Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: GERAÇÃO DE MALHAS DE FALHAS EM DADOS SÍSMICOS POR APRENDIZADO COMPETITIVO
Autor: MARCOS DE CARVALHO MACHADO
Colaborador(es): MARCELO GATTASS - Orientador
Catalogação: 10/JUL/2008 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=11889&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=11889&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.11889
Resumo:
O mapeamento manual de falhas em dados sísmicos tridimensionais é uma tarefa que consome muito tempo do intérprete. Uma grande quantidade de atributos sísmicos tem sido proposta para realçar medidas de descontinuidades associadas com as falhas. Entretanto, as falhas vistas através desses atributos aparecem mais como tendências do que como superfícies contínuas bem definidas, o que torna difícil a automatização da construção de modelos de falhas. Esta tese explora técnicas de Aprendizado Competitivo aplicadas aos problemas de extração e visualização de falhas em dados sísmicos. A estratégia proposta parte de um atributo de falha previamente calculado e consiste de três etapas. Na primeira, os dados tridimensionais uniformemente amostrados do atributo de falha são convertidos em um grafo com uso do algoritmo de aprendizado competitivo Growing Neural Gas. Na segunda etapa, o grafo sofre um processo de segmentação de forma a extrair um conjunto de subgrafos, cada um compatível com uma superfície de falha. Na terceira etapa, é utilizado o algoritmo Malhas Neurais Abertas para construir uma malha triangular para cada uma das superfícies identificadas. Malhas Neurais Abertas é um algoritmo de Aprendizado Competitivo que é proposto nesta tese, o qual constrói uma malha a partir de uma função de probabilidades com topologia de uma superfície aberta sem buracos. Exemplos com dados bidimensionais e tridimensionais, sintéticos e reais, são apresentados. Outra aplicação de Aprendizado Competitivo introduzida nesta tese é a geração de malhas geológicas, isto é, malhas que podem ser utilizadas na simulação do comportamento de fluidos em subsuperfície.
Descrição: Arquivo:   
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS PDF    
CAPÍTULO 1 PDF    
CAPÍTULO 2 PDF    
CAPÍTULO 3 PDF    
CAPÍTULO 4 PDF    
CAPÍTULO 5 PDF    
CAPÍTULO 6 PDF    
CAPÍTULO 7 PDF    
REFERÊNCIAS BIBLIOGRÁFICAS E APÊNDICES PDF