Título: | ADVANCEMENTS IN TIME SERIES MODELING: USING MODERN OPTIMIZATION AND ROBUSTNESS TECHNIQUES WITH SCORE-DRIVEN MODELS | ||||||||||||
Autor: |
MATHEUS ALVES PEREIRA DOS SANTOS |
||||||||||||
Colaborador(es): |
DAVI MICHEL VALLADAO - Orientador |
||||||||||||
Catalogação: | 13/JUN/2024 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=67022&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=67022&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.67022 | ||||||||||||
Resumo: | |||||||||||||
The study of time series plays a pivotal role in the decision-making
process, giving rise to numerous methodologies over time. Within this context,
score-driven models emerge as a flexible and interpretable approach. However,
due to the significant number of parameters involved, the estimation process
for these models tends to be complex. To address this complexity, this
study aims to evaluate how the adoption of modern optimization techniques
impacts the final performance of the model. Beyond simplifying the parameter
estimation process, this shift in paradigm allows for the integration of new
techniques, such as robust optimization, into the model formulation, thereby
potentially enhancing its performance. The SDUC.jl package, which facilitates
the adjustment and prediction of score-driven models based on unobservable
components using modern optimization techniques, represents one of the main
contributions of this study. By utilizing well-known time series to illustrate its
functionality and monthly electrical load data from the Brazilian system, the
study was able to demonstrate the flexibility of the package and its robust
performance, even during periods of regime change in the data, thanks to the
application of robustness techniques.
|
|||||||||||||
|