Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: CLASSIFICAÇÃO AUTOMÁTICA DE DADOS SEMI-ESTRUTURADOS
Autor: BERNARDO PEREIRA NUNES
Colaborador(es): MARCO ANTONIO CASANOVA - Orientador
Catalogação: 14/OUT/2009 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=14382&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=14382&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.14382
Resumo:
O problema da classificação de dados remonta à criação de taxonomias visando cobrir áreas do conhecimento. Com o surgimento da Web, o volume de dados disponíveis aumentou várias ordens de magnitude, tornando praticamente impossível a organização de dados manualmente. Esta dissertação tem por objetivo organizar dados semi-estruturados, representados por frames, sem uma estrutura de classes prévia. A dissertação apresenta um algoritmo, baseado no K-Medóide, capaz de organizar um conjunto de frames em classes, estruturadas sob forma de uma hierarquia estrita. A classificação dos frames é feita a partir de um critério de proximidade que leva em conta os atributos e valores que cada frame possui.
Descrição: Arquivo:   
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS PDF    
CAPÍTULO 1 PDF    
CAPÍTULO 2 PDF    
CAPÍTULO 3 PDF    
CAPÍTULO 4 PDF    
CAPÍTULO 5 PDF    
REFERÊNCIAS BIBLIOGRÁFICAS E APÊNDICES PDF