video. Thus, if in the 

split step chunks are generated with less than 250 frames, the efficiency of the 

temporal compression of the encoder will be inevitably reduced. A good approach 

is to perform the split so that the number of chunks generated is equal to the 

number of nodes available for processing. However, when we use an elastic 

processing structure, we can further optimize this split, analyzing what is the 

optimum amount of chunks to be generated, which certainly varies according to the 

duration of the video, and the characteristics of the input, and output to be 

produced. 

This optimized split would require the implementation of a decision-making 

algorithm to evaluate the characteristics of input and output, choosing what size of 

fragment will use resources more efficiently, producing a high quality result and 

with acceptable response times. The implementation of this algorithm is quite 

desirable in order to improve the efficiency of the process, however, it is beyond 

the scope of this work. 
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When we split a video file into several chunks, or smaller files, we must 

repair their container, i.e., rewrite the header and trailer, so that the input chunks 

could be completely decoded during the process step, once important information 

about video structure is stored inside the header and/or trailer fragments of a video 

file, depending of the container type. This process can be avoided with a very 

interesting method. When we refer to split the video, we are actually preparing the 

data to be distributed in a cluster, and to be processed in parallel. If in the split step, 

instead of breaking the video file, we just identify the beginning and end points of 

each chunk, then it would not be necessary to rewrite the container. This greatly 

reduces the total encoding time. The disadvantage, in this case, is that all nodes 

must have read access to the original file, which could cause bottlenecks in file 

reading. Read access can be implemented through a shared file system, as an NFS 

mount, or even through a distributed file system with high read throughput. The 

structure bellow exemplifies the output in this split through video marking, which 

is a data structure containing the chunk marks: 

[{'TYPE' => 'video', 'WIDTH' => output_video_width, 'HEIGHT' 

=> output_video_height, 'CHUNK_START' => start_chunk_time, 

'CHUNK_END' => end_chunk_time, 'CHUNK_ID' => chunk_index, 

'ORIGINAL_INPUT_FILE' => input_video_filename }] 

 

"#$#-!%&'!./01'22!(,')!
 

Once the video is fragmented, the chunks generated should be distributed 

among the nodes to be processed. In the specific case of video compression, this 

process aims at reducing the size of the video file by eliminating redundancies. In 

this step, a compression algorithm is applied to each chunk, resulting in a 

compressed portion of the original video.  

The process of chunk encoding is exactly equal to what would be done if the 

original video was processed without fragmentation, i.e. it is independent of the 

split and the amount of chunks generated. However, if the option to mark the 

points of beginning and end of chunks was used during the split, then the 

processing step should also have read access to all the original video, and must 

seek to the position of the start frame, and stop the process when the frame that 

indicates the end of the chunk is achieved. Using this marking approach in the split 
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step, the processing step could be simply implemented as exemplified by the 

following mencoder [19] command and detailed by Table 1: 

mencoder  

-ofps 30000/1001  

-vf crop=${WIDTH}:${HEIGHT},scale=480:360,harddup  
${ORIGINAL_INPUT_FILE}  

-ss ${CHUNK_START}  

-endpos ${CHUNK_END}  

-sws 2  

-of lavf  

-lavfopts 
format=mp4,i_certify_that_my_video_stream_does_not_use_b
_frames -ovc x264  

-x264encopts 
psnr:bitrate=280:qcomp=0.6:qp_min=10:qp_max=51:qp_step=4
:vbv_maxrate=500:vbv_bufsize=2000:level_idc=30:dct_decim
ate:me=umh:me_range=16:keyint=250:keyint_min=25:nofast_p
skip:global_header:nocabac:direct_pred=auto:nomixed_refs
:trellis=1:bframes=0:threads=auto:frameref=1:subq=6  

-nosound -o $( printf %04u ${CHUNK_ID} ).mp4 

 

Table 1. Description of MEncoder parameters used for video chunk encoding 

!"#"$%&%#' (%)*#+,&+-.' /)%0'1"23%'

ofps Output frames per second: Is the 
frame rate of the output video 

29.97 (The same framerate of the input) 

vf Video Filters: a sequence o filters 
applied before the encoding. (e.g. 
crop, scale, harddup, etc) 

Original video is firstly cropped to get 
the 4:3 aspect ratio. Then it is scaled to 
480x360 spatial resolution. Finally it is 
submitted to the harddup filter which 
writes every frame (even duplicate ones) 
in the output in order to maintain a/v 
syncronization  

ss Seek to a position in seconds This value is set to the chunk start time, 
extracted in the split step 

endpos Total time to process This value is set to the chunk end time, 
extracted in the split step 

sws Software Scaler Type: This 
option sets the quality (and speed, 
respectively) of the software 
scaler 

2 (bicubic) 

of Output format: Encode output to 
the specified format 

lavf 

lavopts Options for the lavf output format Format option sets container to mp4. The 
i_certify_that_my_video_stream_doe

s_not_use_b_frames explicitly defines 
that the input and ouput video do not 
present b-frames. The output video codec 
is set to x264, an implmentation of H.264 
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x264encopts Options for the x264 codec (e.g 
bitrate, quantization limits, key 
frame interval, motion estimation 
algorithm and range, among 
others) 

In this example the output video bitrate is 
set to 280kbps, the GOP size is set to 250 
frames, with minimum size of 25 frames, 
the H.264 profile is set to Baseline with 
no b-frames 

nosound Discard sound in the encoding 
process 

- 

 

 
There are several open source tools for video compression, among the most 

popular, ffmpeg[18, 20] and mencoder[19], which are compatible with various 

implementations of audio and video codecs. It is possible, for example, to use 

mencoder to implement the processing step, performing a compression of a high-

definition video, generating an output that can be viewed on the Internet, as well as 

on mobile devices that provide UMTS[21] or HSDPA[22] connectivity. In this 

case, could be used the H.264 Baseline Profile with 280kbps, and a 480x360 

resolution, performing, therefore, an aspect ratio adjustment.  

In addition to processing the video chunks, it is also necessary to process the 

audio stream, which must be done separately during the split step. Audio 

compression is a simple process, with a low computational cost. The following 

piece of code exemplifies the audio processing, and Table 2 details it: 

mencoder  

${ORIGINAL_INPUT_FILE}  

-ovc raw  

-ofps 30000/1001  

-oac mp3lame  

–af lavcresample=22050,channels=1  

-lameopts cbr:br=32  

-of rawaudio -o audio.mp3 

 
 

 
 

Table 2. Description of MEncoder parameters used for audio encoding 

!"#"$%&%#' (%)*#+,&+-.' /)%0'1"23%'

ofps Output frames per second: Is the 
frame rate of the output video 

29.97 (30000/1001) 

ovc Ouput video codec: set the codec 
used in video encoding 

The output video codec is set to raw 
since in this task only audio is considered 
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oac Output audio codec: set the codec 
used in audio encoding 

The Lame codec is used to generate an 
MP3 audio stream 

af Audio format: sets the audio 
sampling rate, channels, and 
others 

The audio sampling rate is set to 
22050Hz, and the stream has only one 
channel (mono) 

lameopts Options for the Lame codec The encoder is set for constant bitrate 
with an average of 32kbps of data rate 

of Output format: Encode output to 
the specified format 

rawaudio 

 

At the end of the processing step, video chunks are compressed, as well as 

the audio stream. To obtain the desired output, we must merge and synchronize all 

fragments, thus reconstructing the original content in a compressed format. 

"#$#3!%&'!4'/5'!(,')!
 

The merge step presents a very interesting challenge, which consists of 

reconstructing the original content from its parts, so that the fragmentation process 

is entirely transparent to the end user. Not only the join of the video fragments 

should be perfect, but also that the audio and video must be fully synchronized. 

Note that the audio stream was separated from the video before the fragmentation 

process took place. As compression does not affect the length of the content, in 

theory after merging the processed chunks, we just need to realign the streams 

through content mixing. 

The first phase of the merge step is to join the chunks of processed video. 

That can be accomplished easily by ordering the fragments and rewriting the video 

container. As result, we will have the full compressed video stream, with the same 

logical sequence of the input. It is done by the identification of chunk index and 

ordering according to the split order reference, generated at the split step. Using the 

marking method in the split step, it is not necessary to remove duplicated key-

frames, which could appear as consequence of imprecise split that occurs when 

using some encoding tools where the seek process is based only in timestamp, and 

not in frame counting, as mencoder, for example. The merge process can be 

performed using the following operation:   

mencoder  

${LIST_OF_VIDEO_CHUNKS}  

-ovc copy  
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-nosound  

-of lavf  

-lavfopts 
format=mp4,i_certify_that_my_video_stream_does_not_use_b
_frames  

-o video.mp4 

 

Following, we remix the audio stream with the video, synchronizing the 

contents, and generating the expected output. The remix reconstructs the container 

by realigning the audio stream with the video stream, and, because the duration of 

either stream does not change in the compression process, the video content is 

synchronized in the end. 

mencoder  

video.mp4  

-audio-demuxer lavf  

-audiofile audio.mp3  

-ovc copy  

-oac copy  

-of lavf  

-lavfopts 
format=mp4,i_certify_that_my_video_stream_does_not_use_b
_frames  

-o ${OUTPUT} 

 

The combination of the split, process and merge steps, implemented using 

the proposed architecture, results in a fully parallel and distributed video 

compression process, where different pieces of content can be simultaneously 

processed in either a cluster or, alternatively, in a Cloud infrastructure. 

4.2 Deployment  in The AWS Cloud 
 

In cases where there is a floating demand or services, or when sudden 

changes to the environment dictate the need for additional resources, the use of 

public Cloud Computing platforms to launch applications developed using the 

Split&Merge architecture becomes extremely interesting. The “pay-as-you-go” 

business model provides a series of advantages: there are no fixed costs, no 

depreciation, and it does not require a high initial investment. Furthermore, it is 

totally elastic, i.e., it is possible to add and remove workers at any time, according 

to demand. If there is no demand, all workers can be turned off, on the fly, by the 
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master node. Operation costs are thus minimal. Even master nodes may be 

disconnected, and re-connected, manually, which makes the total cost of operation 

in idle situations very low. In Figure 11, we illustrate the Split&Merge architecture 

when used to implement a software application that makes use of a public Cloud 

infrastructure. Because we opted for the Amazon Web Services  (AWS) 

infrastructure for our experiments, the examples used throughout the text refer to 

their services. The Split&Merge architecture, however, is general enough to 

accommodate other choices of cloud service providers.  

 
Figure 11. Split&Merge architecture deployed on Amazon Web Services infrastructure 

 
To enable the use of Amazon Web Services to deploy applications using of 

the proposed architecture, we first need to build an image (AMI) for EC2 

instances, one that corresponds to one full installed and configured worker. This 

way we ensure that new instances can be started in a state of readiness. We also 

need a separate image for the master node, because it has different software 

requirements, since it doesn’t perform the video encoding itself.  

For our storage needs, we use Amazon S3. In this case, redundancy and 

availability concerns are transparent and delegated to the Cloud provider. We also 

use Amazon Relational Database Service, a service that implements a simple 

relational database, used, in our architecture, to store the processing state (e.g. 

which chunks are already processed, which is processing phase, which nodes are 

available, queue control, among others). 
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An important point to consider when making a deployment in a public Cloud 

service, is data delivery and recovery in the Cloud storage. It is relevant because, in 

addition to paying for data transfer, the network throughput is limited by 

bandwidth availability between the destination and origin. This factor can greatly 

impact the performance of the application in question. 

 

4.3 Fault Tolerance Aspects 
 

To understand how the Split&Merge architecture deals with possible failures 

in its components, we need to detail the implementation of redundancy 

mechanisms, component behavior, and information exchange. The first point is the 

way in which messages are exchanged. We advocate in favor of a service-oriented 

architecture, based on exchange of messages through REST [15] web services. 

The typical Map-Reduce [10] implementation [11] provides a single master 

node, responsible for the scheduling tasks to worker nodes responsible for doing 

the processing. Communication between workers and the master node is 

bidirectional: the master node delegates tasks to workers, and the workers post the 

execution status to the master. This type of architecture has received severe 

criticism, as a single failure can result in the collapse of the entire system. 

Conversely, worker failures could happen without ever being detected.  

The Split&Merge architecture tackles this problem by coupling a service to 

the master node, that periodically checks the conditions of its workers. This 

ensures that the master node, which controls the entire distribution of tasks, is 

always able to identify whether a node is healthy or not. This simple mechanism 

can be further refined as necessary, e.g., adding autonomic features, such as 

monitoring workers to predict when a particular worker is about to fail, isolating 

problematic nodes, or rescheduling tasks. Of course, care must be taken to avoid 

overloading the master node with re-scheduling requests, and additional overhead 

as the result of the action of recovery and prevention mechanisms. 

Another issue addressed by the proposed Split&Merge architecture is related 

to the fact that in traditional Map-Reduce implementations the master node is a 

single point of failure. The main challenge in having two active masters is sharing 
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state control between them. More specifically, state control sharing means that, 

whenever one of the master nodes delegates a task, it must inform its mirror which 

task has been delegated and to which worker node(s), so that both are able to 

understand the processing status post from the worker(s). State sharing can be 

implemented through several approaches, but our choice was to use master 

replication using a common database. In addition to the simplicity of the chosen 

state sharing solution, we also secure control state persistence. In case of failure, 

we may resume processing of the chunks from the last consistent state.  

We must also pay attention to how workers read the input and write 

processing results, which translates to the problem of ensuring file system 

reliability. In cases where a private cluster is used, we opted for a shared file 

system, e.g. NFS, HDFS (that uses a distributed architecture)[23], or 

MogileFS[24]. They seem a natural choice as Distributed file systems, in general, 

already incorporate efficient redundancy mechanisms. In cases where the Cloud is 

used, storage redundancy is generally transparent, which greatly simplifies the 

deployment architecture. However, we must note that data writing and reading 

delays in Cloud storage systems are significantly higher, and often depend on the 

quality of the connection among nodes and servers that store content. 

4.4 Performance Tests  
 

In order to validate the proposed architecture we experimented using 

Amazon's AWS services. We deployed an instance application responsible for the 

encoding of different sequences of videos, evaluating the total time required for the 

encoding process, and comparing it with the total time spent in the traditional 

process, where the video is encoded without fragmentation, i.e. all content is 

rendered on a single server.  

For these tests, we selected sequences of high-definition video, with different 

durations, and encoded with MJPEG 25Mbps, 29.97fps, and audio PCM/16 Stereo 

48kHz. The video output of the compression process was set to be an H.264 

Baseline Profile, with 800kbps, 29.97fps, and with a resolution of 854x480 (ED), 

and audio AAC, 64kbps, Mono, 44100Hz.  
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To deploy the infrastructure for this case study, we chose AWS instance 

types m1.small for all servers. The m1.small type is characterized by the  following 

attributes: 

1.7 GB memory 

1 EC2 Compute Unit (1 virtual core with 1 EC2 Compute Unit) 

160 GB instance storage (150 GB plus 10 GB root partition) 

I/O Performance: Moderate 

In Figure 12  we depict the comparison between total times, measured in 

seconds, required for the encoding of different video sequences, using the proposed 

Split&Merge implementation, and using the traditional sequential compression 

process. In this test scenario, we worked with chunks of fixed size (749 frames), 

since in MJPEG all frames are key-frames, and with one node per chunk. 

 

 

Figure 12. Total Encoding Times for Different Sequence Durations (in sec) 
 

Note that, while the total encoding time using the traditional process, grows 

linearly with increasing duration of the video input, the Split&Merge, average 

process times remain almost constant for short duration videos. In fact, the total 

CPU time consumed, which is the sum of the CPU usage in all nodes, will be 

greater in the Split&Merge approach, however, the distribution of processing 
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among several nodes for parallel execution will reduce the total encoding duration. 

This result is quite significant when one considers videos of short and average 

duration. In the case when we have a video about 10 minutes long, the total time 

for encoding using the technique of Split&Merge is equivalent to less than 10% of 

the total time spend using the traditional process, which is extremely interesting for 

applications where time to market is vital.  

Sports coverage can also benefit from a gain in processing time. If we 

consider the encoding of soccer matches, where videos are typically two hours 

long, we could maximize gains by provisioning a greater number of servers in the 

Cloud. In this case, we are able to reduce the total production time from several 

hours, to a few minutes. However, as the number of chunks being processed 

increases, the efficiency of the Split&Merge approach tends to be reduced, as 

evidenced in Figure 12 (note that there is a significant decay in efficiency for 

sequences over 700 seconds long. This fact is explained by network input/output 

rates, i.e., too many concomitant read operations slow down the process).  

Whereas, in the limit, the elastic capacity of a public Cloud tends to exceed 

user’s demand, i.e. the amount of resources available is unlimited (including 

network latency) from users perspective, then we can say that it is possible to 

encode all the video content of a production studio collection, with thousands of 

hours of content, in a few minutes, by using the approach of Split&Merge 

deployed in a Cloud, which certainly would take hundreds of hours using the 

traditional process of coding in a private cluster.  

4.5 A Cost Analysis 
 

Another point worth considering is the monetary cost of the Split&Merge 

approach when deployed in a public Cloud infrastructure, against the cost of 

having a private infrastructure dedicated to this task, with dozens of dedicated 

servers. Taking into account the results of the tests above, and an average 

production of 500 minutes a day, we have, at the end of one year, an approximate 

cost of $25,000 using the Amazon AWS platform, with the added advantage of 

producing all content in a matter of minutes. This value is comparable to the cost 

of only one high-end single server, around $20,000 in Brazil, including taxes, not 

considering the depreciation and maintenance, which makes the architecture of 
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Split&Merge deployed in the public Cloud not only efficient in terms of processing 

time, but also in terms of deployment and operation costs. 

Considering an optimal situation where there are nearly unlimited resources 

available, it is possible to use the experimental results to predict the total cost and 

number of nodes needed to encode videos of different categories. Table 3, bellow, 

compares the traditional encoding process with the proposed Split&Merge 

approach. In this example we set the total encoding time to 2 minutes, and explore 

several different scenarios, i.e. advertisements, breaking news, TV shows and 

movies or sports matches, respectively. We base our calculations in the cost per 

minute, although Amazon’s minimum billable timeframe is the hour. We are 

taking into consideration scenarios where there is a great number of videos to be 

processed, so machines are up and in use for well over one hour period. 

Table 3. Comparison between the Traditional Encoding Process and The Split&Merge Approach 

Input Video 
Duration 

Traditional 
Encoding Duration 

S&M Encoding 
Duration 

Number of 
S&M Nodes 

S&M Encoding Cost 
Using EC2 (in US 
dollar) 

30 sec. 2 min. 2 min. 1 $0.003 
5 min. 19 min. 2 min. 10 $0.03 
30 min. 112 min. 2 min. 57 $0.16 
2 hour 7.5 hour 2 min. 225 $0.63 

 

Note that the Split&Merge approach, when deployed in a public Cloud, 

reduces the total encoding time for a 2-hour video from 7.5 hours to 2 minutes, 

with the total processing cost of $0.63. If we extrapolate these numbers for the 

Super Bowl XLIV [25], it is possible to encode the 3.3 hours match for $1.03, in 

only 2 minutes, as opposed to 12.2 hours, if we opted for the traditional process. 

DBD
PUC-Rio - Certificação Digital Nº 0821385/CA




