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Abstract

Vilela, João Marcos Dusi; Santos, Bruno Fanzeres dos (Advisor);
Martinelli Pinto, Rafael (Co-Advisor). An Efficient Algorithm
for the Adjacent Quadratic Shortest Path Problem with
Application to Smooth Transmission Line Routing. Rio de
Janeiro, 2021. 65p. Dissertação de Mestrado – Departamento de
Engenharia Industrial, Pontifícia Universidade Católica do Rio de
Janeiro.

This dissertation explores the problem of transmission line (TL) rou-
ting through finding the shortest path on an undirected graph with no
improving cycles, considering quadratic costs for adjacent arcs. This pro-
blem is known as the Adjacent Quadratic Shortest Path Problem (AQSPP).
This work provides the theoretical background for the AQSPP, proposes
an extension of Dijkstra’s algorithm (aqDijkstra) for solving AQSPP in
polynomial-time and discusses how AQSPP can be included in routing
methodologies. Furthermore, it is presented an improvement to the algo-
rithm: the adjacent quadratic A* (aq A*) with a backward search for cost-to-
go estimation, to speed up search. For computational experiments, aqDijks-
tra and aqA* are benchmarked with other algorithms from the technical
literature. The search behavior of the algorithms is also studied within dif-
ferent tests, including: quadratic cost variation, randomly generated graph
instances and increasingly larger instances. The numerical results suggests
that: (i) aqA*outperformed all the other algorithms, being 40 times faster
than aqDijsktra and 50 times faster than the fastest benchmark algorithm;
(ii) the studied algorithms do not lose efficiency as quadratic costs increase;
(iii) aqA* and aqDijkstra were faster benchmark algorithms under random
graph instances, indicating their robustness. Two applications are provided,
one for illustrative purposes, and another to study performance on a real
application. The aqA∗ algorithm solved an AQSSP on a graph with almost a
billion quadratic arcs and provided a route with three times lower additional
costs.

Keywords
Shortest Path Problem; Quadratic Costs; Graph Theory; Transmis-

sion Line Routing; Geographic Information Systems.
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Resumo

Vilela, João Marcos Dusi; Santos, Bruno Fanzeres dos; Martinelli
Pinto, Rafael. Um Algoritmo Eficiente para o Problema de
Caminho mais Curto Quadrático Adjacente com Aplicação
no Desenho de Rotas Suaves de Linhas de Transmissão. Rio
de Janeiro, 2021. 65p. Dissertação de Mestrado – Departamento
de Engenharia Industrial, Pontifícia Universidade Católica do Rio
de Janeiro.

Essa dissertação explora o problema roteamento de linhas de trans-
missão (LT) através da solução do caminho mais curto em um grafo sem
ciclos de melhoria, considerando custos quadráticos para arcos adjacentes.
Esse problema é conhecido como o Problema do Caminho Mínimo Qua-
drático Adjacente (CMQA). Esse trabalho apresenta uma descrição teórica
do CMQA, propõe uma extensão do algoritmo Dijkstra (aqDijkstra) para
solução de CMQA em tempo polinomial e discute como o algoritimo pode
ser utilizado em metodologias de roteamento de LT. Em seguida, apresen-
tamos uma melhoria estendendo o algoritmo A* para sua forma adjacente
quadrática (aqA*), incluindo uma etapa de busca reversa para estimação
de custos de chegada. Foram feitos experimentos computacionais contem-
plando a variação de custos quadráticos, geração de instâncias aleatórias,
testes de estresse e comparação com abordagens já utilizadas na literatura.
Os resultados sugerem que: (i) aqA* teve o melhor desempenho, atingindo
tempos de busca 40 vezes mais rápidos que aqDijkstra e 50 vezes mais rápido
que a abordagem mais rápida apresentada pela literatura; (ii) a eficiência
dos algoritmos não foi afetada pela variação dos custos quadráticos; (iii) os
algoritmos propostos aqA* e aqDijkstra também foram mais eficientes nas
instancias aleatórias, reafirmando a superioridade dos mesmos. Duas apli-
cações são apresentadas, uma de objetivo ilustrativo e outra para um caso
real. O algoritimo aqA∗ foi usado para solução de um CMQA em um grafo
de quase um bilhão de arcos quadraticos, resultado em uma rota proposta
com custos adicionais três vezes menor.

Palavras-chave
Problema de Caminho mais Curto; Custos Quadráticos; Teoria dos

Grafos; Roteamento de Linhas de Transmissão; Sistemas de Informação
Geográfica.
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1
Introduction

1.1
Motivation

A recurrent challenge in most power systems around the globe is to plan
the expansion of its electrical transmission network, seeking for an appropriate
accommodation of the constantly growing demand level and variability in
energy production, within the daily system operation. Furthermore, the rapid
development of renewable technology has been increasing the complexity of
planning studies and demanding fast development of new transmission line
projects.

The problem of defining when and what type of transmission facilities
to build in terms of minimizing costs and maximizing social and net economic
benefits has been a challenge for the power industry (Hobbs et al., 2016).
Timely and cost-effective transmission expansion is required to provide secure
and reliable electricity service to customers, improving competition, and
ensuring efficiency in electricity markets (Velasquez et al., 2016).

According to Lumbreras et al. (2017), the optimal selection of the
electrical elements to be installed in order to meet the objectives of the
system as efficiently as possible is a fundamental issue on the transmission
planning process and has been receiving significant attention in the past
decade . Specially since one of the key drivers for transmission expansion is the
integration of new renewable generation, which is commonly far from the load
center, thus demanding increasingly larger transmission lines to flow energy.

As part of this expansion plan, different candidates for transmission lines
(TL) are studied, and only the ones which meet the system’s operation in
the long run at minimum cost of investment are selected to be built. To
achieve a consistent expansion plan, both in technical and economic terms,
it is critically important to the system’s planner a proper description of
the candidate transmission line route and its respective construction costs
(Santos et al., 2019). A better definition of the route can provide more realistic
estimates towards the real cost of investment to be considered when expanding
the system (Gonçalvez et al., 2021).
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Chapter 1. Introduction 12

In fact, an accurate route evaluation of new power lines is a very complex
task, which has been fundamentally tackled by mixing expert knowledge with
limited spatial dataset. However, the current manual-based approach may not
adequately assess the implementation and construction costs of the endeavor
due to its intrinsic large-scale characteristics. More precisely, from a technical
perspective, the impact of multiple topological aspects (e.g., nearby hydrology
and hilly terrain) in the process of identifying the optimal transmission route
and implementation costs must be carefully evaluated. For instance, the varied
terrain composition and potential richness of water bodies nearby the route
significantly increase the degree of construction complexity. Additionally, social
and environmental factors induce legal obstacles to the route design. Areas with
environmental preservation, urban and traditional communities, for example,
are protected by the government and should be avoided.

It is often necessary to identify alternative detours on the tracing to avoid
overrunning the administrative boundaries of these areas, which consequently
affects the project’s budget. As a result, routes commonly identified by planners
and their respective construction costs are frequently far apart from the ones
that will be implemented, which may delay or, in extreme cases, suspend
the project. We also highlight that this planning inconsistency is worsened
in the current context of most power systems since renewable sources have
been mostly placed in locations far from the bulk system, thus necessitating
of new and costly-efficient transmission infrastructure.

The process of defining a route begins with a three-dimensional topologi-
cal map (digital satellite image) and a set of spatial and technical construction
constraints, which are used to estimate a cost map. A weighted graph is built by
assigning each pixel of the image to a node and connecting them to their node-
neighbors with a weighted edge. The origin and target nodes represent physical
location of the substations to be connected by the TL. Edge weights are defined
as the cost of building part of the transmission line between neighbor nodes.
This cost varies depending on geographical, technical, social, environmental,
and economic aspects (Monteiro et al., 2005).

The optimal route can be found through calculating the least-cost path
between origin and target nodes. This problem can be classified as a Shortest
Path Problem (SPP), which is deeply explored by literature. Many authors
have been proposing different approaches to solve this problem. The most
popular solution comes from Dijkstra’s work (Dijkstra, 1959), where a dynamic
programming algorithm that guarantees global optimality in polynomial time
was proposed.

Using SPP to design TL routes has been, so far, the state-of-the-art
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Chapter 1. Introduction 13

approach in this context. However, SPP presents limitations toward some
modeling technical constraints, such as the requirement of avoiding sharp
curves on the route. The high deflection angles presented by SPP route solution
are not realistic, since the towers require to support these angles are expensive
(Kiessling et al., 2004; Fang et al., 1999) and only set if necessary. These
constraints are deeply important for TL design but are usually ignored in first
stages of planning (Piveteau, 2017).

To properly model this technical and economical constraint, the work
discusses how TL routing can be formulated as a special case of the Quadratic
Shortest Path Problem (QSPP) called Adjacency Quadratic Shortest Path
Problem (AQSPP), which only considers the interaction cost between adjacent
edges. An efficient algorithm called Adjacent Quadratic Dijkstra (aqDijkstra)
was developed to is solve AQSSP. Two improvements are also proposed, aiming
to enhance speed and memory-management. There are known approaches
which could be used to solve AQSPP as well, but only for small or medium
graph instances. Since TL routing problems are intrinsically very large (e.g. 106

nodes and 107 arcs), larger problems start to become intractable. Overcoming
this obstacle was one of the key motivators for this research.

Through AQSPP formulation, penalties for deflection angles can be
modeled as costs of quadratic arcs, proxying real building practices. Since
higher deflection angles imply stronger and more expensive tower structures,
engineers usually avoid sharp curves on proposed routes. Although there
are recent approaches in the literature (Piveteau, 2017; Santos et al., 2019;
Gonçalvez et al., 2021) that attempt to avoid sharp curves on the routing
process, no work was found to use AQSPP formulation to explicitly model
penalties for deflection as quadratic costs.

1.2
Objectives and Contributions

This Master’s dissertation introduces a novel approach for transmission
line routing which considers curvature penalties according to deflection angles
supported by towers along the route. To accomplish that, the routing problem
is formulated as an AQSPP, modeling the penalties as quadratic arc costs.

The contributions of this work to the scientific community can be listed
as:

– Development of two efficient algorithms to solve AQSPP.

– Novel methodology for transmission line route optimization, formulating
the problem as an AQSPP with route curvature penalties.
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– Implementation of an open-source Julia package containing the proposed
algorithms and other benchmarks.

1.3
Thesis Organization

This thesis will be structured as follows:

– Chapter 2 provides a theoretical background to routing optimization
algorithms.

– Chapter 3 describes the methodology used for transmission line routing
and presents the proposed algorithms.

– Chapter 4 discusses the results from four computational experiments
designed to study the proposed algorithms.

– Chapter 5 presents an illustrative and real application cases of transmis-
sion line routing in which the proposed algorithms are used.

– Chapter 6 concludes this thesis by summarizing the main findings and
exploring possible subjects for future research.
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2
Theoretical Background

Optimizing transmission line routes is a common spatial routing applica-
tion. The main idea is to find a physical route between two locations, usually
associated with spatial coordinates, considering geographical data, such as ter-
rain, forests, rivers, and other relevant attributes. A more detailed routing also
considers technical, economic and social aspects. Once this information is col-
lected and processed, several techniques can be applied to optimize the route.
These techniques are usually implemented on Geographic Information System
(GIS) computational products. Section 2.1 introduces the problem of finding
the optimal route of transmission line through a review of the literature. Then,
Section 2.2 focus on the Shortest Path Problem (SPP) as the most common
approach to formulate routing problems. A novel formulation of the problem as
an Adjacent Quadratic Shortest Path Problem (AQSPP) is presented on Sec-
tion 2.3 to tackle the problems presented on Section 2.2. Furthermore, Section
2.4 formalizes the problem.

2.1
Transmission Line Routing

Routing new electrical transmission lines is a complex activity. When
done manually, it is a time consuming and costly design that requires massive
and very detailed spatial information and project engineers experienced in the
terrain. Usually, engineers who perform TL routing aims to optimize the route
by minimizing construction costs subject to geographic, environmental, social,
and legal constraints. Thus, routing can be defined as the previous stage to
the design of a new electric power line, where the planner decides the path and
areas crossed by the line considering contextual spatial constraints (Monteiro
et al., 2005).

The automation of the routing process was the natural path towards im-
proving new TL designs, as spatial data became more detailed and GIS use
spread out in the scientific community. In this context, technical literature on
distribution and transmission systems’ planning benefited from these improve-
ments, as discussed by Choobineh and Burgman (1984). Among the benefits,
smaller efforts in the revision of the TL project and capabilities for studying
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Chapter 2. Theoretical Background 16

multiple routing solutions should be highlighted.
In the first approaches to TL routing, K-shortest paths (KSP) and

goal programming (GP) were explored by (Choobineh and Burgman, 1984).
KSP uses a brute-force method of systematically listing all possible routes
between origin and destination nodes, guaranteeing all possible paths are
found within an accumulated cost threshold (Shandiz et al., 2018). Although
global optimality is achieved, the algorithm is not practical for medium or
large problems in computational performance terms, as run-time and memory
requirements increase factorially.

Further on, approaches based on graph theory for least-cost path finding
became common in the research community, such as Iterative Penalty Method
(Akgün et al., 2000) and Dijkstra (1959). The overall decision-making process
is best described by an evaluation of possible paths from an origin point
(or substation) to a destination point, considering costs of passage for TL
throughout the paths.

Researchers have been exploring other approaches, such as Analytic
Hierarchy Process (AHP) and Fuzzy AHP (Eroglu and Aydin, 2015), multi-
criteria with Qlearning (Demircan et. al., 2011), and, improved genetic and
artificial bee colony algorithms (Eroglu and Aydin, 2018). The motivation for
this work is related with technical problems that current routing approaches
are not able to handle, which is to avoid unrealistic curves throughout the
optimization.

In addition, claims from Eroglu and Aydin (2015) and Demircan et.
al. (2011) relies on the complexity of calculating realistic cost estimates for
constraints, arguing that some constraints cannot be associated with monetary
values, such as areas where traditional communities live. AHP and multi-
criteria are multiple decision techniques for determining the criteria to be taken
into consideration when performing the routing process. Although it can be a
powerful tool for analysis and candidate creation, especially when comparing
routing alternatives, it is still deeply dependent on a wide variety of detailed
spatial data and expert knowledge.

Most approaches are based on the same idea, finding the TL spatial
route that minimizes costs or maximizes benefits. The costs and benefits are
usually associated with monetary values (Monteiro et al., 2005) or relevancy
indexes (Eroglu and Aydin, 2015), depending on the approach and financial
data available.
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2.2
Route Optimization as a Shortest Path Problem

Finding the shortest path in a graph is a well-known problem and has
been deeply explored by the literature (Madkour et al., 2017). This problem is
usually referred as the Shortest Path Problem (SPP) and aims to find a path
P on a graph G between a source node s and target node t that minimizes
total cost of the path. This problem has a linear objective function of cTx,
where c is a cost vector and x is a binary vector of arc selections.

The Shortest Path Problem can be formulated as

min
x∈χ

cTx (2-1)
where χ is the set of feasible binary vectors

χ := {x ∈ Rm|Bx = b, x ∈ {0, 1}m} (2-2)
The matrix B is a |V | × |V | matrix which maps the connection between

the nodes of the graph. The array b sets 1 to the source node, -1 to the target
node and 0 the other nodes.

Although many approaches have been developed to solve SPP, such as
Bellman-Ford (Bellman, 1958), Floyd-Warshall (Floyd, 1962) and A∗ (Hart et
al., 1968) algorithms, the most well-known approach is due to Dijkstra’s work
(Dijkstra, 1959). The Dijkstra’s algorithm solves the shortest path problem
from a given node to all other nodes in a graph. The algorithm assumes non-
negative weights and uses a labelling structure on the search process. On each
iteration, the node being evaluated can receive two types of labels: visited
or not visited. It initially sets the source node as visited and checks their
neighbor nodes for the not visited label. Then, the shortest arc is identified,
and its corresponding node is labeled visited. The algorithm iterates until all
nodes receive the label visited. It should be said that stopping criteria can be
added to the algorithm to interrupt the search after visiting a target node.
The Dijkstra’s algorithm has a time complexity of O(|V |2). The algorithm of
Dijkstra’s is presented on Algorithm 1.

2.3
A Novel Approach: The Adjacent Quadratic Shortest Path Problem

The linear nature of SPP prevents it to tackle more complex problems,
such as establishing network protocols (Murakami and Kim, 1997) and opti-
mizing vehicle routing (Martinelli and Contardo, 2015), that have a quadratic
order. The Quadratic Shortest Path Problem (QSPP) extends SPP by finding
a path between s and t that minimize sum of costs of arcs and the sum of
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Algorithm 1: Dijkstra’s Algorithm
input : G, c, s, t
output: D, P

1 initialize Di;
2 initialize Qi;
3 initialize Pi;
4 Ds ← 0;
5 for each node v in V do
6 if v 6= s then
7 Dv ← Inf ;

8 while Qi 6= ∅ do
9 (i)← argmini{Q};

10 remove (i) from Qi;
11 if i == t then
12 stop while;
13 for each j in neighbors of i do
14 Cj ← Di + cij;
15 if Cj < Dj then
16 Dj ← Cj;
17 Qj ← Cj;
18 Pj ← i;

interaction costs over distinct pairs of arcs on the path. Thus, the problem has
a quadratic objective function that can be defined as xTQx+ cTx, where Q is
a quadratic matrix with costs of pair arcs.

In this work, a special case of QSPP is studied, the Adjacent Quadratic
Shortest Path Problem (AQSPP), which has the same quadratic objective
function, but Q only considers the interaction cost between adjacent arcs. This
change introduces great sparsity on Q and makes the problem significantly
smaller. The original QSPP is a NP-hard optimization problem that seeks to
find the path that minimizes the sum of arc’s costs and arc’s pairs interaction
costs, over a graph (Rostami et al., 2015).

The theory and applicability of QSPP have been studied through the
works of Rostami et. al. (2015 and 2018), Hu and Sotirov (2017 and 2018) and
Buchheim and Traversi (2015). Buchheim and Traversi (2015) explores a more
general solution for binary quadratic problems (BQP) and proposes an exact
algorithm to solve special a case, based on branch-and-bound and lower bounds
estimates. Rostami provides in-depth mathematical description of QSPP and
proposes an algorithm to solve AQSPP in polynomial-time (Rostami et al.,
2015), which is based on a transformation that reduces AQSPP to SPP by
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modifying the original graph.
Furthermore, the authors Hu and Sotirov (Hu and Sotirov, 2018) also

characterize QSPP mathematically and derive an algorithm that examines
whether QSPP instances of directed grid graph are linearizable. In other words,
the authors study when a grid graph with quadratic cost can be transformed
into graph with linear costs. They also reviewed Rostami’s work and prove
that, despite stated on (Rostami et al., 2015), their algorithm does not find
optimal solutions for direct graphs in polynomial time, but only for direct
acyclic graphs.

In this context, this dissertation study AQSPP for a more generic type of
graph, which cannot have improvement cycles. Improvement cycles are cycles
that can lower total cost once they are found by the path search algorithm
and due to the quadratic cost structures, they are non-negative cost cycles.
Graphs with no improvement cycles can be considered a more general type
of graph, since directed acyclic graphs do not have cycles, but the opposite
does not hold. These types of graphs can be found in several contexts and
applications. In particular, graphs that represent spatial attributes (terrain,
distance, slope etc) are widely used on route-planning applications and do not
have improvement cycles.

The use of AQSPP to model transmission line routing problems allows
a better representation of penalties for TL route curves through adjacent
quadratic functions of AQSPP. Although there are approaches in the literature
that attempt to avoid sharp curves on the routing process, no work that used
AQSPP formulation to explicitly model penalties for deflection as quadratic
costs was found.

2.4
The Adjacent Quadratic Shortest Path Problem

Let a weighted graph be defined by G = (V,A), with V as the set of
nodes i and A as the set of arcs (i, j). We assume a node s as the source node
and t as the target node, such that a s− t path P = {i, j, ..., k} is a order set
of nodes from s = i to t = k. We define a linear function c : A → R+, which
maps arcs into a cost and a quadratic function q : A × A → R+, which maps
every pair of arcs into a cost. Both linear and quadratic functions can only
return strictly positive costs. For the AQSPP, we assume that the quadratic
costs of all non-adjacent pair of arcs are zero.

Furthermore, the predecessors and successors of each node i are found
through the functions δ(i)− = {j ∈ V |(j, i) ∈ A} and δ(i)+ = {j ∈ V |(i, j) ∈
A}, respectively. Finally, a binary variable xij ∈ {0, 1} is set to indicate the

DBD
PUC-Rio - Certificação Digital Nº 1913157/CA



Chapter 2. Theoretical Background 20

presence of arc (i, j) on the optimal path. When an arc is selected for optimal
path, the associate linear cost is incorporated on the objective function (2-3).
The same goes for the selection of adjacent arcs (i, j) and (k, l) given that
j = k, which adds a quadratic cost qijkl to the objective function.

Therefore, the quadratic formulation is as follows:

Min
∑

(i,j)∈A

∑
(k,l)∈A

qijklxijxkl +
∑

(i,j)∈A
cijxij (2-3)

s.t. ∑
j∈δ(i)+

xij −
∑

j∈δ(i)−

xji = bi ∀i ∈ V (2-4)

xij ∈ {0, 1} ∀(i, j) ∈ A (2-5)
with bi ∈ {−1, 0, 1}, where bs = 1, bt = −1 and bi = 0 otherwise.

This problem results on a path that connects nodes s and t at minimum
cost. The optimal path is an ordered set of nodes P ∗ = {s, i, j, ..., k, t} such
that i ∈ V , (i, j) ∈ A and s 6= t. The constraint (2-4) establishes the connection
between nodes through balance equations, meaning that every unit arriving or
placed at node i must leave or be consumed. Thus, setting bs = 1 and bt = −1
forces the arcs xij of a feasible path P to be equal to one, so that constraints
(2-4) are respected, and the unit placed on bs arrives at bt through P .

It should be noticed that the feasible region defined by (2-4) and (2-5)
on AQSPP formulation is the same from SPP. Therefore, all the feasible
paths considered on SPP are also feasible on ASQPP. The main difference
in formulations come from introducing the quadratic term qijkl xij xkl on the
objective function. Once a feasible path is evaluated, the costs of all pairs of
adjacent arcs on the path are considered.

The problem can also be studied through matrix notation, such that the
objective function becomes xTQx + cTx, where Q is a matrix |A| × |A| that
represents the interaction costs between pairs of arcs, x is a binary vector for
the selection of arcs and c a vector for their linear costs. This matrix notation is
commonly used on the quadratic programming (QP) literature since it allows
the study of the whole problem by looking only at matrix Q individually. On
AQSSP, for example, we can assume Q to be symmetric, positive semi-definite
and very sparse.

Using QP techniques to solve AQSPP is a valid approach and have been
explored in literature (Buchheim and Traversi, 2015; Caprara, 2008). However,
we argue that as the size of graph instances grows, using traditional QP solvers
becomes computationally challenging or impracticable. Memory issues to store
matrix Q, the constraints defined by (2-4) and temporary data required by the
solver can easily occur. These limitations motivated the study of this problem
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with an algorithmic perspective, ultimately resulting in the development of
two algorithms to solve AQSPP. The algorithms are described in Section 3.2.1
and Section 3.2.2.

2.4.1
Linearization Technique

In order to solve the AQSPP, Rostami et al. (2015) proposes a
polynomial-time algorithm based on the reduction of AQSPP on graph G with
(V, A, Q) to a SPP on a linearized graph G’ with (V’, A’). The reduction is
as follows.

Let the nodes and arcs from G’ be

V ′ = {(s, s)} ∪ {(i, j) : i, j ∈ A} ∪ {(t, t)} (2-6)

A′ = {((i, j), (j, k)) : (i, j), (j, k) ∈ V ′} (2-7)
Arcs are associated to transformed nodes ((i, j), (j, k)) ∈ A′, so that new

arc weights are defined as:

w(i, j, k) =


cjk + qijk (i, j) 6= (s, s) ∧ (j, k) 6= (t, t)

cjk (i, j) = (s, s)

0 (j, k) = (t, t)

(2-8)

The Figure 2.1 illustrates the transformation of graph G (a) to graph G′

(b). The basic idea is to convert original arcs (i, j) into nodes nij and map
quadratic costs to the connection of the new nodes. Notice that the source and
target nodes are redefined as pairs to themselves i.e. (s, s) and (t, t), with new
arcs arriving to (t, t) at zero cost and leaving (s, s) at csj cost.

Figure 2.1: Linearization of Graph G into graph G’ (Rostami et al., 2015)

DBD
PUC-Rio - Certificação Digital Nº 1913157/CA



Chapter 2. Theoretical Background 22

Once the graph is linearized, the quadratic problem can be reduced to
a linear problem. In other words, by transforming G, the AQSPP is reduced
to a SPP, thus solvable by any algorithms that solves SPP, such as Dijkstra’s
Algorithm. The authors claim that this approach guarantees that G can be
solved in O(min{|A|2, |V |3 + |A|log|A|}) time.

This algorithm is a possible solution to solve AQSPP on small to medium
graph instances with acceptable performance. However, the linearization tech-
nique does not scale efficiently since it requires an expansion of the original
graph according to quadratic costs. For LT routing applications, graph in-
stances are intrinsically huge, easily achieving dimensions of 106 nodes, 107

arcs and 108 quadratic arcs. Performing this technique on graph of such di-
mensions would not only be memory-intensive but eventually non tractable.
With that in mind, the next chapter presents novel AQSPP algorithms, which
are efficient and scalable.
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3
Proposed Methodology

3.1
Spatial Data Setup

The solution integrates geographical data, geoprocessing techniques and
dynamic programming to find the least-cost path between two substations. All
spatial data processing was made using R’s spatial data libraries, as well as
other R resources and functionalities. Although it was not built primarily as a
GIS software, it matches all requirements necessary to perform common and
advanced GIS spatial processing.

As input data, terrain and social-environment spatial information was
obtained from government institutions which are publicly available. A four-
step process is proposed: selecting relevant spatial data for study, constructing
a cost map, converting it into a weighted graph and finding the least-cost path
between two nodes (coordinates).

3.1.1
Data Selection

The spatial data used can be described with two types of representation
models: matrix (raster) and vector (shapefile). The first model, as the name
suggests, organize the data as georeferenced matrices, in which area is divided
as a rectangular grid of regular cells (pixels). Each cell is associated with a
unique coordinate and a numeric value associated. These values can represent
quantitative or qualitative data. On the other hand, vector model represents
elements as points, lines or polygons. The position of each object is defined
by its location in space, according to a coordinate reference system (CRS).
Spatial objects do not fill the entire space, which means not all positions in
space need to be referenced in the model.

When working with spatial analysis, a wide variety of geographical
aspects can be analyzed, some related to topology, some concerning legal
and administrative limits, and other types of relevant data. Therefore, it is
important to select only those which are relevant to route definition. The list
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of variables should be selected according to the region being studied. In other
words, it is necessary create a spatial delimitation on the region.

Every construction process that extends over large territorial area faces
project constraints. In transmission expansion planning, many TL routes must
be remade or adjusted, so that technical limitations and legal barriers can
be overcome. Projects such as roads and railways constructions, for example,
involves construction along the whole territory and faces similar problems.
These constraints can be divided in two groups, environmental and social
constraints. Each have distinct influence over construction decision, which goes
from route retracing to area contouring, and even project infeasibility.

In the environmental perspective, Conservation Units can be classified as
spatial territories protected by the government, due to their limited or special
natural resources. To overlook the area and guarantee its protection, every unit
usually has a government agency responsible for its administration and super-
vision. Depending on how a transmission line route crosses the area, costs can
vary and increase substantially, forcing the route to contour it. Costs related
to authorization and construction specificities (higher towers for example), can
make avoiding the area cheaper than trespassing the conservation unit.

Moreover, defining paths through water bodies requires special infrastruc-
ture and increase construction expanses, thus not preferable. Crossing wide
water bodies, for example, require much higher towers than normal, which
are very expensive and harder to setup. A famous case is the Brazilian TL
Tucuruí-Macapá-Manaus, which crosses the Amazon River margin to margin,
where conductor cables are supported by two towers, 2.5 kilometers from each
other, and 300 meters high (taller than the Eiffel Tower).

On the social aspect, some communities described as traditional commu-
nities have their territory legally delimited and protected by the government.
Interfering in these communities, such as indigenous territories, are crucial
aspects in licensing process by environmental agencies.

Rural settlements also have great impact on routing. It generally refers
to small rural properties and high habitational density in rural areas. Building
power transmission lines in these areas have been shown to be a challenge
for construction companies. Not only physical risks for residents should be
taken into consideration, but line’s right-of-way can interfere with production
activities and have negative impact on income generation. When defining the
route, urban areas must be avoided at maximum. Building transmission lines
close to habitational concentration is challenging, expensive and offers risk to
residents. Urban growth is also a factor to be considered since an unpredicted
urbanized region through original tracing can implicate in redesigning the line’s
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tracing and increasing project’s expenses.

3.1.2
Building a Cost Map

After selecting and setting up the required spatial data for analysis, a map
of costs (or weights) should be constructed. The basic structure of a cost map is
defined by a numerical matrix, where every element of the matrix is associated
with a coordinate and a cost value. The definition of costs depends on available
data and initial assumptions. This methodology assumes the existence of a
reference construction cost per kilometer, which will be used further on to
estimate an initial cost map.

Usually, when spatial analysis requires topological information, such as
height or slope values, a mix of matrix and vector models is commonly used,
and also recommended. Topological data is set as a base map and relevant
spatial areas are layered on top, delimiting areas of interest. Overlaying and
clipping techniques are widely used to subset and reduce maps (matrix model)
considering different spatial limits (vector model). For example, if a base map
includes data a whole country but the studied area only concerns a certain
state, the area that defines geographically the state can be used to subset
(clip) the base map.

This methodology proposes a two-step process for cost map construction:
building a base cost map and including additional costs. The first concerns
building an initial cost map based on terrain slope and reference construction
cost. Terrain slope can be described as the terrain’s inclination of a given area.
In other words, the slope measures the altitude variation of a region. Figure
3.1 illustrates a map of slope values, where each value represents the average
slope of the area within an image pixel. Assuming cells of equal dimensions, the
linear estimation of cell length, considering terrain slope, can be calculated.
Finally, given the reference cost and linear length approximations, the base
cost map is calculated, as illustrated on Figure 3.2.
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Figure 3.1: Terrain Slope Map (3D) Figure 3.2: Base Cost Map (3D)

Although slope values are intuitive, it is not common for routing method-
ologies to be based on slope estimations. However, it is a fact that terrain slope
is intrinsically related to geographic distance. The proposed methodology uses
this concept to convert slope into linear distance, which will further be used
to estimate construction costs.

Figure 3.3: Linear approximation of terrain slope

From Figure 3.3, the reference cost of a cell would be the product of the
ramp distance I [m] and the construction cost c [$/m].

Iij =
√

∆H2
ij + d2

ij (3-1)

cbaseij = IijC (3-2)
Then, the studied region must be identified and delimited. Coordinates

of both substations are obtained and placed on the map for visual verification.
After that, a 10-kilometer buffer between substations a created in a form of
vector data. Finally, all cells inside the delimited area are selected, creating
a new map containing only the area inside the 10-kilometer buffer. This step
is called raster cropping, and it is crucial for increasing processing speed. By
cropping the map, the number of valid pixels is much smaller, thus resulting
in less nodes and arcs on the converted graph. With smaller instances, path-
search speed increases significantly.
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It is reasonable to assume that some studies may less focused on the
economic and technical aspects, and may prefer routes that fully respect
environmental and social constraints, and seeks to minimize construction effort.
Depending on the planner goals, different cost assumptions can be made to
achieve realistic candidates for network expansion.

In practice, there are two ways of considering these assumptions. The
first one is making costs inside the spatial area nonexistent, which can be
interpreted as giving an “inaccessible” status to a node. The other one is
attributing massive costs to the area, therefore making the solving methods
avoid the area at maximum. Both approaches can work but making a node
inaccessible can be problematic if origin or destination nodes are inside
constrained areas. With that in mind, the second alternative was chosen.

Furthermore, the spatial constraints are modeled as vector objects, as it
is shown on the Figure 3.4 for the colored areas. These types of spatial data can
be obtained from several different sources, both public and private. However,
for the purpose of generalization, it is assumed that the required spatial data
is publicly available and can be obtained from government agencies. Spatial
projections must be adjusted when necessary for a proper representation of
regions within Brazil. Finally, additional costs associated with each constraint
are added to the base cost map, resulting in the final cost map displayed on
Figure 3.5.

Figure 3.4: Constraints Layers (3D) Figure 3.5: Final Cost Map (3D)

3.1.3
Map Conversion

Once each map cell is properly associated with a cost, we can generate the
required graph. Its structure, as described before, consists of a set of nodes, arcs
(connection of two nodes) and weights. Figure 3.6 and Figure 3.7 present an
visual representation of the conversion set. The map on Figure 3.6 is converted
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into the graph of Figure 3.7, where the numbers inside the nodes represent the
nodes indices and the black lines represent the arcs.

Figure 3.6: Map Figure 3.7: Graph

The transformation of a cost map in a weighted graph starts with
representing each map cell as a graph node. Then, for every given pair of
connected nodes (cell neighbors in a map) a graph arc must be created. In
addition, the average costs between neighbors must be associated with the
created arc. It is important to notice that diagonal arcs must have their weights
adjust to correctly represent the distance between the nodes. The Figure 3.8
highlights this process. Notice that c14 is simply the average between nodal
values of node 1 and 4. In contrast, the movement from node 1 to node 5 is
diagonal, thus considering a

√
2 to the arcs cost c15.

Figure 3.8: Final cost map

3.1.4
Curvature Penalties

In simple terms, transmission lines are electric towers connected by
conductor cables. Depending on how and where the towers are placed spatially,
high inflection angles can occur. Depending on the angle, stronger support
structures must be added to the tower to handle the increased mechanical
effort. These structures are often very expensive and can significantly impact

DBD
PUC-Rio - Certificação Digital Nº 1913157/CA



Chapter 3. Proposed Methodology 29

construction costs. The use of AQSPP brings innovation to LT routing, as it
allows us to model penalties for deflection angles. Thus, we suggest an adjacent
cost q(θijk) where θijk is the inflection angle between two adjacent arcs (i, j)
and (j, k).

Figure 3.9: Tower Angles

For this work, the function is defined as

qijk = Γ(θijk) (3-3)

Where
θijk = arccos( y1y2

‖y1‖ ‖y2‖
) (3-4)

The deflection angles θijk are associated with higher mechanical efforts,
and consequently with more expensive structures. The most common towers
and their respective angle range and relative costs are present on the Table
5.3.

3.2
Route Optimization

In this section, a proposed AQSPP algorithm named adjacent quadratic
Dijkstra is described. The algorithm is an extension of Dijkstra algorithm to
solve AQSPP. Many classic algorithms can be used for efficient path search,
such as Dijkstra (Dijkstra, 1959) and A∗ (Hart et al., 1968), but most of them
have linear objective functions, thus not able to represent quadratic costs. We
propose an extension of classical Dijkstra algorithm, which we call Adjacent
Quadratic Dijkstra (aqDjikstra), that solves AQSPP in polynomial-time for
graphs with no improvement cycles. The algorithm is based on the concept of
node labels and can properly address adjacency costs.

3.2.1
Proposed Algorithm: Adjacent Quadratic Dijkstra

The Adjacent Quadratic Dijkstra algorithm follows a similar structure as
the classic Dijkstra’s algorithm, but modifies how labels and accumulated costs
are defined. We denote a label as lj = {(i, j)|i ∈ δ(j)−}, representing an arc
that arrives at node j. Let Dvl be the accumulated cost on the pair node-label
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(v, l) and L(v) be a function that returns all labels associated with node v.
This allows aqDijkstra to evaluate the shortest path to j that passes through
(i, j). Therefore, when evaluating a connection between j and k, through label
(i, j), we can map adjacent quadratic cost qijk.

The algorithm is presented in Algorithm 2.

Algorithm 2: Adjacent Quadratic Dijkstra
input : G, c, q, s, t
output: D, P

1 initialize Dij;
2 initialize Qil;
3 Dsl ← 0;
4 for each node v in V do
5 for each label l in L(v) do
6 if v 6= s then
7 Dvl ← Inf ;
8 Pvl ← origin node from label l;

9 while Qil 6= ∅ do
10 (j, l1)← argminil{Qi};
11 remove (j, l1) from Qil;
12 if j = t then
13 stop while;
14 for each k in neighbors of j do
15 l2 ← label index of arc (j, k);
16 Ckl2 ← Djl1 + cjk + qijk;
17 if Ckl2 < Dkl2 then
18 Dkl2 ← Ckl2 ;
19 Pkl2 ← j;
20 Qkl2 ← Ckl2 ;

The iteration over the labels is controlled by a priority queue Q. Priority
queues are abstract data types similar to stacks in which each element has
a priority assigned to it. These queue structures are often used to speed up
search, and also exist on the original Dijkstra algorithm. The element with
highest priority is always positioned on top of the stack, forcing it to be the first
to be removed. In this case, the labels with smaller accumulated costs should
be prioritized, since they indicate shorter paths, and should be positioned on
top of the stack.

At each iteration, the label with smallest cumulative cost l1 is removed
from Q and used as reference to explore the neighbor nodes. Each neighbor
k is then evaluated, the cumulative quadratic cost Cjl2 is calculated and
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{Qjl2 , Djl2} gets updated, when evaluated costs are lower than current costs.
The algorithm stops if Q gets empty or all labels from target node L(t) were
evaluated.

It is claimed that aqDijsktra’s can provide optimal solution if it holds
that graph instance G does not have any improvement cycles. This is a more
widespread claim, since Hu and Sotirov (Hu and Sotirov, 2018) argues that G
must be directed and acyclic. Considering that acyclic digraphs do not have
cycles by definition, they meet aqDijsktra’s optimality conditions and can be
solved.

However, if we consider a weighted graph U , improvement cycles can
exist and, thus, must be checked. The first approach to verified the existence
of improvement cycles is to perform a complete search on the graph. Although
it would provide an exact answer, this approach is extremely inefficient.

Another procedure would be to look for improvement cycles during
aqDijkstra iterations. Although it would be significantly faster than a complete
graph search, adding this verification step would have a negative impact on
performance, reducing search speed.

A final approach to address this issue would be to solve G and search for
any cycles within the solution path. Since by hypothesis there are no arcs with
non-positive cost, every cycle within the solution path must be an improvement
cycle. Therefore, there is no optimality guarantee for the solution path. We
consider this to be the best approach for instances with well-known structures,
like grid graphs, for example.

3.2.2
Algorithm Improvement: Adjacent Quadratic A∗

When developing algorithms for optimization problems, in special meth-
ods for graph search, two major aspects of computation must be considered:
memory and speed. There is a sweet spot between an algorithm that is fast
but extremely memory consuming, and an algorithm that is slow and allocates
memory efficiently. Two improvements for aqDijkstra are proposed, one that
speed up search and the other that reduces memory dependency. First, it is
studied a natural extension of aqDijkstra based on A∗ algorithm (Hart et al.,
1968) and included cost-to-go estimations, i.e. completion bounds. Then, it is
proposed the placing quadratic cost calculation within aqDijkstra and remove
the need to pre-calculate all quadratic costs.

To increase search speed, a bidirectional search alternative is explored.
This scheme consists in solving the problem in two steps: (i) a preliminary
backward search with SPP, starting form target node t, to find cost-to-go
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estimates; (ii) a forward search with ASQPP, from source s to target t node,
considering the cost-to-go estimates as lower bounds for the search. This
approached is inspired by the work of Thomas and Calogiuri and Hewitt
(2019), where the authors extend Hart et al. (1968) results for A∗ algorithm
to develop a bidirectional search to solve resource-constrained shortest path
problems. The idea is built upon Hart et al. (1968) demonstration that A∗

only terminates with an optimal path when the estimates of the cost-to-go are
actual lower bounds.

For the case of a quadratic shortest path search, linear estimations of
costs-to-go are actual lower bounds for the quadratic problem and attend
optimality conditions. The fundamental idea is that these linear estimations
can be calculated through a backward search from the target node t to all
other nodes with an SPP approach.

The algorithm starts with a backward search with SPP, which is a regular
search that starts on the target node t and considers only linear arc costs. Thus,
we use Dijkstra’s algorithm to perform a complete search (visiting all nodes)
and store the lowest cost from t to all the other nodes on the graph. These
costs will be considered the costs-to-go estimates on the following step and are
lower bounds for the quadratic problem. It is important that the backward
search goes through the entire graph, so that cost-to-go estimates are available
on every node and the optimality of the path is guarantee.

On the second step, we perform a forward search with ASQPP from
source node s to target node t. Here, we introduce the adjacent quadratic A∗

(aqA∗), an extension of aqDijkstra that considers cost-to-go estimates to decide
which node to expand next. This structure is the same described by (Hart et
al., 1968) when developing A∗ algorithm. By estimating the cost of arriving at
t, we can greatly reduce the search tree and speed up the procedure. However,
it is important to be aware that these estimates must be lower bounds to the
real path cost in order to guarantee admissibility. In other words, if the cost-
to-go from i to t is not lower or equal to the minimum cost of going from i to
t, the solution of aqA∗ may not be globally optimal.

Since the costs-to-go come from a backward search with SPP, only linear
costs are considered, guaranteeing lower bounds for aqA∗. The lower bound
value of each node is included on distance calculation, so that for each iteration
Qjl2 is updated according to the original cost Cjl2 and the cost-to-go Bk from
node i to target node t. Therefore, the farther the evaluated node is from
the target, the greater the cost-to-go will be, and, consequently, the lower the
priority will be on the priority queue.

The algorithm is presented on Algorithm 3.
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Algorithm 3: Adjacent Quadratic A∗ with backward cost-to-go
estimation

input : G, c, q, s, t
output: D, P

1 B ← Dijkstra(G, t);
2 initialize Dij;
3 initialize Qil;
4 Dsl ← 0;
5 for each node v in V do
6 for each label l in L(v) do
7 if v 6= s then
8 Dvl ← Inf ;
9 Pvl ← origin node from label l;

10 while Qil 6= ∅ do
11 (j, l1)← argminil{Qi};
12 remove (j, l1) from Qil;
13 if j == t then
14 stop while;
15 for each k in neighbors of j do
16 l2 ← label index of arc (j, k);
17 Ckl2 ← Djl1 + cjk + qijk;
18 if Ckl2 < Djl2 then
19 Dkl2 ← Ckl2 ;
20 Pkl2 ← j;
21 Qkl2 ← Ckl2 +Bk;

3.2.3
Algorithm Adaptations

On both proposed algorithms, aqDijkstra and aqA∗, adjacent quadratic
costs q were assumed to be pre-calculated and allocated on some existing data
structure. Although having the quadratic costs allocated on memory improves
the search speed of the algorithm, it can become a problem as instances increase
in size. When dealing with real life graph instances, for example, graphs can
easily achieve dimensions of million nodes, tens of millions of arcs and hundreds
of millions of quadratic arcs. Thus, storing this information in memory becomes
quite challenging.

Another improvement to aqDijkstra and aqA∗ is suggested, which embeds
the calculation of adjacent quadratic costs on the algorithms. It is assumed that
there exists a function Γ : Ã→ R+, able to calculate quadratic costs based on
adjacent arc indices (i, j, k). The adapted version of aqDijkstra algorithm is
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presented on Algorithm 4 and the modification can be used to embed quadratic
calculation on aqA∗. For the sake of simplicity, the adapted algorithms will be
named Adapted aqDijkstra and Adapted aqA∗.

Algorithm 4: Adapted Adjacent Quadratic A∗
input : G, c, s, t
output: D, P

1 B ← Dijkstra(G, t);
2 initialize Dij;
3 initialize Qil;
4 Dsl ← 0;
5 for each node v in V do
6 for each label l in L(v) do
7 if v 6= s then
8 Dvl ← Inf ;
9 Pvl ← origin node from label l;

10 while Qil 6= ∅ do
11 (j, l1)← argminil{Qi};
12 remove (j, l1) from Qil;
13 if j = t then
14 stop while;
15 for each k in neighbors of j do
16 l2 ← label index of arc (j, k);
17 qijk ← Γ(G, i, j, k);
18 Ckl2 ← Djl1 + cjk + qijk;
19 if Ckl2 < Dkl2 then
20 Dkl2 ← Ckl2 ;
21 Pkl2 ← j;
22 Qkl2 ← Ckl2 +Bk;
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4
Computational Experiments

This section aims to evaluate the performance of the proposed algorithms,
presenting results from a set of computational experiments. It starts by
comparing the algorithms’ speed and performing a benchmark analysis. Then,
it explores random graph instances generated with two different methods and
observes their effects on search behavior. On the third test, it is presented
an analysis of algorithms’ sensitivity to quadratic cost variation. The last
experiment concerns a stress test, where instances are increased to dimensions
up to half-billion quadratic arcs.

4.1
Software and Machine Settings

The Julia programming language were used throughout this work. The
packages JuMP, Ipopt, SimpleWeightedGraphs were chosen to handle graph
data structures and perform general optimization. Julia is widely known for its
optimization capabilities, specially through the use a domain-specific modeling
package called JuMP. In addition, Ipopt solver for convex and non-convex
problems, has an interface with the language through the Ipopt package,
which was used to solve the QP problem. Furthermore, SimpleWeightedGraphs
provides good data structures to handle graph objects and great methods to
solve SSP and ASQPP. It should be highlighted that the implementation of
the aqDijkstra was made on top of Dijkstra implementation provided by the
package.

The R programming language was also used in this work, mainly for
GIS purposes. The packages rgdal and rgeos are widely known in the R
community and were used for manipulating the geographical data that was
further converted into the graphs used for computational experiments and
application study.

All scripts used and implemented in this thesis are available for further
verification, validation, and additions to the implemented model. To easy
distribution and verification, a Julia package called AQSPP was created and
is made available for use. Finally, computational calculations were made on an
Intel Core i7-10700K 4.8GHz with 64 GB of RAM machine.
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4.2
Graph Instances

The graphs used in the following experiments are essentially of two
natures: grid and random instances. Grid graphs are deeply related to routing
applications since nodes are evenly spaced and connected to their immediate
neighbours. The grid-like format facilitates associating the graph to physical
topologies, as well as other attributes related to the topology. On the other
way, random graphs are important to study the search process of algorithms
and evaluate performance under non-predictable conditions. By experimenting
on random graph structures, with distinct levels of degree and sampled
connections, one can better understand general performance of an algorithm.
Both graph types are better detailed in the following sections.

4.2.1
Grid Graphs

On grid graphs, each node is associated with a real location on the globe
and the arc costs represent the distances between locations. The graphs are
built out of regularly spaced grid of elevation points, which we define on matrix
4-1 as the matrix Y with N rows and M columns. Each element of the matrix
is associated with a numeric value and spatial coordinates.

Y =


y11 ... y1M

...
. . . ...

yN1 ... yNM

 (4-1)

To create an graph instance, we convert the matrix Y into a weighted
graph G = (V,A), where each node i is equivalent to element ynm, |V | is the
product of matrix dimensions N×M , and |A| can vary according to a graph
composition rule. This rule is a function of how many neighbors n each node
sees. Figure 4.1 presents the effect of choosing different number of neighbors
on |A|.

The intuition behind node neighborhood comes from direction and length
of movement. Common choices for n are 2, 4 and 8. Choosing n = 2 or n = 4
represent unitary movements two directions (east and south) or four directions
(west/east and north/south), respectively. For n = 8, diagonal movements are
contemplated.

We denote d(ynm, yop) as a function that calculates the distance
cost between points ynm and yop. Thus, arc costs are defined as {cij =
d(ynm, yop) | i = (n,m) and j = (o, p)}, where (n,m) and (o, p) are
neighbors according to a given graph composition rule. For this work, we define
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Figure 4.1: Demonstration of node neighborhood for n = 4 and n = 8

n = 8 so that diagonal movements are allowed. As we are working with spatial
information, diagonal costs must be adjusted by a factor of

√
2.

4.2.2
Random Graphs

Random graphs can be defined as graphs associated to probability
distributions. In other words, they are graphs described by a probability
distribution or generated by a random process. The random graph sets build
for experiments come from two different methods: Erdös-Rényi (Erdös and
Rényi, 1959) and Configuration Model (Newman, 2010).

The Erdös-Rényi method defines a graph G(n, p), where the arcs are
added between pairs of nodes according to a given probability p ∈ [0, 1]. The
greater p is, greater is the number of arcs, thus the more connected is G.

Moreover, the Configuration Model generates a random graph G(n, k)
from given degree sequence k = {ki}ni=1. A degree defines the number of
connections a given node has, therefore, as k increases, so does the number
of arcs in G. To build G(n, k), the method randomly samples ki nodes from G

and connects them to node i.

4.3
Benchmark Analysis

The computational experiments start by evaluating total search-time for
all proposed algorithms and other approaches existing in technical literature.
One of these approaches is an algorithm proposed by Rostami et al. (2015)
and reviewed by Hu and Sotirov (2018), that solves AQSPP for directed
acyclic graphs. This algorithm re-writes the original graph according to the
linearization of adjacent quadratic costs. Thus, the optimal path can be found
on the linearized graph through traditional SPP algorithms. For the sake of
notation, this approach will be referred as the Linearization Algorithm for the
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following sections. Another benchmark approach is formulating the AQSPP as
a quadratic problem, such as described in Chapter 2 with a standard solver to
perform the optimization.

Figure 4.2 presents the solution time for all studied algorithms. The
figure is divided into two main plots due to differences in speed magnitude.
On the first plot, results are displayed for Linearization Algorithm, aqDijkstra
and Adapted aqDijkstra algorithms. On the second, results for aqA∗ and it’s
adapted version. The y-axis refer to total search-time and the x-axis to the
number of quadratic arcs on each instance.

Figure 4.2: Benchmark Analysis: Search-Time Comparison

In addition, Figure 4.3 presents relative improvements in speed between
the algorithms. This figure is also divided into two main plots due to differences
in magnitude. The first plot displays the speed ratio between the Linearization
approach and aqDijsktra. The other plot displays relative improvement of aqA∗

in relation to Linearization’s approach and aqDijkstra algorithm. The y-axis
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refer to speed ratio and the x-axis to the number of quadratic arcs on each
instance.

Figure 4.3: Benchmark Analysis: Relative Improvements

Numerical results seen on Figure 4.2 present the aqA∗ as the fastest
algorithm among all AQSPP algorithms tested. The speed ratios on Figure 4.3
measurements indicate that aqA∗ algorithm is 39 times faster than aqDijkstra
and 53 times faster than the Linearization method on average. Also, it seems
the ratios fluctuate around this average value, which could suggest a constant
ration. A possible explanation for the out-performance can be related to a
similarity of paths obtained from SPP and AQSPP algorithms, resulting in
very precise cost-to-go estimators, thus speeding up aqA∗.

Considering the benchmark with the Linearization approach and
Quadratic Programming, both were outperformed by the algorithms proposed
by this work. Results displayed on Figure 4.3 show aqDijkstra’s improvements
in speed from 10% to 50% in comparison to Linearization’s approach. Further
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analysis revealed that the time spent to linearize the graph is very signifi-
cant and becomes a downside to the Linearization algorithm, especially as
instances grow. Furthermore, the results from the Quadratic Programming
approach were not displayed due to solver’s inability to solve even the smallest
instance tested for this experiment.

Moreover, it can be noticed the similarity between original and adapted
versions, for both aqDijkstra and aqA∗. Figure 4.2 shows that, although
calculating quadratic costs on-the-run lowers search speed, the impact is
insignificant. Since the adapted versions have excellent benefits on memory
allocation and allow solving larger instances, their use is highly recommended
for applications where adaptation is viable resource.

4.4
Cost Variation Analysis

The second experiment measures the sensitivity of the algorithms to the
magnitude of quadratic costs. A variable α ∈ {10, 50, 100, 200} was set to
scale the quadratic costs, so that arc interaction cost would be α qijk. For each
value of α, four graph instances ranging from 490× 103 to 1× 106 nodes were
evaluated.

Figure 4.4 presents total search-time measurements for all approaches,
for each instance and α values. The y-axis defines the range of total search-time
among the approaches. Alpha values are defined on x-axis. The instances are
classified by number of nodes and labeled at the bottom. Results are displayed
on individual plots, one for each method studied.

DBD
PUC-Rio - Certificação Digital Nº 1913157/CA



Chapter 4. Computational Experiments 41

Figure 4.4: Quadratic Cost Variation Analysis: Search-Time Comparison

Results presented on Figure 4.4 suggest that aqA∗, aqDijkstra and
Linearization Algorithm are not significantly influenced by an increase of
quadratic costs. No apparent trends or unconventional behavior are seen on
the plots, confirming the insensitivity towards cost variation.

This result was particularly interesting for aqA∗, since it has a linear
cost-to-go estimators that would be expected to lose relevance as quadratic
costs increase. However, the α factors chosen for this experiment were not
sufficient to turn linear costs-to-go into bad estimators. In other words, even
with quadratic costs scaled-up by a factor of 200, the linear estimators still
provided great "guidance" for the search process. This behavior highlights the
robustness of the algorithm.
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4.5
Random Graph Instances Analysis

On this third experiment, the goal is to study the algorithms’ perfor-
mance considering randomly generated graph instances. The main idea is to
identify with this experiment how random changes on graph topologies and
arcs costs impact the search process. The methods used to build the instances
are known as Erdös-Rényi and Configuration Model and have been widely used
in the technical literature.

For the Erdös-Rényi method, it was defined p = 0.8 to ob-
tain very connected instances and vary the number of nodes n ∈
{100, 150, 200, 250, 300, 350, 400}. For each configuration (n, p), 100 random in-
stances were generated. Costs for arcs and quadratic arcs were also randomly
chosen from uniform distribution, so that (qijk, cij) ∼ Unif(ξ) | ξ ∈ [0, 1].

In addition, on the Configuration Model, the node degrees were fixed to
8 and vary the number of nodes n ∈ {150×103, 200×103, 250×103, 300×103}.
Similarly, 100 random instances were generated with cij and qijk draw from an
Unif(ξ) | ξ ∈ [0, 1].

Figure 4.5 present the compiled results from this experiment. The plots
on the top display the search times for each algorithm and instance size
tested, considering the 100 different topologies generated with Erdös-Rényi
method. The same results are displayed for the instances generated using the
Configuration Model on Figure 4.6.
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Figure 4.5: Analysis of Erdös-Rényi Instances: Search-time spread

The analysis starts by looking at the results from instances generated
with the Erdös-Rényi method. Figure 4.5 presents noticeable variation in
search-time for each one of the studied algorithms. Results for aqA∗ and
aqDijkstra showed very low and similar search-times through the instances.
This can be explained by the high connectivity of Erdös-Rényi instances. Since
p was set 0.8, there is a high probability the source node is connected to the
target node, or that the shortest path contains only few nodes. As consequence,
the number of nodes needed to be visited becomes small, shortening the search
process.
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Furthermore, magnitude of results highlight differences of the Lineariza-
tion technique, in comparison to aqA∗ and aqDijkstra. This is primarily caused
by the time spent to build the linearized graph. Since the number of quadratic
arcs is large, performing the linearization is very time-consuming and becomes
a drawback to this approach.
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Figure 4.6: Analysis of Configuration Model Instances: Search-time spread

Results from the Configuration Model, displayed in Figure 4.6, suggest
that the instance size and the observed variance are positively correlated,
which is better noticed in aqDijkstra and Linearization’s approach. It can also
be recognized a positive tendency of growth in the search time that follows
instances sizes, as expected.

Furthermore, data presented indicate that the aqA∗ exhibits much less
variance thus resulting in more consistent and predictable search time for
instances generated with the Configuration Model. This becomes more evident
in contrast to aqDijkstra results, which demonstrate greater variance and
search time magnitude. It can be argued that these results reaffirm the role
of the backward step on providing good cost-to-go estimates and consistently
speeding up the search process.

4.6
Stress Analysis

A final experiment was designed to stress out search capabilities on very
large instances, ranging from 64 × 106 to 576 × 106 quadratic arcs. Since
real applications may require path search on immense instances, studying
algorithms’ performances over increasingly larger graph instances can provide
meaningful insights.

Figure 4.7 displays the results from these experiments. The first presents
the search-time measurements for the Linearization Algorithm, aqDijkstra and
it’s adapted version. The y-axis defines search-time and the x-axis defines
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the number of quadratic arcs on each instance. The second follows the same
structure, but compile results for aqA∗ and it’s adapted version.

Figure 4.7: Stress Analysis: Search-Time Comparison

Results are presented on Figure 4.7 and show that none of the non-
adapted algorithms were able provide solutions for all instances, due to memory
problems. Since the methods assume a pre-existing structure that maps
adjacent arcs into quadratic costs, storing this data can become problematic as
the sizes of instances increase. Furthermore, aqDijkstra and aqA∗ have internal
data structures to store relevant data throughout the search process, which also
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requires memory space. The Linearization’s approach had even higher demand
for memory allocation since there was a need to store the linearized graph.

Overall, aqA∗ achieved better results, being able to solve a graph instance
with 432 × 106 quadratic arcs. Linearization Algorithm and aqDijkstra Algo-
rithm had somewhat similar extensions, solving instances up to 309× 106 and
255× 106 quadratic nodes, respectively.

In contrast, the adapted versions of aqDijkstra and aqA∗ were able to
solve all instances tested, as it is presented on Figure 4.7. Since quadratic
calculations are made throughout the search, these algorithms do not require
excessive memory space, allowing them to properly handle increasingly larger
instances. As expected, adapted aqA∗ remained the faster approach, solving
the AQSPP in 27.48 seconds on a graph with 9× 106 nodes, 36× 106 arcs and
576× 106 quadratic arcs.
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5
Application

This chapter provides two applications of transmission line routing to
highlight the use of the methodology developed in this dissertation. The
first application is an illustrative example designed to ease understanding
towards the decision-process of SPP and AQSPP algorithms and point out
their differences. Then, a real application is presented for the routing of a future
transmission line in Brazil, connecting substation Poções III and substation
Medeiros Neto II. This last case explores the benefits of AQSPP formulation
on real studies and discusses how they could improve planning practices.

5.1
Illustrative Example

The first example describes the search process of ASQPP and SPP
algorithms on a simple graph. The instance comes from a 3 X 3 matrix,
resulting into 9 nodes. Considering the number of neighbors as 8, the final
graph would have 40 undirected arcs. Quadratic costs are given and count 200
adjacent arcs. The list of linear and quadratic costs be found on appendix.

5.1.1
Spatial Data Setup

According to the methodology described on Chapter 3, the initial step
is the Spatial Data Setup. On this example, the final cost map is considered
given, thus assuming the steps described on Sections 3.1, 3.1.1 and 3.1.2 were
previously performed. The final cost map is displayed on Figure 5.1. This map
is then converted into the weighted graph shown in Figure 5.2, following the
conversion process described on Section 3.1.3.
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Figure 5.1: Cost Map Figure 5.2: Conversion to Graph

5.1.2
Route Optimization

In following, the route is optimized through the search-path algorithm
chosen. Figures 5.3 and 5.4 present the optimal paths resulted from SPP and
AQSPP approaches. The algorithm used for SPP was the Dijkstra Algorithm,
which is the traditional technique used on these types of application. In
contrast, the aqDijkstra Algorithm was used to solve the AQSPP.

Figure 5.3: SPP Path Figure 5.4: AQSPP Path

The difference is solution is evident on Figures 5.3 and 5.4. Since the
SPP approach only considers arc costs, it found the path which minimizes
the sum of arc costs. As expected, Table 5.1 presents lower total linear costs
for SPP solution. However, when curvature penalties are considered, the path
changes to the AQSPP solution assuming a straight line, connecting node 1
and 9 through node 5. This solution does not result in any deflection angles
throughout the route, thus not adding quadratic costs. As also expected, Table
5.1 presents higher quadratic costs for the SPP path.
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Table 5.1: Linear and Quadratic cost from SPP and AQSPP approaches

Algorithm Linear Costs Quadratic Costs Total
Costs

Dijkstra
[SPP] c14 +c47 +c78 +c89 = 5.64 q147+q478+q789 = 4.24 9.88

aqDijkstra
[AQSPP] c15 + c59 = 8.94 q159 = 0.00 8.94

5.2
Real Case

The methodology and novel routing approach also have been applied to
a real case of transmission line planning. The chosen line was a single-circuit
between substations Poções III and Medeiros Neto II operating at a 500kV
Voltage level. According to the official expansion plan, the TL is expected to
start its operation on 2026. The line was planned for expansion to improve
transfer capacity between Northeast and Southeast Regions.

Most of Brazil’s load comes from the Southeast, which has the biggest
cities and the most advanced industrial parks. This fact alone explains the need
for transmission expansion towards the region. Moreover, the Northeast region
has been retaining a great portion of generation expansion for the next years.
Its massive potential for renewable power, combined with significative drops
on solar and wind technology prices, attracted investors and big generation
projects.

The substation Poções III is named after the city Poções located in Bahia,
one of the 9 states of the Northeast region. Medeiros Neto II is also named
after a city, Medeiros Neto, which borders the Southeast state of Minas Gerais.
Studies from the Brazilian Planning Agency (EPE) describes the candidate line
as:

– Conductor: 6 x TERN (795 MCM)

– Line Reactance: 0.0140 [Ω/km]

– Line Resistence: 0.1917 [Ω/km]

– Flow Capacity: 1129 [MVA]

– Emergency Flow Capacity: 1267 [MVA]

– Instalation Cost: 1.234 [mi R$/km]

These parameters and cost estimation comes from different planning
studies performed by the agency. They are divided into 5 reports, which
covers technical, economic and environmental detailed analysis. Two reports
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are especially important for this application, the first (Technical Report R1,
2020) and the third (Technical Report R3, 2020). An initial evaluation of TL
candidates is done in R1 through the definition of power corridors, which is
a 10 to 20-kilometer area surrounding a preliminary route. Furthermore, R3
performs a detailed environmental-social analysis within the selected corridor
and proposes a final route.

The methodology proposed on this dissertation covers both reports and
improves the representation of technical constraints, thus providing more
realistic routes. Improving route calculation can bring benefits for the planner
and for the entrepreneur responsible for the future project. Realistic routes
allow better cost estimations since they mirror actual construction practices,
such as avoiding high deflection angles. On the builder perspective, better
candidate routes reduce uncertainty towards the actual building of the line,
thus reducing total spends. In addition, planning agencies can better assess
the real cost of transmission expansion, increasing energy market efficiency
through proper transmission tariffs.

In this context, the Brazilian System Planner has an import role deciding
which new power transmission lines must be built and where it will be located.
Every year, EPE publishes an official document describing the plan (PDE)
for expanding Brazil’s electrical system (EPE, 2020). The PDE indicates
the prospects for a 10-years expansion horizon, discussing requirements for
future generation and transmission infrastructure. According to the 2029 plan
(PDE29) more than 55,785 kilometers of transmission lines will be built within
the next 10 years, summing up to almost 73 billion reais of expected investment
in transmission infrastructure.

The following sections provide further an overview of the studied area
according to methodology guidelines and a detailed routing analysis from SPP
and AQSPP solutions.

5.2.1
Spatial Data Setup

As described on Chapter 3, the methodology starts with a selection
of relevant spatial data to the area studied. Initially, a tool called EPE
Web Map was used to cross spatial layers of transmission infrastructure and
environmental-social constraints. The tool was developed by EPE and works
as an interactive map. Due to its public nature, EPE Web Map is a free
resource. Furthermore, existing reports from the planner were also used to
filter data. Table 5.2 compiles the list of public data collected and assumptions
for additional costs. The values set to ∞ refer to spatial areas in which the
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route shouldn’t trespass. Section 3.1.2 details how they are modeled into the
cost maps.

Table 5.2: List of considered spatial constraints and associated costs assump-
tions

Spatial Constraint Source Year
Additional

Cost
[mi$/km]

Topological Map Embrapa 2005 1.23
Urban Areas IBGE 2018 9.44
Water Bodies IBGE 2015 12.55

Indigenous Land INCRA 2015 ∞
Conversation Units INCRA 2017 ∞

Rural Areas INCRA 2017 4.92
Federal Roads Embrapa 2018 0.00

Railways Embrapa 2018 0.00
Transmission Lines EPE 2021 0.00
Archaeological Sites IPHAN 2020 ∞

Figure 5.5 filters the available spatial data for the studied area, which
contains the two substations. One can first notice existing transmission in-
frastructure, environmentally protected areas, traditional communities, water
bodies, railways, federal roads, urban areas. According to their intersection
with the final studied area, these attributes are converted into additional con-
struction costs.
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Figure 5.5: Relevant spatial areas

Some specific areas should be cited due to their relevance and possible
interference on final route. The areas are the following: city of Poções, city of
Medeiros Neto, Environmentally Protected Area of Serra do Ouro, National
Park of Alto Cariri and Archaeological Sites close to Itamaraju city. The first
two cities are hold the substations being studied. Although the methodology
can identify higher construction costs within urban areas, the actual building
is very complex and, many times, require further modification on the proposed
route. Serra do Ouro is a 506 km2 protected area due to the environmental
richness of the region, such as portions of Atlantic Forests and dense hydrology.
National Park of Alto Cariri is also legally protect for environmental aspect,
thus laying out obstacles for construction.
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Figure 5.6: Final construction cost map

The tower costs described on Table 5.3 are relative to different steel
structures recommended for 500kV single-circuit lines. Each tower has specific
structures that allow it support a range of deflection angles. Naturally, higher
the angle is, the stronger the structure must be, increasing total cost. The costs
of Table 5.3 are estimated by the Midcontinent Independent System Operator
(MISO) and compiled on a Transmission Cost Estimation Guide (MISO
MTEP19, 2019). MISO is an independent, not-for-profit organization that
delivers power across 15 U.S. states and the Canadian province of Manitoba.

Table 5.3: Tower Relative Costs
Structure Angle Range Total Cost [k$] Relative Cost

[%]
Tangent 0º to 2º 176.6 1.00
Strain 2º to 30º 385.4 2.18

Dead-end > 45º 551.6 3.12

For this application, the relative costs are considered a proxy of curvature
penalties, according to angle range support. In other words, quadratic costs to
be considered by ASQPP are a function of deflection angles found throughout
the route. Angles are calculated using the equations presented on Section

DBD
PUC-Rio - Certificação Digital Nº 1913157/CA



Chapter 5. Application 55

3.1.4 of Chapter 3. In addition, function Γ(θijk) it is defined as Γ(θijk) =
cij+cij

2 × w(θijk) where w(θijk) is the relative cost of angle θijk.

5.2.2
Route Optimization

The optimal routes are displayed on Figure 5.7, along with the cost
map and spatial constraints’ layers. The graph instance built for this problem
had 15,497,220 nodes, 61,952,021 undirected arcs and 991,232,336 quadratic
arcs. Once this graph is built, SPP and AQSPP approaches can be used to
find the optimal route. For SPP, Dijkstra’s algorithm was used. Considering
results from Chapter 4, specifically from the stress test on Section 4.6, the
adapted version of aqA∗ algorithm presented itself as the best approach for
this application. The quadratic costs are defined according to the cost of Table
5.3 and assigned dynamically within the algorithm. The aqA∗ algorithm was
executed on the same machine used for computation experiment (section 4.1)
with total search-time of 4152 seconds.

Figure 5.7 displays the candidate routes on top of the full map. A
first look point to routes noticeably different, as it could be expected due
to the different formulations. It can be further noticed how the routes seem
to converge on departure and arrival and diverge on the middle segment of
the route. This initial evaluation point to a significant impact of AQSPP
formulation on routing decisions.
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Figure 5.7: SPP and AQSPP Optimal Routes

Moreover, Table 5.4 measures curvature aversion of each approach based
on direction shifts on the route. As described on 3.1.4, each direction shift
results on a specific deflection angle, which is penalized accordingly on ASQPP.
Results show almost six times less occurrences of 45º and a reduction of 90º
inflections by an order three. Both inflection angles are direct related to the
n = 8 criteria for node-neighborhood, as described on 3.1.3. Increasing n to
n = 16 or n = 32 would allow accessing lower angles, such as 30º or 15º
for example, allowing better representation of curvature penalties on AQSSP.
Although desirable, as n grows, so does the graph instance, making it harder
to store and optimize.

Table 5.4: Angle Deflection Overview
Algorithm 0º 45º 90º
Dijkstra
[SPP]

8689
(82.7%)

1731
(16.5%) 74 (0.8%)

aqA∗

[AQSPP]
10024
(96.6%) 326 (3.2%) 26 (0.2%)

Figures 5.8 and 5.9 zoom into departure substation Poções III and ar-
rival substation Medeiros Neto II, respectively. The departure region contains
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environmentally protected areas, highways, existing transmission infrastruc-
ture and an urban area representing the city of Poções. Since urban areas
are expensive to build, a straight-line pattern is seen on an attempt to mini-
mize cost. The overall intense reddish tonality of the cost map indicates high
construction costs related to terrain slope, which pushes both routes to seek
relatively close paths. The first 20 kilometers present similar tracing patterns,
with significant divergence afterwards. Initial impacts of curvature penalties
can be seen as AQSPP seeks longer straighter lines to avoid penalties. This
behavior is also evident on routes’ arrival at Medeiros Neto II. On Figure 5.9
only three inflections are seen on AQSPP route, in contrast to twelve on SPP
route.

Figure 5.8: 2D view of route departure (Poções II) and arrival (Medeiros Neto
III)
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Figure 5.9: 3D view of route departure (Poções II) and arrival (Medeiros Neto
III)

A major route detour can be observed on the middle section of the studied
area, as Figure 5.10 illustrates. The disparity suggests that ASQPP forced an
east-direction movement so it could benefit built large sections of straight lines
at lower construction costs, thus avoiding curvature penalties. These lower
costs are indicated by the bluish tonality of the cost map. Similarly, diagonal
movements of ASQPP are noticed on the bottom section of the area, aiming to
avail lower costs from a valley region. The route also contours an urban area,
as expected.

Figure 5.10: SPP and AQSPP route major divergence

Furthermore, one can explore the required contouring of Ibirajá city
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for even greater contrast of AQSPP and SPP routing decisions. Figure 5.11
displays a satellite view of the city and routes, along with the two individual
cost maps, one for each approach. Both routes follow the same guideline for
countering, sharing spatially-close vertices, but are significantly discrepant.
SPP attempt to minimize line length while avoiding high costs of urban areas,
resulted in unrealistic vertex selection, thus provoking several inflection angles.

In major contrast, AQSPP route presented smoother and realistic pat-
terns of routing, emulating real building decisions. The penalization of inflec-
tion angles allowed aqDijkstra to evaluate the cost-benefit of decreasing line
length and increasing curvature costs. This event strengthens the argument for
properly representing curvature penalties, as they played a key role in emulat-
ing actual building decisions.
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Figure 5.11: Contrast of AQSPP and SPP routes towards city contouring

Final results are presented on Table 5.5 as a summary of candidate’s
length, reference costs of construction and additional expenses (curvature
penalties). The reference costs were previously defined as 1.234 kR$/km
according to estimations presented on preliminary reports from the system
planner. Additional costs represent the total amount of curvature penalties for
the final route given by Dijkstra (SPP) and aqA∗ (AQSPP) algorithms. Notice
that quadratic costs are not natural outcomes of SPP, thus being calculated
after route optimization.

The result shows SPP route as the shortest candidate and AQSPP route
as the candidate with least curvature penalties. According to a traditional
perspective of TL routing, the SPP alternative is preferable. The line was 7.5
miR$ cheaper and 6.1 kilometers shorter than ASQPP route. However, once
quadratic costs are considered, additional expanses for the SPP route increase,
shifting preference towards AQSPP alternative. The total curvature penalties
for AQSPP route were 35.7 miR$, being three times lower than penalties for
SPP. This would represent a 8.6% increase in total construction costs.

Table 5.5: Linear and Quadratic cost from SPP and AQSPP approaches

Algorithm Distance [km] Reference Cost
[$]

Additional
Costs [$]

Dijkstra
[SPP] 330.8 408.2 111.3

aqDijkstra
[AQSPP] 336.9 415.7 35.7
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6
Conclusion and future work

This dissertation provides theoretical description of Adjacent Quadratic
Shortest Problems in the context of transmission line routing and proposes
an extension of Dijkstra’s (aqDijkstra) algorithm to solve AQSPP for graphs
with no improving cycle. Two improvements for the main approach are also
presented in this work: an adjacent quadratic version of A∗ with backward cost-
to-go estimation and an embedded calculation of adjacent quadratic costs. The
work also discusses in detail how AQSPP formulation can improve transmission
line routing methodologies and generate more realistic routes.

On the theoretical perspective, empirical evidence is presented and
suggests that aqDijkstra and aqA∗ can solve AQSPP in polynomial time. As
the graph instances increase in size, the search time ratio between Linearization
approach and aqDijkstra remains constant. This is also valid for aqA∗.

It is also shown through computational experiments that aqDijkstra
outperformed the algorithm proposed by Rostami, being 10% to 50% faster.
This is also valid for the proposed algorithm aqA∗, which was the fastest
approach among the ones studied, outperforming aqDijktra’s search speed by
an order of 40 on the benchmark analysis.

Further test results suggest that the a proposed algorithms also had great
performance under randomly generated instances, pointing to their robustness.
In addition, a major drawback of the Linearization Technique was identified
for highly connected graphs. This problem is related to the time it spent
performing the linearization.

Moreover, the algorithm’s seemed to be indifferent to adjacent quadratic
cost variation, which was already expected for aqDijkstra and an interesting
result for aqA∗. Results suggests that even for high quadratic-linear cost ratio,
the backward search is still deeply relevant to aqA∗.

Applications presented in this work allowed visual evaluation of the
impact of quadratic costs on routing. As expected, routes given by aqA∗ were
significantly different from Dijkstra’s, reducing the number of high deflection
angles on the route. Results show almost six times less occurrences of 45º
and a reduction of 90º inflections by an order three. Since neighbor criteria of
n = 8 limits the angles to 0º, 45º and 90º angles, future works can explore how
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changing the criteria to n = 16 or n = 32 can improve the final result.
The content of this dissertation provides an active contribution to the

scientific community in terms of graph theory and spatial routing research.
Results from the computational experiment enriches AQSPP research and mo-
tivates further works. Moreover, modeling tower-angle constraints as quadratic
cost tackles a real technical problem and brings innovation to transmission line
routing methodologies.

Future work should be done to consolidate even more this area of
study. Possible works can explore the impact of different quadratic cost
functions, evaluate upsides and downsides for increasing node-neighborhood
criteria, benchmark ASQPP routes with other known routing methodologies
for different applications, such as gas pipeline routing, and other relevant
subjects. The main recommended themes for research are:

– Increase node-neighborhood criteria to n = 16 or n = 32 to access smaller
angles

– Explore AQSPP formulation for different applications, such as gas-
pipeline routing

– Study the behavior of tower siting algorithms on SPP and AQSPP
alternatives

– Evaluate the real cost of AQSPP routes through specialized costing
software
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