Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: A REALIZAÇÃO DE ALGUNS SUBGRUPOS DISCRETOS DO GRUPO SPIN NA ÁLGEBRA DE CLIFFORD
Autor: GIOVANNA LUISA COELHO LEAL
Colaborador(es): NICOLAU CORCAO SALDANHA - Orientador
Catalogação: 09/AGO/2021 Língua(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=54112&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=54112&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.54112
Resumo:
A álgebra de Clifford é uma álgebra associativa que pode ser realizada matricialmente. O grupo Spin é uma superfície contida na álgebra de Clifford e fechada por multiplicação. Estudamos os geradores de tal grupo, assim como do grupo finito gerado pelos elementos agúdos e o grupo Quat, ambos grupos de matrizes e subconjuntos do grupo Spin. Uma permutação no grupo de permutações, pode ser expressa como uma palavra reduzida, por meio de geradores de Coxeter. Os mapas acute e grave nos fornecem elementos no grupo finito, já mencionado, gerado pelos elementos agúdos, a partir das palavras reduzidas de uma permutação. Um elemento da álgebra de Clifford pode ser escrito como uma combinação linear de elementos do grupo Quat, onde o coeficiente independente é conhecido como parte real. Estudamos resultados que relacionam as características de uma permutação no grupo de permutações, com o elemento a ela relacionado na álgebra de Clifford.
Descrição: Arquivo:   
NA ÍNTEGRA PDF