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Abstract

Garcia Junior, Roberto Pereira; Street, Alexandre (Advisor); Va-
ladão, Davi Michel (Co-Advisor). Portfolio selection using ro-
bust optimization and support vector machine (SVM). Rio
de Janeiro, 2019. 62p. Dissertação de mestrado – Departamento
de Engenharia Elétrica, Pontifícia Universidade Católica do Rio de
Janeiro.
The difficulty of predicting the movement of financial assets is the

subject of study by several authors. In order to obtain gains, it is necessary
to estimate the direction (rise or fall) and the magnitude of the return on
the asset in which it is intended to be bought or sold. The purpose of this
work is to develop a mathematical optimization model with binary variables
capable of predicting up and down movements of financial assets and using
a portfolio optimization model to evaluate the results obtained. The pre-
diction model will be based on the textit Support Vector Machine (SVM),
in which we will make modifications in the regularization of the traditional
model. For the portfolio management will be used robust optimization. The
robust optimization techniques are being increasingly applied in portfolio
management, since they are able to deal with the problems of the uncertain-
ties introduced in the estimation of the parameters. It is noteworthy that
the developed model is data-driven, i.e., the predictions are made using
nonlinear signals based on past historical price / return data without any
human intervention.
As prices depend on many factors it is to be expected that a set of
parameters can only describe the dynamics of the prices of financial assets
for a small interval of days. In order to more accurately capture this change
in dynamics, the estimation of model parameters is done in a moving window
To test the accuracy of the models and the gains obtained, a case study
was made using 6 financial assets of the currencies, fixed income, variable
income and commodities classes. The data cover the period from 01/01/2004
until 05/30/2018 totaling a total of 3623 daily quotations. Considering the
transaction costs and out-of-sample results obtained in the analyzed period,
it can be seen that the investment portfolio developed in this work shows
higher results than the traditional indexes with limited risk.

Keywords
Theory of Optimization; Theory of Statistical Learning; Machine

Learning; Technical analysis;; Binary classification; Robust optimization;
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Resumo

Garcia Junior, Roberto Pereira; Street, Alexandre; Valadão, Davi
Michel. Seleção de portfólio usando otimização robusta
e máquinas de suporte vetorial. Rio de Janeiro, 2019. 62p.
Dissertação de Mestrado – Departamento de Engenharia Elétrica,
Pontifícia Universidade Católica do Rio de Janeiro.
A dificuldade de se prever movimento de ativos financeiros é objeto

de estudo de diversos autores. A fim de se obter ganhos, se faz necessário
estimar a direção (subida ou descida) e a magnitude do retorno do ativo
no qual pretende-se comprar ou vender. A proposta desse trabalho con-
siste em desenvolver um modelo de otimização matemática com variáveis
binárias capaz de prever movimentos de subidas e descidas de ativos fi-
nanceiros e utilizar um modelo de otimização de portfólio para avaliar os
resultados obtidos. O modelo de previsão será baseado no Support Vector
Machine (SVM), no qual faremos modificações na regularização do modelo
tradicional. Para o gerenciamento de portfólio será utilizada otimização ro-
busta. As técnicas de otimização estão sendo cada vez mais aplicadas no
gerenciamento de portfólio, pois são capazes de lidar com os problemas das
incertezas introduzidas na estimativa dos parâmetros. Vale ressaltar que o
modelo desenvolvido é data-driven, i.e, as previsões são feitas utilizando si-
nais não-lineares baseados em dados de retorno/preço histórico passado sem
ter nenhum tipo de intervenção humana.
Como os preços dependem de muitos fatores é de se esperar que um
conjunto de parâmetros só consiga descrever a dinâmica dos preços dos
ativos financeiros por um pequeno intervalo de dias. Para capturar de forma
mais precisa essa mudança na dinâmica, a estimação dos parâmetros dos
modelos é feita em janela móvel.
Para testar a acurácia dos modelos e os ganhos obtidos foi feito um estudo de
caso utilizando 6 ativos financeiros das classes de moedas, renda fixa, renda
variável e commodities. Os dados abrangem o período de 01/01/2004 até
30/05/2018 totalizando um total de 3623 cotações diárias. Considerando
os custos de transações e os resultados out-of-sample obtidos no período
analisado percebe-se que a carteira de investimentos desenvolvida neste
trabalho exibe resultados superiores aos dos índices tradicionais com risco
limitado.
Palavras-chave

Teoria da Otimização; Teoria do aprendizado Estatístico; Aprendi-
zado de Máquina; Análise Técnica; Classificação binária; Otimização
robusta;
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1
Introduction

The Efficient Markets Hypothesis (EMH) is one of the most influential
theories in the field of finance, being the basis for a number of asset pricing
models (2). The basis of the EMH is the assertion that the price of an
asset reflects the information available on the issuing institution, making it
impossible for investors to gain abnormal returns. Despite the wide acceptance
of EMH, many researchers did not give up examining the predictability of
returns.

Initially, the most convenient assumption for financial theory and em-
pirical methods is that distribution of security rates of return be multivariate
normal with parameters that are stationary over time. However, Fama in (17)
tested the normality hypothesis on daily returns for the Dow Jones Indus-
trial stocks and found an excess kurtosis than that predicted from a sample of
independent and identically distributed normal variables.

After these studies, many other authors attempted to describe the
probability distribution of returns (7, 33, 30). There is no consensus on the
actual distribution of probabilities of returns and due to the complexity of
this task most of the researches focus on approach more data-driven. That is,
currently the forecast models are no longer focused on the generating process,
but on the recognition of hidden patterns.

Moreover, different from the traditional models that focused exclusively
on predicting the conditional mean, the prediction of the return signal has
been increasingly discussed. Diebold and Christoffersen in (13), for example,
argue that although they do not find predictability in the conditional average of
returns there is a dependency structure in the return signal. In (36) a new type
of trend strategy is developed based on the past return signal. This strategy is
driven mainly by signal dependence, which is positively related to the average
return and negatively related to volatility.

Forecasting returns is a complex task, and it has not yet been possible to
generate models with a high hit rate1. The relationship between past data and
future data might be non-linear (24) and therefore traditional linear statistical

1Hit rate was defined as the ratio between the number of correct forecasts divided by the
total number of forecasts.

DBD
PUC-Rio - Certificação Digital Nº 1621833/CA



Chapter 1. Introduction 14

models such as auto-regressive, integrated and moving average have not proved
satisfactory for this task.

In view of this new paradigm, models such as Support Vector Machine
(SVM), Neural Networks and Decision Trees are increasingly being used for
time series forecasting. These models are totally data oriented and do not make
any assumptions about the data generating process, that is, it adapts to the
set of data received over time. A broad review of the nonlinear models applied
to the prediction of actions can be found in (3).

Economic factors (market indices such as GDP and current account
deficit), Institutional factors (information of companies as price on profit and
distribution of dividends) were not addressed in this research. In this work a
mathematical optimization model was developed for binary classification based
on the SVM where the inputs are the historical prices of the assets.

The choice of SVM is based on some attractive features such as good
generalization capability, robustness in large dimensions, convexity of objective
function and well definied theory.

Among the characteristics cited, the most prominent is the generalization
capacity. The first results were presented by Vapnik and Chernovenkis through
the Theory of statistical learning, proposed by these authors in the 60s and 70s
(Vapnik, 1995). The SVMs emerged as a direct result of using the principles
presented in this study.

It is worth mentioning that the good generalization capacity of the SVM
in the context of financial series is document in several studies. In (1), for
example, an SVM adapted to show the flexibility of the support machines in
the middle of chaotic series was used. The model considered the chaos intrinsic
to the time series to make predictions about the USD / BRL exchange rates,
reaching very satisfactory results and achieving a better performance than
traditional models.

Also (37) analyzes the behavior of models generated with SVM in the
American market focusing on two technical indicators: RSI2 and MACD3. In
addition to obtaining a good accuracy rate in the market index forecast, it
concludes that SVM performs better in markets of high and low ballast than
in markets of tediousness.

2The relative strength index (RSI) is a momentum indicator that measures the magnitude
of recent price changes to evaluate overbought or oversold conditions in the price of a stock
or other asset. The RSI is displayed as an oscillator (a line graph that moves between two
extremes) and can have a reading from 0 to 100.

3Moving Average Convergence Divergence (MACD) is a trend-following momentum
indicator that shows the relationship between two moving averages of a security’s price.
The MACD is calculated by subtracting the 26-period Exponential Moving Average (EMA)
from the 12-period EMA.

DBD
PUC-Rio - Certificação Digital Nº 1621833/CA
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However, to make a profit on the financial markets, not only is a good
forecasting model needed, since most investors have a portfolio of investments.
We need an allocation model that is capable of using the best forecasts possible,
maximizing return and reducing losses.

The pioneering work in the area of portfolio optimization was the
proposition of the mean-variance model by Harry Markowitz 4. Which assumes
that for the investor must maximize the expected return and minimize its
volatility of returns to define define his optimal portfolio. In spite of the
theoretical success of the mean-variance model, practitioners have shied away
from this model. The solution of optimization problems is often very sensitive
to perturbations in the parameters of the problem. Since the estimates of the
market parameters are subject to statistical errors, they are very sensitive to
the perturbations in the inputs. The results of the optimization problems may
not be very reliable.

In this context, robust optimization (RO) techniques have received
significant interest by the investment management community, as they allow
portfolio managers to incorporate the uncertainty introduced by estimation
errors directly into the optimization process. Its goal is to compute solutions
with a prior ensured feasibility when the problem parameters are assumed to
be unknown but confined within a prescribed uncertainty set. In (22) we have
statistical methods for constructing uncertainty sets for factor models of asset
returns. In that same line in (38) is proposed a model with box uncertainty
sets for mean and covariance and show the arising model can be reduced to a
smooth saddle-point problem subject to semi definite constraints.

Given optimization problems with uncertain parameters, RO finds the
best decision in view of the worst-case parameter.

1.1
Literature review

The study of asset prices in financial time series using machine learning
algorithms began in the early 2000s in the work of Fan and Palaniswami
(18). The accounting information of shares traded on the Australian Stock
Exchange for the period of 1992 and 2000 was used as input to the SVM.
The results were compared with a benchmark model consisting of a uniformly
weighted investment portfolio composed of all stocks available for ranking. It
is noteworthy that only annual reports were considered and reports with more
than one missing variable were discarded.

4For more details on Modern Portfolio Theory see (16, 32).
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In 2001, (11) presented a study on the parameters of the SVM formulation
in comparison to artificial neural networks - RNA. Although it presented
unsatisfactory results in the classification of a new sample from the point
of view of an investor, was superior to the use of RNA. In this work, in
addition to highlighting the use of SVM in financial time series, they are shown
that the use of external variables the financial time series, such as technical,
fundamentalist or inter-market indicators, in most cases, does not improve the
prediction power of the model when compared to the use of past returns.

In the same way, (28) follows the same line of reasoning in a similar
work, ratifying cite 40 about the sensitivity of the C and δ2 parameters
of the SVM implementation, but focusing on distinct characteristics for the
problem resolution. The tests are focused on the implementation of the kernel
polynomial and RBF compared to a model generated by neural networks.

In HUANG (2005) (26) the SVM is used to predict the weekly movement
of the NIKKEI 225 index, comparing its performance with linear discriminant
analysis and quadratic discriminant analysis. The input data of the models
are interest rate, short-term interest rate, long-term interest rate, industrial
production, government consumption, private consumption, gross national
product, gross domestic product. To evaluate the performance they used a
random walk model as benchmark. The authors obtained results superior to
linear discriminant and quadratic discriminant analysis, suggesting that this
path can lead to capital gains.

In PHICHHANG (2009) (4) a group of algorithms are used to predict
the daily trend of Hong Kong stock exchange assets. The results obtained were
promising and the attributes used were the S&P 500 exchange rate between
HK and US, plus the addition of the opening value, closing value, minimum
value and maximum value in the day.

In ZHONGYUAN (2012) (39) the SVM is used to make forecasts in the
Chinese stock market. As in similar works, it faces the problem of obtaining the
optimal parameters for the algorithm, choosing them based on results obtained
in cross-validation experiments.

In HUANG (2012) (25) proposed hybrid methodology using both GA
and SVM for stock prediction. Genetic Algorithm (GA) is mainly used for
parameter optimization of the model and to peprform feature selection to
achieve optimal parameter as an input to the SVM model. The use of GA for
feature selection is vital and helps to significantly outperform the benchmark
schemes

In NAYAK (2015) (35) proposed a hybrid framework utilizing SVM with
KNN. The proposed methodology was used to predict the Indian stock ex-
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change market. SVM was utilized to predict future or loss. It also estimated
the stock value over a time for one day, week and month. The model performed
well for high dimensional feature vector and handled the error and the perfor-
mance of the classification methods. The SVM-KNN model outperformed the
mentioned models by removing the need to tune multiple parameters for ANN
and fuzzy-based model.

Literature that connects the ideas of risk measurement or portfolio
optimization with robust optimization is rather limited since this is a relatively
new field. However, some works explore this field. Below we present some
pioneering works in this area of robust optimization applied to portfolio
selection.

In GOLDFARB and IYENGAR (2003) (22) analyze the problem of
portfolio optimization, concentrating on the mean return, variance, and the
Sharpe ratio. They develop a factor model with normality assumptions on
the return distribution that reduce the size of the problem. Uncertainty is
assumed to be present in the mean returns, residual variance of assets, and their
factor exposure. It is shown that optimization of some portfolio characteristics,
while keeping the others constrained, can be reduced to a second-order cone
programming problem. Also, procedures for the construction of uncertainty
sets are proposed.

In CERIA and STUBBS (2006) (12) analyze the standard Markowitz
mean-variance optimization problem with uncertainty in the mean returns of
assets. They construct ellipsoidal uncertainty region for them and prove that
the robust optimal solution is equivalent to a stardard solution for an agent
with higher risk aversion.

In BERTSIMAS and PACHAMANOVA (2008) (6) study the case of
optimal multiperiod investment under uncertainty and transaction costs. They
construct optimal investment strategies as a result of extensive linear programs.
In the end they conduct a simulation study where they compare standard
mean-variance multiperiod asset allocation to several variants of their robust
decisions.

In GOH and SIM (2010) (21) analyze the problem of expected utility
maximization under distributional uncertainty (which is defined in terms of
supports and moments of the random variables). Since the problems they
consider are highly nonlinear, they develop several approximative schemes
based on linear and quadratic decision rules. Results are demonstrated on
an example with multiperiod inventory management.

In WOZABAL (2012) (40) considers the problem of deriving the worst-
case form of several risk measures under non parametric distributional uncer-
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tainty, defined by means of the Kantorovich distance. He combines a so-called
subdifferential representation of common risk measures with a suitable form
of the Kantorovich distance to derive tractable worst-case values of given risk
measures.

1.2
Purpose of dissertation

The focus of this work is to create an optimal investment portfolio
using forecasts based on an SVM to feed the robust optimization model.
The forecast model, unlike the traditional SVM, will use binary variables to
control the number of signals used in predictions. This form of regularization
is still unusual in the financial market, mainly due to its high computational
cost. However, we believe that the benefits obtained are worth the price paid
for using the integer variables. In addition to the best results in terms of
accuracy, it is easier to understand which are the variables that most influence
predictions.

The model will be data-driven. For the distribution of the resources we
use a robust optimization model based on the allocation model developed in
(20) with some adaptations. Figure 1.1 below shows all steps of the process.
Note that the model training was done using the Julia programming language
(JuMP package (14)) that was chosen for having superior performance in the
main programming languages such as Python, Matlab and R.

Figure 1.1: Schematic proposed in this work

The use of such a model has become increasingly popular since they
do not make assumptions about the process generating the financial series.
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In addition, they can be used in the most diverse markets: currencies, fixed
income, variable income and commodities.

To obtain superior results is necessary that the signals used as inputs have
good predictive power, therefore a broad review of the quantitative finance
literature was necessary to understand which signals are the most used and
with best performances. In addition to classical signals as a moving average,
signals were still used in the Brazilian environment and have a good predictive
power. In this work, we did not focus on any particular signal, since as the
return distributions change over time the idea was to have a signal mix that
adapts to the most varied market conditions.

1.3
Theoretical justification and contributions

To make a profit in the financial market it is very important to have
subsidies for decision making. Such subsidies can be translated into information
from financial analysts or even generated by mathematical models capable of
anticipating the movement of asset prices. The risk involved in decision making
is large and can cause considerable financial losses, so it is important to study
and develop robust and reliable models that can serve as the basis for investors
to make their decisions.

Over the last few decades, the amount of data generated has grown
exponentially and it is becoming increasingly important for investment firms
to process and analyze data faster and faster. In the face of this new scenario,
systematic investments have gained increasing prominence in Brazil, since
this type of strategy benefits from this large amount of available data and
technological advances. The list of applications is varied and ranges from risk
management, option pricing, portfolio optimization and robot advisors.

In addition, the theoretical relevance of this dissertation is related to
the generation of scientific knowledge in optimization models with integer
variables, quantitative finance and statistical learning theory applied to the
Brazilian financial market.

Finally, our main contributions of work to literature are:

1. We propose a prediction model based on the SVM that uses integer
variables to control the number of signals used to make the predictions
on future returns.

2. We propose a methodology with a portfolio of signals, which in the
literature are generally used and studied separately, in a combined
manner.
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3. We Consider that optimal portfolio losses are modeled using a robust
adaptive approach. Also, unlike traditional portfolio optimization models
that consider maximizing the expected return, we maximize a metric that
is related to the chance our forecast is correct. The amount allocated in
the assets will be distributed according to the confidence we have in the
forecasts.

4. The model incorporates transactions costs, covering all fees structures
typically observed in the market, to provide a more rigorous result for
practical purposes.

1.4
Structure of dissertation

This dissertation was structured in 7 chapters, and the following is a brief
description of each one.

In this chapter, general considerations were presented regarding the
Brazilian financial market, the models that will be developed and the theo-
retical relevance of the topic addressed in this dissertation.

In Chapter 2 we present the two most popular types of support vector
machines in the literature: Hard margin SVM and Soft Margin SVM. We will
see that the former is used only when the data are linearly separable and
therefore, it was necessary to extend the concept to the non-linearly separable
case and hence the soft version appears.

Chapter 3 presents a quick review on robust optimization models. The
objective is to present the model that will be used as the basis for this work.

Chapter 4 presents the signals that were used as predictors. The idea is
to use signals with high predictive power and that are adaptive to capture the
various dynamics of the market.

Chapter 5 presents the proposed model for the creation of investment
portfolios. It shows the adaptations made in the traditional SVM standard. In
addition, we present the robust portfolio optimization module that takes into
account the forecasts made by SVM.

Chapter 6 presents the numerical results obtained with the application
of the approaches proposed in chapter 5.

Finally, chapter 7 presents the conclusions obtained in this work, and
suggestions for future improvements.
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2
Support vector machine

In this section it is presented the use of SVMs to obtain linear boundaries
to separate data belonging to two classes. The first case to be presented deals
with linearly separable data. Since in real problem this situation hardly ever
occurs, the formulation has been extended to the case where data are not
separable. However, before entering SVM itself, let’s present how the data set is
organized and some considerations about the set of classifiers used throughout
this work.

We assume training data are given consisting of observations Sit =
(sit,1, sit,2, · · · , sit,Ns

)T each having associated class label yit ∈ {−1, 1} where
i ∈ I = {1, 2, 3, · · · , n} refers to certain financial asset, t ∈ T = {t0, t1, ..., tm}
refers to a particular day in dataset. Already Ns refers to the total number of
attributes used in this work. In addition, the set K = {1, 2, · · · , Ns} is used to
refer to all possible attributes. For example, sit,k refers to the attribute k ∈ K
of asset i ∈ I in time t ∈ T . The figure 2.1 below shows the matrix form of
the dataset for a given asset.

Figure 2.1: Matrix representation of the data set for a given asset. Matrix
lines are time indexed since the data is time series.

For the remainder of the chapter it is not necessary to distinguish the
asset being considered since the same model will be used for all and so let’s
consider our dataset as S = {(St, yt) ∀t ∈ T }.

It is typically assumed that there is a probability distribution P (St, yt)
from which theses data are drawn. The set of classifiers shall be restricted to
those of the form:
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yt = hw,b(St) = I(f(St)) (2-1)

f(St) = 〈St,w〉+ b (2-2)
Where, I(z) = 1, if z ≥ 0 and I(z) = −1 otherwise, w ∈ RNs and

b ∈ R. Classifiers that separate the data through hyper-plane are called linear.
Note that according to the I(z) definition our classifier will return +1 or -1
without estimating probabilities (other than how logistic regression works, for
example).

2.1
Functional and geometric margins

Given an example of the training set S of the form (St, yt) the functional
margin of (w, b) with respect to this training example is defined as:

ρt = ytf(St) = yt(〈St,w〉+ b).

Note that if ρ(f(St), yt) > 0 we have a correct sort because the signs of
yt and f(St) are the same. For a linear classifier as shown in equations 2-1 we
have that the functional margin is not a good measure for the confidence of our
forecast, since it is sensitive to the rescaling of the parameters.For example,
if we make the following transformation (w, b) → (2w, 2b) we have that the
margin value is twice as large, but h2w,2b(St) = hw,b(St).

To get around this problem we will introduce the concept of geometric
margin. Consider the picture 2.2 below:

Figure 2.2: Example of a binary classification problem using a linear classifier.

We want to find the distance between −→AB defined by γt. Let St be
the coordinate of point A, then the coordinate of point B is given by SB =
St − γt w

||w|| . How SB ∈ 〈St,w〉+ b = 0 we have,
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〈w, St − γt
w

||w||
〉+ b = 0 (2-3)

Solving for γt,

γt = 〈St,w〉+ b

||w||
(2-4)

This was worked out for the case of a positive training example A in the
figure. More generally, we define the geometric margin of (w, b) with respect
to a training example (St, yt) to be:

γt = yt(〈St,w〉+ b)
||w||

∀t ∈ T (2-5)

Note that if ||w|| = 1 then ρt = γt. In addition we see that the geometric
margin is not affected by the rescaling of (w, b). Given these properties we see
that it makes sense to relate the geometric margin to the confidence of our
forecast. For example, a high γt value indicates a point far from the decision
boudary and as a consequence the chance of having made a wrong prediction
is lower.

However, when we use the model to make predictions on unseen data,
we do not have the label yt and therefore we can not calculate γt directly. As
a measure of the confidence of new forecasts we will use only the value given
by:

dt = (〈St,w〉+ b)
||w||

(2-6)

The magnitude of dt is associated with confidence in the prediction and
I(dt) the predicted class.

Finally, given a training set S = {(St, yt),∀t ∈ T }, we also define the
geometric margin of (w, b) with respect to S to be smallest of the geometric
margins on the individual training examples:

γ = min
t∈T

γt

2.2
Maximum margin classifiers

Given a set of training S = {(St, yt),∀t ∈ T } and what was presented
in the previous section it is natural to try to find a classifier that presents
maximum margin, since this would imply in forecasts with a high degree of
confidence. This will result in a predictor separating the positive and negative
examples with a large gap (geometric margin).

As mentioned earlier, we are assuming in this first moment that the data
are linearly separable, i.e., it is possible to separate the positive and negative
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examples using a hyperplane of the form 2-2. The following optimization
problem provides the hyperplane with maximum geometric margin:

Maximize
w,b,γ

γ (2-7)

s.t.

||w|| = 1 (2-8)

yt(〈St,w〉+ b) ≥ γ, ∀t ∈ T (2-9)

Note that the constraint ||w|| = 1 ensures that the margin coincides
with the geometric margin and with this we have that all examples are at a
distance of at least γ. At optimum, the result will be (w∗, b∗) which guarantees
the largest possible geometric margin.

Although the model proposed in the equation 2-7 gives us the linear
classifier with the maximum margin, a constraint ||w|| = 1 makes it non-
convex. You can make some modifications to the model in order to make it
convex. Consider the model,

Maximize
w,b,ρ

ρ

||w||
(2-10)

s.t.

yt(〈St,w〉+ b) ≥ ρ, ∀t ∈ T (2-11)

In the equation 2-10 we have the maximization of the geometric margin
in the objective function and a constraint that guarantees that the marginal
error is zero. We have succeeded in eliminating the constraint ||w|| = 1, but
the problem is still non-convex due to ρ

||w|| . Let us argue that there is no loss
of generality in assuming that ρ = 1. As previously discussed, the parameter
rescheduling has no influence on the problem, so we can solve the problem with
the (ρw, ρb) parameters. The problem becomes,

Maximize
w,b

1
||w||

(2-12)

s.t.

yt(〈St,w〉+ b) ≥ 1, ∀t ∈ T (2-13)

The problem 2-12 is mathematically equivalent to:
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Minimize
w,b

||w||2 (2-14)

s.t.

yt(〈St,w〉+ b) ≥ 1, ∀t ∈ T (2-15)

The model of the equation 2-14 is convex and is known in the literature
as Support Vector Machine with rigid margin. The vectors that are closest to
the optimal hyperplane (smaller geometric margin) are the support vectors as
shown in the following figure 2.3.

Figure 2.3: Optimum hyperplane and support vectors.

2.3
Soft margin SVM

The derivation of the SVM from the previous section assumed that the
data are linearly separable. However, in most real problems this is not the case.
This is due to several factors, among them the presence of noises and outliers
in the data or to the very nature of the problem that may be nonlinear.

To accomplish this classification task, therefore it is allowed that some
data may violate the constraint of the equation 2-14. This is done by introduc-
ing clearance variables zt, for t ∈ {t0, t1, · · · , tm}. In this way, the optimization
problem becomes:
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Minimize
w,b,z

tm∑
t=t0

Ctzt + 1
2 ||w||

2 (2-16)

s.t.

yt(〈St,w〉+ b) ≥ 1− zt, ∀t ∈ T (2-17)

zt ≥ 0, ∀t ∈ T (2-18)

The application of this procedure smoothes the edges of the linear
classifier, allowing some data to remain between the dotted hyperplanes shown
in figure 2.4 and also the occurrence of some classification errors. Note that the
term ∑tm

t=t0 zt is nothing more than the marginal error and ||w||2 is related to
complexity of the model. The vector C = [Ct0 , Ct1 , ..., Ctm ] is a regularization
term that imposes a weight on minimizing the complexity of the model, ie, it
is the trade-off between complexity of the model and minimization of errors.

Figure 2.4: Binary classification problem where non-linearly separable data.
The values of zt serve as a counter for the number of errors, since zt > 1
indicates erroneous predictions. Already values between 0 and 1 indicate that
the forecast is correct, however, the point is close to the decision border.
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3
Robust optimization and portfolio selection

Throughout this section we will present the basics concepts in robust
optimization and the model developed in (20).

Given an objective function f(x) to optimize subject to constraints
L(x,Rt) ≤ ε1 with uncertain parameters, {Rt}, the general RO formulation
is:

Maximize
xt

f(xt) (3-1)

s.t.

L(xt,Rt) ≤ ε1, ∀Rt ∈ Ξt (3-2)

Here xt ∈ Rn is a vector of decision variables, f, L: Rn → R are functions,
and the uncertainty parameters Rt ∈ Rn are assumed to take arbitrary values
in the uncertainty sets Ξt ⊆ Rn. The goal of 3-1 is to compute minimum cost
solution x∗ among all those solutions which are feasible realizations of the
disturbances Rt within Ξt.

It is worth mentioning that in the context of this paper RT
t =

(R1
t , R

2
t , · · · , Rn

t ) is the vector of asset returns and xTt = (x1
t , x

2
t , · · · , xnt ) is

vector of allocation and f(xt) = R̂
T

t xt with R̂t being the prediction of the
return given a set of past information. Following what was done at (20) the
loss restriction will be of the form L(x,Rt) ≤ ε1 is described generally as:

RT
t xt ≥ γWt−1, ∀Rt ∈ Ξt (3-3)

Here Wt−1 is the total wealth and γ the parameter that defines a
percentage loss of the total wealth at time period t-1.

At this point we need to determine the structure for Ξt. There are
several possible frameworks for the uncertainty set, however in finance the
most commonly used are those listed below. (see (5) for more details)
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Ξt(σ) = {R̃t ∈ Rn : (R̃t − µt)Σ−1(R̃t − µt) ≤ σ2} (3-4)

Ξt(Γ) = {R̃t ∈ Rn : ∃q ∈ Rn
+ s.t.

R̃t = µt + (rlow − µt) ◦ q, qi ≤ 1,
n∑
i=1

qi ≤ Γ} (3-5)

Ξt(α) = {R̃t ∈ Rn : ∃q ∈ Rn
+ s.t.

R̃t =
J∑
j=1

qjrt−j, qj ≤
1

N(1− α) ,
J∑
j=1

qj = 1} (3-6)

The set in 3-4 is a quadratic or ellipsoidal uncertainty set, i.e, considers
all returns within a radius σ from the mean return vector, where the ellipsoid
is tilted by the covariance. When σ = 0 then R̃t = µt. The set 3-5 considers
all returns such that each component of the return is in the interval [rilow, µit],
with the restriction that the total weight of deviation from µit, summed across
all assets, may be no more than Γ. Finally, 3-6 is the tail uncertainty set and
considers the convex hull of all possible N(1 − α) point average of the N
returns.

However, in this work we will use the uncertainty set Ξt(γ) defined below
in equation 3-7, since it was applied to a similar problem to this work and the
results were promising as presented in (20).

Ξt(γ) = {R̃t ∈ Rn : ∃ζ ∈ Z s.t R̃t =
J∑
j=1

ζjRt−j } (3-7)

where Rt−j are return sample and ζj is defined in the set

Z = {ζ ∈ [0, 1]J :
J∑
j=1

ζj = 1 } (3-8)

Therefore, the problem 3-1 can be written as follows

Maximize
xt

R̂
T

t xt (3-9)

s.t.

Minimize
ζ∈Z

J∑
j=1

ζj(R
T

j xt) ≥ γWt−1 (3-10)

It can be shown (see (20) for a complete and accurate demonstration)
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that problem 3-9 is equivalent to

Maximize
xt,xc

t ,u
+,u−

n∑
i=1

R̂i
tx
i
t + R̂t,cx

c
t (3-11)

s.t.

xct = Wt−1 −
n∑
i=1

ci(ui+ + ui−) (3-12)

n∑
i=1

Rt−jx
i
t ≥ γWt−1, ∀j = 1, 2..., J (3-13)

xit = xit−1(1 +Ri
t−1) + (ui+ − ui−), ∀i ∈ I (3-14)

ui+, u
i
− ∈ R+, ∀i ∈ I (3-15)

xct ∈ R+ (3-16)

Here R̂i
t and R̂t,c are the forecasts for financial assets and for the free

risk asset, respectively. The values of xt are the values allocated to each asset.
In addition, the first restriction imposes the maximum loss (through the γ
variable) that the portfolio may suffer each day for a period of J days. The
other restrictions are related to the balance of inflows and outflows of the assets
of the portfolio.

It is worth mentioning that there is no capital inflow during the analyzed
period and c is the transaction cost vector of assets to buy and sell. For
simplicity we are assuming that the cost of the transaction is independent
of the volume operated.
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4
Attributes and predictors

In this section we will present the attributes used to predict the trend of
financial time series. One of the most used attributes as a trend predictor is the
set of past returns Rt,J = (rt−1, · · · , rt−J), where J represents the number of
past returns that will be used and t the day on which we will make the forecast.
However, there are several critiques for this choice, since several studies point
to the nonexistence of a linear correlation between the past and the future of
financial series.

Thus, in addition to using the past returns we will use a set of Sit,N =
(si,Nt,1 , · · · , si,Nt,Ns

2
)1, where each si,Nt,k , k2 ∈ K

2 , i ∈ I and t ∈ T is a nonlinear
function of the past data, i.e., si,Nt,k = fk(Ri

t,N). The models presented in this
paper have the structure presented next.

1. Model 1: Model where we do not directly use past returns as predictors.
In addition, the set of signals is divided into two: short-term and long-
term signals.

Sit = [Sit,Nshort
| Sit,Nlong

]

w = [wshort | wlong]

Where Nlong and Nshort are natural numbers with Nlong > Nshort and
i ∈ I.

2. Model 2: Similar to model 1 with the inclusion of past returns.

Sit = [Sit,Nshort
| Sit,Nlong

| Rt,N0 ]

w = [wcurto | wlongo | w0]

Where Nlong, Nshort and N are natural numbers with Nlong > Nshort and
i ∈ I.

1This notation is in line with what was presented in the chapter 2. Here we only include
the explicit dependence on the number of days spent (N) used in constructing the signals.

2 K
2 = {1, 2, · · · , Ns

2 }
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The total number of signals used in this work was 7 (Ns

2 = 7)3 and the
detailed mathematical description of each of them is presented below4. The
signal mix used to predict the ups and downs of returns must be flexible and
dynamic to achieve good out-of-sample performance. The great majority of the
signals used in this work are of type trend-followers, whose main characteristic
is to be bought if the market is bullish and sold if the market is bass. That
is, trend-follower models assume that if an asset is performing well, it will
maintain that good performance.

1. Signal 1:
sNt,1 = sign(Rt−1) ∗ (α + β ∗ |Rt−1|) (4-1)

Where the coefficients α and β are estimated using the training window
that goes from Rt−N to Rt−1.

2. Signal 2:
sNt,2 = sign(Pt−1 − Pt−N) (4-2)

Where Pt is the price of the financial asset at time t.

3. Signal 3:
sNt,3 = (Pt−1 − µP )

σP
(4-3)

Where µP = 1
N

∑t−1
i=t−N Pi and σP =

√∑t−1
i=t−N

(Pi−µP )2

N−1 .

4. Signal 4:
sNt,4 =

∑t−1
i=t−N Ri ∗ I(Ri > 0)∑t−1
i=t−N −Ri ∗ I(Ri < 0)

(4-4)

Where I(.) is a function such that I(q) = 1 if q is true and I(q) = 0
otherwise.

5. Signal 5:

sNt,5 =
max(P[t−N :t−1])

Pt−1
− Pt−1

min(P[t−N :t−1])

100 ∗ σP
(4-5)

Where µP = 1
N

∑t−1
i=t−N Pi, σP =

√∑t−1
i=t−N

(Pi−µP )2

N−1 and P[t−N :t−1] =
{Pt−N , · · · , Pt−1}.

6. Signal 6:
sNt,6 =

SMAbN
10 c

SMAN
− 1 (4-6)

SMAX = 1
X

∑t−1
i=t−X Pi

3It is worth mentioning that in model 1 we have NS attributes and in model 2 we have
Ns + N0.

4Since we will use the same structure for all assets we will omit variable i in the definition
of the predictors.
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7. Signal 7:
sNt,7 = max(R[t−N :t−1]) (4-7)

Where R[t−N :t−1] = {Rt−N , · · · , Rt−1}.

For a more in-depth discussion of the momentum strategy and sign
constructions, we recommend references (34, 27, 15).
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5
Proposed framework

Note that the model proposed in equation 2-16 above can be written as
follows:

Minimize
w,b

tm∑
t=t0

(1− yt ∗ (〈St,w〉+ b))+ + λ ∗ ||w||2 (5-1)

Where (1− v)+ = max{(1− v), 0} is often called the hinge loss function,
λ is tuning parameter which varies in range (0,∞).

The term ||w||2 controls the complexity of the model. This term is known
as regularized L2 and is one of the most used. A disadvantage of this rule is that
it does not lead to sparse solutions and sometimes it is difficult to interpret
which variables are most relevant to the problem.

One of the most common ways to solve the problems of non-sparse
solutions is to introduce the L1 norm (see (31, 29) for more details) defined
below.

Given a vector w = (w1, w2, · · · , wNs) the norm L1, denoted by ||w||1, is
defined as:

||w||1 =
Ns∑
k=1
|wk| (5-2)

The problem 5-1 became:

Minimize
w,b

tm∑
t=t0

(1− yt ∗ (〈St,w〉+ b))+ + λ ∗ ||w||1 (5-3)

The above formulation is convex and solves the problem of non-sparse
solutions. However, it has two drawbacks. First, the λ value is continuous
and the optimal value search process may be slow due to the large number
of possibilities. Second, the relation between the λ value and the number of
variables that do not assume zero is not immediate.

In order to solve the problem of the λ search space and the relation
between the nonzero variables we can analogically to what was done in equation
5-3 changes the norm.

The norm that will be used throughout this paper will be based on the
norm L0 defined below.

Given a vector w = (w1, w2, · · · , wNs) the norm L0, denoted by ||w||0, is
defined as:
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||x||0 =
Ns∑
k=1

I(wk 6= 0)
Ns

(5-4)

Where I (q) = 1 if q is true and I (q) = 0 otherwise.
Using this norm the problem 5-1 becomes:

Minimize
w,b,z

tm∑
t=t0

Ctzt + ||w||0 (5-5)

s.t.

yt(〈St,w〉+ b) ≥ 1− zt, ∀t ∈ T (5-6)

zt ≥ 0, ∀t ∈ T (5-7)

In order to minimize the objective function of the problem 5-5 the norm
L0 will force the largest possible number of components of the vector w to be
0. However, the way the problem is formulated in 5-5 can not be solved by
traditional solvers.

As the main purpose of using this norm is to control the number of
variables that do not assume zero value, we introduce binary variables I to
control the weights that are non-zero and K to restrict the total number of
model variables. The problem 5-5 can be rewritten as follows:

Minimize
w,b,z,I

tm∑
i=t0

Ctzt (5-8)

s.t.

Ns∑
k=1

Ik ≤ K (5-9)

yt(〈St,w〉+ b) ≥ 1− zt, ∀t ∈ T (5-10)

−MIk ≤ wk ≤MIk, ∀k ∈ K (5-11)

Ik ∈ {0, 1}, ∀k ∈ K (5-12)

zt ≥ 0, ∀t ∈ T (5-13)

In 5-8, M is a very large number and K is the maximum number of
components of w that will not be 0. Also, note that if Ik = 0 implies wk = 0
which was desired one.

Note that the equations 5-5 and 5-8 are equivalent (see (19) for more
details) and solves the problem of controlling the number of nonzero variables.
However, 5-8 is a linear convex problem with integer and non-integer variables
(MILP) that can be easily solved with solvers as the Gurobi solver (see (23)).
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Note that with this new formulation the number of variables is now
controlled by the variable K which is integer and so the search of the optimal
parameter is easily solved by doing a grid search in all p possibilities. Although
there are Ns possibilities for K, some empirical studies suggest (see (10)) that
the best choice for the maximum number of attributes is

√
Ns and this is the

value that we will use in this paper, i.e, 1 ≤ K ≤ b
√
Nsc.

After finishing the modifications in the traditional SVM we need to
generate the portfolios. This will be done based on what was presented in
chapter-3, however we need to make some adaptations discussed below.

Note that in this work the predictions do not refer to the return but to
the sign of Rt (+1 or −1) so adaptations will be made in the equation 3-11.

As mentioned in the section 2.1 when the signal from example t ∈ T to
asset i ∈ I is positive , it is expected that dit = 〈wi

t,S
i
t〉+bi

t

||w|| (wi
t and bit are the

estimated values from the training data set and Sit will be the signal used in
the return forecast) is a positive large number so that the point in question is
distant of the plan that separates the positive and negative examples.

So that number can be looked at with a confidence we have for our
forecast. Unlike the traditional optimization models that usually use the return
on the objective function, here we will use the dit in the objective function
in order to place more emphasis on the predictions that we have the most
confidence. Therefore, the model becomes:

Maximize
x∈Rn,xc∈R+

n∑
i=1

ditx
i
t + dctx

c
t (5-14)

s.t.

xct = Wt−1 −
n∑
i=1

ci(ui+ + ui−) (5-15)

n∑
i=1

Rt−jx
i
t ≥ γWt−1, ∀j = 1, 2..., J (5-16)

xit = xit−1(1 +Ri
t−1) + (ui+ − ui−), ∀i ∈ I (5-17)

ui+ ≥ 0, ui− ≥ 0, ∀i ∈ I (5-18)

dit = 〈w
i
t, S

i
t〉+ bit
||w||

, ∀i ∈ I (5-19)

In addition, two more adaptations will be made to the model. First, the
value of Rc

t has little variability and so dct is always greater than the other
dit. This makes a large part of the portfolio to always be allocated to risk-free
assets and to prevents this we will withdraw from the objective function and
only include in the flow of purchases and sales. It will serve to finance the other
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assets.
Second, we include a parameter of regularization in transaction costs.

This is a translation of a future cost function, which only exists because of
transaction costs, so it is being used as an approximation of the forward view
of transaction costs to generate implicit regularization. With this we managed
to control the number of movements made and the idea is that in a regime of
high costs the model does not make many moves.

Maximize
x∈Rn

n∑
i=2

ditx
i
t − λt

n∑
i=1

ci(ui+ + ui−) (5-20)

s.t.
n∑
i=1

Rt−jx
i
t ≥ γWt−1, ∀j = 1, 2..., J (5-21)

n∑
i=1

ci(ui+ + ui−) +
n∑
i=1

(ui+ − ui−) = 0, ∀i ∈ I (5-22)

xit = xit−1(1 +Ri
t−1) + (ui+ − ui−), ∀i ∈ I (5-23)

ui+ ≥ 0, ui+ ≥ 0, ∀i ∈ I (5-24)

dit = 〈w
i
t, S

i
t〉+ bit
||w|| , ∀i ∈ I (5-25)

Note that the 5-20 model is very similar to that proposed in (20) with the
main differential being an inclusion of the regularizer λt. The regularization
of costs is important in obtaining good results, since costs directly affect the
result obtained as presented in the equation below, since the portfolio return
can be broken down into (see (9) for more details):

RP
t =

n∑
i=1

xit−1R
i
t +

n∑
i=1

Ri
t(ui+ − ui−)−

n∑
i=1

ci(ui+ + ui−) (5-26)

The first term of the equation represents the performance of the portfolio
if no move had been made, the second can be regarded as the return obtained
by having made the drives and the third is the price you pay for turning the
wallet.

However, putting too high values for λt should lead to poor results, since
in this case the algorithm will not do moves and the portfolio will not benefit
from the predictions made.

Below we present the algorithm used to generate the results that will
be presented in the next section. Initially we have to make the choice of the
best K to be used by SVM. With this value we make the forecasts and the
optimization model feeds. It is noteworthy that the parameters J and λ are
updated every year as discussed in the next section.
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Algorithm 1: Robust optimization model with predictions being
made by an SVM - L0.

Result: xt, Wt, retstrategy
initialization: J0,W0, λ0, X0,K = {1, 2, · · · ,

√
Ns} ;

while t ∈ T do
ttrain = [t− 60, t− 20];
tval = [t− 20, t− 1];
while i ∈ I do

while k ∈ K do
wkt = TrainSVM(Sitrain, Y i

train, k);
sharpe← SharpeRatio(Sival, Y i

val, ret
i
val, w

k
t );

k = k + 1
end
IndexMax = argmax(sharpe);
K∗ = K[IndexMax];
wi,∗t = TrainSVM(Sitrain, Y i

train, K
∗);

dt ← 〈wi,∗
t ,Si

t〉+bi
t

||w|| ;
i = i+ 1;

end
if t == EndOfY ear then

Jnew, λnew = BestParameterRO([d1, d2, · · · , dt−1], ret1:t−1, c);
else

Jnew, λnew = Jold, λold;
end
xt,Wt, retstrategy = RO(dt, rett, xt−1, Jnew, λnew,Wt−1, c);
t = t+ 1

end
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6
Empirical results

For each portfolio financial asset we tested the 1-2 models for the different
Ct functions and transaction cost given in the table 6.1 below.

Asset Cost
USD/BRL 0.07 %
IBX-100 0.10%
IDKA 5 0.10%

IMA-B 5+ 0.12%
GOLD 0.07%
S&P 500 0.10%

Table 6.1: Values used as transaction cost of assets

As mentioned in the previous section the period used for testing the
models was 01/01/2004 a 30/05/2018 comprising 3623 daily quotes. For the
forecast of each day, we use the set of parameters with the best performance
in the validation window. For example, if we are on trading t, the validation
window goes from t− nvalidation up to t− 1.

For each training window, we calculate the optimal parameter of the
model for a given set of hyper-parameters, that is, Θ, where Θ is the set
of hyper-parameters. With this value we calculate Sharpe’s strategy in a
validation window. We repeat this procedure until we sweep all possible values
of the hyper-parameters (which here are discrete values).

Finally, we chose that set of parameters and hyper-parameters that lead
to a strategy with higher sharpe. Mathematically we have,

w∗(Θ∗) = argmax
Θ

Sharpe(w∗(Θ), t1, t2) (6-1)

In the equation 6-1 above, [t1, t2] is the validation interval with nvalidation
days and Θ is the set of hyper-parameters given by Θ = [Nlong, Nshort, N,K].
The value w∗(Θ∗) is used to make the prediction in the test window given by
[t2 + 1, t2 + τ ]. Here we will make τ = 1, that is, we will use w∗(Θ∗) just to
make the forecast on the day immediately after the training window. Once the
forecast has been made the validation window is updated to [t1 + 1, t2 + 1].
In the table 6.2 we present the models and the respective values used for the
hyper-parameters.
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Model Nlong Nshort N K
1 {126,252} {21, 63} - {1, 2, 3, 4}
2 {126, 252} {21, 63} 5 {1, 2, 3, 4}

Table 6.2: Values used for the hyper-parameters of each model

Although the total number of daily quotes is 3623 we only have 3623 −
(ntraining + nvalidation + max(Nlong)) days of trading, since we need those days
to calculate the values of the signs, train the model and validate the results.

In addition, the value used for Ct will be of two forms: constant function
and quadratic function. In the figure 6.1 below we have the form of the
functions used. The constant function will penalize all errors in the same way
and the quadratic the penalty will increase with the return. Note that for
return with a module smaller than 1% the constant function Ct = 1 will be
more punitive than the function Ct = (100 ∗ Rt)2. When the return module
exceeds 1%, the quadratic function will become more punitive.

Figure 6.1: Forms of cost functions Ct. In black we have Ct = (100 ∗ Rt)2 and
in red Ct = 1.

Finally, as mentioned in the previous chapter, we removed from the
objective function the term dctx

c
t , since it was always far superior to the

others and this skewed allocations. However, without this term in the objective
function we are somewhat restricted to allocations in risk free assets and as
Brazil is one of the countries with the highest interest rates this strategy may
mean a worse performance of the sharpe strategy.

To circumvent this situation predictions will be made using excess return
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over risk free rate1. That is, when the forecast for a given financial asset is
positive it means that the return on this asset is higher than the risk free
asset. Thus the model will only have incentives to allocate to risky assets if
this return is at least that of risk-free assets.

In the next section we will present the results obtained for the accuracy
of the models. It is worth mentioning that in this first phase of tests we will
not take into account the costs in the transactions, since the main concern will
be if the models have more accuracy than the random model.

6.1
Accuracy of Models

The figures 6.2 and 6.3 below show the accuracy obtained for all the
variations tested. The values marked in green indicate that we have evidence
to reject H0 : Ts = 0.5 with a significance level of 5%. Note that for both the
constant and the quadratic cost functions the results in terms of accuracy were
similar.

Figure 6.2: Accuracy obtained for function Ct = 1.

Figure 6.3: Accuracy obtained for function Ct = (100 ∗Rt)2.

The figure 6.4 presents the results of the statistical test for the comparison
between the proportions (H0 : T constants = T quadratics versus Ha : T constants 6=

1R̂i
t = Ri

t −Rc
t
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T quadratics ) of two models. In it we can verify that there is no statistical evidence
to affirm that the results are different.

Figure 6.4: Binary matrix where 0 indicates that we have no evidence to reject
the null hypothesis.

6.2
Financial results of the models

In this section we will evaluate the results from the financial point of view.
To do this, we will set up an investment portfolio using the best forecasts made
by models 1 and 2. The 6.3 table below shows the assets and their forecasts.

Asset Model

USD/BRL 1
IBX-100 1
IDKA 5 2

IMA-B 5+ 1
GOLD 2
S&P 500 2

Table 6.3: Assets and their forecasting models. The forecast model was chosen
according to the accuracy.

The search space of the hyper parameters γ, J and λt used to construct
the portfolio were:

1. γ ∈ {−1.5%}

2. J ∈ {10, 20, 30, 40, 50}

3. λt ∈ {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}

In addition, to control the volatility and loss of the strategy we place a
restriction on the maximum leverage allowed in 2 equity.
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We initially searched for the optimal values of J∗ and λ∗t using all available
predictions. The purpose of the search was to obtain the portfolio with the
greatest excess of wealth when compared to the risk-free asset. The results
obtained in this gridsearch are presented in the figure 6.5.

Figure 6.5: Map of indicated heat of wealth accomplishment when we varied
λt and J .

The optimal value found was (J∗, λ∗t ) = (10, 700). The value of J∗ can
be seen as a process memory, that is, the maximum number of days where we
have information relevant to the portfolio creation process. In addition, a high
value of λ∗t indicates that controlling the number of moves is important.

Another point of attention would be in the value of γ, because we want
that somehow this parameter is connected to the maximum loss that we can
suffer. To see if it is in fact related to model losses, we calculated Value At
Risk violations with a significance level of 5% in the search space. In black on
figure 6.6 we have cases where losses were greater than 1.5% by more than 5%
of days.

Note that for values of λt > 200 and J > 10 o Value at Risk < |γ|.
Since we use all the available quotes in the search for the best J and γ

values we have no guarantee that these values will be the best for new quotes.
That said, we will do the following consistency test on the sample: divide the
period into 1-year sub-periods and calculate the parameter values in alternate
years to see if the values are close to those obtained using the whole sample.

The results obtained showed that in some periods the results were far
from the values (10, 700) as can be seen in the table 6.4.

Given this fact, we decided to change the methodology for choosing J
and λ. Initially we will start the portfolio optimization with arbitrary values
for (Jt, λt) = (J0, λ0) and every 1 year we reevaluate these values looking at
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Figure 6.6: Map of indicated heat where we violate the value at risk when we
change λt and J . In blacks we have the region where we violate Value at risk
with a level of significance of 5%

Y ear (J∗, λ∗t )

Year 1 (10,700)
Year 3 (10,300)
Year 5 (30,800)
Year 7 (50,100)
Year 9 (30,700)
Year 11 (20,100)

Table 6.4: Values obtained for the pair (J, λt) in each sub-period.

all past quotes available. That is, for the calculation of (Jt+1, λt+1) we will do
the search using all information until time t and we will keep these values for
the next 1 year.

Looking at the results presented in table 6.5 we see that the value of Jt
was 10 in practically all periods and the value of λt converged to 700 after
the eighth year. In the figure 6.7 below we present the differences in terms of
wealth between the best possible result (use (10,700) throughout the period)
versus using the estimated values every 1 year.

The results presented here were obtained using the new methodology, as
we found it more appropriate.

To evaluate financial results fairly, you need to create benchmark’s
appropriate. As the volatility of the strategy is around 15% it is natural to
compare it with the Brazilian stock index IBX-100. In addition, since interest
in Brazil is historically high (almost always above 10%) it is common to make
comparisons with the risk free rate that is nothing more than the opportunity
cost of the investor. Another benchmark commonly used is the equally weighted
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Estimation Usage (J∗, λ∗t )

- 02/05/2005 - 05/04/2006 (10,500)
02/05/2005 - 05/04/2006 05/04/2006 - 16/03/2007 (10,700)
02/05/2005 - 16/03/2007 16/03/2007 - 25/02/2008 (10,600)
02/05/2005 - 25/02/2008 25/02/2008 - 27/01/2009 (10,700)
02/05/2005 - 27/01/2009 27/01/2009 - 06/01/2010 (20,1000)
02/05/2005 - 06/01/2010 06/01/2010 - 14/12/2010 (20,800)
02/05/2005 - 14/12/2010 14/12/2010 - 21/11/2011 (10,700)
02/05/2005 - 21/11/2011 21/11/2011 - 24/10/2012 (10,700)
02/05/2005 - 24/10/2012 24/10/2012 - 01/10/2013 (20,900)
02/05/2005 - 01/10/2013 01/10/2013 - 08/09/2014 (10,700)
02/05/2005 - 08/09/2014 08/09/2014 - 13/08/2015 (10,700)
02/05/2005 - 13/08/2015 13/08/2015 - 21/07/2016 (10,700)
02/05/2005 - 21/07/2016 21/07/2016 - 29/06/2017 (10,700)
02/05/2005 - 29/06/2017 29/06/2017 - 08/06/2018 (10,800)

Table 6.5: Values obtained for the pair (J, λt) using the new methodology.

Figure 6.7: Result obtained using the new methodology.

(EW) portfolio to show that there are indeed benefits in making the moves
suggested by the model developed. Finally, we will use the same methodology
used in (20) to create a linear regression model (LR Model). The idea is to
show that there are benefits to exchanging regression models for classification
models when working with financial returns.

The figure 6.8 below shows the evolution of the wealth of a hypothetical
investor who has applied R$ 1 real in the strategies mentioned above.

It is worth noting that during the 2008 crisis while the IBX-100 fell
by around -60 % the strategy was almost unaffected falling only -3.91 %. In
addition, in the period 2016 - 2018 we saw a significant increase in the Brazilian
stock index (81 %), the strategy was able to capture this movement and also
had a very significant result (94 %).
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Figure 6.8: Evolution of the strategy wealth and the benchmarks in the period
2005-2018.

The table below 6.6 shows the volatility and sharpe of the strategies.

Asset Sharpe Volatility

Risk free - 0.01%
Strategy 0.81 15.83%
LR Model 0.45 14.51%

EW 0.41 13.51%
IBX-100 0.12 23.03%

Table 6.6: Sharpe and volatility

Looking at the table, it can be seen that the portfolio has a sharpe well
above those of benchmarks.

However, it is important to also note the consistency of the model over
time. The ideal is that the gains are not concentrated in a single period but
well distributed, because in this way as the investors apply their resources they
will have good results regardless of the date of application.

To evaluate the consistency we will use sliding window of return, that is,
we will calculate the returns in fixed windows over time. For example, imagine
two investors who applied their funds at t and t + 1 and remained k invested
days. Although both of them spend k days invested their results may have
been quite different, but if the strategy is consistent, although these values
must exceed the traditional indexes (risk free rate, IBX-100 related).

One way to measure consistency is to calculate how many windows the
results exceed the risk free rate. This can be interpreted as the chance for an
investor to buy that asset and to have a result higher than the opportunity
cost.
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The figure 6.9 below shows the evolution of the moving window consid-
ering k = 252. Note that the number of times the result was better than the
risk free rate is 64.7% of the time.

Figure 6.9: The moving window series when k = 252 for the period 2006 - 2018

In the figure 6.10 we have the histogram of the historical series of moving
window. The average window for the Strategy is 22.30% against the risk free of
11.40%. The 6.7 table shows the mean, the quantile of 5% (Q1), the quantile of
95% (Q2) and the number of windows on the strategies exceeds the risk free.

Figure 6.10: Histogram of the moving window series when k = 252 for the
period 2006 - 2018

It can be seen in the table that both the 5% and 95% quantile are much
higher than the IBX-100, ie in both bad and good results the investors who
invested in the portfolio developed in this work will have better results.(in
losses the strategy loses less and in gains it surpasses the IBX-100)
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Asset % > Risk free Mean Q1 Q2

Strategy 64.70 22.30% -9.12% 72.03%
LR Model 63.75 15.65% -6.59% 42.15%
IBX-100 47.77 14.40% -28,30% 61.75%
EW 57.46 14.65% -5.15% 35.73%

Risk free - 11.40% 7.64% 15.55%

Table 6.7: Descriptive statistics for the mobile window when k = 252. The first
column shows the number of times that the strategies exceed the risk free.

It is worth mentioning that the model developed in (20) had the 5%
quantile with a less negative value, indicating that the losses suffered by this
model are less severe.

Since the portfolio has a high standard deviation, it is also recommended
to evaluate longer return windows, since we can have some periods where the
portfolio had some more pronounced loss (which is normal and expected since
the high standard deviation implies high variation both positive and negative).
Having said that, we will also present the results for the value of k = 504.The
result is shown in the figure 6.11.

Figure 6.11: The moving window series when k = 504 for the period 2007 -
2018

As expected, increasing k to 504 the fraction of windows where the
portfolio exceeds the risk free rises to 73.20%. In addition, the number of
times EW exceeds the risk free is 63.37% and the LR Model is 66.77%. In the
figure 6.12 we present the histogram of the series when k = 504 and in table
6.8 we present the average statistics, Q1 and Q2. The results are in line with
those obtained for k = 252, with the main difference being 5% quantil of EW
and the LR Model.

Finally, from the investor’s point of view it is important to evaluate the
actual losses that the strategy suffers over time. For this we will use the measure
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Figure 6.12: Histogram of the moving window series when k = 504 for the
period 2007 - 2018

Asset % > Risk free Mean Q1 Q2

Strategy 73.20% 44.50% -4.38% 128.13%
LR Model 66.77% 32.64% 6.55% 75.28%
IBX-100 30.12% 22.37% -11,85% 105.71%
EW 63.37% 29.99% 4.71% 52.26%

Risk free - 23.81% 17.44% 29.83%

Table 6.8: Descriptive statistics for the mobile window when k = 504. The first
column shows the number of times that the strategies exceed the risk free.

known in the literature as maximum drawdown (MDD). It measures the losses
incurred between the highest quota and the lowest quota of the model. The
evolution of the MDD is presented in the figure 6.13.

Figure 6.13: Evolution of the MDD of the strategies in the period 2005-2018

It should be noted that although the Strategy lost only -3.91% in the
period of the 2008 crisis, losses for the previous 2 years totaled around 17%
(the portfolio had a poor performance in the period before the crisis). LR
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Model, on the other hand, had much less pronounced losses before the crisis
and at the peak of the crisis reached -19%.

As can be seen from the viewpoint of the losses in the periods prior to
the crisis of 2008, the EW and IBX-100 strategies were better, but in the
subsequent periods the portfolio had MDD similar to EW and well below the
IBX-100.

6.3
Sensitivity analysis

The results presented in the previous section are for γ and L fixed
in −1.5% and 2, respectively. These values were chosen based on what the
multimarket funds of the Brazilian industry use.

Since we have not done any optimization process in choosing these values
it is natural to evaluate what happens when we change one of them while
keeping the other fixed, that is, we will set L = 2 and vary the values of γ and
vice verse. The 6.9 table below shows the values that will be used for γ and L.

γ L

-1% 1
−1.5% 1.5
-2.0% 2
-2.5% 2.5
-3.0% 3.0
-3.5% 3.5
-4.0% 4.0
-4.5% 4.5
-5.0% 5.0

Table 6.9: Values used for γ and L. In black we highlight the pair used in this
work.

The metrics used to evaluate the sensitivity results will be: accumulated
wealth, ratio between the mean of the return and the standard deviation and
the maximum drawdown.

In the figure 6.14 below we have the results when we set γ in -1.5% and
we vary the value of L.

The results indicate that increasing the leverage value up to 4 is beneficial
to accumulated wealth. However, the graph of the figure 6.14 (b) indicates that
even in situations where the value of wealth is increasing with L the increment
of risk that is generated is not fully translated into return. The MDD chart
behaves as expected, since losses generally get worse as leverage increases.
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Figure 6.14: (a) Accumulated wealth. (b) Return to Risk Ratio. (c) MDD

In the figure 6.15 we present the results when we fix the value of L in
2 and vary the γ. For the graphs 6.15 (a) and (b) the results were similar to
those shown in figure 5.16. There is an optimal value to where increasing |γ|
causes wealth to increase. However, the Return to Risk ratio worsens even in
the case where wealth increases. In the case of the graph 6.15 (c) the results
were divergent. Increasing the |γ| did not lead to greater MDD as expected.

Figure 6.15: (a) Accumulated wealth. (b) Return to Risk Ratio. (c) MDD
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7
Concluding Remarks

The central objective of this work was the creation of optimization that
combines two elements: the prediction of trends in financial series and a model
for the creation of investment portfolios.

For the prediction of financial series, the artificial intelligence model
support vector machine was used as a basis, whose theory is widely diffused in
the academic world. However, the work was not limited in just using a black
blox form the already existing model, since several changes were proposed in
the original model.

Of the proposed changes it is worth mentioning the change made in the
regularization that went from norm L2 to norm pseudo L0. Changing the norm
helps to prevent overfiting and makes it clear which (and how many) variables
are relevant for the series forecast.

Already for the determination of the portfolio an adaptation of the model
proposed in (20) was used. The main change was in the objective function that
in the original work sought to maximize the expected return while in this work
we maximized the confidence to make the correct forecast. That is, the financial
amounts invested in financial assets are linked to our confidence in the forecast.

The empirical results of the investigation reported in this paper suggest
that it is possible to obtain higher returns with this strategy when compared
with the benchmark strategies (e.g., equally weighted and buy-and-hold, IBX-
100 and betina’s model) while considering transaction costs. Out-of-sample
results indicate that the applied robust optimization specification showed an
en-hanced portfolio performance while successfully constraining for significant
losses.
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A
Equivalences between the problems 5-5 and 5-8

The purpose of this appendix is to present the reformulations of the L0

norm based constraints. We will show,

(P1) : ||w||0 ≤ K ⇔ (P2) :


∃b ∈ {0, 1}m such that∑m
j=1 bj ≤ K, (i)

−Mb ≤ w ≤Mb. (ii)

The (⇒) implication is straightforward since bj = 0⇔ wj = 0. Now, let
b ∈ {0, 1}m satisfy (i) and (ii), and suppose ||w||0 ≥ K. From (ii), one has
(bj = 0) ⇒ (wj = 0), that is, (wj 6= 0) ⇒ (bj = 1). Hence bj = 1 for at least
K + 1 indices j, which contradicts (i). Therefore, ||w||0 ≤ K.

For more details in exact sparse approximation problems see (8).
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B
Allocations (xt)

Figure B.1: Temporal evolution of risk-free rate allocations in the period 2005
- 2019.

Figure B.2: Temporal evolution of USD/BRL allocations in the period 2005 -
2019.
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Appendix B. Allocations (xt) 58

Figure B.3: Temporal evolution of IBX-100 allocations in the period 2005 -
2019.

Figure B.4: Temporal evolution of S&P 500 allocations in the period 2005 -
2019.

Figure B.5: Temporal evolution of IMA-B 5+ allocations in the period 2005 -
2019.
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Figure B.6: Temporal evolution of GOLD allocations in the period 2005 -
2019.

Figure B.7: Temporal evolution of IDKA-5 allocations in the period 2005 -
2019.
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C
Forecast confidence (dt)

Figure C.1: Temporal evolution of USD/BRL geometric margin in the period
2005 - 2019.

Figure C.2: Temporal evolution of IBX-100 geometric margin in the period
2005 - 2019.
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Figure C.3: Temporal evolution of S&P 500 geometric margin in the period
2005 - 2019.

Figure C.4: Temporal evolution of IMA-B 5+ 500 geometric margin in the
period 2005 - 2019.

Figure C.5: Temporal evolution of GOLD geometric margin in the period 2005
- 2019.
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Figure C.6: Temporal evolution of IDKA-5 geometric margin in the period
2005 - 2019.

Figure C.7: Geometric Margin Histogram for all assets.
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