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Abstract

Alves Pereira dos Santos, Matheus; Valladão, Davi Michel (Advisor). Ad-
vancements in Time Series Modeling: Using Modern Optimiza-
tion and Robustness Techniques with Score-Driven Models. Rio
de Janeiro, 2024. 97p. Dissertação de Mestrado – Departamento de En-
genharia Industrial, Pontifícia Universidade Católica do Rio de Janeiro.

The study of time series plays a pivotal role in the decision-making
process, giving rise to numerous methodologies over time. Within this context,
score-driven models emerge as a flexible and interpretable approach. However,
due to the significant number of parameters involved, the estimation process
for these models tends to be complex. To address this complexity, this
study aims to evaluate how the adoption of modern optimization techniques
impacts the final performance of the model. Beyond simplifying the parameter
estimation process, this shift in paradigm allows for the integration of new
techniques, such as robust optimization, into the model formulation, thereby
potentially enhancing its performance. The SDUC.jl package, which facilitates
the adjustment and prediction of score-driven models based on unobservable
components using modern optimization techniques, represents one of the main
contributions of this study. By utilizing well-known time series to illustrate its
functionality and monthly electrical load data from the Brazilian system, the
study was able to demonstrate the flexibility of the package and its robust
performance, even during periods of regime change in the data, thanks to the
application of robustness techniques.

Keywords
Time Series; Score-Driven Models; Robust Optimization.



Resumo

Alves Pereira dos Santos, Matheus; Valladão, Davi Michel. Avanços na
modelagem de séries temporais: utilizando otimização moderna
de técnicas de robustez com modelos score-driven. Rio de Janeiro,
2024. 97p. Dissertação de Mestrado – Departamento de Engenharia
Industrial, Pontifícia Universidade Católica do Rio de Janeiro.

O estudo de séries temporais desempenha um papel fundamental no
processo de tomada de decisão, dando origem a inúmeras metodologias ao longo
do tempo. Dentro desse contexto, os modelos score-driven surgem como uma
abordagem flexível e interpretável. No entanto, devido ao número significativo
de parâmetros envolvidos, o processo de estimação desses modelos tende
a ser complexo. Para lidar com essa complexidade, este estudo tem como
objetivo avaliar como a adoção de técnicas modernas de otimização impacta
o desempenho final do modelo. Além de simplificar o processo de estimação
de parâmetros, essa mudança de paradigma permite a integração de novas
técnicas, como a otimização robusta, na formulação do modelo, potencialmente
aprimorando seu desempenho. O pacote SDUC.jl, que facilita o ajuste e a
previsão de modelos impulsionados por escores com base em componentes
não observáveis usando técnicas modernas de otimização, representa uma das
principais contribuições deste estudo. Ao utilizar séries temporais conhecidas
para ilustrar sua funcionalidade e dados mensais de carga elétrica do sistema
brasileiro, o estudo foi capaz de demonstrar a flexibilidade do pacote e seu
desempenho robusto, mesmo durante períodos de mudança de regime nos
dados, graças à aplicação de técnicas de robustez.

Palavras-chave
Séries Temporais; Modelos Score-Driven; Otimização Robusta.
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1
Introduction

Given the broad applicability of time series analysis, it plays a crucial

role in decision-making processes across various fields of knowledge, including

finance, energy, epidemiology, among others. Time series analysis can serve as

the final output of an analysis or be utilized to generate future scenarios for op-

timization problems, thereby contributing significantly to the decision-making

process. Consequently, numerous methodologies for time series forecasting have

been developed over time, such as the Autoregressive Integrated Moving Av-

erage (ARIMA) model [1] and the State Space model [2]. While these models

represent two of the most commonly employed approaches, they also exhibit

some significant limitations.

ARIMA assumes that the data follows a Gaussian distribution, which

constitutes a significant limitation of this model type. Additionally, it neces-

sitates the time series to be stationary, implying that its mean and variance

should remain constant over time. This requirement can be addressed by em-

ploying transformations to render the data stationary. In essence, as implied

by the model’s name, stationarity is achieved through the integration of the

time series.

On the other hand, State Space models are capable of directly handling

non-stationary time series by representing their dynamics through unobserved

components. While these models overcome one of the problems of ARIMA,

they also assume that the data follows a Normal distribution, thus resulting

in the same limitation as described previously.

The generalized autoregressive score (GAS) or score-driven models

(SDM) framework, independently developed by Creal, Koopman & Lucas[3]

and Harvey[4], emerged as a paradigm shift concerning the assumption of

data normality inherent in various models. This class of models provides a
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flexible alternative to time series modeling by enabling the derivation of mod-

els with time-varying parameters, thereby accommodating various discrete or

continuous distributions beyond the Gaussian assumption. This flexibility ad-

dresses the limitations of ARIMA and State Space models, thus allowing for

the application of these models in a wide array of contexts.

The version proposed in [3], referred to as GAS(p, q), assumes that

the dynamics of the time-varying parameters follow an ARMA-like process.

While it is generalizable to different distributions, this model still requires

the data to be stationary. However, Harvey[4] proposed the utilization of

unobserved components (UC) to characterize the dynamics of the parameters,

akin to the approach taken by State Space models. This latest version creates

models capable of overcoming both aforementioned limitations, rendering them

applicable to various problem types. Therefore, this work will primarily focus

on this class of models, which will be referred to as UC score-driven models.

In general, the estimation of score-driven models is conducted using the

maximum likelihood method. However, analytically evaluating the required

derivatives to obtain maximum likelihood is a demanding and challenging

task. Therefore, the most common solution is to numerically evaluate these

derivatives using a global optimization method such as Nelder-Mead [5] and

L-BFGS [6].

Despite the widespread use of these methods, it is noteworthy that their

methodologies originated from a time when optimization techniques were much

more limited compared to today. With advancements in computational capac-

ity and optimization, exact methods are no longer a predominant concern.

Therefore, framing time series models such as the score-driven framework as

mathematical programming problems enables the utilization of state-of-the-art

optimization techniques.

Moreover, representing these models as optimization problems opens

doors to the utilization of various techniques from the field of optimization
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that have the potential to enhance the performance of the models. In this

context, Bertsimas & Dunn[7] stand out as primary authors. In their book,

they demonstrate how different optimization techniques can be incorporated

into the formulation of machine learning models to enhance their performance

across various aspects.

1.1
Literature Review

The flexibility offered by score-driven models, regarding both data dis-

tribution and dynamic representation, makes it a versatile framework that

has been successfully employed in various domains. In risk analysis, they are

utilized for forecasting extreme financial risk [8], estimating the probability

of zero returns [9], and modeling risk metrics such as expected shortfall and

value at risk (VaR) [10]. In the energy sector, they are applied to futures

hedging of crude oil and natural gas [11], investigating different VaR forecasts

for daily energy commodities returns [12], and simulating long-term joint sce-

narios for multivariate wind power generation [13]. In finance, score-driven

models have been used to include random shifts in the process of modeling

stock returns volatility [14], analyze global equity market co-movement [15],

and measure the association between asset returns [16]. In the retail sector,

these models have been applied to predict both lumpy and intermittent de-

mand [17] and short-term demands [18]. Score-driven models can be applied to

many other fields, which can be found in the online repository of GAS models

(http://www.gasmodel.com).

An interesting observation about all the papers cited above is that [17] is

the only paper that considers a score-driven model based on unobserved com-

ponents (UC). This highlights that, despite its limitations, GAS(p, q) emerges

as the most commonly used version of the score-driven framework. The pref-

erence for ARMA-type dynamics may be associated with the characteristics

of the fields where these models are applied, where the assumption of data
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stationarity is reasonable.

One possible consequence of this phenomenon is the availability of

implementations of these models. Open-source packages like GAS [19] and

ScoreDrivenModels.jl [20], available in R [21] and Julia [22] languages respec-

tively, allow for the use of score-driven models, but they mainly focus on the

GAS(p, q) version or some special cases of it, as these are the most commonly

used versions of the score-driven framework. The Time Series Lab [23], in its

score edition, is the only implementation found that allows for the definition

of UC models. However, the fact that the latter is a commercial software may

limit its accessibility and use.

As previously mentioned, traditionally, including the implementations

mentioned earlier, score-driven models are estimated using methods that no

longer represent the state of the art in optimization. By representing models as

mathematical programming problems, Bertsimas & Dunn[7] not only enables

the adoption of more modern optimization techniques for model estimation

but also facilitates the consideration of various methods in this field in the

model formulation.

As an example of methods discussed in [7], one can mention the use

of integer optimization to perform explanatory variable selection, resulting in

sparse models. Additionally, this method can serve as an automatic means

to define model orders. Another intriguing possibility is the utilization of

robustness techniques such as regularization and others, which have the

potential to enhance accuracy.

Focusing on the latter, robust optimization techniques have garnered

significant interest across various applications due to the possibility of making

optimal decisions under the worst-case scenario within a user-defined uncer-

tainty set. Although this field has gained greater notoriety in the last 15 years,

its earliest publication dates back to the 1970s [24], wherein a linear opti-

mization problem was proposed, with its optimal value being feasible in all
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potential scenarios within a convex set. However, in exchange for providing

solutions accommodating all potential realizations of uncertainty parameters,

this model tends to produce overly conservative optimal solutions from a prac-

tical standpoint.

In an effort to mitigate the excessive conservatism of the initial method,

several alternative approaches were proposed in the subsequent years. This

includes the work of Ben-Tal & Nemirovski[25], who introduced a set of

ellipsoidal uncertainty sets, and Bertsimas & Sim[26], who pioneered the

concept of an uncertainty "budget," enabling the control of the solution’s

conservatism level. More recently, Fernandes et al.[27] proposed a robust

adaptive data-driven solution to the portfolio problem.

Bertsimas & Paskov[28] successfully applied the principles of robust

optimization to the realm of time series modeling. By employing the concept

of optimization grounded on the worst-case scenario within an uncertainty set,

they transformed an AR(p) model into one resilient to regime changes in the

data.

Given these considerations, the primary objective of this study is to ex-

plore the benefits derived from representing UC score-driven models as opti-

mization problems. This exploration encompasses not only the conventional

formulation of these models but also their integration with features from opti-

mization methodologies. While numerous features could be incorporated into

the model’s formulation, the focus here lies on a robustness technique that aims

to mitigate the impact of regime changes in the data. As a result of this en-

deavor, an open-source package will be developed in the Julia language. This

package will enable users to estimate various UC score-driven models using

modern optimization techniques. This initiative has the potential to address a

gap in the literature and promote the utilization of UC score-driven models in

a wider range of applications.
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1.2
Illustrative Example

To illustrate a key aspect and anticipate some results of this work,

consider the example described below. One of the robustness techniques that

will be included in the model’s formulation, and will be discussed in detail in

Chapter 2, aims to make the model robust against regime changes in the data

[28]. With that in mind, monthly data of electric load from Brazil’s North

system was selected. The choice of this data is based on the regime change

induced by the COVID-19 pandemic starting in 2020. The purpose of this

example is to compare the accuracy of predictions generated by the robust

score-driven model against those of its non-robust counterpart.

To model this data, a Gaussian UC score-driven model was proposed,

where only the mean parameter varies over time. The selected dynamics for

this parameter included a local linear trend model along with a stochastic

seasonal component.

To estimate this model, its formulation as an optimization problem is

done as in Equation 1-2. It is important to highlight that all time-varying

parameters are conditioned on their own realizations in the directly preceding

period. The notation used to indicate this fact is given by the sub index t|t−1.

Trying to promote a deeper understanding about this model’s formulation,

each of its decision variables and constraints will be described bellow.

– µ: A vector of length T (the number of observations in the time

series) representing the time-varying mean parameter of the Normal

distribution.

– σ2: The fixed variance parameter of the Normal distribution.

– m: A vector of length T representing the level component.

– b: A vector of length T representing the slope component.

– S: A vector of length T representing the seasonal component.
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– γ, γ∗: Two matrices with dimensions equal to the number of harmonics

per series size, representing the coefficients of the harmonics in the

seasonal component dynamics.

– κm, κb, κS: Represent the variability of the level, slope, and seasonal

components, respectively.

At this juncture, it is important to emphasize that, in the formulation

presented in Equation 1-2, alongside the decision variables mentioned earlier,

there exists a term st which is not a decision variable of the model. In actuality,

st, representing the scaled score (further elaboration on this will be provided in

Chapter 2), is a function of the observed values (yt) and the parameters of the

Normal distribution. Hence, the most comprehensive and accurate notation for

this term would be st(yt−1, µt−1|t−2, σ2). However, for the sake of simplicity in

notation, the scaled score will consistently be denoted as st.

To further comprehend the formulation of this model, it is imperative

to discuss each of its constraints, which elucidate the dynamics of the time-

varying parameter. The initial constraint pertains to the conditional mean,

linking it in each time period to the sum of the level and seasonal components.

The subsequent two constraints delineate the dynamics of the level component,

which in this instance follows a local linear trend dynamic. Lastly, the final

two constraints govern the seasonal dynamics of the model, dictated by the

sum of stochastic trigonometric terms.

l(yt; µt|t−1, σ2) = −1
2 log(2πσ2)− (yt − µt|t−1)2

2σ2
(1-1)

Finally, the expression shown in Equation 1-1 represents the log-likelihood

function for the Normal distribution. Remarkably, the model depicted in

Equation 1-2, when optimized, provides a maximum likelihood estimate of

the distribution parameters. It is noteworthy to emphasize that this approach

allows for the incorporation of regularization or other robustness techniques

with certain adjustments in the objective function and/or constraints.
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Min
µ,m,b,S,γ,γ∗

κm≥0,κb≥0,

κS≥0,σ2>0

−
T∑

t=1

l(yt; µt|t−1, σ2)

s. t. µt|t−1 = mt|t−1 + St|t−1, ∀t = 1, · · · , T

mt|t−1 = mt−1|t−2 + bt−1|t−2 + κmst−1, ∀ = 1, · · · , T

bt|t−1 = bt−1|t−2 + κbst−1, ∀t = 1, · · · , T

St|t−1 =
6∑

j=1

γj,t|t−1, ∀t = 1, · · · , T

[
γj,t|t−1

γ∗
j,t|t−1

]
=

[
cos

( 2πjt
12

)
sin

( 2πjt
12

)
− sin

( 2πjt
12

)
cos

( 2πjt
12

)] [
γj,t−1|t−2

γ∗
j,t−1|t−2

]
+

[
κSst−1

κSst−1

]
, ∀t = 1, · · · , T

(1-2)

To illustrate the effectiveness of the robustness technique, both the UC

score-driven model formulated in Equation 1-2 and its robust counterpart (to

be described later) were estimated using the aforementioned data. The training

set comprised observations from the beginning of 2014 until April 2020, while

the test set included the 12 subsequent observations. Figure 1.1 displays out-

of-sample results.

Figure 1.1: Illustrative example based on the model depicted in Equation 1-2.

It is evident that the two models exhibit markedly different out-of-sample

performance. While the robust model produced predictions that closely aligned

with the actual observations, its non-robust counterpart generated predictions
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with a decreasing trend that was not observed. This straightforward exper-

iment demonstrates the potential benefits, in terms of model accuracy, that

the incorporation of robust optimization techniques in the model formulation

can yield, underscoring the potential relevance of this work to the field of time

series analysis.

This document is structured as follows. In Chapter 2, the theoretical

background considered in this work will be presented. Section 2.1 focuses on

the main aspects associated with the UC score-driven formulations, while Sec-

tion 2.2 discusses the robustness techniques considered in this work. In Chapter

3, the discussion will be focused on the proposed methodology, beginning with

how a UC score-driven model can be formulated as an optimization problem.

Section 3.1 provides a similar discussion about the robustness feature included

in the model’s formulation. Subsequently, Section 3.2 delves into the SDUC.jl

(score-driven unobserved components) package itself, while considering some

examples to illustrate its operation. In Chapter 4, an experiment will be per-

formed to evaluate the package’s performance during regime changes periods.

Finally, in Chapter 5, the conclusions and future works are discussed.



2
Theoretical Background

This chapter covers two separate subjects that will be reviewed individu-

ally. Firstly, the formulation of score-driven models (SDM) will be discussed in

detail. Subsequently, the optimization robustnes methodology and its potential

contributions to time series modeling will be explored.

2.1
Unobserved components score-driven models

This section provides a thorough review of the UC score-driven frame-

work, starting with its formulation and rationale. Additionally, a brief overview

of the primary unobserved components used in the model will be presented.

The section concludes with a discussion on the analysis of residuals and the

prediction procedure.

2.1.1
Model Formulation

Score-driven models belong to the class of observation-driven time-

varying parameter models, as classified by Cox et al.[29]. It is worth noting

that well-established observation-driven models, such as GARCH [30], can be

regarded as particular cases of SDM.

Like other observation-driven models, the SDM has the advantage of con-

sidering likelihood functions whose evaluation is straightforward. Moreover,

these models allow for the formulation of non-Gaussian distributions, which

can be continuous or discrete. This flexibility enables the incorporation of com-

plex dynamics, including asymmetry, long memory, and heavy tails, through

appropriate distribution specifications [3].

The selection of the predictive or conditional probability distribution is

crucial in the model formulation. Let yt denote a univariate time series of

interest, ft|t−1 represent the vector of time-varying parameters for the pre-
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dictive distribution, and θ be a vector of fixed parameters. The available in-

formation at time t is denoted by Yt−1 and Ft−1, where Y′
t = {y1, · · · , yt}

and F′
t = {f0, f1|0, · · · , ft|t−1}. In the score-driven framework, a satisfactory

modeling of yt is achieved by considering the conditional or predictive densi-

ty/probability function given by:

yt ∼ p(yt|ft|t−1, Yt−1, Ft−1; θ). (2-1)

Once the predictive distribution is determined, the dynamics of the time-

varying parameters must be defined. Score-driven models offer flexibility in

this regard, allowing for the specification of ARMA-like processes (GAS(p, q)

models) or the inclusion of stochastic unobserved components, such as level

and seasonality, known as unobserved components score-driven models. This

versatility makes these models applicable to a wide range of problems. In this

work, the focus will be on the latter.

For the model formulation, a local level model will be considered:

h(ft|t−1) = mt|t−1

mt|t−1 = mt−1|t−2 + κs̃t−1, κ ≥ 0
(2-2)

Here, h(·) represents an appropriate link function that ensures the es-

timates of the parameter ft|t−1 adhere to their respective domains. In other

words, if ones consider that the time-varying parameter ft only assumes posi-

tive values, simply relying on the random walk dynamic of the mt component,

as shown in Equation 2-2, is not sufficient to guarantee the domain of the

parameter. The most common solution to this issue is to apply an appropri-

ate link function h(·). For this example, a suitable solution would be to set

h(·) = log(·), which would result in

ft|t−1 = emt|t−1

mt|t−1 = mt−1|t−2 + κs̃t−1, κ ≥ 0.

(2-3)

With the formulation presented in Equation 2-3, ft|t−1 will assume
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positive values regardless of the value of the mt|t−1 component. It is important

to note that s̃t represents the scaled score obtained when considering h(·).

Irrespective of the link function utilized, Equation 2-2 underscores that

the time-varying parameter is contingent upon an unobserved component

characterized by a random walk dynamic. Furthermore, the stochasticity of

the mt component is influenced by s̃t, given that κ is a fixed parameter. It

is noteworthy that this formulation permits the estimation of a deterministic

component by setting κ = 0. The scaled score function, under the assumption

of the identity link function, st, is defined as:

st = Rt · ∇t, (2-4)

where ∇t is the score function of the predictive distribution given by

∇t =
∂ ln

(
p(yt|ft|t−1, Ft−1, Yt−1, θ)

)
∂ft

. (2-5)

It is important to emphasize that when the link function h(·) is not the identity,

the scaled score function is denoted as s̃ to accommodate the influence of the

link function.

The utilization of the score function to update the time-varying param-

eters is rooted in its definition as the steepest ascent direction for enhancing

the local fit of the model in terms of the likelihood at time t, given the current

parameter [3]. Unlike other observation-driven models in the literature, the

fact that the score function depends on the entire distribution and not just

the first and second moments provides the score-driven model with a superior

representation of the distribution’s uncertainty in the update mechanism.

The term Rt in Equation 2-4 represents a scaling matrix. Various

specifications of this matrix can affect the properties of the model. In many

instances, a prevalent approach to defining this scaling matrix relies on the

variance of the score [3]. An intriguing aspect of this scaling choice is that the

variance of the score function corresponds to the Fisher information matrix
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(I) [31]. Consequently, the scaled score can be reformulated as:

st = I−d
t|t−1 · ∇t, d = 0,

1
2 , 1 (2-6)

The scale parameter d associated with the Fisher Information matrix is

typically utilized to introduce a bit more flexibility in defining the scaled score,

taking values from the set
{
0, 1

2 , 1
}
. When d = 1 or d = 0, I−d

t|t−1 is well-defined.

For d = 1
2 , I

− 1
2

t|t−1 results from the Cholesky decomposition of I−1
t|t−1 [3].

Understanding the interpretation of each term associated with st clarifies

the effect of the scale parameter d. For d = 1, the scaled score has a constant

unit variance. On the other hand, setting d = 0 assigns the entire variance of

the score function to st. Finally, d = 1
2 represents an intermediate scenario.

Finally, the estimation of the vector of fixed parameters (θ) in these

models is carried out via maximum likelihood. Obviously, this framework

allows for the specification of many different models, considering dynamics

other than the one presented here. Therefore, in addition to understanding the

rationale behind the model formulation, it is also necessary to comprehend the

formulation of the components. The next subsection will provide a brief review

of the main unobserved components used.

2.1.2
Unobserved Components

As mentioned previously, the entire dynamics of time-varying parameters

is driven by unobserved components. The choice of these components offers a

wide range of possibilities for formulating the model, making knowledge about

their structures and how to identify them in the data essential. This subsection

aims to briefly review some components that can be included in the score-

driven formulation and the main ways in which they can be represented. The

discussion will also cover the intuition behind when each component can be

used to better represent data behavior. It is important to highlight that, as

the score-driven framework considers components to always be stochastic, this
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review will focus more on this type of component. More detailed descriptions

of many of the models discussed can be found in [2].

2.1.2.1
Trend

The trend component in a time series signifies the long-term systematic

movement or direction of the data. It is instrumental in capturing patterns

such as growth or decline that occur over extended periods, largely unaffected

by short-term fluctuations. This persistence renders the trend a smoother

representation of the data compared to other components.

Various models have been proposed to address different levels of com-

plexity for a stochastic trend. One of the simplest models is the local level

model, which posits that the trend component follows a random walk process.

It comprises a solitary latent state variable, commonly denoted as the level,

which represents the present value of the trend.

A straightforward extension of the local level model, the random walk

with drift model, posits that the trend undergoes a steady change over time.

This adjustment enables the representation of time series with a trend that

maintains a constant, non-zero slope. This pattern is attained by incorporating

a deterministic component, referred to as the drift, into the random walk

process. Regarding the predictive distribution in Equation 2-1, this model is

mathematically delineated in the score-driven framework as:

h(ft|t−1) = mt|t−1

mt|t−1 = mt−1|t−2 + b + κs̃t−1, κ ≥ 0.

(2-7)

While this model offers a notable extension compared to the local level model,

it still does not account for variations in the rate of change of the trend.

An intuitive solution to this limitation is to allow the drift to vary over

time. The local linear trend model achieves this by assuming that the trend

follows a random walk with a drift for the level, and simply a random walk for

the slope component. This modification enables capturing changes in both the
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level and the rate of change of the trend (slope), making it the most versatile

model discussed here. Mathematically, this model can be represented as:

h(ft|t−1) = mt|t−1

mt|t−1 = mt−1|t−2 + bt−1|t−2 + κms̃t−1, κm ≥ 0

bt|t−1 = bt−1|t−2 + κbs̃t−1, κb ≥ 0.

(2-8)

It is important to note that since this model has two stochastic compo-

nents, it is necessary to consider two distinct fixed parameters, denoted as κ,

one for each component.

Although these three models capture series with various types of trends,

they all assume that this component exhibits non-stationary behavior. There-

fore, to model temporal data with stationary characteristics, it is necessary to

turn to another model. The most common option for this scenario is to con-

sider that the trend component follows an AR(1) process and constrain the

coefficient of this process to enforce stationarity. Mathematically, this model

can be formulated as:

h(ft|t−1) = mt|t−1

mt|t−1 = ω + ϕmt−1|t−2 + κs̃t−1, −1 < ϕ < 1, κ ≥ 0.

(2-9)

It is important to highlight that in this model, the inclusion of the

constant ω is necessary to enable component m to have a non-zero conditional

mean. Another significant aspect of using autoregressive processes in UC

models is that they can be included in a local level model, for example, to

help the model deal with short-term dependencies that would not be well

captured by other components. Therefore, it is notable that the AR process

can be used to model the trend or as a component itself.

2.1.2.2
Seasonality

The seasonality component represents periodic fluctuations that occur

within a year or less. These patterns may be associated with climatic factors
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like seasons, socio-cultural events such as holidays, or administrative cycles.

Understanding and incorporating seasonal patterns can offer insights into the

underlying dynamics of a time series, help identify anomalies or irregularities,

and enhance forecast accuracy by leveraging historical patterns within specific

time intervals.

Given the diverse nature of seasonality, several approaches have emerged

over time to model stochastic seasonality. One of the simplest methods involves

using seasonal dummies. This approach utilizes binary variables to denote each

seasonal period, capturing the discrete shifts or changes in the time series

associated with each period. The primary advantages of this methodology lie

in its simplicity of implementation and straightforward interpretation, as the

coefficients linked to the dummy variables directly reflect the seasonal effects.

To illustrate, let’s take a monthly time series with a seasonal period of

12 (i.e., one year). In the context of a score-driven model, concentrating solely

on the seasonal component and employing the predictive distribution from

Equation 2-1, the seasonal dummies can be mathematically expressed as:

h(ft|t−1) = St|t−1

St|t−1 = −
11∑

j=1
St−j|t−j−1 + κS s̃t−1, κS ≥ 0

(2-10)

One limitation of this approach is that representing all seasons with

dummy variables introduces a perfect multicollinearity problem. Various tech-

niques can be employed to address this issue. In Equation 2-10, the seasonal

effects are constrained to sum to zero. Therefore, only eleven coefficients need

to be estimated, with the last one being the negative summation of the others.

This effectively resolves the perfect multicollinearity problem.

However, this approach may increase the dimensionality of the model,

particularly when dealing with high-frequency time series that exhibit multiple

seasonal periods. Furthermore, assuming a fixed seasonal pattern that repeats

over time may not be reasonable in certain cases. To address this concern, a
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variation of representing seasonality using seasonal dummies was proposed by

Harvey et al. (2013), wherein the seasonal pattern is allowed to vary over time

through a random walk dynamic. In this variation, for each period of time t,

the seasonal effects are forced to sum to one. For detailed information about

this variation, refer to the provided reference.

An alternative method for representing time series seasonality is using

harmonic seasonality based on the Fourier Theorem. According to this theo-

rem, any reasonably well-behaved periodic function can be represented as an

infinite sum of sine and cosine functions with different frequencies and ampli-

tudes [32].

The key advantage of this approach lies in its flexibility. It allows for the

representation of seasonal patterns with varying frequencies and amplitudes,

enabling the modeling of seasonalities with different levels of complexity. Unlike

seasonal dummies, harmonic seasonality represents the seasonal component

as a continuous function, resulting in a smoother representation of seasonal

patterns and facilitating more precise modeling and forecasting.

To incorporate this approach into the previously discussed score-driven

model and introduce stochasticity into the seasonal component, it can be

mathematically defined as follows:

h(ft|t−1) = St|t−1

St|t−1 =
6∑

j=1
γj,t|t−1γj,t|t−1

γ∗
j,t|t−1

 =

 cos(2πjt
12 ) sin(2πjt

12 )

−sin(2πjt
12 ) cos(2πjt

12 )


γj,t−1|t−2

γ∗
j,t−1|t−2

 +

κS s̃t−1

κS s̃t−1

 , κS ≥ 0

(2-11)

It is worth noting that the maximum number of harmonics that need to

be considered is equal to half of the seasonal period. If the seasonal period is

an odd number, one less than the seasonal period is divided by two. This

is because including more harmonics would result in repeated frequencies,

providing no additional information to the model. Sometimes, using fewer than
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the maximum number of harmonics is sufficient to capture the seasonal pattern.

Therefore, when dealing with a high-frequency time series, it may be necessary

to calibrate the number of harmonics using cross-validation, as considering all

harmonics can lead to overfitting problems.

While this methodology offers a flexible approach to representing the

seasonal component, it also exhibits a limitation in terms of interpretability.

Unlike the dummy approach, interpreting harmonic seasonality is not straight-

forward. To compute the seasonal effect in this case, it is necessary to sum up

the contributions of each harmonic.

2.1.3
Explanatory Variables

While unobserved components are valuable for capturing the dynamics

of a time series, there are instances where it is necessary to examine the

relationship between the data of interest and external factors. This can be

achieved by incorporating explanatory variables into the model formulation

within the UC score-driven framework. Let’s consider the local level model

presented in Equation 2-2 to illustrate how explanatory variables can be

included.

h(ft|t−1) = mt|t−1 + β′Xt

mt|t−1 = mt−1|t−2 + κs̃t−1, κ ≥ 0.

(2-12)

In this formulation, β represents the vector of coefficients for the explana-

tory variables, and Xt denotes the exogenous variables at time t. Equation 2-12

demonstrates how straightforward it is to incorporate exogenous variables into

the model formulation. Further theoretical details on this inclusion can be

found in [4].

Sometimes, assuming that the effect of the explanatory variable remains

constant over time may not be reasonable. To account for such cases, the UC

score-driven framework also allows for the possibility of the β coefficient to

vary over time following an AR(1) process. While alternative dynamics are
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possible, this is the most common choice. Mathematically, this extension can

be represented as:

h(ft|t−1) = mt|t−1 + β′
t|t−1Xt

mt|t−1 = mt−1|t−2 + κms̃t−1 κm ≥ 0.

βt|t−1 = ϕβt−1|t−2 + κβ s̃t−1, κβ ≥ 0.

(2-13)

The inclusion of explanatory variables is essential as it offers a deeper

understanding of the relationship between the time series and relevant external

factors, such as economic indicators, demographic information, weather con-

ditions, or other predictors of interest. Integrating these variables can improve

forecast accuracy, streamline data interpretation, and enable the integration

of domain-specific knowledge directly into the model.

However, it is important to note that the inclusion of explanatory

variables should be based on sound theoretical or empirical foundations.

The relevance and significance of these variables should be assessed using

appropriate statistical and diagnostic methods. The selection of explanatory

variables should be guided by subject matter expertise, a comprehensive

understanding of the context and domain of the time series being modeled,

and statistical techniques that aid in variable selection may be considered.

Having explored various possibilities for model formulation within the

score-driven framework, it is evident that it offers substantial flexibility. Once

a model is defined and estimated through maximum likelihood, it becomes

crucial to assess the validity of the assumptions made regarding the predictive

distribution and dynamics of the data. This assessment is typically performed

through residual analysis, which will be discussed in more detail in the next

subsection.



Chapter 2. Theoretical Background 35

2.1.4
Residuals Analysis

After fitting a model, it is crucial to evaluate its goodness of fit to the

data and verify whether the assumptions made during its formulation hold

true for the dataset of interest. Residual analysis is a standard approach to

detect potential model misspecifications [33]. This is because any underlying

dependency structure not adequately captured by the model can often be

detected through the analysis of residuals.

In general, the residuals of a time series model are defined mathematically

as:
rt = yt − ŷt|t−1. (2-14)

In this equation, yt represents the observed series, and ŷt|t−1 denotes the

model’s point estimate for period t using the information up to time t − 1.

Typically, ŷt|t−1 = E(yt|t−1). It’s worth noting that variations of residuals, such

as Pearson residuals, can be derived from the equation to better suit specific

situations. Residual analysis involves graphical examinations and statistical

tests to assess their distribution and autocorrelation function (ACF). For a

more detailed understanding of residual analysis, refer to [34].

In the context of UC score-driven models, residual analysis primarily

focuses on evaluating assumptions related to the choice of the conditional

distribution and the dynamics of model parameters. The following paragraphs

present several definitions of residuals that are particularly useful in diagnosing

score-driven models, along with the key insights that can be derived from them.

Pearson residuals, also known as standardized residuals, are obtained by

dividing the difference between observed and predicted values by the estimated

standard deviation of the fitted values. They provide a standardized measure of

discrepancies between observed and fitted values, offering insights into model

adequacy and goodness of fit. Mathematically, Pearson residuals are defined

as:
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rp
t = yt − ŷt|t−1√

V ar(ŷt|t−1)
(2-15)

The analysis of Pearson residuals is particularly useful for identifying

outliers or extreme observations within the time series. Outliers refer to data

points that significantly deviate from the overall pattern and can dispropor-

tionately impact model estimation. By examining the magnitudes of Pearson

residuals, one can identify observations with unusually large residuals, signal-

ing potential outliers that require further investigation or consideration for

model refinement.

Pearson residuals can also be utilized to assess the adequacy of the chosen

predictive distribution and the dynamics of time-varying parameters. However,

alternative analyses may potentially yield more informative results in such

diagnostic procedures. For instance, Harvey[4] proposed two approaches to

evaluate the goodness of fit of the selected predictive distribution.

The first approach involves employing a QQ-plot, where the T equally

spaced quantiles of the predictive distribution are plotted on the vertical axis,

while the order statistics of the sample, denoted as y(1) ≤ y(2) ≤ · · · ≤ y(T ), are

plotted on the horizontal axis. If the sample is drawn from the comparison

distribution, the resulting plot will closely resemble a straight 45-degree

line. It is worth noting that closed-form expressions for quantile functions

are generally unavailable for certain distributions, necessitating the use of

numerical methods for their evaluation.

The second graphical approach, aimed at providing the same information

while circumventing potential issues associated with the availability of closed-

form quantile functions, involves utilizing the Probability Integral Transform

(PIT). The PIT of a variable is based on its Cumulative Distribution Function

(CDF). Assuming yt ∼ p(yt|ft|t−1, Yt− 1, Ft− 1; θ), the PIT is defined as:

PIT (yt) = F (yt|ft|t−1, Yt−1, Ft−1; θ). (2-16)
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In a correctly specified scenario, the PIT(yt) will follow a standard uniform dis-

tribution. Therefore, assessing the distribution of PIT(yt) through techniques

such as histograms or statistical tests like the Kolmogorov-Smirnov test is

equivalent to evaluating the accuracy of the predictive distribution.

An advantageous transformation for this approach involves using the

inverse Gaussian Cumulative Distribution Function (Φ−1) to transform the

PIT into a standard Gaussian distributed variable [35]. The rationale behind

this transformation is the greater availability of methodologies for testing the

normality of data compared to those for testing the uniformity of a distribution,

thereby increasing the flexibility of the analysis [35]. It is important to note that

this proposed approach is equivalent to using randomized quantile residuals

[36], which are defined as:

rq
t = Φ−1(P̂ IT (yt)). (2-17)

Where P̂ IT (yt) represents the PIT defined in Equation 2-16, considering the

model’s estimates for both fixed and time-varying parameters.

Another important type of residual is the conditional score residual,

which provides a general framework for diagnostic analysis of time series

models and includes standard definitions of residuals such as the Pearson

residual. Mathematically, the conditional score residual is defined as follows:

rcs
t = Î

− 1
2

t · ∇̂t. (2-18)

where Ît represents the model’s estimate of the Fisher information matrix and

∇̂t denotes the score function at period t. It is important to note that the

conditional score residual is equivalent to the estimation of the scaled score

of the score-driven model, considering the scale parameter d = 1
2 . Further

information about the definition and asymptotic properties of this approach

can be found in [33].

In the context of score-driven models, conditional score residuals are
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particularly useful for evaluating the model’s dynamic specification. Since they

can be defined for each time-varying parameter, analyzing their autocorrelation

function (ACF) helps assess whether any refinements are necessary in the

dynamics of specific parameters to better capture their patterns.

To illustrate this, let’s consider fitting a Gaussian score-driven model

with a time-varying mean parameter, while being uncertain about whether

the variance parameter also needs to vary over time. One approach would

be to fit a model with only the mean parameter µ varying over time. After

estimating the model, analyzing the ACF of the conditional score residuals

associated with the variance parameter will indicate if the model formulation

was correct or if σ2 should also be considered as time-varying. Additionally,

the ACF plot will reveal any remaining structures present in the residuals,

suggesting which dynamics should be considered for the parameters.

In conclusion, the analysis of residuals plays a crucial role in evaluating

the effectiveness of time series models, including those within the UC score-

driven framework. By leveraging the three defined types of residuals outlined in

this section, it becomes feasible to conduct thorough diagnostic analyses that

efficiently tackle significant challenges in time series modeling and pinpoint

potential misalignments in score-driven models.

After assessing the goodness of fit of the specified model, the next

step is to leverage this model for making accurate predictions. The next

subsection will focus on this critical aspect of time series modeling, exploring

the techniques and methodologies used to produce reliable forecasts within the

score-driven framework.

2.1.5
Forecast

Forecasting stands as a pivotal and concluding step in time series mod-

eling, wielding significant influence over informed decision-making processes.

Moreover, it holds utmost importance during the model selection phase, serv-
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ing as a vital component of out-of-sample evaluation by facilitating predictions

for validation data sets.

In the context of score-driven models, the one-step-ahead forecast is

straightforward as its distribution is derived from the model itself, as shown

in Equation 2-1. With an already estimated model, the point forecast can

be computed by determining the conditional mean, median, or mode of

the predictive distribution. A interesting practice with score-driven models,

whenever possible, is to define one of the time-varying parameters to represent

the mean (µt), enabling the expression:

E(yt|Yt−1, Ft−1; θ) = µt|t−1. (2-19)

The primary challenge with this approach is that for most score-driven

formulations, there is no analytical expression for the integral associated

with Equation 2-19. To address this limitation, the commonly employed

solution involves using Monte Carlo simulation [37]. In this approach, given the

updated parameters, M observation scenarios are sampled from the predictive

distribution, enabling both point and probabilistic forecasts by computing its

mean and quantiles from this sample.

The forecasting process becomes more intricate when aiming to perform

multi-step-ahead predictions. In contrast to the previous case, obtaining the

predictive distribution for a generic k steps ahead is not directly achievable

from the model. To illustrate how this distribution can be obtained, let’s

consider an already fitted score-driven model trained with T observations.

For a two-steps-ahead forecast, the correct conditional distribution needs

to be determined. For notation simplicity, let’s assume that p(yT +2|FT ) =

p(yT + 2|YT, FT ; θ). The conditional density/probability function two steps

ahead is defined as:
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p(yT +2|FT ) =
∫

p(yT +2, yT +1|FT )dyT +1

=
∫

p(yT +2|yT +1,FT )p(yT +1|FT )dyT +1
1

=
∫

p(yT +2|FT +1)p(yT +1|FT )dyT +1 .

(2-20)

Note that both density/probability functions p(yT +2|FT + 1) and

p(yT + 1|FT ) can be obtained from the predictive distribution by setting

t = T + 1 and t = T + 2, respectively.

Following the same rationale as in Equation 2-20, it is possible to

generalize this result and find that the k-steps-ahead density/probability

function is given by:

p(yT +k|FT ) =
∫ ∫

· · ·
∫ k∏

j=1
p(yt+j|Ft+j−1)dyt+1dyt+2 · · · dyt+j−1 , k = 2, 3, · · ·

(2-21)
However, as with the one-step-ahead case, obtaining an analytical expression

for the conditional mean of this distribution is generally infeasible. Hence, the

Monte Carlo simulation approach is employed again. For the first step ahead,

the simulation procedure has already been discussed. For subsequent steps, the

time-varying parameter must be updated considering the model’s dynamics for

each of the M sampled scenarios. After updating the parameters, a unique

observation is sampled from the predictive distribution for each scenario.

Repeating this process for all k steps ahead results in sampled distributions for

each step, each with M observations. Utilizing these distributions allows the

computation of point forecasts using measures like mean, median, or mode,

and probabilistic forecasts through the computation of their quantiles.

A more detailed illustration of this simulation process can be found

in [37]. In this work, the authors also propose alternative approaches to

incorporate parameter uncertainty when constructing predictive intervals.

Up to this point, the main aspects of each step in time series modeling
1Derived using the relation P (A, B|C) = P (A|B, C)P (B|C), where A = yT +2, B = yT +1

and C = FT
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within the score-driven framework have been covered, beginning with model

formulation and extending to the forecasting process. The subsequent section

will delve into the second topic crucial for this chapter: optimization robustness

techniques and their application in time series modeling.

2.2
Robust Optimization Techniques

Before delving into this section, it’s crucial to acknowledge that various

modeling frameworks, including linear regressions or time series models, are

specific instances of optimization problems. In these frameworks, the objective

is to find a set of parameters that minimize a given error measure. Effectively

managing the uncertainty associated with the process of interest within the

model framework is a significant challenge. Understanding more about these

uncertainties can be highly beneficial. According to Bertsimas & Dunn[38], the

uncertainty in optimization problems can be classified into four types:

(a) Measurement error: Arises from inaccuracies in the measuring process

used to obtain data or from errors intentionally introduced for privacy

reasons.

(b) Estimation error: Occurs when parameters are estimated based on expert

opinions and/or historical data, which contain uncertainty regarding

their future values.

(c) Implementation error: In some cases, it may not be possible to implement

the exact optimal solution, necessitating the use of approximations that

introduce errors to the model.

(d) Errors due to inexact data: Directly linked to the quality of data. Using

data with poor quality will result in models with imprecise results.

Probability theory has long been the predominant approach to modeling

uncertainties over time. However, many methodologies based on probability
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theory encounter scalability issues when dealing with high-dimensional prob-

lems. Notably, even important works, including Nobel prize-winning ones, solve

only small-scale problems while struggling with their high-dimensional coun-

terparts [38]. The authors speculate that this limitation may be due to the

fact that the principles of probability theory were not developed with a strong

emphasis on computational efficiency.

In contrast, Optimization Theory has been developed with a focus on

computational efficiency, allowing for solutions to multi-dimensional problems.

Consequently, Robust Optimization (RO) offers a natural approach to address-

ing uncertainties in problems. RO diverges from adopting the axioms of prob-

ability theory as its foundations, choosing instead to consider the conclusions

derived from probability theory as its basis. Illustrative examples of this alter-

native approach can be found in [38]. While this approach provides robustness,

it often comes with a trade-off in optimality.

The trade-off between robustness and optimality is a crucial concept in

RO. While RO techniques may sacrifice a small degree of optimality, they

substantially enhance the model’s robustness, as exemplified in [38]. Further

information about robust optimization and its different classes is available in

[7].

This work concentrates on one specific robustness technique that intro-

duces a method to enhance robustness against variations in sample data, es-

pecially pertinent for time series applications. The subsequent subsections will

delve into this methodology in detail.

2.2.1
Sample Robustness

An essential aspect of modern machine learning practice revolves around

leveraging available data for training and assessing model performance. The

conventional procedure typically entails randomly selecting a subset of the data

as the test set, while the remainder is partitioned into training and validation
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sets. Model parameters are estimated using the training data, and performance

evaluation is conducted on the validation set. After several iterations of this

process, the model’s accuracy is assessed on the test set.

Despite its widespread use, this approach introduces inherent random-

ness, leading to uncertainties in the model’s parameters. Each realization of

the training and validation sets can yield different models. The sensitivity of

the model to these realizations can potentially alter the interpretation of the

model’s parameters, thereby raising questions about the validity of the con-

clusions derived from it [39].

Bootstrap Aggregating (Bagging) presents itself as an ensemble method

that offers a solution to the aforementioned problem [40]. To enhance model

accuracy and robustness, Bagging generates different training sets using boot-

strapping and estimates the model for each set. The final predictions are ag-

gregated from the results of each model, typically through voting or averaging,

depending on the model type considered.

While Bagging has shown satisfactory results in numerous applications,

it has the potential to become computationally expensive due to the repeated

estimation of the model. As an alternative, Bertsimas & Dunn[39] proposed a

method employing RO to enhance model robustness against variations in the

training set. The core idea behind this new approach is to allow optimization to

select the most challenging subset of the training data, following some criteria,

and employ this worst-case scenario to train the model. The rationale is to

estimate a model that performs adequately even in the worst-case scenario. For

more detailed information and illustrative examples of this approach, please

refer to [39].

Translating the concept of model robustness to variations in data to the

time series domain, one can associate this with models capable of handling

regime changes. Such issues, commonly encountered during time series anal-

ysis, involve changes in the series’ dynamics and may be triggered by various
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factors like economic crises, natural disasters, pandemics, and more. Tradi-

tional time series models were not designed to address regime changes. Con-

sequently, proposed methodologies for modeling such data typically involve

estimating multiple models or employing explicit models and other techniques

to infer these regime changes [41].

Attempting to propose a new approach to handle regime changes, Bert-

simas & Paskov[28] demonstrated that the methodology proposed in [39] can

be utilized to make time series models robust against regime changes in the

data. It is important to mention that in their paper, Bertsimas & Paskov[28]

only considered an AR(p) model, but here, we will consider a generic version

of this approach. Before delving into discussing how this model works, it is

necessary to understand how a generic time series model can be expressed as

an optimization problem. Equation 2-22 illustrates this formulation.

Min
θ∈Θ

T∑
t=1

g(yt, θ) (2-22)

where θ represents the vector of the model’s parameters that may vary over

time, and g(yt, θ) denotes a general loss function dependent on the observed

time series (yt) and θ. It is crucial to note that depending on the model, the

set Θ may either characterize constraints or describe the time-varying nature

of the parameters.

Expanding on the concept proposed by Bertsimas & Dunn[39], which

entrusts optimization with selecting the worst subset of training data, it is

feasible to extend Equation 2-22 to:

Min
θ∈Θ

Max
z∈Z

T∑
t=1

ztg(yt, θ), (2-23)

The rationale behind Equation 2-23 is to train the model using the observed

values that maximize the error. In other words, for a given model with

optimized parameters, the inner maximization problem selects the sub-sample

that leads to the highest error for this model. This selection is determined by
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the binary variable zt, which belongs to the set Z and governs the criteria

for selection. Note that when zt = 1, it implies that yt will be included in

the training set. Solving this problem yields a model trained on the most

challenging training set under certain criteria, resulting in improved robustness

and stability during regime changes.

Bertsimas & Paskov[28] presented two different methods for defining

the set Z. This work will concentrate on the definition that yields the most

challenging sub-sample of length K. This is accomplished by incorporating

two constraints into the inner maximization problem, as depicted in Equation

2-26. The rationale behind this selection is supported by the observation that

this definition resulted in more robust models compared to the alternative as

showed in [28].

Note that since the inner maximization problem is linear in z, solving

the problem in Equation 2-23 is equivalent to optimizing over the convex hull

of Z [39], which is defined as:

conv(Z) =
{

z :
T∑

t=1
zt = K, 0 ≤ zi ≤ 1, t ∈ [1, T ]

}
. (2-24)

Reformulating Equation 2-23 to consider the convex hull of Z, it is possible to

find the following definition:

Min
θ∈Θ

Max
z∈conv(Z)

T∑
t=1

ztg(yt, θ), (2-25)

Indeed, this modification implies that the z variable can be defined in the range

[0, 1]. This change simplifies the model since there is no longer a need to deal

with integer variables.

Regardless of how Z and its convex hull are defined, Equation 2-

25 cannot be solved in its current formulation due to the presence of a

maximization inside a minimization problem. To address this issue, it is

important to notice that this formulation belongs to the class of Robust

Optimization (RO) problems. A review of this theme can be found in [42]. The
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two most used methods for solving this class of problems are reformulation

to a deterministic optimization problem, called the robust counterpart, or

a cutting-plane method [28]. For this specific problem, reformulating using

duality principles is possible. The idea behind this is to transform the min-

max problem into a computationally tractable minimization problem.

To effect this reformulation, duality theory is employed to convert

the maximization problem into a minimization one. This process involves

introducing dual variables:

Max
zt

T∑
t=1

ztg(yt, θ)

s.t.
T∑

t=1
zt = K, ×(δ)

0 ≤ zt ≤ 1, ∀t = 1 · · ·T ×(ut)

(2-26)

By adding the product of each constraint and its corresponding dual variable

as presented in Equation 2-26, it is possible to obtain:

T∑
t=1

ztg(yt, θ) ≤ δ
T∑

t=1
zt +

T∑
t=1

ztut ≤ Kδ +
T∑

t=1
ut (2-27)

Therefore, this inequality holds if and only if (δ + ut) ≥ g(yt, θ) for all

t = 1, · · · , T . Here, it is important to remember that the vector of parameters

θ, which is considered to be given here, may vary over time. Consequently, the

robust counterpart of the problem stated in Equation 2-25 is given by:

Min
θ∈Θ,δ≥0,ut≥0

Kδ +
T∑

t=1
ut

s.t. δ + ut ≥ g(yt, θ) ∀t = 1, · · · , T

(2-28)

In the robust model presented in Equation 2-28, additional variables

and constraints were introduced to account for robustness considerations.

The parameter δ represents the worst-case deviation from the considered

loss function, and ut are non-negative slack variables. The objective function

includes a penalty term Kδ and a sum of slack variables ∑T
t=1 ut to ensure that

the worst-case deviations and slacks are minimized.
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The constraints enforce that the sum of δ and ut is greater than or equal

to the loss function considered, g(yt, θ), at each time point. This ensures that

the robust model provides a good fit to the observed data while accounting for

potential deviations. By solving the optimization problem in Equation 2-28, it

is possible to estimate the parameters θ of the robust time series model while

considering robustness aspects. Furthermore, it is relevant to highlight that

the inclusion of the robustness mechanisms does not change the class of the

optimization problem that represents the time series model. In other words,

this methodology improves the model’s robustness without adding complexity

to the problem.

By following the manipulations demonstrated previously, the robust

time series model presented in Equation 2-25 has been reformulated into a

computationally tractable form, which can be readily solved using commercial

solvers. It is important to note that the development outlined in this subsection

considers a general formulation for time series models, making it applicable to

various types of methodologies, including the score-driven framework.



3
Proposed methodology

This chapter introduces a distinctive approach to modeling time series

using UC score-driven models, representing them as non-linear optimization

problems. Leveraging the inherent characteristics of such problems, including

the formulation of constraints, opens avenues to explore diverse possibilities in

specifying this type of models.

As previously demonstrated by Equation 1-2, the formulation of a

score-driven model as an optimization problem is elegantly straightforward.

Its fundamental concept involves delineating both fixed and time-varying

parameters, as well as the components, as decision variables within the

optimization framework. The temporal dynamics and possible restrictions

regarding the fixed parameters’ domain are ensured by constraints embedded

in the problem’s formulation. Finally, an objective function is introduced to

minimize the negative logarithm of the likelihood of the predictive distribution,

a pivotal step considering that score-driven models are typically estimated

through maximum likelihood estimation.

For further clarity, let’s consider l(yt; ft|t−1, θ) as the logarithm of the

likelihood of the generic predictive distribution described in Equation 2-1,

with the fixed parameter θ assumed to be positive. The local linear trend

score-driven model can be expressed as the following optimization problem:

Min
f ,m,b,θ,κm,κb

−
T∑

t=1
l(yt; ft|t−1, θ)

s. t. ft|t−1 = mt|t−1, ∀t = 1, · · · , T

mt|t−1 = mt−1|t−2 + bt−1|t−2 + κmst−1, ∀t = 1, · · · , T

bt|t−1 = bt−1|t−2 + κbst−1, ∀t = 1, · · · , T

θ > 0

κm, κb ≥ 0.

(3-1)
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This illustration underscores that different dynamics can be captured by simply

adjusting the model’s constraints.

It is important to highlight that in Equation 3-1, the scaled score was not

considered as a decision variable because it is a function of the parameters of

the predictive distribution and of the observations, which are decision variables.

Thus, the most correct notation for this term would be st(yt−1, ft−1|t−2, θ).

However, for simplicity in notation, it was represented as st. Further discussions

on implementation aspects will shed light on why the scaled score does not need

to be a decision variable.

Another interesting aspect of this new approach is that the problem

illustrated in Equation 3-1 is an optimization problem in which the number

of decision variables and constraints depends on the size of the time series of

interest (T ). This has the potential to become a considerably large problem.

On the other hand, this formulation allows for the initialization of all decision

variables of the model. This means that this new methodology enables the use

of initial values for both time-varying parameters and components for every

period of time, rather than just for the first one, as is typically done.

This new way of initializing the model has a considerable impact on

the computational efficiency of the model. It also helps to prevent the model

from becoming stuck at a local minimum, since there is no guarantee of global

optimality when dealing with nonconvex problems. More details on how this

initialization is performed will be given in the following sections.

3.1
Robustness Features

As previously discussed, various optimization techniques can be incor-

porated into the definition of time series models to potentially enhance their

performance. Examples include the use of integer optimization for exogenous

variable selection and robust optimization techniques. Given the objectives of

this work, which involve evaluating the impact of the robustness techniques
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discussed in Section 2.2 on model performance, this section aims to describe

how these features are included in the context of UC score-driven models.

3.1.1
Sample Robustness

In pursuit of robustness against regime changes in time series, the

methodology proposed by Bertsimas & Paskov[28] is integrated directly into

the model’s formulation. In practice, to transform a score-driven model speci-

fied as a optimization problem into its robust counterpart, the following modi-

fications are applied: a change in the objective function and the introduction of

a robustness constraint, both defined in terms of dual variables. To illustrate,

consider the exemplary model presented in Equation 3-1. Its robust counter-

part takes the following form:

Min
f ,m,b,u,
θ,κm,κb,δ

Kδ +
T∑

t=1
ut

s. t. δ + ut ≥ −l(yt; ft|t−1, θ), ∀t = 1, · · · , T

ft|t−1 = mt|t−1, ∀t = 1, · · · , T

mt|t−1 = mt−1|t−2 + bt−1|t−2 + κmst−1, ∀t = 1, · · · , T

bt|t−1 = bt−1|t−2 + κbst−1, ∀t = 1, · · · , T

θ > 0

κm, κb ≥ 0.

(3-2)

3.2
The SDUC.jl package

This section introduces SDUC.jl (Score-Driven Unobserved Compo-

nents), an innovative open-source package currently in development. Built en-

tirely in the Julia language [22], SDUC.jl arises directly from this research,

aiming to empower users to specify a diverse range of models. With SDUC.jl,

users enjoy the flexibility to select the predictive distribution, scaling parame-
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ter, time-varying parameters, and latent components that govern the model’s

dynamics. Moreover, the package conceptualizes the model as mathematical

programming problems, facilitating the integration of optimization techniques

into its formulation.

The decision to utilize Julia as the development language for this package

is grounded in its distinct advantages. Julia offers a high-level programming

syntax conducive to efficient prototyping and development, while still main-

taining computational performance. Additionally, Julia provides a robust set

of tools for tackling optimization challenges. JuMP.jl [43], an open-source mod-

eling language, streamlines the formulation of various optimization problems,

guiding the model to a designated solver and presenting results in a user-

friendly format. It’s crucial to emphasize that JuMP.jl serves as a conduit

between user specifications and solvers. By appropriately selecting a solver,

JuMP.jl empowers users to address diverse classes of optimization problems,

including linear, mixed-integer, semidefinite, non-linear, and more.

The proposed package utilizes JuMP’s modeling language to formulate

various score-driven models as optimization problems. Figure 3.1 illustrates

a simplified version of how the model presented in Equation 3-1 can be

implemented using JuMP.jl. As discussed earlier, SDUC.jl provides flexibility

in model formulation by enabling the customization of various components.

Concerning the trend component, the package supports different modeling

options, including a random walk, a random walk with slope, or an AR(1)

process. These diverse approaches to representing the trend component allow

for modeling time series with various trends, such as growth or decline. This can

be achieved through the utilization of a local linear trend model for capturing

local trends, stationarity via AR(1), or even capturing more random patterns

via a local level model.
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Figure 3.1: llustrative code demonstrating how a Gaussian local linear trend
SDM can be implemented using JuMP.

The seasonal component is characterized by the harmonic specification

detailed in Equation 2-11. By enabling users to specify the seasonal period, the

package effectively accommodates time series with various temporal granular-

ities. For a seasonal period S, the number of considered harmonics equals S
2

for even S, or S−1
2 otherwise. Including all harmonics ensures that the seasonal

factor aligns with outcomes that would be obtained if seasonal dummies were

used. Importantly, although users can model series with different seasonal pe-

riods (monthly, weekly, daily, etc.), the package only allows one seasonal com-

ponent to be defined, thus preventing the modeling of time series with multiple

seasonal patterns.

While seasonality is crucial for modeling many time series, treating it

as stochastic may increase model complexity due to the numerous decision

variables and constraints associated with its specifications. With this consid-

eration, the proposed package also permits the inclusion of a deterministic

version of harmonic seasonality, as defined in Equation 3-3. This alternative

approach allows for the consideration of the seasonality component without af-
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fecting the model’s complexity. In cases where this deterministic version proves

inadequate for modeling the seasonal pattern of the data, users can resort to

the stochastic formulation.

h(ft|t−1) = St|t−1

St|t−1 =
6∑

j=1

{
γjcos

(2πjt

12

)
+ γ∗

j sin
(2πjt

12

)} (3-3)

As discussed in Subsection 2.1.2.1, an autoregressive process can serve

both as the trend or as a standalone component, typically aiding the model in

handling short-term dependencies that were not adequately modeled by other

components. With this in mind, an autoregressive component can be defined

by explicitly specifying the orders to be considered, without necessitating the

inclusion of all orders up to p. This feature allows for the utilization of the

AR(p) component to effectively represent seasonality, with p set equal to the

seasonal period. This aspect enables the accurate representation of multiple

seasonalities by either merging the seasonal component with the autoregressive

one or exclusively utilizing the autoregressive component with appropriate

orders.

Furthermore, the proposed package facilitates the integration of explana-

tory variables into the dynamics of the mean parameter. This capability en-

ables users to incorporate exogenous influences into the model specification,

potentially improving predictive performance. It is essential to note that in

this initial version of the package, the coefficients of the explanatory variables

can only be specified as fixed parameters. However, the possibility of specifying

dynamics for these parameters has already been discussed.

In addition to flexibility in defining parameter dynamics, the JuMP.jl

package offers other noteworthy features. The first of these is the utilization

of what JuMP.jl terms "expressions." These objects are essentially functions

defined based on the model’s decision variables and can be incorporated into

its formulation. For score-driven models, these expressions are particularly
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valuable for representing the scaled score without requiring them to be defined

as decision variables, thereby preventing an increase in the model’s complexity.

Another significant feature is the integration of JuMP.jl with the For-

wardDiff.jl package [44], capable of symbolically calculating derivatives of the

expression defined as the objective function of the optimization problem. In

the context of score-driven models, this means that JuMP.jl has access to

the exact derivatives of the considered log-likelihood function. Consequently,

there is no longer a need to rely on numerical optimization methods such as

Nelder-Mead [5] and L-BFGS [6]. Therefore, JuMP.jl enables the utilization

of state-of-the-art nonlinear optimization methods based on interior points.

These methodologies can be accessed through the Ipopt.jl package, which acts

as a wrapper for the Ipopt algorithm [45].

The differentiation capability provided by the ForwardDiff.jl package

can offer significant advantages by automatically deriving expressions for

the score function and Fisher’s information matrix for a given distribution.

Although this functionality was not implemented in the initial version of the

package, acknowledging the potential associated with its inclusion is crucial

for expanding the range of available distributions, thereby enhancing the

applicability of this package across various scenarios. Given its significance,

the exploration of such an approach will be prioritized in future iterations of

the package.

A significant challenge in nonlinear optimization is the absence of guar-

antees regarding global optimal points. Consequently, the initialization pro-

cess becomes crucial to prevent the model from becoming trapped in local

optima. In conventional implementations of score-driven models, initialization

typically concentrates on fixed parameters and initial values of time-varying

components. However, as discussed earlier, the optimization-based approach

allows for an enhanced initialization process.

It is crucial to acknowledge that since both fixed and time-varying
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parameters, as well as components, are specified as decision variables, the

solver’s algorithm does not inherently recognize their temporal dependencies.

Furthermore, during an iteration of the interior point method, the entire

vector of decision variables is updated simultaneously across all time periods.

These intricacies enable the model to incorporate initial values for time-

varying parameters and components throughout all time periods, significantly

mitigating issues associated with local optima. Importantly, the SDUC.jl

package not only provides its algorithm for accurate initial values but also

allows users to employ their custom initialization procedures.

The initial phase of the package’s initialization involves acquiring good

initial values for the parameters of the predictive distribution. For a time-

varying mean parameter, it is logical to utilize the observed time series itself.

Conversely, for other parameters, heuristic methods can be valuable. For

instance, in the case of a monthly time series, non-conditional estimates for

the desired parameter can be calculated for each month, and these values can

be utilized to construct a time series by appropriately repeating them within

the respective months. Such non-conditional estimates may also function as

initial values for fixed parameters if applicable.

Once the time series of initial values for time-varying parameters has

been obtained, the estimation of the components driving their dynamics can

be carried out using suitable time series models such as State Space models.

In this context, the StateSpaceModels.jl package [46] has been utilized. This

package facilitates modeling, forecasting, and simulating time series within a

state-space framework.

By leveraging the similarity of available components, a structural model

that mirrors the dynamics of the specified score-driven model is fitted to the

initial values of time-varying parameters. The resulting estimates are then

used to initialize the components of the UC score-driven model. It’s worth

noting that since StateSpaceModels.jl does not support an AR component,



Chapter 3. Proposed methodology 56

the initialization of such a component must be conducted in two stages, if

necessary. For score-driven models featuring both an autoregressive component

and another component, an AR model written as an optimization problem

with the same order as the score-driven AR component is estimated on the

innovations of the structural model. Conversely, if the desired model solely

includes the AR component, the optimization-based AR model is directly

estimated on the initial parameter values. In either scenario, the estimated

values are used for initialization. Finally, the fixed parameters, which multiply

the scaled score, are initialized to 0.02, similar to the practice in the Time

Series Lab Score Edition software [47].

This multi-step initialization procedure has proven effective in speeding

up the optimization process and safeguarding the model from converging to

suboptimal solutions. While the package features an efficient initialization

mechanism, as previously mentioned, it remains open to user-defined initial

values that can be tailored to meet the specific requirements of various

applications.

After fully specifying the optimization problem and initializing it fol-

lowing the above process, the model is ready for optimization. The package

enables users to customize this step by defining the maximum number of it-

erations for the interior points method and the time limit within which the

algorithm must find the optimum. These simple adjustments allow users to

tailor the estimation process more precisely to their applications.

All discussions regarding the model’s formulation and initialization re-

main consistent irrespective of the model’s dynamics and predictive distribu-

tion, except for the location-scale t distribution. Certain unique characteristics

of this distribution required the development of a distinct approach to accu-

rately estimate models based on it. Further details about this approach can be

found in Appendix A.

After exploring how modern optimization techniques can enhance the
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performance of time series models and how the proposed package enables the

application of this new approach, it is crucial to understand how to use it.

The following subsection will utilize illustrative examples to demonstrate how

SDUC.jl can be employed to model a time series.

3.2.1
Illustrative examples of the package

As mentioned earlier, this subsection comprises small experiments aimed

at illustrating the time series modeling process using the proposed package.

Alongside presenting the obtained results, examples of the code used to define,

estimate, and make predictions with a UC score-driven model will also be

discussed. For these demonstrations, three well-known time series datasets

were utilized. Further information about these time series can be found in

[34].

The first example aims to demonstrate how one can utilize the proposed

package to obtain the unobserved components of a time series. To achieve this,

the "Airline Passengers" time series was utilized. This dataset showcases the

monthly totals of international airline passengers from 1949 to 1960.

Figure 3.2: Observed data from the "Airline Passengers" time series.
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As depicted in Figure 3.2, this series exhibits a prominent increasing

trend and strong seasonal patterns. It’s noteworthy that the variance of these

data appears to increase over time, likely due to the escalation of seasonal

peaks. This characteristic complicates the modeling process, often necessitating

a logarithmic transformation of the data. By taking the logarithm of this series,

it becomes possible to stabilize the variance without altering the presented

trend characteristics, as illustrated in Figure 3.3.

Figure 3.3: The logarithm of the observed data from the "Airline Passengers"
time series.

To properly address the previously discussed characteristics of this data,

an appropriate model must be specified. For this purpose, a model based on the

Normal distribution, with the mean parameter being time-varying, was defined.

The dynamics of this parameter are governed by a random walk with slope

level and a stochastic monthly seasonality. Equation 3-4 presents the complete

formulation of the model, where l1(yt; µt|t−1, σ2) represents the logarithm of

the likelihood of the Normal predictive distribution.
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Min
µ,m,b,S,γ,γ∗,

σ2,κm,κb,κS

−
T∑

t=1

l1(yt; µt|t−1, σ2)

s. t. µt|t−1 = mt|t−1 + St|t−1, ∀t = 1, · · · , T

mt|t−1 = mt−1|t−2 + bt−1|t−2 + κmst−1, ∀t = 1, · · · , T

bt|t−1 = bt−1|t−2 + κbst−1, ∀t = 1, · · · , T

St|t−1 =
6∑

j=1

γj,t|t−1, ∀t = 1, · · · , T

[
γj,t|t−1

γ∗
j,t|t−1

]
=

[
cos( 2πjt

12 ) sin( 2πjt
12 )

−sin( 2πjt
12 ) cos( 2πjt

12 )

] [
γj,t−1|t−2

γ∗
j,t−1|t−2

]
+

[
κSst−1

κSst−1

]
, ∀t = 1, · · · , T

σ2 > 0

κm, κb, κS ≥ 0

(3-4)

where st = yt − µt|t−1, for all t = 1, · · · , T , and yt represents the observation

of the series at time t.

Code 1 illustrates how to specify the model presented in Equation 3-4

using the proposed package.

Code 1: Model’s Specification

1 using SDUC

2

3 #--------------------------------------------

4 # Defining model ’s dynamic

5 #--------------------------------------------

6

7 distribution = SDUC. NormalDistribution ()

8 time_varying_params = [true , false ];

9 d = 1.0;

10 level = [" random walk slope", ""];

11 seasonality = [" stochastic 12", ""];

12 ar = missing ;

13

14 #--------------------------------------------

15 # Creating GAS model object

16 #--------------------------------------------

17

18 model = SDUC. GASModel ( distribution , time_varying_params , d, level ,

seasonality , ar)
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It is worth noting that the time_varying_params object considers the

parameter’s order as it appears in the distribution object. Therefore, to

specify only the Normal’s variance as time-varying, this object would be defined

as [false, true]. This order also corresponds to the keys of the dictionary

indicating the components’ dynamics. Lastly, there is no need to create key-

value pairs for fixed parameters.

After properly defining and estimating this model, obtaining the fitted

values for the components is straightforward. Figure 3.4 showcases the results

of this example, where it’s noticeable that the component estimates are well-

behaved and aligned with the observed data. The trend component consists

of a level with almost constant growth and a nearly deterministic slope, while

the seasonality, although well-behaved, exhibits some level of stochasticity.

Figure 3.4: Fitted components for the logarithm of the "Airline Passengers"
time series.

In addition to analyzing its components, another crucial step in the time

series modeling process is examining the model’s residuals. This step aims
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to verify the validity of the model’s assumptions, such as the dynamics and

distribution adopted. To address this, a second example was conducted using

another time series.

The "House Sales" time series represents monthly sales of new one-family

houses sold in the USA since 1973. This series does not exhibit a discernible

trend (as shown in Figure 3.5). However, it does display a notable seasonal

pattern. To model this data, a model featuring a level component with a

random walk dynamic and stochastic monthly seasonality was utilized.

Figure 3.5: Observed data from the "House Sales" time series.

The considered model is based on a t-Student distribution with location

and scale, with only the mean parameter exhibiting time-varying behavior,

and a scale parameter d = 1. Equation 3-5 presents the complete formulation

of the model, where l2(yt; µt|t−1, σ2) represents the logarithm of the likelihood

of the t-Student distribution with location and scale predictive distribution.
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Min
µ,m,S,γ,γ∗,

σ2,κm,κS

−
T∑

t=1

l2(yt; µt|t−1, σ2)

s. t. µt|t−1 = mt|t−1 + St|t−1, ∀t = 1, · · · , T

mt|t−1 = mt−1|t−2 + κmst−1, ∀t = 1, · · · , T

St|t−1 =
6∑

j=1

γj,t|t−1, ∀t = 1, · · · , T

[
γj,t|t−1

γ∗
j,t|t−1

]
=

[
cos( 2πjt

12 ) sin( 2πjt
12 )

−sin( 2πjt
12 ) cos( 2πjt

12 )

] [
γj,t−1|t−2

γ∗
j,t−1|t−2

]
+

[
κSst−1

κSst−1

]
, ∀t = 1, · · · , T

σ2 > 0

κm, κS ≥ 0

(3-5)

Once the desired model has been fully defined, the next step is to activate

JuMP to carry out the optimization process and thus perform the model

estimation. Code 2 illustrates how the fit function can be used. First, a model

object, created similarly to what is showed in Code 1 and the data are passed

as inputs. It is important to mention that if there are no explanatory variables,

only the model and y objects need to be provided to the function. The next

two inputs controls if the robust counterpart of the model will be used and

the penalty the K hyperparameter for the robust model, if used, respectively.

Regarding the latter, it is important to note that once the robust version of a

model is specified, the K parameter will be set as K = T×robust_prop, where

T is the length of the series. Setting the initial_values input as missing will

make the package use the methodology described in Section 3.2 to calculate

the values used to initialize the optimization problem. Users are also allowed

to define their own initialization procedure and provide it to the fit function

via the initial_values input. The remaining inputs control two aspects of

the Ipopt solver. The first one indicates the maximum number of iterations

that the optimization algorithm can perform, while the second one defines the

time limit in seconds for the solver to find the optimal solution.
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Code 2: Fitting the Specified Model

1 #--------------------------------------------

2 # Fitting the specified model

3 #--------------------------------------------

4

5 fitted_model = SDUC.fit(model , y, X; robust = false , robust_prop =

0.7, initial_values = missing , number_max_iterations = 30000 ,

max_optimization_time = 180.0)

6

7 #--------------------------------------------

8 # Accessing some results

9 #--------------------------------------------

10

11 fit = fitted_model . fit_in_sample

12 components = fitted_model . components

13 residuals = fitted_model . residuals

Once the specified model is estimated, it’s possible to begin the analysis

of its residuals. As previously discussed, the proposed package returns three

different types of residuals that provide complementary insights about the

model’s adequacy. The analysis starts with Figure 3.6, which displays the

behavior of the standardized or Pearson residuals over time. From this graph,

two relevant results are evident: firstly, these residuals have an average around

zero, and secondly, they do not exhibit any notable pattern.
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Figure 3.6: Standardize/Pearson Residuals over time.

The Pearson residuals are also useful for determining if the specified

model’s dynamics were capable of accurately capturing the data patterns. This

can be achieved by analyzing its ACF plot, as shown in Figure 3.8. This figure

confirms the model’s ability to capture series dynamics, as the ACF plot only

indicates significant autocorrelation at spurious lags.
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Figure 3.7: ACF plot of Standardize/Pearson Residuals.

As discussed earlier, conditional score residuals play a crucial role in

score-driven models as they help verify if the parameter dynamics were

correctly specified. From the top chart in Figure 3.7, it can be concluded that

the dynamics used for the mean parameter were able to effectively capture the

data patterns. It’s important to note that the same results presented by this

figure and Figure 3.8 were expected, since Pearson residuals are a special case

of conditional score residuals when the models consider a distribution from the

exponential family [33]. The absence of significant lags in the bottom chart of

Figure 3.7, which shows the ACF plot of the conditional score residuals for

the scale parameter, suggests that modeling the variance as a time-varying

parameter is unnecessary for this dataset.
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Figure 3.8: ACF plot of Conditional Score Residuals.

In addition to using residuals to evaluate the specified dynamics, it’s

crucial to assess the choice of the predictive distribution. To accomplish this,

a normality test on the quantile residuals using the Jarque-Bera test was

conducted, and QQ-Norm plots were generated.

The results of the test (Figure 3.9) indicate the non-Gaussianity of the

quantile residuals, suggesting that the t with location and scale distribution

is not suitable for modeling this data. However, upon closer analysis of Figure

3.9, it becomes evident that the quantile residuals mostly adhere to the identity

line, with a few outliers. This observation suggests that with appropriate

treatment of these outliers, the test might indicate that the used distribution

is a good choice to model this series.
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Figure 3.9: QQ-Norm plot of Quantile Residuals and Jarque-Bera Test.

Typically, after confirming the adequacy of the model using the analysis

of residuals, the last step of the time series modeling process is making

predictions. This third example aimed to demonstrate how predictions can

be obtained using the proposed package. For this final example, data on total

employment in the USA retail sector from January 1939 to June 2019 were

utilized. Figure 3.10 depicts the characteristics of this series, which appears

to exhibit a stochastic trend and a strong seasonal pattern. It is important to

highlight that, since the objective of this example is to perform predictions,

the last two years of observations were set aside as a validation set.

Min
µ,m,b,S,γ,γ∗,

σ2,κm,κb

−
T∑

t=1

l3(yt; µt|t−1, σ2)

s. t. µt|t−1 = mt|t−1 + St|t−1, ∀t = 1, · · · , T

mt|t−1 = mt−1|t−2 + bt−1|t−2 + κmst−1, ∀t = 1, · · · , T

bt|t−1 = bt−1|t−2 + κbst−1, ∀t = 1, · · · , T

St|t−1 =
6∑

j=1

{
γjcos

(2πjt

12

)
+ γ∗

j sin

(2πjt

12

)}
, ∀t = 1, · · · , T

σ2 > 0

κm, κb ≥ 0

(3-6)



Chapter 3. Proposed methodology 68

To correctly model this data, a UC score-driven model based on the Log-

Normal distribution was defined, with only the mean parameter exhibiting

time-varying behavior, following a random walk with slope plus a deterministic

seasonality dynamic. Equation 3-6 presents the complete formulation of the

model, where l3(yt; µt|t−1, σ2) represents the logarithm of the likelihood of the

Log-Normal predictive distribution.

Figure 3.10: Observed data of total employment in the US retail sector.

After correctly estimate this model and check its adequacy, it is possible

to use the model to make predictions. Code 3 demonstrates how this procedure

can be executed using the proposed package. Once more, it’s crucial to

emphasize that the X_forecast input is only necessary if the model was

estimated considering explanatory variables.
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Code 3: Performing Predictions

1 #--------------------------------------------

2 # Making predictions

3 #--------------------------------------------

4

5 steps_ahead = 24

6 number_of_scenarious = 500

7

8 forecast = SDUC. predict (model , fitted_model , y, X_forecast ,

steps_ahead , number_of_scenarious ; probabilistic_intervals =

[0.8 , 0.95])

9

10 #--------------------------------------------

11 # Accessing some results

12 #--------------------------------------------

13

14 point_forecast = forecast [" mean "]

15 probabilistic_forecast = forecast [" intervals "]

As discussed in Sub-Section 2.1.5, the multi-step-ahead predictions for

score-driven models are performed by a simulation procedure. Figure 3.11 com-

pares the model’s out-of-sample performance with validation data, considering

two different ways of representing the uncertainty of these predictions. The

top chart of Figure 3.11 displays this uncertainty as predictive intervals, while

the bottom chart shows all the simulated scenarios. Additionally, Figure 3.11

presents the mean of the scenarios as the point predictions. Considering both

the point forecast and its uncertainty, it is evident that the model was able to

provide predictions very close to the validation data.
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Figure 3.11: Twenty-four steps-ahead forecast with confidence intervals and
scenarios.

With these simple examples, it was possible to illustrate how the pro-

posed package works and how users can, with just a few lines of code, estimate

various score-driven models. Furthermore, it became evident how the package

contributes to all stages of temporal data modeling, ranging from model spec-

ification to predictions, facilitating inputs for residual analysis. Now, to truly

test the package’s capacity in terms of the benefits generated by robust tech-

niques, the next chapter aims to conduct an experiment aimed at achieving

this objective.



4
Experimental Results

In this chapter, the results of an experiment obtained through the

application of SDUC.jl in scenarios with and without regime changes in the

time series will be presented. These experiments are designed to demonstrate

the package’s performance and evaluate its robustness characteristics.

4.1
SDUC.jl during regime change periods

This experiment aims to assess the additional accuracy gained by im-

plementing robustness in the sampling method within the framework of score-

driven models. Conducting this test required considering time series exhibiting

regime changes. This aspect of the data was crucial, as the aim was to evaluate

the advantages of employing robustness techniques in enhancing the model’s

performance during these more challenging periods. While data from various

contexts could have been considered, it was decided to utilize electrical load

data from different Brazilian systems. This decision stemmed from the fact that

their historical patterns were disrupted by events resulting from the COVID-19

pandemic, as depicted in Figures 4.1 to 4.4.

Figures 4.1 to 4.4 display data for each system from 2015 to 2021.

These figures reveal seasonal patterns throughout the year, accompanied by

trends characterized by subtle growth in some systems and more stationary

behavior in others. However, starting from 2020, a noticeable departure from

the usual patterns emerges, likely attributable to the COVID-19 pandemic.

It is important to note that while this shift in data patterns following the

pandemic appears to have persisted longer for some systems than others, it

has adversely affected the quality of forecasts for all systems.
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Figure 4.1: Monthly electric load data
for the North Brazilian system.

Figure 4.2: Monthly electric load data
for the North East Brazilian system.

Figure 4.3: Monthly electric load
data for the South Brazilian sys-
tem.Southeast/Midwest

Figure 4.4: Monthly electric load data
for the Southeast/Midwest Brazilian
system.

To effectively model this data, score-driven models must be appropriately

specified. Based on the data characteristics and preliminary test results, the

proposed specification for the UC score-driven models includes stochastic

seasonality with an AR(1) level for all systems, except for the South system,

which was modeled with a random walk plus slope level. For all models, the

Normal distribution is used with only the mean parameter varying over time,

following the dynamics mentioned earlier. Table 4.1 summarizes the specified

models used in this experiment. Notably, the only difference between the score-

driven model (SDM) and its robust counterpart (R-SDM) is the inclusion of

the robustness technique applied to make the model robust to 80% of the

training data. In other words, the K parameter of robust models was set to be

equal to round(0.8× T ), where T is the length of the training data.
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Table 4.1: Model Specifications for the Robustness Experiment

System Distribution d Level Seasonality

North Normal(µt, σ2) 1.0 AR(1) Stochastic

North East Normal(µt, σ2) 1.0 AR(1) Stochastic

South Normal(µt, σ2) 1.0 Random Walk + Slope Stochastic

Southeast/Midwest Normal(µt, σ2) 1.0 AR(1) Stochastic

As mentioned earlier, the evaluation of the gain in prediction accuracy of

the Robust score-driven model against its non-robust version was performed

using monthly electric load data for the four Brazilian systems. Leveraging the

regime change induced by the COVID-19 pandemic, a comparison was made

between the forecast accuracy of the robust model and its non-robust version

during typical and atypical periods. Here, the typical period refers to the pre-

pandemic period from 2014 to 2018, while the atypical period encompasses

the years from 2019 onwards. It is important to highlight that although the

pandemic started in 2020, data from 2019 was considered as an atypical period

to help evaluate how models would perform during the transition from the pre-

pandemic to the pandemic period.

The evaluation of the model’s forecasting accuracy is based on twelve-

step ahead predictions using twenty-five rolling windows. In typical periods,

the model is estimated using data from 2014 to 2016 for the first rolling

window, and predictions are made for 2017. Subsequently, for each subsequent

rolling window, the estimation period includes data from January 2016, and

predictions are made for the subsequent twelve steps ahead, providing forecasts

for 2018 and 2019. This process repeats for all twenty-five rolling windows,

covering the years 2014 to 2019. In the atypical period, the first estimation

window spans from 2014 to 2018, and predictions are made for 2019, 2020,

and 2021. This process repeats for all systems, covering the years 2014 to

2021.

To compare the models’ conditional predictive ability (CPA), the
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Giacomini-White test [48] is utilized. Additionally, their accuracy is assessed

using several error metrics, including MAPE (Mean Absolute Percentage Er-

ror), MASE (Mean Absolute Scaled Error), MAE (Mean Absolute Error), and

RMSE (Root Mean Square Error).

While the experiment relies on cross-validation utilizing error metrics to

gauge the model’s performance, the assessment of model performance begins

with a graphical analysis. In this analysis, the predictions generated in each

rolling window are plotted simultaneously on a single graph. This approach

enables the visualization of the model’s out-of-sample performance across the

entire validation period. The rationale for adopting this analysis lies in the

belief that human judgment, supported by graphical analysis, can serve as a

valuable model selection criterion alongside those based on cross-validation

[49].

To clarify the content depicted in Figures 4.6 to 4.21, a condensed

version is presented in Figure 4.5. This figure illustrates the observed data

(depicted by the black curve) for the North East system throughout the entire

typical period. Additionally, it simultaneously displays the twelve-step-ahead

predictions for three distinct windows. From this simplified visualization, it

is apparent that the model exhibited better predictive performance in the

last window (indicated by the blue curve) compared to the others. It is worth

noting that in this illustrative example, the windows displayed do not intersect.

However, in the subsequent graphs, overlapping windows are presented as they

were designed to generate intersecting periods.
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Figure 4.5: Exemplary predictions of score-driven model during the typical
period for North East system.

With this in mind, let’s delve into the graphical analysis by examining

Figures 4.6 to 4.21. These figures depict the predictive performance during

typical and atypical periods.

Figures 4.6 to 4.12 reveal that even in typical periods, the robust model

yields more stable predictions compared to its non-robust counterpart, partic-

ularly for the North East and Southeast/Midwest systems. This observation

stems from the fact that the SDM occasionally exhibits weaker performance

in specific windows, despite its overall satisfactory performance—a character-

istic almost not observed in the robust model, which demonstrates consistent

performance across windows.

The increased stability provided by the sampling robustness technique

becomes more evident during atypical periods (Figures 4.14 to 4.21), where the

instability of the score-driven model’s predictions becomes more pronounced,

notably affecting its overall performance. Conversely, the robust model main-

tains a much more consistent performance throughout the rolling windows.
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Figure 4.6: Predictions of SDM during
typical period of North System.

Figure 4.7: Predictions of R-SDM dur-
ing typical period of North System.

Figure 4.8: Predictions of SDM during
typical period of North East System.

Figure 4.9: Predictions of R-SDM during
typical period of North East System.

Figure 4.10: Predictions of SDM during
typical period of South System.

Figure 4.11: Predictions of R-SDM dur-
ing typical period of South System.

Figure 4.12: Predictions of SDM dur-
ing typical period of Southeast/Mid-
west System.

Figure 4.13: Predictions of R-SDM dur-
ing typical period of Southeast/Mid-
west System.
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Figure 4.14: Predictions of SDM during
atypical period of North System.

Figure 4.15: Predictions of R-SDM dur-
ing atypical period of North System.

Figure 4.16: Predictions of SDM during
atypical period of North East System.

Figure 4.17: Predictions of R-SDM dur-
ing atypical period of North East System.

Figure 4.18: Predictions of SDM during
atypical period of South System.

Figure 4.19: Predictions of R-SDM dur-
ing atypical period of South System.

Figure 4.20: Predictions of SDM during
atypical period of Southeast/Midwest
System.

Figure 4.21: Predictions of R-SDM dur-
ing atypical period of Southeast/Mid-
west System.



Chapter 4. Experimental Results 78

While human judgment has the potential to support model selection [49],

it is also important to consider more traditional methods for comparing model

performance based on cross-validation. The following analysis will compare

the accuracy of each model during both periods by considering the four error

metrics previously mentioned.

Figure 4.22: Comparison of MAPE
for each step ahead during typical
periods in the North system.

Figure 4.23: Comparison of MAPE
for each step ahead during atypical
periods in the North system.

Figure 4.24: Comparison of MASE
for each step ahead during typical
periods in the North system.

Figure 4.25: Comparison of MASE
for each step ahead during atypical
periods in the North system.

In Figures 4.22 to 4.29, it is evident that, for the North system, both

models presented very similar performances during typical periods in all

four metrics. On the other hand, during atypical periods, the robust model

consistently outperformed its non-robust version, showing lower error metrics

across virtually the entire forecast horizon.
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Figure 4.26: Comparison of MAE
for each step ahead during typical
periods in the North system.

Figure 4.27: Comparison of MAE
for each step ahead during atypical
periods in the North system.

Figure 4.28: Comparison of RMSE
for each step ahead during typical
periods in the North system.

Figure 4.29: Comparison of RMSE
for each step ahead during atypical
periods in the North system.

Moving to the results for the North East system, a different behavior

of the error metrics becomes apparent. Figures 4.30, 4.32, 4.34, and 4.36

reveal that R-SDM outperforms SDM in both periods for all the four metrics

considered. An interesting observation in this system is that the difference

between the error metrics of both models seems to be bigger during the typical

period than the atypical one.
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Figure 4.30: Comparison of MAPE
for each step ahead during typical
periods in the North East system.

Figure 4.31: Comparison of MAPE
for each step ahead during atypical
periods in the North East system.

Figure 4.32: Comparison of MASE
for each step ahead during typical
periods in the North East system.

Figure 4.33: Comparison of MASE
for each step ahead during atypical
periods in the North East system.
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Figure 4.34: Comparison of MAE
for each step ahead during typical
periods in the North East system.

Figure 4.35: Comparison of MAE
for each step ahead during atypical
periods in the North East system.

Figure 4.36: Comparison of RMSE
for each step ahead during typical
periods in the North East system.

Figure 4.37: Comparison of RMSE
for each step ahead during atypical
periods in the North East system.

In relation to the South system, Figures 4.38 to 4.45 demonstrate that

both models exhibit similar performance during typical periods. The model

with the lowest metric alternated during the forecast horizon. However, it is

worth highlighting that the robust model tended to perform slightly better for

shorter-term predictions across all considered metrics.
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Figure 4.38: Comparison of MAPE
for each step ahead during typical
periods in the South system.

Figure 4.39: Comparison of MAPE
for each step ahead during atypical
periods in the South system.

Figure 4.40: Comparison of MASE
for each step ahead during typical
periods in the South system.

Figure 4.41: Comparison of MASE
for each step ahead during atypical
periods in the South system.

As observed in previous systems, the robust model demonstrated superior

performance across the forecast horizon of the atypical period for all analyzed

metrics.
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Figure 4.42: Comparison of MAE
for each step ahead during typical
periods in the South system.

Figure 4.43: Comparison of MAE
for each step ahead during atypical
periods in the South system.

Figure 4.44: Comparison of RMSE
for each step ahead during typical
periods in the South system.

Figure 4.45: Comparison of RMSE
for each step ahead during atypical
periods in the South system.

Finally, Figures 4.46 to 4.53 depict the results for the Southeast/Midwest

system. It is evident that during typical periods, both models exhibit much

more comparable performance than observed in the South system. However,

during atypical periods, once again, the robust model outperforms its non-

robust version across practically the entire forecast horizon.
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Figure 4.46: Comparison of MAPE
for each step ahead during typical
periods in the Southeast/Midwest
system.

Figure 4.47: Comparison of MAPE
for each step ahead during atypical
periods in the Southeast/Midwest
system.

Figure 4.48: Comparison of MASE
for each step ahead during typical
periods in the Southeast/Midwest
system.

Figure 4.49: Comparison of MASE
for each step ahead during atypical
periods in the Southeast/Midwest
system.
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Figure 4.50: Comparison of MAE
for each step ahead during typical
periods in the Southeast/Midwest
system.

Figure 4.51: Comparison of MAE
for each step ahead during atypical
periods in the Southeast/Midwest
system.

Figure 4.52: Comparison of RMSE
for each step ahead during typical
periods in the Southeast/Midwest
system.

Figure 4.53: Comparison of RMSE
for each step ahead during atypical
periods in the Southeast/Midwest
system.

Although all the graphical analyses indicate a better performance of the

robust model, especially during atypical periods, it is also important to measure

the statistical significance of this result. In this regard, the unilateral version

of the Giacomini-White test was conducted using the eptftoolbox library

[50]. The aim was to compare the Conditional Predictive Ability (CPA) of

both models during both typical and atypical periods. In this analysis, the

test evaluates the null hypothesis that the CPA of the SDM is higher or equal

to that of the R-SDM. Therefore, rejecting the null hypothesis implies that

the forecasts of the R-SDM are significantly more accurate than those of the

SDM.

Table 4.2 presents the results of the test in terms of its p-value. Using
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these results, it is possible to conclude that during typical periods, the test

indicates a significantly better performance of the robust model for the North

East and the Southeast/Midwest systems, considering a significance level (α)

of 5%. With a slightly higher α (at least 7%), it is possible to conclude

that the R-SDM also had a significantly better performance than SDM in

the South system. This indicates that, although the difference between both

models’ CPA is smaller in the South system than in the North East and the

Southeast/Midwest, it is still relevant. Only for the North system does the test

indicate no significant difference in the models’ CPA, which is in agreement

with the error metrics analysis.

On the other hand, for atypical periods, the test indicated a significantly

better performance of the robust model for all systems considered. It is

important to highlight that, similarly to what happens with the South system

in the typical period, a small adjustment of the α value must be made (at

least 6%) to consider the difference between models’ CPA in the North system

significant.

Table 4.2: The p-value of the Giacomini-White test assesses the comparison of
Conditional Predictive Ability (CPA) between both models across typical and
atypical periods.

System Typical Period Atypical Period

North 1.0000 0.0574

North East 0.0055 0.0146

South 0.0644 0.0012

Southeast/Midwest 0.0352 0.0297

After conducting this comprehensive analysis, deeper insights emerge

regarding the advantages of incorporating sample robustness techniques into

score-based model formulations. It became evident during typical periods that

the robust model exhibited accuracy levels at least comparable to those of

its non-robust counterpart. However, for certain systems, significantly better
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performance of the robust model was observed even during typical periods. It is

essential to note that while the robust model did not consistently demonstrate

significantly superior performance during typical periods, it showcased the

ability to produce more stable predictions. This stability was evidenced by

its resilience to fluctuations within specific windows, as depicted in Figure 4.6,

for instance.

In addition to showcasing significantly more stable performance com-

pared to its non-robust counterpart, R-SDM exhibited superior accuracy in

terms of error metrics and predictive capacity during atypical periods. Conse-

quently, R-SDM emerges as a valuable tool for professionals and policymakers

entrusted with making predictions amid unforeseen disturbances. By providing

more precise and stable forecasts during challenging periods, it can facilitate

enhanced decision-making and resource allocation.



5
Conclusions and future works

Dealing with temporally structured data poses challenges across various

applications. Extracting valuable insights and making precise predictions from

time series data are critical for informed decision-making in numerous fields.

With this premise in mind, this study aimed to investigate the potential

benefits of utilizing modern optimization techniques to define and estimate

time series models. Furthermore, the primary outcome of this study is the

SDUC.jl package, an open-source implementation intended to empower users

to define and estimate UC score-driven models.

The creation of this package represents a significant contribution to

the literature, addressing the lack of open-source implementations for this

model type. Furthermore, it introduces a series of reforms in the approach

to time series modeling. The primary innovation lies in the formulation of the

models themselves. By harnessing advancements in computational capabilities

and optimization techniques, the SDUC.jl package formulates these models as

nonlinear optimization problems. This shift in model representation has the

potential to greatly enhance predictive accuracy [7]. Importantly, this approach

introduces a novel initialization process, enabling the initialization of time-

varying parameters across all time periods, rather than solely at the outset as

conventionally practiced.

Additionally, by framing the model as an optimization problem, numer-

ous additional features can be seamlessly incorporated into the model formu-

lation to enhance its capabilities. However, this study has primarily focused

on introducing a feature aimed at enhancing model robustness, which also

represents a significant contribution.

This feature addresses sample robustness and is based on the method

proposed in [28]. This technique trains the model using the worst sub-sample
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of the training data, following specific criteria. In this case, the worst sub-

sample of length K was considered. Implementing this approach yields models

resilient to regime changes in time series data, a phenomenon observed across

various domains that can potentially compromise model accuracy.

Through a few simple illustrative examples utilizing three well-known

time series datasets, it was possible to demonstrate how the proposed package

can be effectively utilized in all stages of time series modeling, from model

definition to prediction application, alongside a detailed analysis of residuals.

Furthermore, these examples indicate the package’s flexibility in defining

various score-driven models. Subsequently, another experiment was conducted

to evaluate the package’s performance during regime changes.

This experiment aimed to evaluate the enhancement in accuracy achieved

by employing the robustness method during regime change periods. Although

the experiment could have utilized data from various domains, real data on

monthly electric load for the four Brazilian systems was selected, with the onset

of the COVID-19 pandemic signaling the start of the regime change period.

The procedure involved conducting a rolling windows process to estimate

and make predictions using both robust and non-robust score-driven models for

all systems during pre- and post-pandemic periods. The results indicated that

the robust model exhibited more stable performance throughout the rolling

windows, particularly during atypical periods. Additionally, it was observed

that the robust model generated more accurate predictions during atypical

periods, as evidenced by the reduction in certain error metrics and the higher

Conditional Predictive Ability (CPA) compared to its non-robust counterpart,

as indicated by the Giacomini-White test. Importantly, these benefits during

regime change periods were achieved without notable drawbacks during typical

periods.

In conclusion, this study effectively fulfills its objectives by integrating

optimization functionalities into the time series modeling process, leading to
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improvements in model accuracy. While the introduction of the SDUC.jl pack-

age represents a noteworthy addition to the literature, the primary contribution

of this work lies in broadening the discourse on how the adoption of modern

optimization techniques can enhance time series modeling.

On the flip side, treating score-driven models as optimization problems

has proven to be potentially challenging and computationally demanding. Con-

sequently, the proposed package still presents significant opportunities for en-

hancement. In this regard, the primary area for improvement in future en-

deavors lies in reformulating the initialization process for the model’s decision

variables, aiming to improve both computational efficiency and accuracy. Addi-

tionally, to further optimize the package’s performance, alternative approaches

to representing the model via JuMP will be explored. This includes exploring

variations in the choice of solver and adjustments to the syntax of the opti-

mization problem itself.

Once this phase is completed, the focus will shift to integrating additional

distributions into the package, thereby enhancing its applicability and impact.

Initially, the plan is to incorporate distributions from the TSLab software, with

further expansion of options expected thereafter. Furthermore, there is parallel

interest in extending the covered dynamics and exploring the inclusion of time-

varying effects of explanatory variables, alongside their automatic selection

using integer optimization.
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A
Location Scale t Distribution Local Search

The Student’s t distribution is a continuous probability distribution that ex-

tends the standard normal distribution, displaying a bell-shaped curve symmetri-

cally centered around the mean. Unlike the Gaussian distribution, the t distribution

features heavier tails, where the amount of probability mass in these tails is regu-

lated by the degrees of freedom (ν) parameter.

In the location-scale parameterization, the t distribution expands upon the

normal distribution by incorporating a location parameter µ and a scale parameter

σ2. Notably, the conventional Student’s t distribution arises as a specific case of

the location-scale t distribution when µ = 0 and σ2 = 1.

The addition of a model based on this distribution in the SDUC.jl package

is crucial because of its ability to handle data with heavier tails. Initially, the

integration of these models followed the same procedure as other distributions,

with parameters designated as decision variables and optimized using the chosen

solver. However, initial tests revealed that the optimization process was excessively

sensitive to changes in the degrees of freedom parameter, compromising the

overall performance of the model. This prompted the exploration of an alternative

approach for estimating such models.

While the mathematical formulation of a t-student distribution defines the

ν parameter as a positive real number, it’s conventionally treated as an integer

due to its interpretation as the difference between the sample size and the number

of model parameters. Leveraging this discrete interpretation of the ν parameter, a

local search strategy was devised to tackle this challenge. Initially, given an initial

estimate for the degree of freedom parameter ν0, the specified score-driven model

is estimated three times: once with ν fixed at ν0− 1, once with ν fixed at ν0, and

once with ν fixed at ν0 +1. If the model with ν = ν0 yields the best result in terms

of the corrected Akaike Information Criterion (AICc), ν0 is considered the optimal
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degree of freedom parameter value. Conversely, if an alternative model achieves

a superior AICc score, a local search process is initiated. This process iteratively

adjusts the fixed value of ν by one unit, continuously evaluating model performance

using the AICc metric. The process continues as long as successive changes in the

ν parameter lead to improved AICc values. Importantly, to ensure the well-defined

moments of the t distribution, only models with ν > 2 are considered.

Furthermore, the determination of the initial value ν0 warrants discussion.

Initially, a simple approach sets ν0 = T−1, where T denotes the series size. In other

words, since T is generally greater than 30, in this approach, the local search starts

from a Gaussian model. Although effective for numerous applications, this approach

exhibited instability for some longer time series. To address this concern, a second

approach was introduced, where ν0 is derived as the maximum likelihood estimate

of the ν parameter, obtained through an optimization problem. Consequently, the

local search procedure begins by evaluating which value of ν0 performs best based

on the AICc metric. Subsequently, for the optimal value, the aforementioned local

search approach is applied. Algorithm 1 provides a concise overview of the local

search steps.

By employing this approach, users can determine the locally optimal value

of the ν parameter, considering its integer nature, without the need to handle

mixed-integer non-linear problems.
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Algorithm 1: Local Search Procedure
Input: Specified score-driven model and the time series of interest

Output: A fitted score-driven model considering the best value of degree

of freedom parameter νbest

1 Estimate a score-driven model with ν = T − 1

2 Estimate a score-driven model with ν = νml

3 if Model with ν = T − 1 has the best AICc result then

4 ν0 = T − 1

5 else

6 ν0 = νml

7 Estimate score-driven model with ν = ν0 − 1

8 Estimate score-driven model with ν = ν0 + 1

9 if Model with ν = ν0 has the best AICc result then

10 final model ← model with ν = ν0

11 else

12 if Model with ν = ν0 − 1 has the best AICc result then

13 λ = −1

14 else

15 λ = 1

16 νcurrent = ν0 + λ

17 while AICc improves and νcurrent > 2 do

18 Estimate score-driven model with ν = νcurrent

19 if New model has better AICc result then

20 best model ← model with ν = νcurrent

21 νcurrent ← νcurrent + λ

22 else

23 final model ← best model
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