Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: PORTFOLIO SELECTION USING ROBUST OPTIMIZATION AND SUPPORT VECTOR MACHINE (SVM)
Autor: ROBERTO PEREIRA GARCIA JUNIOR
Colaborador(es): ALEXANDRE STREET DE AGUIAR - Orientador
DAVI MICHEL VALLADAO - Coorientador
Catalogação: 26/OUT/2021 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=55471&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=55471&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.55471
Resumo:
The difficulty of predicting the movement of financial assets is the subject of study by several authors. In order to obtain gains, it is necessary to estimate the direction (rise or fall) and the magnitude of the return on the asset in which it is intended to be bought or sold. The purpose of this work is to develop a mathematical optimization model with binary variables capable of predicting up and down movements of financial assets and using a portfolio optimization model to evaluate the results obtained. The prediction model will be based on the textit Support Vector Machine (SVM), in which we will make modifications in the regularization of the traditional model. For the portfolio management will be used robust optimization. The robust optimization techniques are being increasingly applied in portfolio management, since they are able to deal with the problems of the uncertainties introduced in the estimation of the parameters. It is noteworthy that the developed model is data-driven, i.e., the predictions are made using nonlinear signals based on past historical price / return data without any human intervention. As prices depend on many factors it is to be expected that a set of parameters can only describe the dynamics of the prices of financial assets for a small interval of days. In order to more accurately capture this change in dynamics, the estimation of model parameters is done in a moving window To test the accuracy of the models and the gains obtained, a case study was made using 6 financial assets of the currencies, fixed income, variable income and commodities classes. The data cover the period from 01/01/2004 until 05/30/2018 totaling a total of 3623 daily quotations. Considering the transaction costs and out-of-sample results obtained in the analyzed period, it can be seen that the investment portfolio developed in this work shows higher results than the traditional indexes with limited risk.
Descrição: Arquivo:   
COMPLETE PDF