Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: UM ALGORITMO EFICIENTE PARA O PROBLEMA DE CAMINHO MAIS CURTO QUADRÁTICO ADJACENTE COM APLICAÇÃO NO DESENHO DE ROTAS SUAVES DE LINHAS DE TRANSMISSÃO
Autor: JOAO MARCOS DUSI VILELA
Colaborador(es): BRUNO FANZERES DOS SANTOS - Orientador
RAFAEL MARTINELLI PINTO - Coorientador
Catalogação: 13/JAN/2022 Língua(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=57045&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=57045&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.57045
Resumo:
Essa dissertação explora o problema roteamento de linhas de transmissão (LT) através da solução do caminho mais curto em um grafo sem ciclos de melhoria, considerando custos quadráticos para arcos adjacentes. Esse problema é conhecido como o Problema do Caminho Mínimo Quadrático Adjacente (CMQA). Esse trabalho apresenta uma descrição teórica do CMQA, propõe uma extensão do algoritmo Dijkstra (aqDijkstra) para solução de CMQA em tempo polinomial e discute como o algoritimo pode ser utilizado em metodologias de roteamento de LT. Em seguida, apresentamos uma melhoria estendendo o algoritmo A estrela para sua forma adjacente quadrática (aqA estrela), incluindo uma etapa de busca reversa para estimação de custos de chegada. Foram feitos experimentos computacionais contemplando a variação de custos quadráticos, geração de instâncias aleatórias, testes de estresse e comparação com abordagens já utilizadas na literatura. Os resultados sugerem que: (i) aqA estrela teve o melhor desempenho, atingindo tempos de busca 40 vezes mais rápidos que aqDijkstra e 50 vezes mais rápido que a abordagem mais rápida apresentada pela literatura; (ii) a eficiência dos algoritmos não foi afetada pela variação dos custos quadráticos; (iii) os algoritmos propostos aqA estrela e aqDijkstra também foram mais eficientes nas instancias aleatórias, reafirmando a superioridade dos mesmos. Duas aplicações são apresentadas, uma de objetivo ilustrativo e outra para um caso real. O algoritimo aqA estrela foi usado para solução de um CMQA em um grafo de quase um bilhão de arcos quadraticos, resultado em uma rota proposta com custos adicionais três vezes menor.
Descrição: Arquivo:   
NA ÍNTEGRA PDF