Título: | SOLVING THE DETERMINISTIC AND STOCHASTIC PIPE-LAYING SUPPORT VESSEL SCHEDULING PROBLEM | ||||||||||||
Autor: |
VICTOR ABU-MARRUL CARNEIRO DA CUNHA |
||||||||||||
Colaborador(es): |
RAFAEL MARTINELLI PINTO - Orientador SILVIO HAMACHER - Coorientador |
||||||||||||
Catalogação: | 26/JUL/2021 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=53889&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=53889&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.53889 | ||||||||||||
Resumo: | |||||||||||||
Offshore oil and gas exploration companies frequently need to deal
with problems related to the efficient use of their resources. In this work,
we address a ship scheduling problem associated with offshore oil and gas
logistics – The Pipe Laying Support Vessel Scheduling Problem (PLSVSP).
These vessels are specially designed to perform pipeline connections between
sub-sea oil wells and production platforms. The connections are the
last step to be performed to allow the oil draining, starting production in
a well. The PLSVSP objective is to anticipate the completion of the most
productive wells. The problem can be seen as a variant of a batch scheduling
problem with identical parallel machines and non-anticipatory family
setup times to minimize the total weighted completion time. In this analogy,
vessels are machines, wells are jobs, and batches are voyages executed
by PLSVs, defining which wells to connect each time it leaves the port. We
developed several optimization approaches to solve the deterministic and
stochastic variants of the problem. For the deterministic problem, we developed
hybrid methods and a metaheuristic that outperformed the pure
MIP formulations, being practical to deal with the PLSVSP. A simheuristic
using embedded Monte Carlo simulation was developed for the stochastic
variant of the problem, considering uncertainties in the connection duration
and the arrival dates of pipelines at the port. The results show a significant
improvement in the solutions dealing with uncertainties compared to solutions
generated by a deterministic method. The use of simulation within
a metaheuristic framework proved to be a promising approach, being able
to deal with the stochastic problem, with little extra computational effort
required.
|
|||||||||||||
|