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Abstract

Cunha, Victor Abu-Marrul Carneiro da; Pinto, Rafael Martinelli (Ad-
visor); Hamacher, Silvio (Co-Advisor). Solving the Deterministic
and Stochastic Pipe-Laying Support Vessel Scheduling Prob-
lem. Rio de Janeiro, 2021. 154p. Tese de Doutorado – Departamento
de Engenharia Industrial, Pontifícia Universidade Católica do Rio de
Janeiro.
Offshore oil and gas exploration companies frequently need to deal

with problems related to the efficient use of their resources. In this work,
we address a ship scheduling problem associated with offshore oil and gas
logistics – The Pipe Laying Support Vessel Scheduling Problem (PLSVSP).
These vessels are specially designed to perform pipeline connections be-
tween sub-sea oil wells and production platforms. The connections are the
last step to be performed to allow the oil draining, starting production in
a well. The PLSVSP objective is to anticipate the completion of the most
productive wells. The problem can be seen as a variant of a batch schedul-
ing problem with identical parallel machines and non-anticipatory family
setup times to minimize the total weighted completion time. In this anal-
ogy, vessels are machines, wells are jobs, and batches are voyages executed
by PLSVs, defining which wells to connect each time it leaves the port. We
developed several optimization approaches to solve the deterministic and
stochastic variants of the problem. For the deterministic problem, we de-
veloped hybrid methods and a metaheuristic that outperformed the pure
MIP formulations, being practical to deal with the PLSVSP. A simheuristic
using embedded Monte Carlo simulation was developed for the stochastic
variant of the problem, considering uncertainties in the connection duration
and the arrival dates of pipelines at the port. The results show a significant
improvement in the solutions dealing with uncertainties compared to solu-
tions generated by a deterministic method. The use of simulation within
a metaheuristic framework proved to be a promising approach, being able
to deal with the stochastic problem, with little extra computational effort
required.

Keywords
Offshore logistics; Ship scheduling; Mathematical formulation;

Matheuristic; Simheuristic; Monte Carlo simulation.
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Resumo

Cunha, Victor Abu-Marrul Carneiro da; Pinto, Rafael Martinelli; Ha-
macher, Silvio. Resolvendo os Problemas Determinístico e Es-
tocástico de Escalonamento de Embarcações do Tipo Pipe-
Laying Support Vessel. Rio de Janeiro, 2021. 154p. Tese de Dou-
torado – Departamento de Engenharia Industrial, Pontifícia Universi-
dade Católica do Rio de Janeiro.

Empresas de exploração de petróleo e gás offshore frequentemente precisam
lidar com problemas relacionados ao uso eficiente de seus recursos. Neste
trabalho, abordamos um problema de programação de navios associado à
logística offshore de petróleo e gás – O Problema de Programação de Embar-
cações do tipo Pipe-Laying support Vessel (PLSVSP). Essas embarcações
são especialmente projetadas para realizar conexões de dutos entre poços
de petróleo submarinos e plataformas de produção. A conexão de dutos é
a última etapa a ser executada para permitir a drenagem do óleo e iniciar
a produção em um poço. No PLSVSP, o objetivo é antecipar a conclusão
de poços mais produtivos. O problema pode ser visto como uma variante
de um problema de programação de lotes com máquinas paralelas idênti-
cas e tempos de configuração não antecipados por família para minimizar
o total weighted completion time. Nessa analogia, embarcações são as má-
quinas, poços são as tarefas e lotes são as viagens executadas por PLSVs,
definindo quais poços devem ser conectados a cada saída do porto. Foram
desenvolvidas diversas abordagens de otimização para resolver as variantes
determinística e estocástica do problema. Para a variante determinística,
desenvolvemos métodos híbridos e uma metaheurística capazes de melhorar
as soluções desenvolvidas por formulações MIP puras e lidar com o PLSVSP.
Para a variante estocástica, foi desenvolvida uma simheurística utilizando si-
mulação de Monte Carlo incorporada, considerando incertezas nas durações
das conexões e nas datas de chegada dos oleodutos no porto. Os resultados
mostram uma melhora significativa no custo das soluções quando lidam com
incertezas em comparação com soluções geradas por um método determi-
nístico. O uso da simulação em uma estrutura metaheurística mostrou-se
uma abordagem promissora, capaz de lidar com o problema estocástico, com
pouco esforço computacional extra necessário.

Palavras-chave
Logística offshore; Programação de embarcações; Formulação mate-

mática; Métodos híbridos; Metaheurísticas; Simulação de Monte Carlo .
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1
Introduction

The discovery of Brazilian pre-salt fields in 2006 duplicated Brazilian
oil and gas reserves. These fields are located in ultra-deep waters, below
the ocean salt deposits, exceeding 2,000 meters of water depth. Exploration
and Production (E&P) are notably challenging in this region in terms of
technology and sustainability (Beltrao et al. 2009, Allahyarzadeh-Bidgoli et al.
2018, Haddad and Giuberti 2010). Wells drilled in the Brazilian pre-salt
basin are connected to surface platforms by flexible pipelines that better
fit the high water depths. The Pipe-Laying Support Vessel (PLSV) is a
ship specially designed to connect pipelines between sub-sea oil wells and
production platforms in ultra-deep waters. These vessels are responsible for
loading the pipelines at the port, transporting them to the wells’ location,
laying them out in the ocean, and connecting them between the wells and
platforms, allowing production to begin (Speight 2015, Clevelario et al. 2010).

In scheduling optimization problems, decision-makers need to efficiently
allocate tasks to usually limited resources, aiming at a specific predetermined
objective. In general, these objectives relate to minimizing costs, maximizing
productivity, and others (Pinedo 2012). Proper use of resources is even more
critical in the offshore oil industry due to the high operating and contract
costs of a company’s fleet. The PLSV Scheduling Problem (PLSVSP) consists
of servicing a demand of sub-sea oil wells connections, finding the best schedule
for a limited PLSV fleet, anticipating the completion of wells with higher
production levels (i.e., wells drilled in larger oil deposits). Each well requires
a specific number of pipelines to be connected, being the last stage before the
production begins, enabling the oil draining to surface platforms. The daily cost
of operating a PLSV is around US$ 300,000, highlighting the importance of
efficiently scheduling these resources (SINAVAL 2013, Offshore Energy Today
2013).

In the present work, we study the PLSVSP deterministic and stochastic
variants related to a Brazilian oil and gas company that explores the pre-salt
basin. In its deterministic version, no uncertainty is taken into account, follow-
ing the approach that the company currently uses to schedule its contracted
PLSV fleet. In the stochastic version, we include uncertainties related to the

DBD
PUC-Rio - Certificação Digital Nº 1712647/CA



Chapter 1. Introduction 16

processing times to perform the pipeline connections and the arrival dates of
pipelines at the port. PLSVs are scheduled to execute voyages, where each
voyage corresponds to the pipeline loading process at the port, followed by the
connections of these pipelines. Navigation times are disregarded because the
wells are geographically close to each other in the pre-salt basin. Currently,
the PLSVSP is done manually by company specialists, based on their tacit
knowledge, without any decision support tool to assist the process. Schedulers
must comply with the company’s management guidelines and find solutions
that match their defined objectives. Our goal is to provide decision support
tools for the company to assist the planner in this process. The ability to pro-
vide adequate solutions to the real problem is assessed by testing the proposed
approaches on a synthetic set of instances generated from real pre-salt data.
We use synthetic instances due to confidentiality issues.

The PLSVSP can be seen as a variant of an identical parallel machine
scheduling problem with family setup times. In this correspondence, vessels
represent the machines, the pipeline connection operations are the set of tasks
to be executed by the machines, and the wells are the jobs to complete. A vessel
voyage can be interpreted as a batch of tasks to be performed sequentially with
a maximum size restricted by the available space on the vessel’s deck. The
loading times of the pipelines at the port correspond to machine setup times.
Setup times are non-anticipatory in the problem since the loading process
can only start when all pipelines to connect in a given voyage have arrived
in the port. Connections are grouped into families according to similarities
in the loading process. Thus, setup times vary depending on the family of
each batch. Finally, the machines are called identical as the operations have
fixed processing times, regardless of the machine that performs them. The
problem has already been addressed as a parallel machine scheduling problem
by Queiroz and Mendes (2011) and Cunha et al. (2020). However, the former
approach simplifies some of the characteristics, modeling the problem as a
classical identical parallel machine scheduling problem. The latter focuses on
a rescheduling problem by applying heuristics to minimize impacts caused by
disruptions on given schedules considering a set of 10 small instances. None of
the works modeled the complete problem. In a similar context in the offshore oil
industry, Fernández Pérez et al. (2018) and Monemi et al. (2015) approached
the scheduling of rigs, considering realistic aspects of the problem, but not
dealing with family-based setup times.

In this work, we use optimization techniques to solve the PLSVSP. The
thesis has two main optimization parts. The first concerning the determinis-
tic PLSVSP introduces four mathematical formulations, several constructive
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Chapter 1. Introduction 17

heuristics using dispatching rules based on the machine scheduling literature,
two matheuristics using mathematical formulations with MIP-based neighbor-
hood searches, and one metaheuristic. This part aims to provide and compare
different optimization techniques to solve the problem providing a good per-
spective about vantages and disadvantages in considering each approach. Also,
this part presents a benchmark with 72 instances generated from real pre-salt
data. The idea is to provide a set of instances for the scheduling community so
that interested researchers could work on the problem, extending or propos-
ing new algorithms to solve it. The second optimization part within the thesis
introduces a simulation-optimization method with embedded Monte Carlo sim-
ulation, called simheuristic, to deal with the stochastic PLSVSP with uncer-
tainties regarding the operation’s processing times and pipeline arrival dates.
This part aims to propose a method that better fits the realistic process with
its uncertainties, providing a more reliable statistic evaluation of the solutions.

1.1
Contributions

The thesis’s objective is to show the advantages of using optimization
techniques to solve a complex real-life scheduling problem. Since we are
dealing with a complex scheduling problem, it is worth emphasizing that
other researchers can apply the developed approaches to simplified variants
of the problem. This aspect enhances its relevance to the scheduling literature,
supporting studies on similar problems or simplified variants. Our main
contributions in this work are threefold: (1) Define the PLSVSP properly,
drawing its relationship with the machine scheduling literature; (2) Introduce
mathematical formulations to represent the complete problem; (3) Develop
optimization algorithms to solve the problem in its deterministic and stochastic
variants. The specific contributions of this thesis are summarized below:

– Extend a problem related to an identical parallel machine scheduling
problem with family setup times, including realistic aspects, making it
more challenging to solve.

– Develop a PLSVSP benchmark instance set based on the studied com-
pany’s real data regarding the pre-salt exploration layer.

– Address a realistic scheduling problem concerning critical offshore re-
sources by formally defining the problem for the scheduling community.

– Provide four new Mixed Integer Programming (MIP) formulations for
the PLSVSP based on the machine scheduling literature.
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Chapter 1. Introduction 18

– Develop several constructive heuristics to generate solutions for PLSVSP
with low computational time.

– Develop two new MIP-based neighborhood searches with two mathemat-
ical formulations, testing its efficiency within metaheuristic frameworks.

– Increase the literature on matheuristics applied to scheduling problems.

– Introduce an Iterated Greedy algorithm to solve the PLSVSP, extending
an Iterated Local Search metaheuristic from the literature.

– Address a stochastic version of the PLSVSP considering uncertainties in
the pipeline connection processing times and their arrival dates at the
port.

– Develop a simheuristic using embedded Monte Carlo simulation to deal
with the stochastic PLSVSP.

1.2
Thesis Structure

This thesis is organized into 8 chapters, including this introductory
chapter. Chapter 2 provides a review of the literature on the main subjects
covered in the thesis. It includes an overview of the PLSV logistics and ship
scheduling problems and a review of papers dealing with identical parallel
machines scheduling problems, matheuristics to solve scheduling problems,
and simheuristics applied to several logistic problems. Chapter 3 presents
a complete description of the PLSVSP, including its stochastic version and
its relationship with an identical parallel machine scheduling problem. From
Chapter 4 to 8 we introduce the optimization approaches developed to deal
with the PLSVSP. These chapters include the description of the approach,
experimentation, and results analysis. As the main objective of the thesis is
to develop and test different optimization techniques to solve the PLSVSP, we
present in Figure 1.1 a diagram that connects the methods to help the reader
to follow the structure of the thesis.

The first two parts, at the top of the diagram, are the mathematical
formulations (Chapter 4) and the constructive heuristics (Chapter 5). Chap-
ter 4 presents three mathematical formulations for the PLSVSP based on the
machine scheduling literature and provides a benchmark of 72 PLSVSP in-
stances generated from real data from the Brazilian pre-salt basin. In chapter
5, several constructive heuristics are introduced, combining machine scheduling
dispatching rules and task weight estimation rules with machine assignment
and batch composition steps. Chapter 6 presents a new formulation for the
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Figure 1.1: General optimization methods diagram.

PLSVSP and two matheuristic approaches using two new MIP-based neigh-
borhood searches combined with two metaheuristic frameworks. A constructive
heuristic is used to initialize the matheuristics and the metaheuristic intro-
duced in Chapter 7. The metaheuristic is described in detail in Chapter 7,
including the neighborhood structures used in the local search step. Finally,
Chapter 8 considers the stochastic PLSVSP. In this chapter, the metaheuristic
is extended to a simheuristic with the inclusion of simulation steps to identify
promising stochastic solutions.

Chapter 9 concludes the thesis and presents some perspectives for fu-
ture works regarding the PLSVSP and some of the optimization approaches
presented.
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2
Literature Review

In this chapter, we present a review of the different subjects involved in
the thesis. The chapter is divided into five parts. In the first part, we provide
an overview of Brazilian offshore logistics to help understanding the PLSV
importance in the process. An overview of ship scheduling problems is provided
in the second part, highlighting the differences between this class of problems
and the PLSVP. In the third part, a review of parallel machine scheduling
problems is presented, focusing on problems with family setup times. In the
fourth part, we review heuristics applied to scheduling problems. The last
part of the chapter gives a review of simheuristics applied to combinatorial
optimization problems.

2.1
Brazilian Offshore Logistics

To contextualize the problem and provide a better view of the role of
PLSV in the exploration and production of oil and gas, we describe, in this
section, some properties of Brazilian offshore logistics.

The life cycle of oil operations includes exploration and development,
production, refining, marketing, transportation, and final utilization. Such
activities divide the industry into two major segments: upstream, related to
exploration and production activities, and downstream, related to the refining
and marketing of oil and its derivatives. In the exploration phase, geological
and geophysical data are analyzed to identify potential oil production sites.
This phase is crucial to reduce the costs associated with well-drilling tasks
(Thomas 2001, Islam and Khan 2013, Devold 2013).

The appraisal, drilling, and completion of offshore sub-sea wells are
carried out by maritime rigs, responsible for preparing them to operate. In the
last stage, the rig installs the sub-sea tree, equipment employed for regulating
the flow of a well through an assembly of valves, spools, and fittings. The oil
flows through pipelines connected between the sub-sea tree and the production
platform. The PLSVs operate after the sub-sea tree’s installation, connecting
the pipelines, allowing the well to start producing. PLSVs are also responsible
for transporting the pipelines to be launched into the sea, and connecting then

DBD
PUC-Rio - Certificação Digital Nº 1712647/CA



Chapter 2. Literature Review 21

by using a Remotely Operated underwater Vehicle (ROV), equipped inside the
vessel (De Lima 2007, Thomas 2001).

Several oil discoveries in the Brazilian basin have been released in recent
years. Most of them in ultra-deep waters below the salt layer called the pre-salt
layer. These discoveries duplicated Brazilian oil and gas reserves, increasing
the country’s relevance in the global oil industry. In this exploratory region,
flexible oil pipelines are used to connect underwater oil wells. The structure
of these pipelines is variable, which is defined based on detailed engineering
projects. The pipelines are designed to withstand the conditions of pressure
and depth that will be subjected. In addition to the possibility of their use
in ultra-deep waters, the flexible pipelines are easily transported within the
PLSVs. (LABANCA 2005, Rodrigues and Sauer 2015).

2.2
Ship Scheduling

The world’s maritime fleet, which is close to 90.000 ships, is responsible
for the transport of around 80% of international commerce, emerging as the
most crucial modal for global trade (UNCTAD 2015). Purchasing a vessel
requires a high investment, in addition to high operating costs. These aspects
highlight the importance of scheduling these resources efficiently, optimizing
their utilization (Christiansen et al. 2007).

Ship Scheduling problems are classified into three modes, not mutually
exclusives (Lawrence 1972): liner, tramp, and industrial. A liner shipping com-
pany operates with fixed routes for vessels. Tramp companies work by contracts
and optional cargo transportation. In industrial shipping, the company con-
trols the ships. These operators aim to attend their demands with minimal
cost. Relevant reviews were published on the subject at intervals of approxi-
mately ten years between them. For interested readers, we recommend Ronen
(1983), Ronen (1993), Christiansen et al. (2004), and Christiansen et al. (2013)
for a good overview of ship scheduling problems. These problems are a class
of vehicle routing problems with some additional characteristics regarding the
maritime environment.

Although PLSVSP does not regards to cargo transportation, Mendes
(2007) points out that, as the company controls its fleet, it can be classified
as an industrial operator. It is worth mentioning that many similarities can
be found between routing and scheduling problems, as highlight by Beck et al.
(2002), Beck et al. (2003), and Kouki et al. (2007).

This section helps to understand how PLSVSP differs from ship schedul-
ing problems. In the PLSVSP, we follow the studied company’s approach that
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disregards travel times due to the proximity of oil wells in the pre-salt basin and
the discrepancy between travel times and the time spent to perform pipeline
connections. In general, travel times take a few hours, while connection opera-
tions last for days. Thus, we look for similar problems in the literature, where
the correspondence with scheduling problems related to critical resources, gen-
eralized as machines, was identified. The next section presents a review of par-
allel machine scheduling problems with characteristics similar to the PLSVSP.

2.3
Parallel Machine Scheduling Problem

The PLSVSP can be seen as a variant of a parallel machine scheduling
problem with family setup times. This class of problems involves meeting a
given demand for tasks to be performed by a given set of machines in parallel,
optimizing these resources. In these problems, planners must make two main
decisions: the assignment of machines to perform the tasks and the sequence in
which the machines must perform the tasks. When the machines are identical,
as, in the case of the PLSVSP, each task has a fixed processing time, i.e.,
they are independent of the machine assigned to perform the task (Su 2009,
Gokhale and Mathirajan 2012). Furthermore, when family setup times are
considered, it means that a setup time dependent on the family of the tasks
must be included in the schedule whenever the machine changes the execution
of tasks from different families (Allahverdi 2015). The sequence of tasks of the
same family sharing the same setup time is called a batch. Setup times are
non-anticipatory when their start depends on the release dates of the tasks in
the batch. Below, we revise papers that deal with parallel machine scheduling
problems with family setup times, the same class of problems as the PLSVSP.
At the end of the section, we include some documents from other machine
environments that deal with non-anticipatory setup times. From the best of
our knowledge, no work addresses problems with non-anticipatory family setup
times.

Webster and Azizoglu (2001) proposed backward and forward dynamic
program algorithms to minimize the total weighted completion time. They
show that when the number of machines and families are fixed, the former
algorithm is polynomial in the sum of the weights and the latter in the sum of
processing and setup times. Azizoglu and Webster (2003) tested four different
branch-and-bound algorithms with the same objective with two different
approaches to solve the problem. The first one decomposes the problem into
two phases, initially generating a solution without setups and adding them
later. The second approach considers the setup times as jobs to be scheduled.
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The approach is based on creating an ordered list of jobs to be scheduled,
using the concept that an optimal schedule can be obtained from one specific
order on this list, by assigning each job in the list in the given sequence to
the machine that finishes it first. Dunstall and Wirth (2005a) proposed a new
branch-and-bound scheme derived from an application for a problem without
family setup times. Bettayeb et al. (2008) applied the same branching scheme
improving the generation of lower bounds from Dunstall and Wirth (2005a)
approach. They have reduced the number of visited nodes, concluding to be
a good approach for large-sized instances. Omar and Teo (2006) focused on
minimizing the total weighted earliness and tardiness, where the concept of this
objective function is to completes the execution of all jobs closer to their due
dates, known as a just in time objective. They developed a new mathematical
formulation for the problem, capable of solving instances with up to 18 jobs,
four machines, and four families. Chen and Powell (2003) studied two problems,
the first one with the sequence-independent family setup times to minimize
the total completion time and the second one considering sequence-dependent
setup times to minimize the total number of tardy jobs. A branch-and-bound,
in conjunction with column generation, was used to find solutions to problems
with up to 40 jobs, four machines, and six families.

As in the case of the PLSVSP, other real-life problems are also included
in this class of machine scheduling problems. Shin and Leon (2004) addressed
a real scheduling problem related to the semiconductor industry, focusing on
minimizing the total tardiness of the jobs. They applied a two-phase heuristic
procedure, generating solutions using a bin-packing approach and improving
them by applying a tabu search. Schaller (2014) improved the method proposed
by Shin and Leon (2004) with three new tabu searches and two genetic
algorithms. Obeid et al. (2014) also studied a scheduling problem in the
semiconductor industry proposing two mathematical formulations and two
heuristics considering that the eligibility of a machine to process a job might
change over time according to the schedule. Ciavotta et al. (2016) applied a
more general framework with a roll-out algorithm using several dispatching
rules simultaneously to solve a real-life problem, considering release dates,
due dates, hard deadline constraints for jobs, maximum campaign size and
unavailable periods. They tested several objective functions solved in a given
lexicographic order. These papers with a realistic background are the ones
that deal with the most complex scheduling problems. However, none of them
considered the specific characteristics approached in the PLSVSP.

Additionally, many works applied heuristics and metaheuristics to this
class of problem. Dunstall and Wirth (2005b) proposed several heuristics
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evaluating their performance with lower bounds and optimal solutions to
minimize the total weighted completion time. Liao et al. (2012) continued
Dunstall and Wirth (2005b) work by improving their heuristics, proposing
some benchmark instances. From this benchmark, Tseng and Lee (2017)
tested a metaheuristic based on electromagnetism concepts, also comparing
the results with a genetic algorithm. Mehdizadeh et al. (2015) proposed a
vibration dumping optimization algorithm comparing their solutions with a
genetic algorithm and a MIP formulation introduced by Tavakkoli-Moghaddam
et al. (2007) for the same problem. Eom et al. (2002) developed an efficient
heuristic to minimize the total weighted tardiness, based on the Apparent
Tardiness Cost with Setups (ATCS) composite rule (Lee and Pinedo 1997),
with sequence-dependent family setup times. Van Der Zee (2015) developed
a survey on dispatching methods to address parallel machines scheduling
problems with family setup times.

Another challenging characteristic of the PLSVSP regards the non-
anticipatory setup consideration. Less studied in the scheduling literature,
this aspect has been applied more often in other machine shop environments.
Fonseca-Reyna et al. (2019), Ruiz et al. (2008), Lin and Cheng (2005) and
Fuchigami et al. (2015) considered this aspect within different flow shop
problems, while González et al. (2015) and Roshanaei et al. (2010) approached
this aspect within a job-shop scheduling environment. Lin and Cheng (2005)
was the only one among those to consider the setup time while scheduling
batches. However, they consider a constant setup time for each batch and not
family-based ones.

Valuable reviews focusing on parallel machine scheduling problems, with
different aspects addressed, are found in the literature. We refer the interested
reader, to the works of Cheng and Sin (1990), Lam and Xing (1997), Mokotoff
(2001), Li and Yang (2009) Behera (2012), Edis et al. (2013), and Kaabi
and Harrath (2014). For a comprehensive overview of problems with setup
considerations or batching, the reader is referred to Allahverdi (2015) and
Potts and Kovalyov (2000).

2.4
Matheuristics

Matheuristics are hybrid approaches that combine concepts of meta-
heuristics and exact methods to solve combinatorial optimization problems,
being a growing field in the literature due to the improvement of computers
and solvers (Thompson 2018). Some researchers applied matheuristics to solve
machine scheduling problems.
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Billaut et al. (2015) handled a single machine environment using a two-
step approach, combining a beam search algorithm with a MIP-based neigh-
borhood search. Regarding parallel machines environments, Ekici et al. (2019)
applied a Tabu Search matheuristic, prohibiting some job-machine assignments
during its execution. Ozer and Sarac (2019) developed a two-step approach
combining a genetic algorithm with a MIP model. Woo and Kim (2018) pro-
posed a two-step approach, grouping jobs in so-called buckets using meta-
heuristics and assigning them to machines by a mathematical model. Fanjul-
Peyro et al. (2017) introduced matheuristics using constraint relaxation, lim-
iting job-machine assignments, and using a MIP-based neighborhood search
to optimize subsets of jobs. Other researchers applied matheuristics to solve
flow-shop scheduling problems. Ta et al. (2018), Della Croce et al. (2014), and
Della Croce et al. (2019) used MIP-based neighborhoods in positional schedul-
ing formulations, solving sub-problems for a limited number of positions. Lin
and Ying (2016) and Lin and Ying (2019) converted the flow-shop problem
into a traveling salesman problem, building an initial heuristic solution, and
solving a mathematical model. To our knowledge, Mönch and Roob (2018) is
the only work that applies matheuristics to a batch scheduling formulation.
However, they do not apply MIP-based neighborhood search, but use a two-
step approach that combines a genetic algorithm to compose batches and a
mathematical model to assign and sequence them on the machines.

Matheuristics have also been successfully applied to many scheduling
problems with realistic backgrounds. See, for instance, the works of Martinelli
et al. (2019), Kalinowski et al. (2020), and Grenouilleau et al. (2020), related
to the scheduling of mining activities, rail network maintenance, and home
health care services, respectively.

2.5
Simheuristics

Simheuristics are simulation-optimization approaches that combine
metaheuristic frameworks with embedded simulation to solve stochastic com-
binatorial optimization problems in reasonable computational times. These
methods take advantage of the structure and elements of regular metaheuris-
tics, based on the premise of a correlation between good deterministic and
stochastic solutions, to identify and evaluate promising solutions through a
simulation step. Simheuristic approaches can provide more statistical informa-
tion about a solution, which helps for risk-analysis purposes. It is a growing
field in the literature with successful applications for several problems, from
vehicle routing problems (VRP) to scheduling problems (Juan et al. 2015).
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Juan et al. (2014) addressed a Permutation Flow Shop Scheduling
Problem (PFSP) with stochastic processing times. The authors developed a
simheuristic, named SimILS, using Monte Carlo Simulation (MCS) within
an Iterated Local Search (ILS) approach, testing three uncertainty levels.
They showed the advantages of using a simheuristic approach compared with
the deterministic solutions in the stochastic environment. Gonzalez-Neira
et al. (2017) dealt with the same problem but using a simheuristic within
a Greedy Randomized Adaptive Search framework. The authors compared
the deterministic solution with two stochastic solutions, one with the best
average objective function value and another with the smallest standard
deviation. Hatami et al. (2018) focused on a parallel flow shop problem
with deadlines and stochastic processing times. They applied two SimILS
algorithms to minimize the expected makespan and the makespan percentile. In
the experiments, they analyze the probability of accomplishing the deadlines
of a given solution. González-Neira et al. (2019) developed a Tabu Search
simheuristic to solve a stochastic PFSP. They tested two different probability
distributions (Log-normal and uniform) for the processing times with three
levels of uncertainty, analyzing solutions according to the expected tardiness
and standard deviation. Villarinho et al. (2021) also addressed a PFSP with
stochastic processing times but aiming to maximize the schedules’ expected
payoffs. The authors developed a multi-start simheuristic using risk analysis
in their experiments to quantify the worst-case scenarios.

Quintero-Araujo et al. (2017) tackled a VRP under demand uncertainty,
comparing a collaborative approach with a non-collaborative one. They gener-
ated a set of promising solutions and evaluated the reliability of the routes to
accomplish the demand. Gruler et al. (2017) also dealt with a VRP with un-
certainty on demands for a waste collection problem. They applied a Variable
Neighborhood Search (VNS) with MCS, considering different safety capacity
levels on the vehicles, evaluating the reliability and routing costs of a pool
with the best stochastic solutions. Guimarans et al. (2018) approached a two-
dimensional VRP using a SimILS with biased randomization and a simulated
annealing acceptance criterion, also returning a pool with the best stochastic
solutions. Reyes-Rubiano et al. (2019) applied a simheuristic using biased ran-
domization to tackle a VRP with electric vehicles and uncertainty on travel
times. They defined different safety stock levels to evaluate the total cost, con-
sidering routes and vehicles’ reliability to complete routes without energy fail-
ure. Calvet et al. (2019) dealt with a multi depot VRP with stochastic demands
and limited capacity. They compared a two-stage stochastic-programming ap-
proach with different simheuristics showing the advantages of using a SimILS
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method. Gonzalez-Martin et al. (2018) solved a Capacitated Arc Routing Prob-
lem with demand uncertainty, evaluating the routes’ reliability by joining an
MCS with a biased randomized method. Yazdani et al. (2021) developed a
simheuristic based on a hybrid Genetic Algorithm to solve a real-life waste
collection VRP. Latorre-Biel et al. (2021) considered correlated stochastic de-
mands within a capacitated VRP, combining a simheuristic with a Petri net
predictor to update the mean demands.

Gruler et al. (2018) studied an Inventory Routing Problem (IRP) with
stochastic demands. They applied a simheuristic in a VNS approach, using
biased randomization with a Clarke & Wright Savings heuristic to build
initial solutions. They evaluate several refilling policies evaluating holding
and stockout costs. Onggo et al. (2019) developed a simheuristic to tackle
an IRP with perishable products to minimize the trade-off between the total
operational cost and the food-waste cost. Raba et al. (2020) also approached
an IRP with stochastic demands using a reactive strategy to reevaluate the
refilling policies periodically. Gruler et al. (2020) developed a VNS to solve
an IRP with stochastic demands. They run the VNS to build a pool with the
best deterministic solutions, using an MCS to evaluate these solutions in the
stochastic environment further. Quintero-Araujo et al. (2019) applied a SimILS
to deal with a capacitated Location-Routing Problem (LRP) with stochastic
demands. They evaluate reactive and preventive strategies while defining
routes to minimize the impacts of route failure. Rabbani et al. (2019) developed
a genetic algorithm with MCS to optimize a stochastic hazardous waste LRP
aiming to minimize the total operational cost and the contamination risks
according to the defined locations and routes. Pagès-Bernaus et al. (2019)
compared a SimILS with a two-stage stochastic-programming approach to
solve a Facility Location Problem with uncertain demands.

Lopes et al. (2020) developed a SimILS with a specialized cycle time
simulator to address a balancing optimization problem for an assembly line,
with stochastic sequences of products, evaluating several buffer layouts. Santos
et al. (2020) also designed a simheuristic based on the ILS approach to
increase the production rate of a Brazilian mining company. They combined
the metaheuristic framework with an operational simulator, responsible for
evaluating the solutions’ objective function values, for defining the amount
of active equipment within the company plant. Fabri and Ramalhinho (2021)
also developed a SimILS to define the supplying routes from the warehouse
to the workstations in a car assembling production line. The authors used the
simulation step to identify the number of backorders for each simulated period
and compute the objective function of the solutions.
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Panadero et al. (2020) designed a VNS simheuristic with a simulated an-
nealing acceptance criterion to deal with a project portfolio selection problem
with maximum risk constraint and uncertainties in cash flows and discount
rates. They developed a set of instances with different interdependencies be-
tween the projects, modeling the uncertainties with normal distributions, aim-
ing to maximize the portfolio’s expected net present value.

Note that VRP variants are among the most addressed problems in the
simheuristic literature, followed by Flow Shop problems. It is worth mentioning
the relevance in applying simheuristics as it is a growing field in the literature,
with most of the works published in the last five years. Concerning works that
deal with scheduling problems, usually, the authors consider the uncertainty
only in the duration of the tasks (processing times), using, in general, the same
probability distribution with a specific variance level for all tasks. Also, to the
best of our knowledge, no article addresses ship scheduling problems or parallel
machine scheduling problems.
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3
Problem Description

This chapter is organized into three sections. First, we detail the real
problem of scheduling the PLSV fleet, providing more information about
the process. The second section provides a more formal description of the
problem, using the correlation with a parallel machine scheduling problem.
This section includes an illustrative example of a PLSV schedule to help
the reader better understand the problem. Finally, the stochastic version of
PLSVSP is presented.

3.1
PLSV Scheduling Problem

The PLSVSP consists of scheduling a given PLSV fleet to meet a demand
for pipeline connections in different subsea oil wells. The objective is to
anticipate the completion of more productive wells. Our approach is related
to a Brazilian oil and gas company that operates in the pre-salt exploratory
basin. As mentioned before, PLSVs are responsible for loading these pipelines
at the port, transporting them to the wells site, laying them out in the ocean,
and connecting them between the wells and platforms, allowing production to
begin. Figure 3.1 shows an PLSV. For a better understanding of the problem,
we first provide more details about the main PLSVSP actors in the following:

Wells: Based on management guidelines, the company defines the next wells
that must be completed, identifying the pipelines to connect in each specific
well. A well is only ready to produce when all of its pipelines are connected.
Also, the company has an estimated production rate for each well.

Pipeline Connections: Each connection concerns a specific pipeline and
well. The company estimates the duration of the connections based on his-
torical data, taking into account several aspects such as distance between the
well and the platform, water depth, and others. Another relevant information
regards the space that each pipeline occupies on the deck of a PLSV vessel.
Figures 3.2 shows the flexible pipelines used in the Brazilian pre-salt region,
and Figure 3.3 depicts a scheme with the pipelines connected between the wells
and the platform.
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PLSV fleet: To perform the connections, the company has a heterogeneous
fleet of PLSVs. Each vessel is available to operate from a specific date. Besides,
each vessel has a different capacity and is eligible to serve only a subset of
connections due to the heterogeneity of the fleet.

Figure 3.1: Pipe Laying Support Vessel (PLSV) O Petróleo (2017).

Figure 3.2: Flexible Pipelines National Oilwell Varco (2020).

Due to basin characteristics, each connection affects the pressure in
the oil & gas reservoir, impacting the production of other wells in the same
region. Thus, the company assumes that a well only begins to produce with
the expected potential when, in addition to its connections, all those that
impact its production are also completed. Consequently, some operations are
associated with several wells simultaneously, creating intersections on the
subsets of connections associated with the wells.

When executing a connection, a PLSV goes to the port to load the
pipeline on its deck, travels to the well’s location, launches the pipelines into the
ocean, and connects them between the well and the platform. Navigation times
are disregarded due to the proximity between the wells in the pre-salt basin.
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Figure 3.3: Subsea production system scheme, showing a Floating Production
Storage and Offloading (FPSO) platform connected to several oil wells by
flexible pipelines. TecPetro (2015).

Thus, the duration of a pipeline connection takes into account the time spent
laying the pipeline at the ocean floor and connecting it. The combination of the
loading process at the port with the connection task defines a PLSV voyage. In
one voyage, a PLSV can connect several pipelines from different wells. However,
according to the occupation of the pipelines, the vessel’s capacity limits the
number of connections to execute. Moreover, the loading process at the port
can only begin when all pipelines to connect on a given voyage are available
at the port, that is, anticipations for loading some pipelines for a given voyage
are not allowed.

As previously mentioned, the scheduling process is performed by spe-
cialists from the company based on their experience. The company groups
connections according to the similarity in their pipeline loading process at the
port. The time spent loading the pipelines is dependent on the group of con-
nections to execute on a voyage, with a fixed duration, i.e., they do not depend
on the number of connections to be performed. Three main decisions are made
by the specialists when scheduling a PLSV fleet:

1. Definition of the voyages

2. Assignment of the voyages to the vessels

3. Sequencing of the voyages on each vessel

In the first step, the planners must only build voyages with connections of
the same group. On the assignment step, the schedulers must check if a vessel
is eligible and has enough space on the deck to perform all pipeline connections
defined for a voyage. Finally, on the voyage sequencing step, the planners must
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consider the arrival of the pipelines at the port, which may occur on different
days, and the day in which each vessel is available for starting their activities.
Considering the non-anticipation rule, the defined sequence directly affects the
idleness of the vessels and the delay in starting subsequent voyages. Due to the
problem constraints and the concern with the solution’s quality, all activities
from this decision process are carried out simultaneously.

The PLSVSP is described in the next section as an identical parallel
machine scheduling problem with non-anticipatory family setup times. In this
machine environment, a set of parallel machines is available to perform a given
set of tasks. Machines are called identical when tasks’ processing times are fixed
and, therefore, machine-independent (Pinedo 2012). In most studies, tasks are
called jobs, as each task requires only a single operation to complete. However,
we represent tasks as operations, given that, in our problem, a set of operations
must be finished to complete a job. Besides, when family setup times are
considered, tasks are grouped into families by similarity, and a setup time
must be scheduled whenever a machine changes the execution of a task from
one family to another. In this class of problems, the combination of one setup
time and its subsequent tasks is called a batch. Also, when these setup times
are non-anticipatory, the starting time of a batch cannot be anticipated. That
is, it depends on the release of the tasks assigned to it.

In the PLSVSP, vessels are machines, jobs represent wells, and pipeline
connections are the operations. The non-anticipatory family setup times rep-
resent pipeline loading times, while PLSV voyages are batches. Next section
formalizes the problem as a parallel machine scheduling problem and provides
a mapping between the machine scheduling aspects and the PLSVSP context.

3.2
Identical Parallel Machine Scheduling Approach

The notation and assumptions considered in the PLSVSP are described
below, according to the machine scheduling theory.

1. There is a setO = {Oi|i = 1, ..., o} of operations, where each operationOi

has a processing time pi, a release date ri, a load occupancy or size li,
and a family fi.

2. There is a set F = {Fg | g = 1, ..., f} of families where sg is the setup
time for a family Fg.

3. All operations must be scheduled without preemption in a set M =
{Mk | k = 1, ...,m} of identical machines.
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4. Each machineMk ∈M is available to process operations from its release
date rk and has a capacity qk.

5. Machines are called identical due to the fixed processing times of the
operations.

6. A subset Mi ⊆ M defines the eligible machines for executing each
operation Oi. Conversely, Ok is a subset of operations Oi ∈ O that a
machine Mk ∈M is eligible to execute, i.e., Ok = {Oi ∈ O |Mk ∈Mi}.

7. A family setup time is incurred on three occasions: while changing the
execution of operations from different families, before the first operation
on each machine, or when the machine’s capacity is reached.

8. We define Batch as a combination of one family setup time followed by
a sequence with one or more operations from the same family.

9. The batching mode is Serial-Batching. Thus, the processing time of a
batch is given by the sum of the operations’ processing times within the
batch plus the setup time duration regarding the batch family.

10. The size of a batch, computed by the sum of the load occupancy of the
operations within it, must respect the capacity of the machine assigned
to execute it.

11. The setup times are non-anticipatory, i.e., a Batch can only start when
all operations within it are released.

12. There is a set N = {Jj | j = 1, ..., n} of jobs where each job Jj is
associated with a subset Oj ⊆ O of operations and has a weight wj
defining its priority.

13. We use Ni ⊆ N to identify a subset of jobs associated with operation Oi,
since in the PLSVSP, one operation might be related to several jobs
simultaneously.

14. A job is completed when all of its associated operations are concluded.
Thus, the completion time (Cj) of a job is the maximum completion time
of the associated operations (Cj = max

Oi∈Oj

{Ci}). Ci is the completion time
of operation Oi.

15. The objective function is to minimize the total weighted completion time
of all jobs, defined as ∑

Jj∈N
wjCj.
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Table 3.1 provides a mapping between the machine scheduling aspects
and the PLSVSP context for the sake of convenience.

Table 3.1: The mapping between the parallel machine scheduling problem
definitions and its correspondences with the PLSVSP.

Name Machine scheduling definition PLSVSP correspondence

O Operations Pipeline connections
N Jobs Wells
M Machines PLSVs
F Families Groups of pipeline connections with similar

loading process at the port
Mi Machine eligibility subset Subset of vessels eligible to execute a pipeline

connection
Ok Subset of operations a machine is eligible to

execute
Subset of connections a vessel can carry

Oj Subset of operations composing a job Subset of connections required to enable a well
to start producing

Ni Subset of jobs associated to an operation Subset of wells that depends on a connection
to be able to produce

pi Processing time of an operation Time taken to perform a pipeline connection
ri Release date of an operation Arrival date of a pipeline at the port
li Load occupancy or size of an operation Pipeline occupancy on the deck of the ship
fi Family of an operation Group of a pipeline connection
rk Release date of a machine Availability date of a vessel
qk Capacity of a machine Vessel’s deck capacity
wj Weight of a job Production potential of a well
Ci Completion time of an operation Time when a connection ends
Cj Completion time of a job Time when a well is fully connected and able

to start producing
sg Setup times of a family Time spent at port loading pipelines for a

specific group of operations
Batch Sequence of operations from the same family

sharing the same setup time
PLSV voyage

To clarify the batch concept and the non-anticipatory setup times, we
depict in Figure 3.4 a schedule example with one batch, containing a generic
setup time (s) with 10 days of duration followed by two operations (O1 and
O2) with equal processing times (p1 = p2 = 20), assigned to one machine
(M1). Thus, the batch processing time is 50 days. The machine is available
from t = 5 and processes the batch from t = 10 to t = 60. The five days
idleness is generated by the non-anticipatory setup consideration, which forces
the starting time of the setup time (marking the beginning of the batch) to
accomplish the operations’ release dates (the release dates in the example are
r1 = 0 and r2 = 10).
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Figure 3.4: PLSV Scheduling example with one voyage assigned to a single
machine.

3.2.1
Example Problem

An example is provided below to help illustrating the PLSVSP. We
consider an instance with 15 operations, 5 jobs and 4 machines, which means
that o = 15, n = 5 and m = 4. Table 3.2 shows the characteristics of each
operation Oi in the given instance in the following order: processing time (pi),
release date (ri), family (fi), load occupation or size (li), set of associated jobs
(Ni) and eligible set of machines (Mi). Table 3.3 indicates the weight (wj)
and the sets of operations (Oj) that composes each job Jj. Table 3.4 presents
the characteristics of each machine Mk in the given instance in the following
order: release date (rk) and capacity (qk), eligible operations (Ok). Finally,
Table 3.5 shows the characteristics of each family Fg in the given instance
in the following order: setup duration (sg) and sets of operations (Og) that
belongs to family Fg.

Table 3.2: Operations characteristics of the example instance.

Operation (Oi) pi ri fi li Ni Mi

O1 23 5 1 90 {J5} {M1,M4}
O2 5 17 1 90 {J5} {M1,M3,M4}
O3 25 16 3 70 {J2, J3, J4} {M2,M3,M4}
O4 10 9 2 50 {J1} {M1,M2,M3,M4}
O5 4 18 1 60 {J3} {M1,M2,M3,M4}
O6 8 17 2 80 {J1, J3} {M2,M4}
O7 29 15 3 60 {J5} {M1,M2,M3,M4}
O8 8 5 3 0 {J2} {M2}
O9 17 9 3 40 {J1, J5} {M1,M2,M4}
O10 25 0 1 40 {J2, J5} {M1,M2,M3,M4}
O11 4 3 1 30 {J3} {M1,M2,M3,M4}
O12 15 0 1 20 {J1, J3} {M1,M3,M4}
O13 7 16 2 60 {J3} {M3,M4}
O14 7 7 1 90 {J4, J5} {M1,M4}
O15 18 15 3 20 {J3} {M4}
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Table 3.3: Jobs characteristics of the example instance.

Job (Jj) wj Oj

J1 46 {O4, O6, O9, O12}
J2 40 {O3, O8, O10}
J3 39 {O3, O5, O6, O11, O12, O13, O15}
J4 13 {O3, O14}
J5 3 {O1, O2, O7, O9, O10, O14}

Table 3.4: Machines aspects regarding the example instance.

Machine (Mk) rk qk Ok

M1 13 90 {O1, O2, O4, O5, O7, O9, O10, O11, O12, O14}
M2 0 80 {O3, O4, O5, O6, O7, O8, O9, O10, O11}
M3 0 90 {O2, O3, O4, O5, O7, O10, O11, O12, O13}
M4 1 90 {O1, O2, O3, O4, O5, O6, O7, O9, O10, O11, O12, O13, O14, O15}

Table 3.5: Families characteristics of the example instance.

Family (Fg) sg Og

F1 5 {O1, O2, O5, O10, O11, O12, O14}
F2 7 {O4, O6, O13}
F3 9 {O3, O7, O8, O9, O15}

In Figure 3.5, the optimal solution of the example instance is presented
in a Gantt chart with the respective operations assigned, sequenced, and
forming batches. Jobs associated with each operation are described below each
allocation. We also marked the respective completion times for each one of the
jobs, and setup times are indicated with the family.

𝒔𝟏 𝑶𝟏𝟒 𝒔𝟐 𝑶𝟔 𝒔𝟑 𝑶𝟏𝟓 𝑶𝟕
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Figure 3.5: Scheduling example with 15 operations, 5 Jobs and 4 machines.

Note that only two batches with more than one operation were formed,
both from family F3. The first on machine M2, consisting of a setup s3, and
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operations O9 and O8 with a total load of 40 (sum of l8 = 0 and l9 = 40).
The second on machine M4, with a setup s3, and operations O15 and O7 with
a total load of 80 (sum of l15 = 20 and l7 = 60). Both occupations respects
the capacity of machines M2 and M4, with q2 = 80 and q4 = 90, respectively.
It is also possible to note that idleness was created on these machines. On
machine M2, the setup-time of the first batch started only on t = 9 due to
the non-anticipatory consideration, which must respect the maximum release
date between operations O9 (r9 = 9) and O8 (r8 = 5). The same happens with
machine M4, where the first batch only started at t = 7, equivalent to the
release date of operation O14 (r14 = 7). It is possible to observe the completion
times of the jobs and the operations that define them. For example, job J1 was
the first to finish, defined by the completion time of operation O9. This job has
the highest weight (w1 = 46). Note that job J5 has the longest completion time,
defined by operation O7, which can be explained by its low weight (w5 = 3).
Operations O1 and O2 are only associated with job J5, and they do not define
the completion of the job. They are scheduled in the last batch of machines
M1 and M2, which means that we can move their batches to start any time
that makes them finish before or at the same time as operation O7, without
changing the solution cost.

The eligibility constraint can also be verified. Operations O8 and O15 are
assigned to machines M2 and M4, as they are the only possible machines for
these operations. Note that, in some cases, two batches of the same family
are scheduled sequentially with only one operation within each. An example of
this happens at the end of machineM2, where batch containing only operation
O11 precedes another batch containing only operation O5, both of family F1.
However, the sum of the load occupation of these operations is 90, with l11 = 30
and l5 = 60, and thus, it would exceed the capacity of machine M2 (q2 = 80).
The completion times of the jobs on the final solution are C1 = 35, C2 = 60,
C3 = 68, C4 = 54 and C5 = 90, with a total weighted completion time
(∑j∈N wjCj) of (35×46)+(60×40)+(68×39)+(54×13)+(90×3) = 7, 634.

3.2.2
Stochastic PLSVSP

Uncertainties are present in all stages of oil exploration and production,
including tasks performed by support vessels. In the Stochastic PLSVSP (S-
PLSVSP), most of these uncertainties affect the processing times of the pipeline
connection operations, changing the company’s expectation of its duration.
These variations may be caused by several aspects such as climate changes
(affecting ocean conditions), the complexity of operations, crew experience,
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and others. Therefore, instead of considering deterministic processing time pi
for each operation Oi ∈ O, a random variable Pi with E[Pi] = pi is used to
model stochastic processing times for the operations in order to better deal
with the uncertain environment. Based on previous works in the scheduling
literature (Juan et al. 2014, González-Neira et al. 2019, Hatami et al. 2018,
Villarinho et al. 2021), we use Log-Normal distributions for modeling stochastic
processing times. The Log-Normal distribution has two parameters, µi and
σi for each operation Oi ∈ O, defined by the expressions (3-1) and (3-2),
respectively (Juan et al. 2011):

µi = ln(E[Pi])−
1
2 · ln

(
1 + V ar[Pi]

E[Pi]2

)
, (3-1)

σi =

∣∣∣∣∣∣
√√√√ln

(
1 + V ar[Pi]

E[Pi]2

)∣∣∣∣∣∣. (3-2)

Following the approach proposed by Juan et al. (2011), we define
V ar[Pi] = δp · E[Pi], where δp > 0 is the processing time variance parame-
ter, used to create different levels of processing times uncertainty.

Figure 3.6 depicts the Log-Normal distribution for a random variable Pi
with the expected processing time E[Pi] = 15, considering three scenarios of
uncertainty (low, medium, and high), with the following values for the variance
parameter: δp ∈ {0.5, 2.0, 5.0}. Note that, in the low-variance scenario, the
curve is more narrowed, generating values closer to E[Pi]. For higher values
on δp, the curve gets a more spread shape, increasing the uncertainty on the
processing times of operation Oi, enlarging the range of possible values.
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Figure 3.6: Log-Normal distributions for the Pi random variable, with E[Pi] =
15, within different uncertainty scenarios.

Another relevant aspect of uncertainty in the PLSVSP concerns the
arrival of pipelines at the port (release date of operations). Each pipeline is
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specially designed for a specific well based on the water depth, total distance
to the platform, and other characteristics of the well. When the company
orders a new pipeline, a delivery date is defined with the producer and
considered by the company as the release date ri for the operation Oi of the
ordered pipeline. However, uncertainties in the production process, pipeline
specifications, transportation logistics, and others can affect the defined release
dates. Thus, in the Stochastic PLSVSP we assume that the release dates for
each operation Oi ∈ O is a random variable Ri with E[Ri] = ri. Again, we use
Log-Normal distributions to model the stochastic release dates, following the
same rule defined for modeling the stochastic processing times. And, we define
V ar[Ri] = δr · E[Ri], where δr > 0 is the release date variance parameter.
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4
Mathematical Formulations for the PLSVSP

In this chapter, we propose three mathematical formulations for the
PLSV scheduling problem. We first introduce a positional scheduling formula-
tion followed by a time-indexed formulation. Both models extend the parallel
machine scheduling formulations described by Unlu and Mason (2010). The
third formulation adapts a parallel batching machine scheduling formulation
proposed by Ham et al. (2017), using a dispatching rule to sequence operations
inside batches. Appendix B.1 contains the definitions of the Sets, Parameters,
and Variables used in the proposed formulations.

4.0.1
Positional Scheduling Formulation

The first formulation uses positions p ∈ P to define the sequence of setup
times and operations on the machines. A setup marks the start of a batch
(setting the occupation to zero). We use Pk to limit the number of available
positions on each machine Mk, considering the eligibility constraint. Thus, for
each machine, the number of available positions is equal to twice the total
number of eligible operations. We do this to allow each machine to process its
entire subset of eligible operations in single batches (i.e., batches with only one
operation inside). The positional formulation uses a binary variable Xp

ik which
is 1 if operation Oi is scheduled as the p-th operation of machine Mk, a binary
variable Y p

gk which is 1 if the p-th position of machine Mk is a setup time
of family Fg. The continuous variables Spk represent the starting of position
p in machine Mk. As mentioned in Chapter 3, variables Ci and Cj represent
the completion time of operations and jobs, respectively. This formulation
expands the one presented in Unlu and Mason (2010), created to solve a parallel
machine scheduling problem. We added two continuous variables to deal with
the capacity and with the non-anticipatory setup times. The first is defined
by Lpk and represents the total cumulative load in position p, on machine Mk.
The second is defined by Rp

k and represents the release time in position p, on
machine Mk, looking ahead to all scheduled operations until a new scheduled
setup is found. The proposed formulation is described as follows:
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min
∑
j∈N

wjCj (4-1)

subject to

∑
k∈Mi

∑
p∈Pk

Xp
ik = 1 ∀i ∈ O (4-2)

∑
i∈O

Xp
ik +

∑
g∈F

Y p
gk ≤ 1 ∀k ∈M, p ∈ Pk (4-3)

Lpk ≥ L
(p−1)
k +

∑
i∈O

liX
p
ik −

∑
f∈F

qkY
p
gk ∀k ∈M, p ∈ Pk | p > 0 (4-4)

Lpk ≤ qk ∀k ∈M, p ∈ Pk (4-5)∑
i∈Og

Xp
ik ≤

∑
i∈Og

X
(p−1)
ik + Y

(p−1)
gk ∀k ∈M, p ∈ Pk | p > 0, g ∈ F

(4-6)

Rp
k ≥

∑
i∈O

riX
(p+1)
ik ∀k ∈M, p ∈ Pk (4-7)

Rp
k ≥ R

(p+1)
k −

∑
g∈F

rmaxY
(p+1)
gk ∀k ∈M, p ∈ Pk (4-8)

Spk ≥ S
(p−1)
k +

∑
i∈O

piX
(p−1)
ik +

∑
g∈F

sgY
(p−1)
gk ∀k ∈M, p ∈ Pk | p > 0 (4-9)

Spk ≥ rk ∀k ∈M, p ∈ Pk (4-10)

Spk ≥ Rp
k ∀k ∈M, p ∈ Pk (4-11)

Ci ≥ Spk + pi − (1−Xp
ik)M ∀i ∈ O, k ∈Mi, p ∈ Pk (4-12)

Cj ≥ Ci ∀j ∈ N , i ∈ Oj (4-13)

Xp
ik ∈ {0, 1} ∀i ∈ O, k ∈Mi, p ∈ Pk | p > 0

(4-14)

Y p
gk ∈ {0, 1} ∀k ∈M, p ∈ Pk, g ∈ F (4-15)

Ci ≥ 0 ∀i ∈ O (4-16)

Lpk, S
p
k , P

p
k ≥ 0 ∀k ∈M, p ∈ Pk (4-17)

The objective function (4-1) minimizes the weighted completion time of
the jobs. Constraints (4-2) states each operations must be executed exactly
once. Constraints (4-3) ensure that each machine processes only one operation
or a setup per position. Constraints (4-4) calculate the cumulative load of
a position as the sum of the load of the previous position plus the load of
the operation assigned to the position. If one setup time is assigned to this
position, the cumulative load is equals to zero. Constraints (4-5) guarantee
that the cumulative load is less than or equal to the maximum load limit
on each machine. Constraints (4-6) ensure that a given operation of a family
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can only be scheduled after another operation or a setup time of the same
family. Constraints (4-7) compute the release of a position from the release
date of the operation assigned to the subsequent position on each machine.
Constraints (4-8) also compute the release of a position, ensuring that it is
greater or equal to the release of the following position on each machine. If
there is a setup assigned in the succeeding position, the release variable will be
null because of the rmax parameter, computed as rmax = max

Oi∈O
{ri}. Constraints

(4-9) calculate the start time of each position on each machine as the start
time of the previous position plus the processing time of the operation or
setup assigned to the previous position. Constraints (4-10) ensure that the
start time of each position must respect the release date of the machine to
which it is assigned. Constraints (4-11) force the start of each position on each
machine to respect the calculated release time of the position. Constraints (4-
12) determine operations completion times based on the assigned position start
time and the operation processing time. We use a large number M to relax
this constraint for positions on machines to which an operation has not been
assigned. The value of M is given by the maximum completion time among all
operations, supposing that all of them are scheduled in the same machine in
individual batches, with the first batch starting its processing on the largest
release date of the operations. Constraints (4-13) ensure that the completion
time of a job is the maximum completion time among the operations that
comprise it. Finally, Constraints (4-14)-(4-17) present the variables’ domains.

4.0.2
Time-Index Scheduling Formulation

In time-indexed formulations, the horizon consists of discrete periods,
where each period t ∈ T represents a continuous interval starting at time t−1
and ending at time t. We limit the available periods Tk for each machine Mk

by taking into account the processing times, release dates and family setup
times of the eligible operations subset, and the machine release date. Let Ok
be the subsets of operations that a machine Mk is eligible to execute. Thus,
for each machine Mk, the horizon is limited by t ≥ max{ min

Oi∈Ok

{ri}, rk} and
t ≤ max{max

Oi∈Ok

{ri}, rk} + ∑
Oi∈Ok

(sfi
+ pi). This formulation uses a binary

variable X t
ik which is 1 if operation Oi starts its processing in period t on

machine Mk and a binary variable Y t
gk which is 1 if a setup time of family Fg

starts in period t in machineMk. Variables Ci and Cj represent the completion
time of operations and jobs, respectively. We also extended the formulation
from a parallel machine scheduling one, presented in Unlu and Mason (2010).
In the same way, as in the positional formulation, two continuous variables are
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considered to deal with the capacity and with the non-anticipatory setup times.
The first is defined by Ltk and represents the total load from the last setup up to
period t. The second is defined by Rt

k and represents the release time in period
t, looking ahead to all scheduled operations until a new scheduled setup is
found. The proposed formulation is described as follows:

min
∑
j∈N

wjCj (4-18)

subject to

∑
k∈Mi

∑
t∈Tk

X t
ik = 1 ∀i ∈ O (4-19)

∑
i∈O

t∑
t′=max{0,t−pi+1}

X t′

ik +
∑
g∈F

t∑
t′=max{0,t−sg+1}

Y t′

gk ≤ 1 ∀k ∈M, t ∈ Tk (4-20)

Ltk ≥ L
(t−1)
k +

∑
i∈O

liX
t
ik −

∑
g∈F

qkY
t
gk ∀k ∈M, t ∈ Tk | t > 0

(4-21)

Ltk ≤ qk ∀k ∈M, t ∈ Tk (4-22)∑
i∈Of

X t
ik ≤

∑
i∈Of

X
max{0,t−pi}
ik + Y

max{0,t−sf}
gk ∀k ∈M, t ∈ Tk, g ∈ F

(4-23)

Rt
k ≥

∑
i∈O

riX
t
ik ∀k ∈M, t ∈ Tk (4-24)

Rt
k ≥ R

(t+1)
k −

∑
g∈F

rmaxY
(t+1)
gk ∀k ∈M, t ∈ Tk (4-25)

∑
g∈F

(t)Y t
gk ≥ Rt

k −

1−
∑
g∈F

Y t
gk

rmax ∀k ∈M, t ∈ Tk (4-26)

Ci =
∑
k∈M

∑
t∈Tk

(t+ pi − 1)X t
ik ∀i ∈ O (4-27)

Cj ≥ Ci ∀j ∈ N , i ∈ Oj (4-28)

X t
ik ∈ {0, 1} ∀i ∈ O, k ∈Mi, t ∈ Tk

(4-29)

Y t
gk ∈ {0, 1} ∀k ∈M, t ∈ Tk, g ∈ F

(4-30)

Ci ≥ 0 ∀i ∈ O (4-31)

Ltk, R
t
k ≥ 0 ∀k ∈M, t ∈ Tk (4-32)

The objective function (4-18) minimizes the weighted completion time
of the jobs. Constraints (4-19) state each job must be executed exactly once.
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Constraints (4-20) ensure the non overlap of operations and setups. Constraints
(4-21) calculate the cumulative load of a period as the sum of the load of
the previous period plus the load of the operation starting its processing at
this period. If a setup starts at this period, the cumulative load will be zero.
Constraints (4-22) guarantee that the cumulative load in each period is less
than or equal to the machine capacity. Constraints (4-23) ensure that one
operation of a family can only be scheduled after another operation or a setup
time of the same family. Constraints (4-24) compute the release of a period
from the release date of the operation starting at this period. Constraints
(4-25) also compute the release of a period, ensuring that it is greater or
equal to the release of the subsequent period on each machine. If there is a
setup assigned in the succeeding period, the release variable will tend to zero.
Constraints (4-26) force the start of each setup on each machine to respect
the calculated release variable of the period. Constraints (4-27) calculate the
completion time of each operation as the sum of the start time of the operation
plus its duration. Constraints (4-28) ensure that the completion time of a job is
the maximum completion time among the operations that comprise it. Finally,
Constraints (4-29)-(4-32) present the variables’ domains. To accomplish the
operations release dates, we generate the allocation variables X t

ik only for
periods t ≥ ri + sfi

+ 1.

4.0.3
Batch Scheduling Formulation

In this formulation, we adapted a parallel batching machine model,
presented by Ham et al. (2017). In batching machine formulations, operations
are processed in parallel with the total processing time of a batch defined as
the maximum processing time of the operations contained in it. However, we
consider that operations are processed sequentially, and a batch’s processing
time is given by the sum of all processing times of its operations. To achieve
this, we use a dispatching rule to sequence operations within batches. We limit
the number of available batches for each machine Mk, according to the total
number of eligible operations on each of them, and create the set Bk. The
model decides which operations will be allocated in each batch.

We use the Weighted Shortest Processing Time (WSPT) dispatching
rule (Pinedo 2012) to define the sequence of the operations inside batches.
Since weights refer to jobs rather than operations, we define relative weights
wi = max

Jj∈Ni

{wj} for operations. Other rules are used to ensure complete ordering
of all possible combinations of operations within batches. The model uses the
subsets Oi, shown in Equation (4-33), to identify for each operation Oi, the
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subsets of operations Oı̂ ∈ Oi that will precede operation Oi if they are in
the same batch. Using the WSPT rule does not guarantee that, even getting
a zero-gap when solving this formulation, we will achieve an optimal solution.

Oi =

Oı̂ ∈ O
∣∣∣∣∣
(
wı̂
pı̂
>
wi
pi

)

∨
(
wı̂
pı̂

= wi
pi
∧ wı̂ > wi

)
∨
(
wı̂
pı̂

= wi
pi
∧ wı̂ = wi ∧Oı̂ < Oi

) ∀Oi ∈ O

(4-33)

The serial batching formulation uses a binary variable Xb
ik which is 1 if

operation Oi is scheduled in the b-th batch of machine Mk, a binary variable
Y b
fk which is 1 if the b-th batch of machine Mk is of family Fg. The continuous

variables Sbk and P b
k represent the starting time and the total processing time

of the b-th batch on machine k, respectively. The continuous variables Ci and
Cj represent the completion times of operation Oi and job Jj, respectively.
The mathematical formulation is as follows:

min
∑
j∈N

wjCj (4-34)

subject to

∑
k∈Mi

∑
b∈Bk

Xb
ik = 1 ∀i ∈ O (4-35)

∑
g∈F

Y b
gk ≤ 1 ∀k ∈M, b ∈ Bk (4-36)

Xb
ik ≤ Y b

fik
∀i ∈ O, k ∈Mi, b ∈ Bk (4-37)∑

i∈O
liX

b
ik ≤ qk ∀k ∈M, b ∈ Bk (4-38)

P b
k ≥

∑
i∈O

piX
b
ik +

∑
g∈F

sfY
b
gk ∀k ∈M, b ∈ Bk (4-39)

Sbk ≥ rk ∀k ∈M, b ∈ Bk (4-40)

Sb+1
k ≥ Sbk + P b

k ∀k ∈M, b ∈ Bk (4-41)

Sbk ≥ riX
b
ik ∀i ∈ O, k ∈Mi, b ∈ Bk (4-42)

Ci ≥ Sbk + pi + sfi
+
∑
ı̂∈Oi

pı̂X
b
ı̂k −

(
1−Xb

ik

)
M ∀i ∈ O, k ∈Mi, b ∈ Bk (4-43)

Cj ≥ Ci ∀j ∈ N , i ∈ Oj (4-44)

Xb
ik ∈ {0, 1} ∀i ∈ O, k ∈Mi, b ∈ Bk (4-45)

Y b
gk ∈ {0, 1} ∀k ∈M, b ∈ Bk, g ∈ F (4-46)
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Ci ≥ 0 ∀i ∈ O (4-47)

Sbk, P
b
k ≥ 0 ∀k ∈M, b ∈ Bk (4-48)

The objective function (4-34) minimizes the weighted completion of
the jobs. Constraints (4-35) state that each operation is executed exactly
once. Constraints (4-36) allow only at most one family to be associated
with each batch. Constraints (4-37) assure operations can only be scheduled
in a given machine and batch using the selected family. Constraints (4-38)
control the occupation of each batch, avoiding the violation of the machine
capacity. Constraints (4-39) set the total processing time of a batch as the
total processing time of the operations it contains plus the setup time of
the chosen family. Constraints (4-40)-(4-42) control the starting time of the
batches. Constraints (4-40) set them as at least the machine’s release date.
Constraints (4-41) ensure each batch starts after the processing time of the
previous batch. Constraints (4-42) force batch starts to respect the maximum
release date between the operations scheduled in it (i.e., they guarantee the
non-anticipation). Constraints (4-43) calculate the completion time of one
operation as the sum of the processing time of all operations scheduled before,
the setup time of the batch family, its own processing time and the starting
time of the batch, only for the scheduled batch, family and machine. A large
number M is used to relax this constraint for batches on machines to which
operations are not assigned. Constraints (4-44) ensure that the completion
time of a job is the maximum completion time among the operations that
comprise it. Finally, Constraints (4-45)-(4-48) present the variables’ domains.

4.1
Computational Experiments

In this section, we present and discuss the results of the computational
experiments on the three proposed formulations running within the same
conditions. To test the performance of the formulations, we generated a set
of PLSV scheduling instances based on real data, from a Brazilian company,
related to the pre-salt basin. We performed the experiments on a machine with
an Intel i7-3960 CPU at 3.3GHz and 64 GB of RAM. The ILP formulations
were implemented in AIMMS 4.4 and solved by GUROBI 7.5 solver running
in 4 threads within a 6 hours time limit. This time-limit has been set with
the company to fit the way the planning is done. In general, the company
optimizes a schedule for the coming months without the need for an immediate
answer. However, when a response is required on the same business day, the
time-limit still works. We refer as Positional, Time-Index and Batch for the
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Positional Scheduling Formulation (Section 4.0.1), the Time-Index Scheduling
Formulation (Section 4.0.2) and the Batch Scheduling Formulation (Section
4.0.3), respectively.

4.1.1
Data Generation

The studied company provided a set of historical data with several PLSV
schedules, containing the voyages planned on each vessel and details on the
pipeline connections, indicating their associated wells. PLSV planners shared
more information about vessel eligibility and capacity, pipelines occupation,
and well production potential during meetings held to understand the process.
Based on this, we developed a set of PLSV instances to test our formulations.
We defined the number of machines and operations as m = {2, 4} and
o = {15, 25, 50}, respectively. The number of jobs was defined as n = bo/3c
and the number of families was set as 3, as described in Table 4.1. To generate
different ranges for the release dates, we defined a factor α = {0.25, 0.50, 0.75}.
Smaller values for this factor generate release dates for the operations and
machines closest to zero. If set as zero, release dates are disregarded in the
problem, i.e., ri = 0 and rk = 0 for all operations and machines, respectively.
The factor β = {0.7, 0.9} enables the generation of instances with different
machines eligibility. Higher values for this factor represent a greater probability
of a machine being eligible to execute some operation. If set as one, all machines
will be eligible to execute all operations. A factor γ = {0.05, 0.15} defines the
probability of associating an operation to a job during the instance generation.
Higher values increase the intersections between different sets of operations. If
set to zero, no intersection is allowed.

All combinations among the proposed factors were considered, generating
72 instances. Before generating the instances, a pre-processing step creates
part of the data used in the definition of some parameters. The parameters
generated on this step, the input data, and the parameters of the final instance
are described in Table 4.1. We used U(a, b) to define a continuous uniform
distribution between a and b and U{a, b, c} for a discrete uniform distribution
between a and b with step size c. The developed research data is available
online Abu-Marrul et al. (2019).

4.1.2
Results

In the following analysis, we evaluate the solution quality of each for-
mulation in terms of the relative optimality gap of the obtained solutions
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Table 4.1: Settings in randomly generated instances of the PLSV scheduling
problem.

Generation step Parameter Value, range or distributions
Input problem sets Number of operations o = {15, 25, 50}

Number of machines m = {4, 8}
Number of jobs n = bo/3c
Number of families f = 3

Input factor sets Release date factor α = {0.25, 0.5, 0.75}
Eligibility factor β = {0.7, 0.9}
Association factor γ = {0.05, 0.15}

Pre-processing Operations × Jobs coefficient ONij ∼ U(0, 1)
Operations × Machines coefficient OMik ∼ U(0, 1)

Maximum release date MR =
⌈
α×

∑
Oi∈O

(pi+sfi
)

m

⌉

Instance parameters Operations processing times pi ∼ U{1, 30, 1}
Operations families fi ∼ U{1, f, 1}
Operations load occupation or size li ∼ U{0, 100, 10}
Operations release date ri ∼ U{0,MR, 1}
Operations × Jobs subsets Oj = {Oi ∈ O | ONij ≤ γ}
Jobs weight wj ∼ U{1, 50, 1}
Machines capacity qk ∼ U{80, 100, 10}
Families setup duration sg ∼ U{5, 10, 1}
Machines release date rk ∼ U{0,MR, 1}
Eligibility Subsets Mi = {Mk ∈M | (OMik ≤ β) and (li ≤ qk)}

calculated using the lower bounds found when solving Time-Index. In Ap-
pendix B.2, we present a comparison between lower bounds, showing that
Time-Index generates the best lower bounds for all tested instances. We
report the relative optimality gaps in the way the GUROBI solver does,
as |ObjBound − ObjV al|/ObjV al × 100, where, in our case, ObjV al and
ObjBound are the generated solutions and Time-Index lower bounds, re-
spectively. Table 4.2 shows the relative optimality gaps, to Time-Index lower
bounds, for each formulation per instance group. We consider a group as a
combination of the number of operations and the number of machines. Infor-
mation on the number of operations (o) and the number of machines (m) are
shown in the first two columns of the table. With this grouping scheme, we get
six groups with 12 instances on each. Furthermore, for each formulation, we
show the minimum percentage gap (min), the average percentage gap (avg),
the maximum percentage gap (max), the standard deviation between the gaps
(sd), the number of optimal solutions found (opt) and how many times each
formulation has found the best solution (best) for the instances of each group.
Finally, the last row depicts the same results for all instances.

Note that for groups 15–4 and 15–8, Time-Index results are optimal for
23 out of 24 instances and the best for all 24 with a worst-case gap of 0.01%.
The other formulations also performed well on these groups, with an average
gap below 1%. Regarding groups 25–4 and 25–8, we observe that Time-Index
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Table 4.2: General results per instance group.

o m
Positional Time-Index Batch

min avg max sd opt best min avg max sd opt best min avg max sd opt best
15 4 0.00 0.40 3.26 0.92 7 7 0.00 0.00 0.01 0.00 11 12 0.00 0.46 1.59 0.65 6 7

8 0.00 0.09 0.40 0.15 8 8 0.00 0.00 0.00 0.00 12 12 0.00 0.02 0.22 0.06 11 11
25 4 0.31 6.63 12.30 4.00 0 4 0.00 6.65 12.44 4.27 1 6 1.00 6.43 13.47 3.90 0 3

8 0.18 5.08 11.89 3.32 0 1 0.00 3.69 8.04 2.80 1 10 0.28 4.70 9.68 3.45 0 2
50 4 9.07 15.62 24.04 5.64 0 1 10.93 27.77 42.20 9.71 0 0 6.76 13.31 20.28 4.93 0 11

8 8.14 16.72 26.36 6.07 0 1 10.75 27.13 41.48 10.19 0 0 5.70 15.04 26.78 6.65 0 11
All 0.00 7.42 26.36 7.71 15 22 0.00 10.87 42.20 13.39 25 40 0.00 6.66 26.78 6.99 17 45

found only one optimal solution for each group. Besides, one can see that
the average gaps are similar for all formulations. Note that when the number
of operations increases, the gaps also increases, with Time-Index being the
most affected, reaching maximum gaps above 41% for groups 50–4 and 50–8.
For these groups, Batch performed better with the smallest gaps on average
(13.33% and 15.04%). Note that Batch also found the best solution for 22 of the
24 instances with 50 operations. Considering the complete set of instances, one
notes that Batch also performed better, finding the best solutions on 45 out of
72 instances with a smaller average gap. An analysis of the number of variables
and constraints generated by each model is presented in Appendix B.3, showing
that Batch generates, on average, 95.39% fewer variables than Time-Index
and 51.37% than Positional. Regarding the constraints, these numbers are
71.81% and 5.56%, respectively, which explains the good performance of Batch.

Since the problem is related to a real-world scheduling demand, it is
crucial to know how solution quality evolves during solution time for practical
purposes. Based on this assumption, Figure 4.1 shows an analysis of the average
gap evolution through the computational time, in seconds, for each group. Note
that the behavior is similar in all groups.

Figures 4.1a and 4.1b show the evolution of the average gap on groups 15–
4 and 15–8. It is possible to observe that Time-Index achieved the best average
gaps when compared to Positional and Batch, in less than 350 seconds on
both groups. However, we can see that the results of all formulations are
competitive with each other in about 100 seconds in these groups. Figures
4.1c and 4.1d show the average gap evolution for groups 25–4 and 25–8,
respectively. Note that Batch dominates the other formulations in group 25–4
with the best average gap during complete solving. In group 25-8, Batch is also
better than Positional but was overcome by Time-Index results after 2300
seconds. In Figures 4.1e and 4.1f, the evolution of the average gaps are shown
for groups 50–4 and 50–8. In these groups, Time-Index could not compete with
the other two proposed formulations. Note that, Batch dominates Positional
and Time-Index during complete solving, with smaller average gaps in booth
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(a) 15 Operations and 4 Machines.

0

25

50

75

100

10 100 1000 10000

Computational Time(s)
A

ve
ra

ge
 G

A
P

(%
)

Formulation

Batch

Positional

Time_Index

(b) 15 Operations and 8 Machines.
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(c) 25 Operations and 4 Machines.
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(d) 25 Operations and 8 Machines.
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(e) 50 Operations and 4 Machines.
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(f) 50 Operations and 8 Machines.

Figure 4.1: Evolution of the average gap in relation to the lower bound between
formulations.

DBD
PUC-Rio - Certificação Digital Nº 1712647/CA



Chapter 4. Mathematical Formulations for the PLSVSP 51

groups (50-4 and 50-8).
The same visualization is shown in Figure 4.2, with the average gap

evolution through the computational time, in seconds, for all instances. The
computational time axis was defined on a log10 scale for better visualization.
This approach also uses the lower bounds generated by Time-Index to com-
pute gaps. Note that Batch approach dominates Time-Index and Positional
during the entire run with the smallest final average gap among the formula-
tions.
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Figure 4.2: Evolution of the average gap in relation to the lower bound for all
instances.

4.1.3
Sensitivity analysis

In order to obtain evidence about the impact of the input factors used in
the instance generation process described in Section 4.1.1, Figure 4.3 depicts
the distribution of the gaps for each factor type. All gaps were computed using
Time-Index lower bounds.

Figure 4.3a shows the distribution for each release factor (α). Note that
higher values on this factor result in smaller gaps for all formulations. Since
we are focusing on minimizing a function based on the operations completion
times, more spread release dates make it easy to generate bounds for the
problem. Figure 4.3b depicts the same analysis for the eligibility factors (β),
showing that smaller values on this factor generate better solutions. Smaller
factors, in that case, means that there will be fewer eligible operations for each
machine. The distribution of the gaps for each association factor (γ) is shown
in Figure 4.3c. Note that higher factors generate larger gaps. As discussed in
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Chapter 3, this is the main realistic feature of the PLSV scheduling problem,
where we have operations associated with several jobs simultaneously. This
characteristic directly impacts the completion times since, to be completed, a
job needs to have all of its operations completed. When more associations
are generated, more intersection will exist among the operations sets, the
completion time of one operation may affect the completion time of multiple
jobs with different weights. Note that this condition makes the problem more
challenging to solve and, therefore, a relevant feature to address.
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Figure 4.3: Boxplot of the relative gap to Time-Index lower bounds for each
factor type.

4.2
Discussion

In this section, we developed three ILP formulations to tackle the
PLSVSP. The first is a positional scheduling model, which generates some
available positions on each machine and decide how to schedule operations
in these positions. The second uses a time-indexed formulation to schedule
the operations in a set of discrete periods. The third is a batching machine
scheduling formulation using a WSPT dispatching rule to sequence operations
within batches.

The batch formulation showed better results on a set of 72 instances
generated from real data of the studied company. The model reached an average
gap of 6.66%, against 7.42% achieved by the positional and 10.87% by the time-
indexed one. This formulation also proved to be the best approach for faster
solutions and larger instances. On instances with 50 operations to schedule, the
batch formulation dominates the other two, finding the best solution 22 times
out of the 24 tested instances with this number of operations to schedule. All
solutions were evaluated in comparison to the lower bounds generated by the
time-indexed model, which presented the best lower bounds for all instances.
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Computational experiments have shown that when the intersection between
operations sets increases, the gaps obtained also increase. This behavior is an
indicator of the importance of considering this aspect, being a real feature
of the problem, and contributing to the machine scheduling literature by
creating a more challenging problem to solve. Using a dispatching rule within a
mathematical formulation has proved to be a beneficial approach, raising some
interesting questions about its application on more classic family-scheduling
problems for future work. Depending on the objective function, different
dispatching rules may be considered and compared.

The results were presented and validated with the studied company. A de-
cision support system designed to assist in the company’s PLSV fleet schedul-
ing process is under development. The system has an optimization module in
which the batch formulation, developed in this study, was incorporated. The
first experiments using the optimization module were carried out during the
tactical planning of the year 2020 for the Brazilian pre-salt basin demand.
The schedules generated by the optimization module were considered by the
company when defining the actual plan for the PLSV fleet. The experiments
showed the potential of the approach in solving such an important problem
by providing good quality solutions used as decision support by the company.
In the future, the company expects to have a fully functional system capable
of assisting the scheduling process of its entire PLSV fleet and including other
exploratory basins in the Brazilian offshore region.
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5
Constructive Heuristics for the PLSVSP

In this chapter, we present several constructive heuristics to solve the
PLSVSP, using scheduling dispatching rules, and defining how to do the
machine assignment and to construct batches.

All heuristics described here creates batches by assigning operations
sequentially to the machines. Therefore, the chosen method selects the next
operation to schedule and assigns a machine to the operation at each iteration.
Then, the method decides whether to insert the selected operation on the
last batch (called current batch) or to create a new batch to insert it, on the
assigned machine. If a new batch is created, the selected operation is sequenced
as the first one inside the new batch, i.e., after a new family setup time also
inserted in the machine schedule. Otherwise, the operation is scheduled as
the last one in the current batch on the assigned machine. There are three
situations that force the creation of a new batch on the selected machine: (1)
when the machine is empty; (2) when the current batch on the machine is of
a different family from the selected operation; (3) when the insertion of the
operation in the current batch exceeds the machine capacity.

Initially, we present a general construction procedure without detailing
the steps of operations and machine selection. In the sequence, we show two
different ways to choose operations and machines. In the first, operations
are selected according to a chosen rule, and then a machine is assigned
to perform it. In the other, the procedure selects operation-machine pairs,
choosing the operation and the machine simultaneously. Table 5.1 shows the
new variables and sets used to store information about the solution during
heuristic procedures.

5.0.1
General Constructive Procedure

In this section, we present the general procedure (Algorithm 1) used to
construct solutions for the PLSVSP heuristically. The procedure returns a list
of schedules σ = (σ1, . . . , σ|M|) for the machines Mk ∈ M. Each schedule σk
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Table 5.1: Variables and Sets used in the constructive heuristics.

Type Name Description
Set U Subset of unscheduled operations (U ⊆ O). In the

first iteration, U is equal to the set O of operations
Set Uj Subset of unscheduled operations associated to job

Jj ∈ N (Uj ⊆ U)
Set Ak Set of operations scheduled in the current batch on

machine Mk ∈M
Set CB Feasible assignments cbik of operations Oi ∈ O in the

current batches of machines Mk ∈M (to be feasible,
the assignment must respect the eligibility, family,
and capacity constraints)

Set NB Feasible assignments nbik of operations Oi ∈ O in
new batches on machines Mk ∈ M (to be feasible,
the assignment must respect the eligibility constraint)

Variable Ck Completion time of machine Mk ∈M
Variable Ti Minimum completion time among the set Mi of

eligible machines for operation Oi ∈ O. Computed
as Ti = min

Mk∈Mi

{Ck}

Variable Sk Starting time of current batch on machine Mk ∈M
Variable Lk Cumulative load of the current batch on machine

Mk ∈M
Variable Fk Family of the current batch on machine Mk ∈M
Variable ∆ik Delay at starting the current batch on machine

Mk ∈ M with the insertion of operation Oi ∈ O
Variable CCBik Completion time of operation Oi ∈ O if inserted in

the current batch on machine Mk ∈M
Variable CNBik Completion time of operation Oi ∈ O if inserted in

a new batch on machine Mk ∈M
Boolean Variable same If true, the chosen operation is scheduled in the

current batch on machine Mk ∈ M, otherwise, the
operation goes to a new batch

contains a sequence of operations and families. A family represents a new setup
time, defining the beginning of a batch. At the beginning of the procedure, we
estimate weights for the operations (wi), since weights in the PLSVSP are
related to jobs, to be used by the selection procedures, described in the next
sections. Five rules for estimating weights are considered, defined in Table 5.2.

The algorithm starts by initializing the variables and sets (Lines 1-3). The
method runs until all operations are scheduled (Line 4). The main loop (Lines
4-19) starts by computing the operations weights (wi) for all unscheduled
operations (Line 5). The next operation to schedule and the machine to execute
it are selected according to a chosen heuristic (Line 6). The heuristics will be
detailed in the nest sections. The value of the variable same is also defined
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Table 5.2: Rules for estimating operation’s weights.

Name Rule Description
MAX wi = max

Jj∈Ni

wj Maximum weight of associated wells

SUM wi =
∑

Jj∈Ni

wj Sum of the weights of associated wells

AVG wi =
∑

Jj∈Ni

wj

|Ni| Average weight of associated wells

WAVG wi =
∑

Jj∈Ni

wj

|Oj | Weighted average weight of associated wells

WAVGA wi =
∑

Jj∈Ni

wj

|Uj | Weighted average weight of associated wells, consider-
ing unscheduled operations

Algorithm 1: General Schedule Construction Procedure
1 Ck ← rk, Sk ← rk, Lk ← 0, Fk ← 0, Ak ← ∅, σk ← ∅ ∀Mk ∈M
2 Ci ←∞ ∀Oi ∈ O
3 U ← O
4 while U 6= ∅ do
5 Compute the estimated weights wi for all operations Oi ∈ O, following one

of the rules defined in Table 5.2
6 Select an operation Oi∗ ∈ U and an eligible machine Mk∗ ∈Mi∗ , according

to a chosen heuristic, also defining the value of same as true or false
7 if same then
8 ∆i∗k∗ ← max(0, ri∗ − S∗k)
9 CCB

i∗k∗ ← C∗k + ∆i∗k∗ + pi∗

10 Sk∗ ← max(ri∗ , Sk∗), Ck∗ ← CCB
i∗k∗

11 Lk∗ ← Lk∗ + li∗ , Ak∗ ← Ak∗ ∪ {Oi∗}
12 else
13 CNB

i∗k∗ ← max(ri∗ , Ck) + sfi∗ + pi∗

14 Sk∗ ← max(ri∗ , Ck∗), Ck∗ ← CNB
i∗k∗

15 Lk∗ ← li∗ , Ak∗ ← {Oi∗}
16 σk∗ ← σk∗ ∪ {fi∗}
17 end
18 σk∗ ← σk∗ ∪ {Oi∗}, Fk∗ ← fi∗ , Ci∗ ← Ck∗ , U ← U \ {Oi∗}
19 end

in this step. If same is true, variables and sets regarding the solution are
updated (Lines 8-11), considering the insertion of the selected operation Oi∗

in the current batch of the assigned machine Mk∗ . Otherwise, these variables
and sets are updated in Lines 13-15, considering the insertion of the selected
operation Oi∗ in a new batch on the assigned machine Mk∗ . Furthermore,
the schedule of the chosen machine Mk∗ is also updated by including a setup
time from the family of the selected operation Oi∗ , defining the beginning of
a new batch (Line 16). The schedule and the remaining variables and sets of
the algorithm are updated in Line 18. Finally, the procedure returns the final
solution σ at Line 20.

The method’s main step is defined in the selection component (Line 6),
where it decides the next operation to schedule, the machine that will execute
the operation, and the creation of a new batch or not. As mentioned earlier,
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we consider two approaches in this step, one disjunctive and one simultaneous,
described in the following sections.

5.0.2
Operation and Machine Disjunctive Selection Procedure

In the first approach, we first select the next operation to schedule
based on a scheduling dispatching rule. Then, we assign it to be executed
by an eligible machine, according to the minimum weighted completion time
(Algorithm 2). We consider six dispatching rules for this approach. The priority
value of πi indicates the next operation to schedule. At each iteration, the
operation Oi with the largest πi value is selected (Ðurasević and Jakobović
2018). We adapt some rules by adding family setup times, and assuming
that every operation will be assigned to a new batch. The dispatching rules
considered are described in Table 5.3.

Table 5.3: Rules for estimating operation’s weights.

Name Rule Description
ERD πi = 1/ri Earliest Release Date
SPT πi = 1/pi Shortest Processing Time
LPT πi = pi Longest Processing Time
MCT πi = max(Ti, ri) + pi + sfi

Minimum Completion Time
WSPT πi = wi/pi Weighted Shortest Processing Time
WMCT πi = (max(Ti, ri) + pi + sfi

)/wi Weighted Minimum Completion Time

Algorithm 2: Operation and Machine disjunctive Selection
1 same← false
2 Select the next operation Oi∗ ∈ U to schedule according to a chosen dispatching

rule from Table 5.3
3 ∆i∗k ← max(0, ri∗ − Sk) ∀Mk ∈Mi∗

4 CCB
i∗k ← Ck + ∆i∗k + pi∗ ∀Mk ∈Mi∗

5 CNB
i∗k ← max(ri∗ , Ck) + sfi∗ + pi∗ ∀Mk ∈Mi∗

6 CB ←
{
cbi∗k = wi∗C

CB
i∗k +

∑
ı̂∈Bk

wı̂∆i∗k |Mk ∈Mi∗ , Fk = fi∗ , Lk + li∗ ≤ qk

}
7 NB ←

{
nbi∗k = wi∗C

NB
i∗k | Mk ∈Mi∗

}
8 bmin ← min{b : b ∈ (CB ∪ NB)}
9 Select Mk∗ corresponding to bmin

10 if bmin ∈ CB then
11 sane← true
12 end
13 return Oi∗ ,Mk∗ , same

The algorithm starts by initializing same as false (Line 1), and selecting
the next operation to schedule according to a chosen dispatching rule (Line 2).
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The delay at the starting time of the current batch on each eligible machine
Mk ∈ Mi∗ is computed in Line 3. In Lines 4 and 5, the selected operation’s
completion times are computed, considering its insertion in the current batch
or in a new batch on the assigned machine, respectively. Next, the method
creates sets of feasible assignments (Lines 6 and 7), selecting the assignment
with minimum cost (Line 8), identifying the best machineMk∗ in Line 9. If the
selected element belongs to the set CB, variable same is defined as true (Line
11). Finally, the procedure returns the selected operation Oi∗ , the selected
machine Mk∗ , and the variable same (Line 13).

5.0.3
Operation and Machine Simultaneous Selection Procedure

The second approach extends one of the heuristics from Weng et al.
(2001), by considering the PLSVSP properties, such as the release dates of
operations and machines, family setup times, and batch composition, deciding
at each iteration the next pair operation/machine simultaneously (Algorithm
3). We call it WMCT-Pair.

Algorithm 3: Operation and Machine Simultaneous Selection
1 same← false
2 ∆ik ← max(0, ri − Sk) ∀Oi ∈ O, Mk ∈Mi∗

3 CCB
ik ← Ck + ∆ik + pi ∀Oi ∈ O, Mk ∈Mi∗

4 CNB
ik ← max(ri, Ck) + sfi

+ pi ∀Oi ∈ O, Mk ∈Mi∗

5 CB ←

{
cbik = CCB

ik

wi
+

∑
Oı̂∈Bk

∆ik

wı̂
| Oi ∈ U , Mk ∈Mi, Fk = fi, Lk + li ≤ qk

}
6 NB ←

{
nbik = CNB

ik

wi
| Oi ∈ U , Mk ∈Mi

}
7 bmin ← min{b : b ∈ (CB ∪ NB)}
8 Select Oi∗ and Mk∗ corresponding to bmin

9 if bmin ∈ CB then
10 sane← true
11 end
12 return Oi∗ ,Mk∗ , same

The algorithm starts by initializing same as false (Line 1). Then, the
delay at the starting time of the current batch on each eligible machine k ∈Mi∗

is computed in Line 2. In Lines 3 and 4, the completion times of all operations
are computed, considering its insertion in the current batch or in a new batch
on all eligible machines, respectively. Next, the method creates the sets of
feasible assignments (Lines 5 and 6), selecting the assignment with minimum
cost (Line 7), and identifying the best pair operation/machine in Line 8. If
the selected element belongs to the set CB, variable same is defined as true
(Line 10). Finally, the procedure returns the selected operation i∗, the selected
machine k∗, and the variable same (Line 12).
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5.1
Computational Experiments

We introduce in total 19 heuristics, where four do not consider weights,
and 15 combine the dispatching rules and the ways of estimating the opera-
tions’ weights. We tested all of them on a set of 72 PLSVSP instances (Chap-
ter 4) with m = {2, 4}, and o = {15, 25, 50}, running the experiments on a
computer with 64 GB of RAM and Intel Core i7-8700K CPU of 3.70GHz, using
C++ for coding the heuristics and running Linux. The results, in terms of the
average relative deviations from the best solutions achieve the heuristics, are
presented in Table 5.4. Each instance group, defined by the number of opera-
tions and machines, contains 12 instances. The relative deviation is computed
as RDh

inst = TWC h
inst/TWC best

inst, where TWC h
inst is the total weighted comple-

tion time of heuristic h ∈ H applied to instance inst ∈ I, and TWC best
inst is the

best solution obtained for a given instance. The best result for each instance
group is shown in bold. All heuristics run in less than 0.1 seconds. Last column
(#Best) accounts how many times each heuristic yields the best solution.

Table 5.4: Average deviations from the best solutions.

Heuristic
Instance Group (o – m) All

Instances #Best15-4 15-8 25-4 25-8 50-4 50-8

ERD 1.212 1.198 1.245 1.190 1.261 1.250 1.226 2
SPT 1.278 1.217 1.363 1.296 1.442 1.392 1.331 1
LPT 1.347 1.153 1.412 1.265 1.471 1.398 1.341 0
MCT 1.226 1.165 1.268 1.248 1.254 1.295 1.243 0
WSPT-MAX 1.161 1.079 1.224 1.173 1.299 1.255 1.198 1
WSPT-SUM 1.156 1.066 1.181 1.141 1.280 1.241 1.178 0
WSPT-AVG 1.181 1.085 1.266 1.187 1.327 1.294 1.223 1
WSPT-WAVG 1.124 1.076 1.184 1.124 1.234 1.196 1.156 0
WSPT-WAVGA 1.085 1.041 1.112 1.067 1.138 1.114 1.093 3
WMCT-MAX 1.084 1.040 1.070 1.088 1.046 1.096 1.071 7
WMCT-SUM 1.063 1.046 1.093 1.082 1.158 1.132 1.096 3
WMCT-AVG 1.101 1.027 1.123 1.118 1.150 1.147 1.111 4
WMCT-WAVG 1.065 1.036 1.041 1.059 1.111 1.084 1.066 5
WMCT-WAVGA 1.023 1.021 1.013 1.016 1.027 1.003 1.017 34
WMCT-Pair-MAX 1.086 1.043 1.063 1.082 1.036 1.091 1.067 9
WMCT-Pair-SUM 1.063 1.043 1.087 1.071 1.151 1.124 1.090 4
WMCT-Pair-AVG 1.101 1.027 1.123 1.107 1.136 1.136 1.105 2
WMCT-Pair-WAVG 1.060 1.035 1.045 1.050 1.100 1.076 1.061 7
WMCT-Pair-WAVGA 1.029 1.023 1.024 1.018 1.026 1.005 1.021 19

Note that among the heuristics, WCMT-WAVGA generated the best average
solutions for 5 of 6 groups with the best average deviation of 1.003, achieved
on group 50-8. This heuristic also found the highest number of best solutions,
on 34 of 72 instances.
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5.2
Discussion

In this chapter, we tested 19 heuristics on the set of 72 PSVSP instances
(Abu-Marrul et al. 2019). Results show an advantage in terms of solution cost
for the WCMT-WAVGA heuristic, with an average deviation of 1.017 from the best
solutions. These heuristics are useful in practice as they generate reasonable
solutions for the PLSVSP without much computational effort.

DBD
PUC-Rio - Certificação Digital Nº 1712647/CA



6
MIP-based Neighborhood Search Matheuristics for the
PLSVP

In this chapter, we first provide an extension of the batch scheduling for-
mulation for the PLSVSP, presented in Chapter 4, considering the sequence
of operations inside batches as a decision of the model. Then, we introduce
two new MIP-based neighborhood searches for batch scheduling formulations,
testing its efficiency in an Iterated Local Search (ILS) and a Greedy Random-
ized Adaptive Search Procedure (GRASP) matheuristic algorithms. The main
objectives are to improve the quality of the solution and reduce the computa-
tional time compared to running the pure mathematical models.

6.1
Batch Formulation with Sequencing Variables

As stated in Chapter 4, the Batch-WSPT does not consider the complete
solution space of the problem since the sequence of operations inside batches
is heuristically defined. To overcome this, we propose a variation on the
Batch-WSPT formulation by adding a new variable and constraints to define
the sequence of operations inside batches without considering the subsets Oi
(Equation 4-33), named Batch-S.

To control the constraints and variables generation in the model, we
consider the subsets Mîı of machines that are eligible and with enough capacity
for executing each pair (Oi, Oı̂ ∈ O) of operations in the same batch, defined
as Mîı = {Mk ∈ (Mi ∩Mı̂) | Oi 6= Oı̂, fi = fı̂, li + lı̂ ≤ qk}. A parameter
µîı ∈ {0, 1} is used to identify pairs of operations with at least one machine
eligible to execute both in the same batch, equals 1 if |Mîı| > 0, and zero
otherwise. We do the same for operations triplets (Oi, Oı̂, Oi′ ∈ O). Thus,
Mîıi′ = {Mk ∈ (Mi ∩ Mı̂ ∩ Mi′) | Oi 6= Oı̂, Oı̂ 6= Oi′ , Oi′ 6= Oi, fi = fı̂ =
fi′ , li + lı̂ + li′ ≤ qk}, and µîıi′ ∈ {0, 1}, equals 1 when |Mîıi′| > 0, and zero
otherwise.

The following binary variable Zîı is added to sequence operations inside
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batches:

Zîı =

1 if operation Oi and Oı̂ are scheduled in the same batch and Oi precedes Oı̂;

0 otherwise.

The Batch-S formulation is as follows:

min (4-34)

subject to

(4-35)-(4-42), (4-44)-(4-48)

Zîı + Zı̂i ≥ Xb
ik +Xb

ı̂k − 1 ∀i, ı̂ ∈ O, k ∈Mîı, b ∈ Bk (6-1)

Zîı + Zı̂i ≤ 1 ∀i, ı̂ ∈ O
∣∣ µîı (6-2)

Zîı + Zı̂i′ + Zi′i ≤ 2 ∀i, ı̂, i′ ∈ O
∣∣ µîıi′ (6-3)

Ci ≥ Sbk + pi + sfi
+
∑
ı̂∈O

pı̂Zı̂i −
(
1−Xb

ik

)
M ∀i ∈ O, k ∈Mi, b ∈ Bk (6-4)

Zîı ∈ {0, 1} ∀i, ı̂ ∈ O
∣∣ µîı (6-5)

Constraints (6-1) identify when operations i and ı̂ are scheduled in the same
batch. Constraints (6-2) ensure that only one of the variables that define
the precedence between operations i and ı̂ inside a batch will be considered.
Constraints (6-3) guarantee a complete ordering between operations inside
a batch. Constraints (6-4) replace Constraints (4-43). The completion time
of an operation is now computed with the sequencing variable Zîı. Finally,
Constraints (6-5) present variable Zîı domains.

6.2
Constructive Heuristic

We use the WMCT-WAVGA, presented in Chapter 5, to build the initial
solutions for the matheuristics. As mentioned before, the method creates
batches by assigning operations sequentially to the machines. Therefore, at
each iteration, the algorithm selects the next operation to schedule and assigns
a machine to the operation. Then, the method decides whether to insert the
selected operation in the last batch (called current batch) or to create a new
batch to insert it in, on the assigned machine. If a new batch is created, the
selected operation is sequenced as the first one inside the new batch, i.e., after
a new family setup time is also inserted in the machine schedule. Otherwise,
the operation is scheduled as the last one in the current batch on the assigned
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machine. There are three situations that force the creation of a new batch on
the selected machine: (1) when the machine is empty; (2) when the current
batch on the machine is of a different family from the selected operation; (3)
when the insertion of the operation in the current batch exceeds the machine
capacity. The WMCT-WAVGA heuristic defines a list of schedules σ = (σ1, . . . , σk)
containing operations and families for each machine k. The families represent
the setup times, indicating the beginning of a new batch.

There are no rules to control the sequence of operations inside the batches
during the WMCT-WAVGA heuristic execution. Since the Batch-WSPT formulation
generates these sequences heuristically, we need to update the subsets Oi to
use the constructed solutions in this formulation. Thus, we introduce a variable
ϑîı ∈ {0, 1} which is equals 1 if a pair of operations (Oi, Oı̂ ∈ O) is scheduled in
the same batch and i precedes ı̂ in the constructed solution, and zero otherwise.
Thus, the new definition of the subsets Oi is shown in Equation (6-6).

Oi =

Oı̂ ∈ O
∣∣∣∣∣ ϑı̂i ∨

(
ϑîı = ϑı̂i ∧ wı̂

pı̂
>
wi
pi

)
∨
(
ϑîı = ϑı̂i ∧ wı̂

pı̂
= wi
pi
∧ wı̂ > wi

)

∨
(
ϑîı = ϑı̂i ∧ wı̂

pı̂
= wi
pi
∧ wı̂ = wi ∧Oı̂ < Oi

) ∀Oi ∈ O (6-6)

Suppose that the solution depicted in Figure 3.5 was generated by the
WMCT-WAVGA heuristic. Then, the schedule σk for the fourth machine (k = 4)
would be σ4 = {f14, 14, f6, 6, f15, 15, 7}, where f14, f6, and f15 represents
families 1, 2, and 3, respectively. In that case, ϑı̂i = 1 only for Oı̂ = 15 and
Oi = 7, since this pair of operations are scheduled together in the last batch
on machine M4. In the next section, we present the MIP-based neighborhood
searches to consider in the local search step of our methods.

6.3
MIP-based Neighborhood Searches

We consider two MIP-based neighborhood searches, named Batch Win-
dows and Multi-Batches Relocate, making use of the batch formulations pre-
sented in Chapter 4, to decompose the PLSVSP into smaller problems that can
be optimized more quickly than the complete problem. The idea is to limit the
number of integer variables to optimize at each iteration, fixing the remaining
ones from a feasible solution. As mentioned before, we consider the initial fea-
sible solution, the one provided by the WMCT-WAVGA heuristic. The approaches
are detailed in the next sections.
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In both methods, we use variables MBk ∈ Z+ (Machine Batches) to
limit the subset of batches to be considered on each machine Mk ∈M during
the search. These variables are bounded by the size of the subsets Bk on each
machine Mk, thus 0 < MBk ≤ |Bk|. Throughout the search, only batches with
position b ≤ MBk are available to optimize. The remaining batches are fixed
without any operations inside them. To help to clarify the idea, we show in
Figure 6.1 a graph representation with batches of the PLSV schedule illustrated
in Figure 3.5 (Chapter 3). Each node represents a batch b on a machine Mk,
with the respective operations assigned to it described inside. Below each node,
we show the starting time (Sbk) and the completion time (Cb

k) of the respective
batch. Note that the maximum number of batches on each machine Mk is
given by the total number of eligible operations. For instance, in machine M1,
we have |Bk| = 10 (batches 1 to 10), following the subsets Ok defined in
Table 3.4, with O1 = {O1, O2, O4, O5, O7, O9, O10, O11, O12, O14}. Nodes are
labeled as: (1) Available batches (batches that can be used by the search
procedures); (2) Unavailable batches (batches generated by the formulation
but not available for the search procedure in a given iteration, according
to variables MBk). The variables MBk are updated during the procedures,
allowing an unavailable batch to become available at some point in the search.
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Figure 6.1: Graph representation with batches of the PLSV scheduling exam-
ple.

TheMBk variables are initialized according to a solution provided by the
WMCT-WAVGA heuristic, considering the number of used batches plus one extra
batch on each machineMk. Let ηbk ∈ {0, 1} be a variable equal 1 if a batch b on
a machine Mk is used in a given solution (i.e., contains at least one operation
scheduled in it), and zero otherwise. Then, MBk are initialized according to
Equation (6-7). Note that, on machine 1, we have four available batches (1
to 4), with MB1 = 4, although the solution, depicted in Figures 3.5 and 6.1,
only uses three batches on this machine. At each iteration of the MIP-based
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neighborhood searches, we check whether all available batches are being used
on each machine Mk, updating MBk with Equation (6-7), if ∑b∈Bk

ηbk = MBk.

MBk = 1 +
∑
b∈Bk

ηbk ∀Mk ∈M (6-7)

6.3.1
Batch Windows

In this approach, we limit the subset of batches to optimize based on a
defined time range interval. At each iteration, we only optimize batches that
are scheduled inside the range. The Range Size (RS) is defined as a fraction
of the makespan (Cmax = maxOi∈O Ci) based on a given PLSV solution,
computed as RS = dρ × Cmaxe, where ρ ∈ [0, 1] is a parameter that defines
the proportion of the makespan to consider. The complete search moves the
optimization range from the end of the schedule to its beginning, with a step
half the size of RS, ensuring overlap between iterations and that all batches
are optimized at least once, totalizing in dCmax/(RS/2)e - 1 iterations. We
chose to move the search from the end of the schedule to its beginning based
on preliminary experiments that showed advantages in this approach. We use
Rbegin and Rend to identify the beginning and the end of the optimization range
to consider at each iteration.

Given the PLSV schedule example shown in Figure 3.5 (Chapter 3), we
depict in Figure 6.2 how the optimization range defines the batch windows to
optimize on each machine. We consider an optimization range of size 30 (RS =
30), which would result in a total of five iterations, with the following ranges
(Rbegin, Rend): Iteration 1 (60, 90); Iteration 2 (45, 75); Iteration 3 (30, 60);
Iteration 4 (15, 45); Iteration 5 (0, 30). To save space, we only show iterations
1, 3, and 5, depicted in Figures 6.2a, 6.2b, and 6.2c, respectively. In this
example, we suppose the solution does not change during the search. On the
right side of the figures, we show the solution graph representation with the
batches on each machine, highlighting the ones to optimize at each iteration.
Nodes are labeled as: (1) Fixed batches (batches not selected in the given
iteration); (2) Batches to optimize (batches selected to optimize in the given
iteration); (3) Unavailable batches (batches generated by the formulation but
not available for the search procedure in the given iteration, according to
variables MBk).

Note that a given optimization range defines different sizes of batch
windows to optimize, on each machine, due to the continuous variables that
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(a) Iteration 1: Rbegin = 60 and Rend = 90.
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(b) Iteration 3: Rbegin = 30 and Rend = 60.
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(c) Iteration 5: Rbegin = 0 and Rend = 30.

Figure 6.2: Example of three iterations in the Batch Windows neighborhood
search, showing a PLSV schedule and the optimization range on the left side,
and the graph representation with the batches to optimize highlighted on the
right side.
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compute the starting time (Sbk) and the completion time (Cb
k) of each available

batch. For instance, in Iteration 3, depicted in Figure 6.2b, on machines 1 and
2, there are three batches (1 to 3) to optimize, while on machines 3 and 4,
there are two batches (2 and 3) to optimize. Let O′ ⊆ O be the subset of
operations assigned to the selected batches to optimize in a given iteration.
Then, O′ = {O1, O3, O4, O5, O6, O7, O8, O9, O10, O11, O13, O15} in iteration 3.
The pseudo-code of the Batch Windows is shown in Algorithm 4.

Algorithm 4: Batch Windows (s, ρ, MBk)
1 Cmax ← maxOi∈O Ci, where Ci is given by the PLSVSP solution s;
2 RS ← dρ× Cmaxe;
3 Rbegin ←∞;
4 Rend ← Cmax;
5 while Rbegin > 0 do
6 Cb

k ← Sb
k + P b

k , ∀Mk ∈M, b ∈ Bk;
7 Rbegin ← max(0, Rend −RS);
8 Create the subset O′ of operations assigned to batch b on machine Mk in

which Sb
k ≤ Rend and Cb

k ≥ Rbegin and b ≤MBk in solution s;
9 Solve Batch Formulation, starting from solution s, for a subset of variables

Xb
ik in which Sb

k ≤ Rend, Cb
k ≥ Rbegin, b ≤MBk and Oi ∈ O′;

10 Rend ← Rbegin +RS/2;
11 Update variables MBk according to Equation 6-7, if

∑
b∈Bk

ηb
k = MBk;

12 end

Algorithm 4 starts by computing values for Cmax, RS, Rbegin, and Rend

(Lines 1-4), according to a given solution s and the defined parameter ρ. The
main loop of the algorithm (Lines 5-12) is repeated until Rbegin reaches zero.
The completion time (Cb

k) of each batch b on each machine k is computed in
Line 6. The algorithm updates Cb

k and Rbegin (Lines 6 and 7), defining the
subset O′ in Line 8. The Batch Formulation is solved for all variables Xb

ik of
batches scheduled within the optimization range (Line 9). After solving the
model, the value of Rend is updated for the next iteration in Line 10. Finally,
the procedure to update the number of available batches on each machine is
executed in Line 11.

6.3.2
Multi-Batches Relocate

In this approach, we randomly select the batches to optimize at each
iteration, not allowing the selection of batches already optimized in previous
iterations. The complete search ends when each batch is optimized exactly
once in one of the iterations. We compute the Number of Batches (NB) to
optimize at each iteration based on a given parameter ϕ ∈ [0, 1], as NB =
dϕ × ∑

Mk∈MMBke. The method runs with a total of d∑Mk∈MMBk/NBe
iterations.
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An example of the Multi-Batches Relocate is depicted in Figure 6.3, using
the graph representation shown in Figure 6.1. We consider NB = 6, generating
a total of three iterations. At each iteration, we highlight the subset of batches
to optimize. Nodes are labeled as: (1) Optimized fixed batches (batches already
optimized in previous iterations); (2) Non-optimized fixed batches (batches not
yet optimized but not selected in the given iteration); (3) Batches to optimize
(randomly selected batches to optimize in the given iteration); (4) Unavailable
batches (batches generated by the formulation but not available for the search
procedure in the given iteration, according to variables MBk).
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Figure 6.3: Example with three iterations of batches selection in the Multi-
Batches Relocate.

Note that at the end of the search, each batch is optimized precisely
once in one of the iterations. A higher diversification can be seen in this
neighborhood, as it allows the selection of non-sequential batches. One can
also note that in the last iteration (Iteration 3), only five batches are selected,
although we defined NB = 6. This is because these five batches are the only
ones not optimized at this point in the search. The pseudo-code of the Multi-
Batches Relocate is shown in Algorithm 5. To describe the procedure, we use
P to define the set of pairs machine/batch, where each element (k, b) ∈ P
represents a specific batch b on a machine Mk, thus P = {(k, b) | k ∈
M, b ∈ Bk}.

Let P ′ ⊆ P be the subset of selected pairs batch/machine on a given
iteration. Algorithm 5 starts by computing the value of NB (Line 1) and
initializing the set P (Line 2). The main loop of the algorithm (Lines 3-9) is
repeated until there exist pairs batch/machine not optimized. Each iteration
starts by randomly selecting NB pairs batch/machine from the set P to
compose the subset P ′ (Line 4). The subset O′ of operations assigned to any of
the selected pairs batch/machine is created in Line 5. The Batch Formulation
is solved, for a limited time, for all variables Xb

ik, where (k, b) ∈ P ′ and Oi ∈ O′
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Algorithm 5: Multi-Batches Relocate (s, ϕ, MBk)
1 NB ← dϕ×

∑
Mk∈MMBke;

2 Initialize set P of pairs (k, b) considering all machines k ∈M and their
respective batches b ∈ Bk | b ≤MBk;

3 while P 6= ∅ do
4 Select NB pairs machine/batch (k, b) randomly from P to compose

subset P ′;
5 Create the subset O′ of operations scheduled in the subset P ′ of pairs

machine/batch (k, b) on solution s;
6 Solve Batch Formulation, for the given solution s, for a subset of variables

Xb
ik in which (k, b) ∈ P ′ and Oi ∈ O′;

7 P ← P \ P ′;
8 Update variables MBk according to Equation 6-7, if

∑
b∈Bk

ηb
k = MBk;

9 end

(Line 6). Then, the set P and variables MBk are updated in Lines 7 and 8,
respectively.

6.4
Matheuristics

In this section, we present the matheuristics, which combines the
MIP-based Neighborhood Searches (Section 6.3) and the WMCT-WAVGA heuris-
tic aiming to improve solutions continuously. Two well-known algorithm
frameworks from the metaheuristics literature are considered, the Iterated
Local Search (ILS) and the Greedy Randomized Adaptive Search Proce-
dure (GRASP). The following sections explain each method that we refer to
as ILS-Math and GRASP-Math, respectively.

For the local search, we consider a Variable Neighborhood Descent (VND)
algorithm (Hansen and Mladenović 2003), using the two MIP-based Neighbor-
hood Searches described in Section 6.3. First, we run theMulti-Batches Relocate
(Section 6.3.2), changing for the Batch Windows (Section 6.3.1) if no improve-
ment is found. Every time an improved solution is found, we restart the local
search, returning to the Multi-Batches Relocate. The local search stops when
no improvement is found after running both MIP-based Neighborhood Searches
completely. The sequence between the neighborhoods was defined based on
preliminary experiments that showed a faster solution improvement using the
Multi-Batches Relocate.

6.4.1
Iterated Local Search

ILS is a powerful tool for combinatorial optimization problems with a
simple structure and very useful for practical experiments. The method starts
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by building an initial solution and improving it using a local search. Then, the
main loop consists of perturbing the current solution with simple modifications
and running the local search until a stopping criterion is reached (Lourenço
et al. 2003).

Algorithm 6: ILS-Math (ρ, ϕ, ω, δ, Ωmax)
1 Build an initial PLSVSP solution s0 using the WMCT-WAVGA heuristic;
2 Initialize variables MBk based on s0 according to Equation (6-7);
3 s← V ND(s0, ρ, ϕ,MBk);
4 s∗ ← s;
5 Ω← 1;
6 while Ω ≤ Ωmax do
7 Ω← Ω + 1;
8 s′ ← RandomBatchSwap(s, ω,MBk);
9 s′∗ ← V ND(s′, ρ, ϕ,MBk);

10 if f(s′∗) < f(s∗)× (1 + δ) then
11 s← s′∗;
12 if f(s) < f(s∗) then
13 s∗ ← s′∗;
14 Ω← 1;
15 end
16 else
17 s← s∗;
18 end
19 end
20 Restart variables MBk based on the best solution s∗ according to Equation

(6-7);
21 s∗ ← V ND(s∗, ρ, ϕ,MBk);
22 return s∗;

The ILS matheuristic (ILS-Math) is described in Algorithm 6. A param-
eter Ωmax ∈ Z+ defines the maximum number of iterations without improve-
ment to execute, stopping the procedure whenever the value of the counter
Ω reaches Ωmax. During the ILS execution, worst solutions may be accepted,
according to an acceptance parameter δ ∈ [0, 1]. We use s∗ to keep the best
solution found among all iterations.

The perturbation phase of the ILS-Math consists of randomly swapping
batches in a given PLSVSP solution. In this approach, named RandomBat-
chSwap, we compute the number of swaps (NS) to be performed based on a
given parameter ω ∈ [0, 1], where NS = dω × ∑Mk∈MMBke. Note that the
number of swaps to be performed is a fraction of the total number of available
batches, considering all machines. At each swap movement, two batches are
selected, and their operations are exchanged. If an empty batch is selected,
the movement consists of removing the operations of the batch with opera-
tions inside and inserting them in the empty one. We forbid the selection of
two empty batches. The movement is executed by updating the value of the
corresponding assignment variables Xb

ik of the selected batches.
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The ILS-Math starts by building an initial solution s0 (Line 1), using
the WMCT-WAVGA heuristic. In Line 2, the variable MBk is initialized (See
Section 6.4). The VND is then performed on s0 (Line 3), generating the current
solution s, which is copied to s∗ (Line 4). The iteration counter Ω is initialized
in Line 5. The main loop (Lines 6-19) is executed until Ω ≤ Ωmax and consists
of repeatedly executing the Random Batch Swap (Line 8), followed by the
VND (Line 9). In Line 10, the algorithm checks whether the objective value of
the new solution s′∗, given by f(s′∗), passes the acceptance criteria. If true, the
current solution s is updated to s′∗ (Line 11), and the algorithm checks whether
this solution is also better then s∗ (Line 12). If true, s∗ is updated (Line 13),
and Ω is reinitialized (Line 14). When the new solution is not accepted, the
best solution s∗ replaces s (Line 17). Finally, an intensification step is executed
by running the VND on the best solution s∗ (Lines 20-21).

6.4.2
Greedy Randomized Adaptive Search Procedure

GRASP is a multi-start method that combines a randomized constructive
procedure followed by a local search, being successfully applied to many
scheduling problems in the literature. For instance, we refer the reader to the
papers of Bassi et al. (2012), Rodriguez et al. (2012), and Heath et al. (2013).
In the constructive procedure, a Restricted Candidate List (RCL) with the
most promising elements is built and one element is randomly selected at each
step Resende and Ribeiro (2019). To randomize the constructive procedure
for the PLSVSP, we replace the operation selection step of the WMCT-WAVGA
heuristic by a Randomized Operation Selection, using a parameter α ∈ [0, 1]
to define the greediness of the method. When α = 0, the method builds the
same solution of the WMCT-WAVGA heuristic, and when α = 1, a completely
randomized solution is generated. After computing the priority value πi for
the set U of unscheduled operations, we identify the minimum and maximum
priority values, defined as πmin and πmax, respectively. The RCL is created as
RCL = {i ∈ U |πi ≥ πmax−α(πmax−πmin)}, and one operation i∗ in randomly
selected from the RCL.

The pseudo-code of the GRASP matheuristic (GRASP-Math) is shown
in Algorithm 7. We call Randomized Constructive Procedure, the WMCT-WAVGA
heuristic with the Randomized Operation Selection. A parameter Ωmax ∈ Z+

defines the maximum number of iterations without improvement, while s∗ saves
the best solution found among all iterations.

The GRASP-Math starts by initializing the Ω counter and f(s∗) (Lines
1 and 2). The main loop is executed until Ω ≤ Ωmax (Lines 3-12). At each
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Algorithm 7: GRASP-Math (ρ, ϕ, α, Ωmax)
1 Ω← 1;
2 s∗ ← ∅; f(s∗)←∞;
3 while Ω ≤ Ωmax do
4 Ω← Ω + 1;
5 Build a PLSVSP solution s using the Randomized Constructive Procedure;
6 Initialize variables MBk based on s according to Equation (6-7);
7 s′∗ ← V ND(s, ρ, ϕ,MBk);
8 if f(s′∗) < f(s∗) then
9 s∗ ← s′∗;

10 Ω← 1;
11 end
12 end
13 Restart variables MBk based on the best solution s∗ according to Equation

(6-7);
14 s∗ ← V ND(s∗, ρ, ϕ,MBk);
15 return s∗;

iteration, a new randomized solution s is built (Line 5), with itsMBk variables
initialized (Line 6), and the VND is applied to this solution (Line 7), generating
a new solution s′∗. The algorithm checks whether the objective value of the new
solution, given by f(s′∗), is better than f(s∗) (Line 8). If true, s∗ is replaced by
s′∗, and the counter Ω is reinitialized (Lines 9-10). Finally, an intensification
step is executed by running the VND on the best solution s∗ (Lines 13-14).

6.4.3
Overview of the Methodology

The general pseudocode of the proposed methodology is described in Al-
gorithm 8. The algorithm allows selecting different mathematical formulations
to be used in the matheuristics’ main loop and the intensification step.

Algorithm 8: General Methodology
1 Choose a matheuristic framework between GRASP-Math and ILS-Math.
2 Select a mathematical formulation between Batch-WSPT and Batch-S.
3 Run the chosen matheuristic’s main loop using the selected mathematical

formulation.
4 Choose a mathematical formulation between Batch-WSPT and Batch-S.
5 Initialize the variables of the chosen mathematical formulation according to the

best solution found so far.
6 Run the VND algorithm using the chosen mathematical formulation.
7 Return the best-found solution.

The combination of the developed matheuristics’ frameworks (ILS-Math
and GRASP-Math) and the batch scheduling formulations (Batch-WSPT and
Batch-S), following the defined methodology, generates three variants of
each matheuristic, which we refer to as ILS-Math1, ILS-Math2, ILS-Math3,
GRASP-Math1, GRASP-Math2, and GRASP-Math3, described below:
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– ILS-Math1: ILS-Math with Batch-WSPT

– ILS-Math2: ILS-Math with Batch-S

– ILS-Math3: ILS-Math with Batch-WSPT and Batch-S

– GRASP-Math1: GRASP-Math with Batch-WSPT

– GRASP-Math2: GRASP-Math with Batch-S

– GRASP-Math3: GRASP-Math with Batch-WSPT and Batch-S

The ILS-Math3 and the GRASP-Math3 consider the Batch-WSPT formu-
lation for their main loop, changing for the Batch-S formulation at the inten-
sification step.

6.5
Computational Experiments

In this section, we present the computational experiments conducted
to assess the performance of the proposed matheuristics. We compare them
with the Mathematical Formulations (Chapter 4) running independently. The
computational experiments were performed on a machine with an Intel i7-
8700K CPU of 3.70GHz and 64 GB of RAM running Linux. All methods were
coded using C++ language solved by CPLEX 12.8 solver running in a single
thread with MIP emphasis set to finding hidden feasible solutions. We limit
the execution time to one second per CPLEX call in the matheuristics. Thus,
sub-problem optimizations are interrupted within the defined time-limit even if
the optimal solutions have not been reached. The experiments were conducted
on the benchmark of 72 PLSVSP instances described in Chapter 4.

To evaluate the solution’s quality, we compare the solutions provided by
each method with the Best-Know Solutions (BKS), achieved by the mathemat-
ical formulations (Chapter 4), in terms of the Relative Percentage Deviation
(RPD), computed according to Equation (7-1). TWCTMethod designates the
total weighted completion time obtained with one run of a selected method on
a PLSVSP instance, while TWCTBKS is the total weighted completion time
for the Best-Know Solution for the same instance. In all analyzes, we compare
the matheuristics, running each one ten times per instance, with the solutions
of Batch-WSPT and Batch-S formulations, running within a 6-hour time-limit.
We limit the memory allocation to 10 GB for each method execution to allow
multiple runs simultaneously using the available CPUs.

RPD = 100× TWCTMethod − TWCTBKS

TWCTBKS (6-8)
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The discussion of the results focuses only on comparing the ILS-Math3

and the GRASP-Math3 matheuristics with the pure mathematical formula-
tions since these approaches presented the best results among the proposed
matheuristic variants in a preliminary analysis, shown in Appendix D.1. We
also included the complete results for each instance, considering all methods,
in Appendix D.2.

6.5.1
Parameter Tuning

For parameter tuning, we used 12 medium-sized instances (25 operations)
and 12 large-sized instances (50 operations), selected at random, corresponding
to one-third of the total number of instances available in the benchmark. The
Batch-WSPT formulation was used within the matheuristics during the param-
eterization. First, we set parameters related to the MIP-based Neighborhood
Searches (Section 6.3), to further define each specific matheuristic parameter.
To establish the neighborhoods’ parameters, we ran five times each neighbor-
hood individually, using the solution generated by the WMCT-WAVGA heuristic as
a warm start. We define the ranges for the Batch Windows (Section 6.3.1), and
for the Multi-Batches Relocate (Section 6.3.2) parameters as ρ ∈ [0.1, 0.5], and
ϕ ∈ [0.1, 0.5], respectively, considering a step of size 0.05. After setting values
for ρ, and ϕ, the ILS-Math was executed five times without accepting worse
solutions. We used Ωmax = 10, limiting ω ∈ [0.05, 0.15] with a step size of 0.05,
to define the perturbation parameter. With ω set, we ran the ILS-Math again
five more times, limiting δ ∈ [0.00, 0.15] with a step size of 0.05, to define the
worst solution acceptance rate. The same steps were executed to define the
greediness factor of the GRASP-Math, limiting α ∈ [0.05, 0.15], with a step size
of 0.05. The final values for the parameters are shown in Table 7.1.

6.5.2
Results Analysis and Discussion

6.5.2.1
Average Values for the RPD and Computational Time

In the first analysis, shown in Table 6.2, we compare the four methods
(Batch-WSPT, Batch-S, ILS-Math3 and GRASP-Math3 ) in terms of the average
RPD (RPD) and the average computational time (time), in seconds, for each
instance group. We use the same grouping scheme defined in Chapter 4 for this
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Table 6.1: Parameters definition

Algorithm Parameter Description Domain Value
Batch Windows ρ The proportion of the

makespan (Cmax) to op-
timize at each iteration

[0, 1] 0.20

Multi-Batches Relocate ϕ The proportion of
batches to optimize at
each iteration

[0, 1] 0.30

Random Batch Swap ω The proportion of batch
swaps to execute at each
perturbation

[0, 1] 0.10

ILS-Math δ Worse solutions accep-
tance rate

[0, 1] 0.00

GRASP-Math α Greediness factor for the
randomized constructive
procedure

[0, 1] 0.10

ILS-Math and GRASP-Math Ωmax Maximum number
of iterations without
improvement

Z+ 10

analysis, in which each group, represented by the combination of the number
of operations and machines (o and m), comprises 12 instances. The best result
for each criterion in each group is highlighted in bold.

Note that the average relative percentage deviations are low for instances
with 15 operations, with an RPD below 1% for all methods. Regarding
group 15–4, the Batch-S formulation presented the smallest RPD with 0.00,
that is, it reaches the BKS in all runs, but with an average computational time
of 20,725 seconds. The average computational times for the MIP formulations
in this group are close to the limit of 21,600 seconds (6 hours) previously
defined. ILS-Math3 runs with the least average computational time in this
group (14 seconds). However, concerning the RPD, GRASP-Math3 is the
best matheuristic approach (RPD = 0.30), without significantly increasing
computational time spent by ILS-Math3. Similar behavior can be seen in
group 15–8. GRASP-Math3 presented equivalent results with Batch-S (RPD =
0.01), but consuming less than a minute to achieve it. In contrast, Batch-S
run for an average of 18, 000 seconds.

For medium-sized groups (25–4 and 25–8), the matheuristics outperform
the MIP formulations in terms of solution quality, with considerably less com-
puting time. The MIP formulations maintained a good quality of the solutions,
below 1% for the RPD in both groups, but running until the time limit in all
executions (time = 21,600). Between the matheuristics, GRASP-Math3 outper-
forms ILS-Math3 in terms of solution quality, with RPD = −0.31 in group 25–
4, and RPD = −0.27 in group 25–8, but with 51% extra computational time
needed on average in the former group (186 seconds against 123 seconds), and
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Table 6.2: Average values for the RPD and computational time distributions
for each method in each instance group.

o m
Batch-WSPT Batch-S ILS-Math3 GRASP-Math3

RPD time RPD time RPD time RPD time

15
4 0.49 20414 0.00 20725 0.42 14 0.30 26
8 0.04 18000 0.01 18000 0.08 46 0.01 54

25 4 0.70 21600 0.81 21600 -0.17 123 -0.31 186
8 0.23 21600 0.62 21600 -0.20 244 -0.27 297

50
4 -0.27 19978† 0.60 21600 -3.02 1052 -2.65 1159
8 -1.83 17380† 1.90 13901† -4.09 990 -3.80 1066

All instances -0.11 19829† 0.66 19571† -1.16 412 -1.12 465
† CPLEX execution interrupted before 21,600 seconds (time limit) for some instances in this
group, for this method, due to memory problems.

22% in the latter (297 seconds against 244 seconds).
For large-sized groups, we can see that Batch-S loses performance, with

the worst values for the RPD in both groups (0.60 in group 50–4 and 1.90
in group 50–8), resulting in a clear advantage for Batch-WSPT. Again, the
matheuristics dominates the MIP formulations in both groups with lower
values for the RPD and time. However, in these groups, ILS-Math3 dominates
GRASP-Math3 , in terms of solution quality and computational time. It can be
noted that the time for the MIP formulations on these groups is smaller than
the limit of 21,600. This is due to memory issues, with the solver interrupting
the execution of 6 instances, in each formulation, before reaching the time
limit. Appendix D.2 details the complete results, indicating these instances.

One can note that, in all groups, the GRASP approach requires more
computational time than ILS due to the method’s restart feature. This
characteristic also affects the quality of the method’s solutions when the size
of the instances increases. We can also observe that the average computational
time for the matheuristics grows considerably when the number of operations
to schedule increases. It is known that mathematical models are severely
affected when the size of problems grows, which, in our case, directly impacts
the execution time of our matheuristics.

6.5.2.2
RPD Distribution for Different Instances Aspects

In this analysis, we evaluate the impacts on the solution quality of each
method with the increasing number of machines and operations. Figures 6.4a,
6.4b, and 6.4c depict the distribution of the RPDs for instances with 15, 25,
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and 50 operations to schedule, respectively. Next, Figures 6.5a, and 6.5b, show
the distribution of the RPDs for instances with 4, and 8 machines, respectively.
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Figure 6.4: Boxplots of the RPD distributions for each method, considering
different number of operations.

Regarding instances with 15 operations (Figure 6.4a), all methods are
competitive (RPDs closest to zero). However, Batch-WSPT struggles to achieve
the BKS due to the reduced solution space considered by the formulation. Note
that the matheuristics have better performance than the MIP formulations
when 25 and 50 operations are considered (Figures 6.4b and 6.4c). It is
interesting to see the distributions’ behavior when the number of operations
increases. For the MIP formulations, we can see that Batch-S performs better
on small instances, while Batch-WSPT shows advantages when the number of
operations increases. Note that on medium-sized instances (25 operations),
they have similar performance. The consideration of extra variables and
constraints to sequence operations within batches proved to be a good strategy
for small instances since it considers the complete solution space of the
problem, however affecting the performance of Batch-S when the number
of operations increases. Regarding the matheuristics, we can see that they
maintain similar distributions regardless of the number of operations, but with
ILS-Math3 improving its performance, compared to GRASP-Math3 in instances
with 50 operations.

The same behavior can be observed in the analysis by the number
of machines (Figures 6.5a and 6.5b), with the matheuristics showing better
distribution of RPDs. However, we can observe less dispersed distributions due
to the consideration of instances with 15 operations in both groups. The MIP
formulations maintained the same behavior, with Batch-S losing performance
when the number of machines grows.
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Figure 6.5: Boxplots of the RPD distributions for each method, considering
different number of machines.

6.5.2.3
Comparison with the BKS Values

Now, we analyze the methods, in Table 6.3, regarding the achievement
or improvement of the Best-Know Solutions from the literature, defined by the
mathematical formulations in Chapter 4. The results indicate the number of
instances in which the BKS was achieved or improved (#Inst.), its percentage
regarding the complete set of 72 PLSVSP instances (%Inst.), and the respective
percentage of runs of achievement or improvement (%Runs). The RPD for the
subsets of not achieved and not improved solutions are included. Finally, we
show the minimum RPD (RPD−) found by each method when the BKS is
improved.

Table 6.3: Analysis regarding BKS solutions from the literature.

Method
Achieved BKS† Not Achieved Improved BKS Not Improved

#Inst. %Inst. %Runs RPD #Inst. %Inst. %Runs RPD− RPD

Batch-WSPT 42 58.33 58.33 1.16 23 31.94 31.94 -5.17 0.71
Batch-S 41 56.94 56.94 2.06 13 18.06 18.06 -4.08 1.08
ILS-Math3 69 95.83 81.94 0.72 40 55.56 49.72 -10.96 0.26
GRASP-Math3 72 100.00 86.11 0.59 40 55.56 50.56 -9.72 0.17
† This subset includes solutions that have also improved the BKS.

Note that all methods achieve the BKS in more than 50% of instances,
with GRASP-Math3 reaching it in all instances (#Inst. = 72). The %Inst. and
%Run has the same value for each MIP formulation, as we only run it once for
each instance. Again, the matheuristics have better performance than the MIP
formulations. Note that the RPD for runs where BKS was not found is less
than 1% for the matheuristics and more than 1% for the MIP formulations,
with the worst performance for Batch-S formulation (RPD = 2.06%). It can
be seen that the matheuristics ILS-Math3 and GRASP-Math3 achieve the BKS in
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81.94% and 86.11% of the executions, respectively. The same advantage for the
matheuristics can be seen for improved solutions, with both methods improving
the BKS in about 50% of runs. The RPD is low for runs that have not improved
the BKS (0.26% for ILS-Math3 , and 0.17% for GRASP-Math3), as it includes
runs that have achieved the BKS. With these results, we can see that 40 new
best solutions are found by the matheuristics, with an improvement of 10.96%
in the objective value of the solution in the best case (RPD− of ILS-Math3 ).
The specific instances with enhanced solutions are indicated in Appendix
D.2. Considering that 26 instances have the proven optimal solutions (see
Table D.3), 40 new best solutions have been defined in 46 possible instances.

6.5.2.4
Statistical Analysis for the RPD Distributions

To improve our discussion and validate what we highlighted during the
previous analyses, we applied a statistical evaluation comparing the RPD
distributions between the methods, considering the complete set of 72 PLSVSP
instances. First, we tested the distributions’ normality with the Shapiro-
Wilk test, which shows that the RPDs do not follow a normal distribution.
Then, we ran the pairwise Wilcoxon rank-sum test with Hommel’s p-values
adjustment. We also included the Analysis of Variance (ANOVA) with the
Tukey HSD (honestly significant difference) test to compare the method’s RPD
distributions. We ran both tests with a confidence level of 0.05. In Table 6.4,
we present the p-value for each pair of methods, also including some statistics
on the RPD distributions. Significantly better results are highlighted in bold.

Table 6.4: The mean and standard deviation of the RPD distributions for each
method, and p-values from pairwise Wilcoxon rank-sum and ANOVA with
Tukey HSD tests, with a 0.05 confidence level, considering all 72 PLSVSP
instances.

Method RPD σ
Wilcoxon p-value (ANOVA–Tukey p-value)

Batch-WSPT Batch-S GRASP-Math3

Batch-WSPT -0.10 1.78
Batch-S 0.66 2.10 0.38 (0.14)
GRASP-Math3 -1.16 2.18 0.00 (0.00) 0.00 (0.00)
ILS-Math3 -1.12 2.15 0.00 (0.00) 0.00 (0.00) 0.50 (0.98)

The tests confirm that the matheuristics yield significantly better results
than the MIP formulations. Note that no statistical significance can be seen
when comparing one MIP formulation with another, nor when comparing the
matheuristics between each other. Wilcoxon and ANOVA–Tukey agreed in all
cases despite discrepancies in the p-values.
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6.5.2.5
Average RPD Evolution Analysis

As we evaluate solutions for a realistic process, it is important to analyze
the final solutions of the proposed methods and their evolution over time, in
case the company needs faster solutions. Based on this, we show in Figure 6.6
the evolution of the solution for the two best approaches, ILS-Math3 and
GRASP-Math3, illustrating the trade-off between the quality of the solution and
the time spent for achieving it. For better visualization, the computational
time axis is on a log10 scale. As the deviations and computational times are
low for small-sized instances, the curve’s shape is more defined by the medium
and large-sized instances.
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Figure 6.6: Average RPD (vertical axis) evolution over the computational time
(horizontal axis – log10 scale) for each matheuristic, running on the complete
set of 72 PLSVSP instances.

Note that both matheuristics surpass the BKS on average (that is, the
current method used to solve the PLSVSP), crossing the zero line, in less
than 1 minute (38 seconds for ILS-Math3 , and 49 seconds for GRASP-Math3).
The ILS-Math3 matheuristic dominates the GRASP-Math3 but reaching an
equivalent average RPD after crossing the zero line. This analysis reinforces
the advantages of using the matheuristics concept instead of running the MIP
formulations, showing that the additional time-limit criteria can be included,
if necessary, without significantly impacting the quality of the solution.

6.6
Discussion

In this chapter, we introduced an ILS and a GRASP matheuristics,
using two MIP-based neighborhood searches and a constructive heuristic to
solve the PLSVSP. Two MIP formulations are considered, resulting in three
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variants of each method. The first is a batch formulation, which uses a WSPT
dispatching rule to sequence operations within batches, while the second is a
new formulation that considers sequencing within batches as a model decision.
The results show that the matheuristics outperform the pure mathematical
programming models in terms of computational time and solution quality.
Among the matheuristics, a small advantage can be observed for two variants
that combine the use of two batch formulations for the PLSVSP. The analysis
shows that our new proposed formulation with sequencing variables helps
the matheuristics to improve the quality of the solution. Moreover, new best
solutions are provided for 40 of the 46 possible instances (without proven
optimal solutions) on the benchmark set of 72 PLSVSP instances.

The present study reinforces the importance of hybrid methods and their
applicability in practical and theoretical contexts. The concept of splitting
the problem to solve sub-problems is a relevant approach, especially when
the size of the problem increases. It is worth mentioning that the approach
is closely related to the nature of the PLSVSP in the studied company. In
this environment, management guidelines for dealing with the problem change
rapidly due to political and operational issues, requiring a quick adjustment in
decision support tools. The use of mathematical formulation facilitates these
adjustments, allowing the inclusion or exclusion of constraints without the
need for substantial computational development in the algorithms.
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7
Iterated Greedy Algorithm for the PLSVSP

In this chapter, we present an Iterated Greedy (IG) algorithm to solve
the PLSVSP, which extends the Iterated Local Search (ILS) metaheuristic
introduced by Mecler (2020). The IG approach (Ruiz and Stützle 2007)
combines an intensification step, given by a local search procedure to achieve
local optimal solutions, with destroying and repairing phases to diversify
solutions and avoid the method being stuck. One of the main differences
from the metaheuristic of Mecler (2020) is to replace the ILS perturbation
step with the destroy and repair steps. Another difference is that we avoid
restarting the algorithm to improve a single solution generated by the best
constructive heuristic known for the PLSVSP. The remaining diversification
and intensification elements of the method are the ones proposed by Mecler
(2020) as the Random Variable Neighborhood Descent (RVND) local search
phase, the simulated annealing acceptance criterion, the infeasibility strategy,
and the restore step. However, we performed new experiments to set the
algorithm’s parameters.

7.1
IG algorithm pseudo-code and description

The pseudo-code of the IG approach is shown in Algorithm 9. The
algorithm uses s = (s1, . . . , sm) to identify a solution composed by a list of
schedules for the m machines. Each schedule is a permutation of families,
which indicates a setup time, and operations. The algorithm considers s as
the iteration current solution, and s∗ as the best overall solution during the
execution. And, function f(.) returns the total weighted completion time of a
given PLSVSP solution. Figure 7.1 depicts an example with five operations (O1

to O5) and two machines (M1 andM2) of the solution representation considered
within the algorithm. As mentioned before, the family index represents a setup
time, indicating a new batch. To contextualize the example, let’s consider the
following information:

1. All machines are eligible for all operations, i.e.Mi =M, ∀i ∈ O.
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2. Three jobs are considered (J1, J2, and J3), with the following weights:
w1 = 3, w2 = 2, and w3 = 1.

3. The jobs associated with each operation are: N1 = {J1}, N2 = {J2, J3},
N3 = {J3}, N4 = {J1, J2}, and N5 = {J2}.

4. Operation’s families are: f1 = f2 = f3 = f4 = 1 and f5 = 2.

5. Operation’s processing times are: p1 = p2 = p3 = 15 and p4 = p5 = 20.

6. The size of the operations are: l1 = 30, l2 = 40, l3 = 10, and l4 = l5 = 40.

7. Release dates of operations are: r1 = 5, r2 = 0, r3 = 30, r4 = 0, r5 = 40.

8. Release dates of machines are: r1 = 0 and r2 = 5.

9. The capacity of the machines are: q1 = 80 and q2 = 90.

10. Family setup times are: s1 = 10 and s2 = 5.

In the example, each machine executes two batches, respecting their
capacities. From the defined permutation and considering the described data,
the Total Weighted Completion Time (TWCT) of the example, following the
jobs index order (J1, J2, J3), is given by: TWCT = (3 × 45) + (2 × 65) + (1
× 70) = 335.
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𝑴𝟏

𝑴𝟐

Figure 7.1: Solution representation used by the IG algorithm

First, Algorithm 9 computes the value of Ω, which indicates the maximum
number of consecutive iterations without improvement allowed until the algo-
rithm restores the current solution to the best solution found (Line 1). Then, it
builds a solution s using the WMCT-WAVGA constructive heuristic (Line 2). After
running the local search step (Line 3), the best overall solution and the counter
ω of consecutive iterations without improvement are initialized (Lines 4–5).
The main loop (Lines 6–23) runs for η iterations following three main steps:
(1) Destroy and repair current solution s, generating solution s′ (Lines 7–8);
(2) Run the local search in s′ to generate the local optimum solution (Line 9),
checking its feasibility (Line 11). (3) Update the current solution s if the ob-
jective value of s′ is better than the objective value of s or if the acceptance
criterion is met (Lines 12–13). If the new current solution s is feasible and its
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objective value is better than the objective value of the best overall solution
s∗, s∗ is replaced by s and the counter ω of consecutive iterations without
improvement is reinitialized (Lines 14–17). The algorithm employs a restore
strategy after ω consecutive iterations without improvement (Lines 19–22). It
returns the best overall solution found s∗ (Line 24).

Algorithm 9: Iterated Greedy Algorithm
Input : Number of iterations (η); Restore parameter (λ).
Output: The best solution found s∗ as a list of schedules for each machine.

1 Ω← dληe;
2 s← Constructive(); . Construct the initial solution
3 s← RVND(s); . Local Search
4 s∗ ← s; . Initialize the best overall solution
5 ω ← 0;
6 for η iterations do
7 s′ ← Destroy(s);
8 s′ ← Repair(s′);
9 s′ ← RVND(s′);

10 ω ← ω + 1;
11 is_feasible← Feasible(s′); . Infeasibility strategy
12 if f(s′) < f(s) or Accept(s′, s) then . Acceptance Criterion
13 s← s′;
14 if f(s) < f(s∗) and is_feasible then . Improvement check
15 s∗ ← s;
16 ω ← 0;
17 end
18 end
19 if ω = Ω then . Solution restore
20 s← s∗;
21 ω ← 0;
22 end
23 end
24 return s∗;

The next sections detail the local search and its neighborhoods, the
destroy and repair operators, the simulated annealing acceptance criterion,
and the infeasibility strategy.

7.1.1
RVND Local Search

The RVND strategy, introduced by Subramanian et al. (2010), picks
neighborhoods up randomly from a pool instead of running them in a determin-
istic pre-defined sequence as the original VND. The RVND local search (Lines
3 and 9 of Algorithm 9) returns a local optimum solution after running four
neighborhoods, described as follows (Mecler et al. 2021):

1. Swap: Exchange any two operations in the schedule, assigned to the same
or different machines, respecting the eligibility constraint. Figure 7.2
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exemplifies a swap movement between operations from the same fam-
ily (Figure 7.2a), and between operations from distinct families (Fig-
ure 7.2b). The procedure includes new setup times whenever a move-
ment generates batches with mixed families and removes extra setup
times when needed to respect the family constraint.

2. Relocate: Remove an operation assigned to any machine and reinsert
it in a new position on the same or another machine, respecting the
eligibility constraint. Figure 7.3 depicts a relocate movement of an
operation in a batch of the same family (Figure 7.3a), and the relocation
of an operation in a batch of a distinct family (Figure 7.3b). Again,
the procedure includes new setup times when needed to respect the
family constraint, removing extra setup times when a movement creates
a solution with two consecutive setup times.

3. SplitBatches: Split a batch into two batches of the same family by
inserting a setup time between two consecutive operations of the same
family. Figure 7.4a exemplifies the movement.

4. MergeBatches: Merge two consecutive batches of the same family by
removing the setup time of the second batch. Figure 7.4b exemplifies the
movement.
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(a) Swap between operations of the same family.
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Figure 7.2: Swap movement examples (Mecler et al. 2021).

The RVND procedure (Algorithm 10) starts by initializing the set L with
the indices of the neighborhoods (Line 1) as L = {1, 2, 3, 4}, consider-
ing the four neighborhoods previously described (1–Swap, 2–Relocate, 3–
SplitBatches, 4–MergeBatches). The main loop is executed until the set
L is empty (Lines 2–17). The algorithm picks a neighborhood index ` at ran-
dom (Line 3) and tests each solution in the neighborhood N` following a first
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Figure 7.3: Relocate movement examples (Mecler et al. 2021).
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Figure 7.4: Setup movement examples (Mecler et al. 2021).

improvement rule to update the current solutions and resets the set L of neigh-
borhood indices. (Lines 5–11). If no improvement is found, the algorithm re-
moves the current neighborhood index from set L (Lines 12–16). The algorithm
returns the local optimal solution (Line 18).

7.1.2
Destroy and Repair Operators

The Destroy procedure (Line 7 of Algorithm 9) removes d = dεoe
operations from a given solution s and generates a partial solution with
o − d scheduled operations, where ε ∈ [0, 1] is the destruction parameter.
The procedure removes extra setup times when necessary. The objective
function value of a partial solution only considers the scheduled operations.
Thus, we define the completion time of all unscheduled operations’ as zero.
The procedure anticipates the starting time of batches after removing the
operations, if possible. Removed operations compose a list of unscheduled
operations, following the order in which the destroy operator extracted them
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Algorithm 10: RVND (Mecler et al. 2021)
Input : A given solution s.
Output: A local optimal solution s.

1 Initialize set L of neighborhood indices;
2 while L 6= ∅ do
3 `←random(L);
4 improved← false;
5 for s′ ∈ N`(s) do
6 if f(s′) < f(s) then
7 s← s′;
8 improved← true;
9 break;

10 end
11 end
12 if improved then
13 Initialize set L of neighborhood indices;
14 else
15 L ← L \ {`};
16 end
17 end
18 return s;

from s. According to their sequence within the list of unscheduled operations,
the repair operator picks the unscheduled operations, one-by-one to reinsert
them in the solution, generating a new complete solution. We consider the
following destroy and repair operators (Ruiz and Stützle 2007):

1. RandomDestroy: Removes operations randomly.

2. GreedyRepair: Reinserts each operation in the best position among all
eligible machines according to the objective function value.

Figure 7.5 exemplifies the RandomDestroy and GreedyRepair operators,
considering the example depicted in Figure 7.1, with d = 2. Note that the
destruction step removes operations O5 and O2 from the solution, generating a
partial schedule with a TWCT of 230. Then, the repair step reinserts operation
O5 in its best position, which, in this case, is its original position. A setup time
is included before operation O5. Finally, the repair operator inserts operation
O2 in the first batch on machine M1 before operation O1, generating a new
complete solution with a TWCT of 305, better than the initial solution.

To help the reader understanding the example given, we describe the
computing of the TWCT regarding the destroyed solution. We use CO

i to
indicate the completion time of operation Oi and CJ

j for the completion time
of job Jj, to avoid ambiguity. We also use rOi to identify the release date
of operation Oi and rMk for the release date of machine Mk. As mentioned
previously, the destroyed solution leads to a TWCT of 230. The TWCT
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considers the completion times of the scheduled operations: CO
1 = 30 (rO1 +

s1 + p1), CO
3 = 55 (CO

1 + s1 + p3), and CO
4 = 35 (rM2 + s1 + p4). As highlighted

before, the completion times of unscheduled operations are defined as zero
(CO

2 = CO
5 = 0). Considering the set of jobs associated with each operation,

the completion times of jobs is then computed as: CJ
1 = max{CO

1 , c
O
4 } = 35,

CJ
2 = max{CO

2 , C
O
4 , C

O
5 } = 35, and CJ

3 = max{CO
2 , C

O
3 } = 55. The TWCT is

then computed as: w1×CJ
1 +w2×CJ

2 +w3×CJ
3 = 3×35+2×35+1×55 = 230.
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Figure 7.5: Destroy and repair example with d = 2 (Mecler et al. 2021).

7.1.3
Acceptance Criterion

The Accept procedure (Line 12 of Algorithm 9) employees a simulated
annealing criterion to decide whether a candidate solution s′ should replace
solution s as the current solution, accepting s′ with probability e−∆/τ , where
∆ = f(s′) − f(s), and τ is the current temperature. The temperature τ is
initialized with a value τ0 and decreases at each iteration as τ = τκ, where
κ = [0, 1) is the cooling rate (Kirkpatrick et al. 1983). The initial and final
temperatures (τ0 and τF ) are instance-dependent, as proposed by Pisinger and
Røpke (2007), computed as τ0 = −(δ1fo)/ln(0.5) and τF = −(δ2fo)/ln(0.5),
respectively, where f0 is the objective value of the initial solution, and δ1 and
δ2 are adjustable parameters. The initial and final temperature are defined to
accept, with 50% probability, solutions δ1 and δ2 worse than the initial solution,
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respectively. The cooling rate κ is set by considering the number of iterations η
to execute and the initial and final temperatures, computed as κ = (τF/τ0)1/η.

7.1.4
Infeasibility Strategy

The algorithm uses the infeasibility strategy of Mecler (2020) to enlarge
the problem’s search space, increase diversification, and escape from local
optimal solutions. In this strategy, infeasible solutions regarding the capacity
might be accepted. The cost of a solution s with capacity violations is updated
as f(s) = f(s) + ρV , where ρ ≥ 1 is the penalty factor, V is the total capacity
violation among all batches from all machines, and f(s) is the objective
function value of solution s. Parameters ρ+ ∈ [0, 1) and ρ− ∈ [0, 1) are
used to update the value of ρ at each iteration. Thus, when the algorithm
accepts a new current solution, the penalty factor is updated as ρ = ρ(1 +ρ+),
if the new current solution is infeasible, and as ρ = ρ(1 − ρ−), if feasible.
Thus, the algorithm increases the penalty factor whenever it accepts infeasible
solutions to prioritize feasible solutions. The Feasible procedure (Line 11
of Algorithm 9) updates the parameter ρ after verifying if a given solution
is feasible, returning true when no capacity violations exists, and false,
otherwise.

7.2
Computational Experiments

In this section, we conduct computational experiments on the benchmark
set of 72 PLSVSP instances to evaluate the performance of the proposed IG
algorithm, named IG-RG. The algorithm’s input parameters are calibrated,
and the method is compared with the matheuristics presented in Chapter 6.
We use C++ language for coding the IG algorithm, and ten independent runs
are performed within the experiments. All experiments are performed on a
computer with an Intel i7-8700K CPU of 3.70GHz and 64 GB of RAM, running
Linux with a single thread.

In all analyses, we evaluate solutions in terms of the Relative Percent-
age Deviation (RPD) concerning the best solutions found for each instance,
computed according to Equation (7-1). TWCT Sol denotes the total weighted
completion for a given solution of a specific instance, and TWCTBest desig-
nates the total weighted completion time regarding the best solution found for
the same instance in a given experiment.

RPD = TWCT Sol − TWCTBest

TWCTBest
× 100. (7-1)
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7.2.1
Results and Calibration

Before presenting the results, we set the input parameters of the IG-RG,
following a two-phase tuning strategy introduced by Ropke and Pisinger
(2006). First, parameters are defined in a trial-and-error phase during the
algorithm development. Then, a fine-tuning is executed in each parameter
individually within the improvement phase, considering pre-defined possible
values. We executed the fine-tuning in the following order: (1) Initial tempera-
ture parameter for the simulated annealing (δ1), with values ranging from 0.3
to 0.7 and a step size of 0.1; (2) Final temperature parameter for the simu-
lated annealing (δ2) with the possible values of 10−3, 10−4, 10−5, and 10−6.
(3) Perturbation parameter (ε) with values ranging from 0.05 to 0.20 and a
step size of 0.05; (4) Solution restore parameter (λ), within the same range
of values tested for ε. (5) Penalty update factor when infeasible solutions are
reached (ρ+), defined within the range 0.10 to 0.25, with a step size of 0.05;
(6) Penalty update factor when feasible solutions are reached (ρ−) defined
within the range of 0.05 to 0.20, with a step size of 0.05. We performed ten
independent runs on each instance with η = 2500 iterations. The number of
iterations was defined during the trial-and-error phase. Table 7.1 presents the
final parameter values. These values were set according to the average relative
percentage deviation (RPD) concerning the best solutions achieved during the
parameterization.

Table 7.1: Final parameter values for the proposed algorithm.

Parameter Description Domain Value
δ1 Initial temperature definition parameter for the simu-

lated annealing criterion
[0, 1] 0.6

δ2 Final temperature definition parameter for the simulated
annealing criterion

[0, 1] 10−5

ε Proportion of the total number of operations to destroy
at each iteration

[0, 1] 0.15

λ Restore solution parameter [0, 1] 0.1
ρ+ Parameter to update the penalty factor when infeasible

solutions are accepted
[0, 1) 0.20

ρ− Parameter to update the penalty factor when feasible
solutions are accepted

[0, 1) 0.05

In the following, we evaluate the impact on the solution quality by re-
moving each feature of the IG-RG algorithm. Table 7.2 shows the average rela-
tive percentage deviation (RPD), standard deviation of the RPDs (SD), and
the average computational time (Time), in seconds, for each configuration.
Each configuration corresponds to the disabling of one of the following fea-
tures: (LS) RVND local search; (SA) Simulated annealing acceptance criterion;
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(DR) Destroy and Repair steps; (Inf.) Infeasibility strategy; (Rest.) Solution
restore strategy. It is worth mentioning that the configuration without the de-
stroy and repair steps, we replace these steps by a regular perturbation step,
following an Iterated Local Search (ILS) metaheuristic structure, in which we
randomly select one neighborhood, and performs d = dεoe random moves. One
can note that the local search is the most relevant and time-consuming fea-
ture. The average computational time reduces when the algorithm disregards
the diversification strategies (infeasibility strategy and simulated annealing).
However, the deviation reduces when we consider these strategies with a small
addition of time. One can note that the configuration with all features com-
bined generates the smallest RPD and standard deviation (SD), indicating
that they all contribute to the algorithm’s performance.

Table 7.2: Average RPD and computational time with the removal of each
algorithm’s feature.

Config. LS SA DR Inf. Rest. RPD SD Time

No LS • • • • 2.68 2.38 0.15
No SA • • • • 0.22 0.42 7.70
No DR • • • • 0.37 0.90 12.86
No Inf. • • • • 0.19 0.31 7.69
No Rest. • • • • 0.18 0.32 8.20
Complete • • • • • 0.15 0.26 8.18

In the next analysis, shown in Figure 7.6, we evaluate the trade-off be-
tween the solution quality in terms of the RPD and the average computational
time, regarding the number of iterations considered. We ran the experiments
with the number of iterations (η) varying from 500 to 10000 with a step size
of 500. One can note that the average time grows linearly as the number of
iterations increases. We present the RPD with a 95% confidence interval. Note
that the RPD decreases as the number of iterations grows, reducing faster up
to 4000 iterations. From 4000 to 4500, the method stabilizes. It returns to a
continuous reduction of the RPD, but slower, from 4500 to 7000 iterations.
Then, from 7000 iterations, the method is practically stable until reaching the
maximum number of iterations tested (10000), indicating that it converges to
a RPD around 0.08%.

In the last analysis, we compare the IG-RG running for 2500, 4500,
and 7000 iterations, following the previous analysis, with the matheuristics
presented in Chapter 6 in terms of the RPD, computational time, and capacity
of reaching the best-found solution.Table 7.3 presents the results in terms of the
average (Avg), maximum (Max) and standard deviation (SD) for the RPDs and
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Figure 7.6: Average RPD and average computational time with different
number of iterations (Mecler et al. 2021).

computational times, the percentage of instances (%Inst) and runs (%Runs)
in which each algorithm achieved the best solution, and the percentage of
instances in which the best solution is uniquely found by a given approach
(%Unique). We included the number of iterations in the algorithm’s name.

Table 7.3: Comparison between the iterated greedy algorithm and the best
methods in the literature for this set of instances.

Algorithm
RPD (%) Time (seconds) Best Solution Achieved

Avg Max SD Avg Max SD %Inst. %Run %Unique
GRASPMath3 0.79 20.57 1.28 464.7 2677.4 529.8 62.50 40.56 0.00
ILS-Math3 0.74 6.62 0.96 411.7 2735.2 503.5 58.33 37.64 1.39
IG-RG-2500 0.15 2.03 0.28 8.2 26.8 9.7 73.61 61.25 0.00
IG-RG-4500 0.11 1.47 0.23 14.7 47.3 17.5 83.33 64.86 4.17
IG-RG-7000 0.07 1.23 0.16 22.8 75.3 27.1 94.44 70.00 19.44

One can note that the IG-RG is superior in all criteria independently of
the number of iterations. Even when running for 2500 iterations (IG-RG-2500),
its worst-case RPD (Max) remains around 2%, with a low standard deviation
(0.28), showing its consistency within the different runs. Moreover, even when
the number of iterations grows, as in the case of the IG-RG-7000, the average
computational time is at least 94% lower than the matheuristic ones. The
algorithm reached the best solution in 94.44% of the instances and 70% of the
runs when running for 7000 iterations, providing new best solutions (upper
bound) for the benchmark set of instances. Complete results are shown in
Appendix E.1.
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7.3
Discussion

This chapter introduced an Iterated Greedy algorithm, using a random
destroy operator and a greedy repair operator to solve the PLSVSP. The results
show that the IG algorithm outperforms the matheuristics in computational
time and solution quality, providing new upper bounds for some instances. The
study reinforces the applicability of iterated greedy algorithms in solving com-
binatorial optimization problems even when a complicated problem inspired
by a real context is considered. The idea of destroying and repairing the so-
lution is a simple yet powerful and efficient technique, as we confirmed in our
experiments.
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8
Iterated Greedy Simheuristic with Embedded Monte Carlo
Simulation for the stochastic PLSVSP

In this chapter, we present a simheuristic to solve the PLSVSP with
stochastic processing times and release dates for the operations. The method
embeds a Monte Carlo Simulation into an IG approach to identify good
stochastic solutions. With a small number of replications, short simulations
are performed during the algorithm to identify and store the most promising
solutions, according to a chosen statistic, in a pool with the best stochastic
solutions. In the end, a long simulation, with a higher number of replications, is
performed on all solutions in the pool to generate random sample observations
and provide more statistical information about the solutions.

The general concept of the simheuristic is based on Grasas et al. (2016).
However, instead of using an Iterated Local Search (ILS) metaheuristic, we
use an Iterated Greedy (IG) approach due to the successful application of
this algorithm for solving the deterministic PLSVSP (Chapter 7) and other
machine scheduling problems Ruiz and Stützle (2007), Fanjul-Peyro and Ruiz
(2010), Lee (2017), Ruiz et al. (2019). The method, named SimIG, combines
the simulation step with the IG approach described in Chapter 7. Furthermore,
unlike regular simheuristics in the literature, in our approach, we do not define
the number of replications to be performed during the simulation steps. The
use of a fixed number of replications during the simulation can lead to two
issues. On the one hand, a low number of replications does not guarantee that
the sample’s expected objective value represents a given solution properly. On
the other hand, a high number of replications might result in computational
overhead for the method. To overcome these issues, we incorporate a strategy
proposed by González-Neira et al. (2019) of using the confidence interval’s error
around the mean, from the available observations, to control the number of
simulation replications. Thus, after each replication, confidence intervals at a
given confidence level are calculated, and the algorithm computes the interval
error. The procedure stops when the calculated error falls below the desired
pre-established limit.

The general flowchart of the IG simheuristic is shown in Figure 8.1. The
method is divided into three parts. The initialization, in which the algorithm
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constructs a solution, executes the destroy and repair steps and the local
search, runs a short simulation, and initializes the stochastic pool. The main
loop, in which the method runs the destroy and repair phases iteratively and
checks whether the solution should be accepted, simulated, and included in the
stochastic pool. And the termination, in which a long simulation is performed
on each solution within the stochastic pool.
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Figure 8.1: General simheuristic flowchart.

8.1
Simheuristic pseudo-code and description

The SimIG pseudocode is shown in Algorithm 11. Eight parameters must
be set to run the algorithm: the number of iterations (η), the size of the
stochastic pool (size), the confidence levels for the short and long simulations
(%s and %`), the error limit for the short and long simulations (ε̃s and ε̃`),
and the variance levels for the stochastic parameters (δp and δr). During
its execution, the algorithm uses s to represent the current solution, s′ for
candidate solutions, and s∗ to indicate the best-found deterministic solution.
Moreover, f(.) is a function that returns the deterministic total weighted
completion time of a given solution. And, the set P represents the pool of
the best stochastic solutions. In the first part of the algorithm (Lines 1–4), an
initial solution is created and improved by a local search phase. This solution
is then simulated, and the stochastic pool P is initialized containing only it.
The method’s main loop (Lines 5–20) is repeated for η iterations and consists
of executing a destroy and repair phase followed by a local search procedure
and an acceptance evaluation. Solutions are restored to the best-found after a
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pre-defined number of consecutive iterations without improvement (Line 19).
One of the main differences from the IG algorithm (Chapter 7) is to consider
a pool of stochastic solutions, using a short simulation step to identify and
store feasible promising solutions (Line 12). The stochastic pool is updated
by including these solutions or not (Line 13). After the main loop, a long
simulation is performed on the solutions of the stochastic pool (Lines 21–23)
to get more statistical information. The local search, destroy and repair phases,
infeasibility strategy, and restore strategy are the ones discussed in Chapter 7.
The Simulation and PoolUpdate procedures are detailed in the next sections.

Algorithm 11: SimIG
Input : Number of iterations (η); Size of the stochastic pool (size); Confidence

level for the short simulation (%s); Error limit for the short simulation
(ε̃s); Confidence level for the long simulation (%`); Error limit for the
long simulation (ε̃`); variance level for the processing times (δp) and
release dates (δr); minimum number of replications within the
simulation steps (φ).

Output: The pool P with the best stochastic solutions.
1 s← Constructive();
2 s∗ ← s← LocalSearch(s);
3 Simulation(%s, ε̃s, δp, δr, φ, s);
4 P ← {s};
5 for η iterations do
6 s′ ← Repair(Destroy(s));
7 s′ ← LocalSearch(s′);
8 is_feasible← Feasible(s′);
9 if Accept(s′, s) then

10 s← s′;
11 if is_feasible then
12 Simulation(%s, ε̃s, δp, δr, φ, s);
13 P ← PoolUpdate(P, size, s);
14 if f(s) < f(s∗) then
15 s∗ ← s;
16 end
17 end
18 end
19 s← Restore(s∗, s);
20 end
21 for s ∈ P do
22 Simulation(%`, ε̃`, δp, δr, φ, s);
23 end
24 return P;

8.1.1
Simulation

The Simulation procedure receives a solution s to assess its quality in
the stochastic environment, generating a sample set Rs of several simulation
replications values. The sample provides more statistical information about

DBD
PUC-Rio - Certificação Digital Nº 1712647/CA



Chapter 8. Iterated Greedy Simheuristic with Embedded Monte Carlo
Simulation for the stochastic PLSVSP 97

solution s. As mentioned before, the total number of replications is not known
a priori but depends on an error limit defined for the confidence interval around
the mean at a given confidence level. However, we define a minimum number
of replications (φ) to ensure a minimum sample size to compute the statistics.

The pseudocode of the Simulation procedure is shown in Algorithm 12.
First, the set Rs of total weighted completion time observations is initialized
as empty and the sample-set error as infinity (Lines 1–2). Then, in each repli-
cation, the MonteCarlo procedure generates random values for the stochastic
parameters (Lines 6–7), generating new processing times p′i and release dates r′i
for each operation Oi ∈ O, following the defined probability distributions and
variance levels (δp and δr). According to the defined schedule, the Evaluate
procedure calculates the new completion times for operations and jobs and the
total weighted completion time (v) of the current replication (Line 8). Batches
are anticipated whenever possible and delayed if necessary during the evalua-
tion. The set Rs is updated by including the new observation value v, and the
mean and standard deviation of the sample are computed by the Statistics
procedure (Lines 9–10). Then, the ConfIntervalWidth procedure builds a
confidence interval for the mean, considering the total number of replications
and the desired confidence level %, returning the interval width (Line 11). The
simulation process stops when the error ε (computed in Line 12) is less than
or equal to a pre-defined desired error limit ε̃. Moreover, a minimum num-
ber of replications (φ) is also required to stop the procedure. More statistical
information can be obtained with the sample of stochastic total weighted com-
pletion times such as the sample standard deviation, the value at risk (VaR),
the expected shortfall (a.k.a. conditional value at risk – CVaR), and others.
The expected shortfall (CVaRα) is a risk metric that measures the average of
the worse values of a given distribution beyond a defined quantile α, known
as the value at risk (VaRα). The CVaR has been used in many financial and
engineering risk management works (Street 2010).

To help the readers clarify how the schedule is affected by the uncer-
tainties, we depict in Figure 8.2 an example of one simulation replication with
stochastic values for the processing times (pi) and release dates (ri) for the
operations, considering four operations scheduled on a single machine. The
original schedule refers to the one of machine M2 in the example shown in
Figure 3.5. The original and simulated values for the stochastic parameters
are shown in Table 8.1. Operations O9 and O8 compose the first batch, while
the second and third batches are composed by operations O11, and O5, re-
spectively. Note that the sequence of operations and the batch compositions
are the same in the original and simulated schedules. In the original sched-
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Algorithm 12: Simulation
Input : Confidence level (%); Error limit (ε̃); variance levels for the processing

times (δp) and release dates (δr); minimum number of replications (φ);
A solution s.

1 Rs ← ∅;
2 ε←∞;
3 replications← 0;
4 while ε > ε̃ or replications ≤ φ do
5 replications← replications+ 1;
6 p′i ← MonteCarlo(Pi, δp), ∀Oi ∈ O;
7 r′i ← MonteCarlo(Ri, δr), ∀Oi ∈ O;
8 v ← Evaluate(s, p′, r′);
9 Rs ← Rs ∪ {v};

10 (µ, σ)← Statistics(Rs);
11 width← ConfIntervalWidth(µ, σ, %, replications);
12 ε← width/µ;
13 end

ule, the first batch starts in t = 9 due to the release date of operation O9

(r9 = 9). The replication defines the release dates for operations O8 and O9

as zero (r′8 = r′9 = 0), allowing to anticipate the batch starting time to t = 0.
One can note that the second batch was also anticipated, changing its starting
time from t = 43 to t = 38. However, idleness is generated due to the new
release date of operation O11 (r′11 = 38). The new processing time of operation
O11 (p′11 = 10) forces a delay on starting the third batch, changing its starting
time from t = 52 to t = 53. The completion times for operations are shown
in both schedules, pointing that operations O9 and O8 were anticipated while
operations O11 and O5 were delayed.

Table 8.1: Original and simulated values for the processing times and release
dates used in the simulation example, considering one replication.

Parameters
Operation (Oi)

O5 O8 O9 O11

Original
pi 4 8 17 4
ri 18 5 9 3

Simulated
p′i 7 7 15 10
r′i 20 0 0 38

8.1.2
Updating the Stochastic Pool

The PoolUpdate procedure tests whether the pool P of best stochastic
solutions should include a candidate solution s or not, considering the pool
size (size) and the value v of the candidate solution. Any statistics on the
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Figure 8.2: Simulation example with one replication for a single ship schedule.

distribution of stochastic total weighted completion times obtained after the
simulation step can be used to evaluate the solutions’ values, including the
mean, standard deviation, VaR, CVaR, and others.

The pseudocode of the PoolUpdate procedure is shown in Algorithm 13.
First, the algorithm checks whether the candidate solution s is already in the
pool P (Line 1). If not, the algorithm retrieves the value of the worst solution
in the pool (v′) and saves the respective solution s′ (Lines 2–6). Note that the
worst solution and its value are only identified when the pool is full. Then, the
algorithm saves the value v of the candidate solution s (Line 7). If the value v
of the candidate solution s is better than v′ (Line 8), s is included in the pool
(Line 9). Finally, the algorithm checks if the maximum number of solutions in
the pool has been surpassed, removing solution s′, if true (Lines 10–12).

8.2
Computational Experiments

In this section, we present and discuss the experiments conducted within
the PLSVSP benchmark set of 72 instances to evaluate the performance of
the SimIG algorithm. We coded the simheuristic using C++ language and
performed the experiments on an Intel i7-9700 CPU 3.0GHz machine with
16GB of RAM and running Linux. We ran the simheuristic ten times in each
experiment using one single thread with different seeds. The simheuristic uses
a confidence level of 95% during the short simulations with an error limit of
1%. These values for the long simulation are 99% and 0.1%, respectively. We
set the minimum number of replications as 30. Complete results are available
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Algorithm 13: PoolUpdate
Input : Pool of stochastic solutions (P); Maximum number of solutions in the

pool (size); A candidate solution (s).
Output: Updated stochastic pool.

1 if s /∈ P then
2 s′ ← ∅;
3 v′ ←∞;
4 if |P| = size then
5 (s′, v′)← the worst solution in P and its value;
6 end
7 v ← value of solution s;
8 if v < v′ then
9 P ← P ∪ {s};

10 if |P| > size then
11 P ← P \ {s′};
12 end
13 end
14 end
15 return P;

in Appendix F.1. We use the Boost C++ Libraries1 to compute the statistics
and build the confidence intervals on the mean. We use the random library
from the C++ standard library for the Monte Carlo Simulation to produce
the random values for the stochastic parameters according to the Log-Normal
distribution.

As mentioned before, the simheuristic can use any statistics over the
simulated sample of the objective values during its execution to decide which
solutions to include in the pool of the best stochastic solutions. In our
experiments, we consider two SimIG variants. The SimIG-Exp, which uses
the expected objective value as the selection criterion, and the SimIG-CVaR,
using the CVaR95% as the selection criterion. We also consider the regular
Iterated Greedy algorithm, named IG, to compare with the SimIG algorithms.
The IG is the SimIG without the short simulation steps, returning the best-
found deterministic solution. However, the long simulation step is also executed
in the IG to evaluate the algorithm’s solutions submitted to the stochastic
environment.

In our problem, each solution s represents a schedule for the machines.
We focus our analyzes on three metrics given by each solution: (1) the
deterministic total weighted completion time f(s) of a solution s; (2) the
expected total weighted completion time E[s] of a solution s after the long
simulation step; (3) the expected shortfall at 95% CV aR(s) regarding the
sample of stochastic total weighted completion times obtained after the long

1http://www.boost.org, last accessed 2021-01-29.
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simulation of a solutions s.
All solution evaluations are done regarding the Relative Percentage

Deviation (RPD) to the best deterministic solutions, to allow comparing
the results from different instances. Thus, we consider three RPDs in our
analyses, the D-RPD(s) (Equation 8-1), the E-RPD(s) (Equation 8-2), and
the C-RPD(s) (Equation 8-3). The first one computes the RPD from the
deterministic objective value f(s) of a solution s to the deterministic value
f(best) of the best solution (best), while the other two do the same but using
the expected objective value E[s] and expected shortfall at 95% CV aR(s) of
solution s. It is worth mentioning that the best deterministic solutions (best)
are the ones found by the IG algorithm.

D-RPD(s) = f(s)− f(best)
f(best) × 100, (8-1)

E-RPD(s) = E[s]− f(best)
f(best) × 100, (8-2)

C-RPD(s) = CV aR(s)− f(best)
f(best) × 100. (8-3)

8.2.1
Experiments with three variance levels for the stochastic parameters

In the first experiment, we compare the performance of IG and SimIG-Exp
for three variance levels (low, medium, and high variance) of the stochastic
parameters. For the low variance scenario, we define δp = δr = 0.5, while for
the medium and high variance levels these values are 2.0 and 5.0, respectively.
These are the same values used in Juan et al. (2014) to generate stochastic
processing times for a flow shop scheduling problem. This analysis only
considers the best solutions found by each algorithm. Thus, the best solution
of the SimIG-Exp algorithm is the one with the best expected total weighted
completion time among 100 generated solutions (ten independent runs and ten
solutions in each run’s pool). The best solution for the IG is the one with the
best deterministic total weighted completion time among the ten independent
runs.

Table 8.2 summarises the results for each variance level (low, medium,
and high) grouped by the number of operations to schedule (o) and the number
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of machines available (m). Average values for the E-RPD (E-RPD) and
computational times (Time), in seconds, are shown for each algorithm. The
expected objective values are obtained after running the long simulation on
the best solution found by the IG and the best stochastic solution found
by the SimIG-Exp. We also included the average values for the D-RPD
(D-RPD) for the SimIG-Exp algorithm. The table suppresses this indicator
for the IG algorithm since its solutions are the references for computing the
D-RPD values (i.e., D-RPD = 0.0 for all instances). The table also shows
the percentage difference (Gap) between the expected RPDs (E-RPD) of
the algorithms. Finally, we included the average number of short simulations
executed (SSim) and the average number of replications for the short and long
simulation steps (SRep and LRep) from the SimIG-Exp algorithm.

Table 8.2: Results summary for each algorithm grouped by the number of
operations and machines considering three variance levels.

Variance
Level o-m

IG SimIG-Exp

E-RPD Time D-RPD E-RPD Time Gap SSim SRep LRep

Low

15-4 2.88 0.63 0.17 2.62 1.51 -9.27 1681 56 9710
15-8 3.28 0.64 0.09 2.61 2.00 -20.44 1608 79 14738
25-4 3.20 2.10 0.13 2.69 2.82 -15.82 1570 38 5967
25-8 4.45 2.50 0.41 3.85 3.33 -13.62 1378 41 7008
50-4 3.20 22.16 0.19 2.94 23.09 -8.19 1197 31 2717
50-8 4.35 21.76 0.41 3.88 22.88 -10.77 1109 31 3382

Medium

15-4 8.26 0.80 1.23 7.35 5.06 -11.01 1681 243 42225
15-8 9.15 0.87 0.65 7.81 6.63 -14.68 1608 319 58574
25-4 8.80 2.24 0.55 7.77 5.72 -11.70 1570 152 26536
25-8 11.74 2.68 1.01 10.15 6.60 -13.55 1378 178 31463
50-4 8.32 22.20 0.60 7.67 25.05 -7.86 1197 67 12100
50-8 11.41 21.84 0.73 10.24 25.24 -10.22 1109 86 15627

High

15-4 15.78 1.21 1.96 13.87 13.21 -12.09 1681 684 115940
15-8 17.31 1.40 1.28 15.36 17.03 -11.27 1608 860 155802
25-4 16.74 2.56 1.00 15.03 12.48 -10.21 1570 429 74607
25-8 21.73 3.10 1.56 19.14 14.80 -11.90 1378 522 90923
50-4 15.49 22.52 0.98 14.28 29.67 -7.84 1197 188 33411
50-8 21.38 22.18 1.22 19.50 31.89 -8.78 1109 257 45843

Positive values of D-RPD indicate worse deterministic total weighted
completion times for solutions generated by the SimIG-Exp. However, the val-
ues of E-RPD are lower for SimIG-Exp compared to IG, indicating SimIG-Exp
superiority when its solutions are submitted to the stochastic environment.
Note that the difference between the E-RPD values can be noted by the Gap
column, which indicates a reduction of at least 3.39% and up to 16.52% for the
SimIG-Exp algorithm. One can notice that the differences grow as the variance
level increases. Besides, the values of D-RPD are also higher as the variance
level increases, highlighting the advantage of simheuristics in these cases, given
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that the solution (i.e., the schedule defined for the machines) generated by the
SimIG-Exp diverges more from the solution built by the IG algorithm. Also,
by analyzing the average computational times, it is noticed that the overhead
caused by the simulation in SimIG-Exp is low, which makes the simheuristic
algorithms competitive against regular metaheuristics in generating solutions
for stochastic problems. The average computational times of the IG are inde-
pendent of the variance level since the method does not have a short simulation
step.

Regarding the simulation step, one can note that both the number of
simulation calls (SSim) and the number of replications (SRep) performed in
the short simulation decrease as the instance size grows. This behavior occurs
because an extreme value in one stochastic parameter impacts proportionally
more the objective function value when a smaller number of operations are
scheduled. That is, if an operation has its completion time increased due
to uncertainty, it would be one operation among 15 affecting the schedule
for smaller instances and one between 50 for larger instances. Besides, the
lower objective values of solutions with fewer operations result in a higher
proportional increment when the solutions are affected by the stochastic
environment. As expected, it is evident that the number of replications
increases when the variance level grows for both short and long simulation
steps (SRep and LRep). This analysis reinforces the advantage of using the
iterative mechanism of building confidence intervals during the simulation to
define the number of replications since this number is instance and variance
level dependent.

Figure 8.3 depicts the E-RPD distributions for the best solutions found
by the IG and SimIG-Exp algorithms within the three variance levels consider-
ing the complete set of instances. The zero-line corresponds to the best deter-
ministic solution. As mentioned before, this value is the reference used to assess
the impact of uncertainties when the solutions are submitted to the stochastic
environment. Not surprisingly, the consideration of uncertainties disrupts the
schedule, affecting the expected values of the solutions. Three main aspects can
be noted from the E-RPD distributions: (1) the higher the uncertainty, the
larger will be the deviations; (2) the expected values are bounded by the best
deterministic total weighted completion time (zero line), meaning that even
when the disruptions are low, the expected values for the objective function
are significantly impacted; (3) with increasing the uncertainty, the differences
between the distributions for the best solutions found by the algorithms are
accentuated.

To validate the previous analysis, we performed a statistical evaluation of
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Figure 8.3: Boxplot of the E-RPD distributions for each algorithm within
three variance levels.

the E-RPD distributions of each algorithm’s best solutions for each variance
level. Before running a statistical test, we confirmed that both samples follow
normal distributions according to the Shapiro-Wilk test. Then, we ran the
Analysis of Variance (ANOVA) with the Tukey HSD (honestly significant
difference), at a confidence level of 0.05, to compare the algorithms’ E-RPD
distributions. The tests indicated a statistically significant difference between
the algorithms in all scenarios. The p-values are below 0.01 in all cases.
The statistical evaluation corroborates the discussion about the difference
between the E-RPD distributions and points out a significant advantage for
simheuristics even with low variance level scenarios.

8.2.2
Sensitivity analysis regarding the variance levels

This section evaluates the sensitivity of the stochastic parameters’ vari-
ance levels, only considering the SimIG-Exp algorithm. First, we evaluate the
impact of each stochastic parameter individually. Thus, three scenarios are
considered: (1) stochastic release dates within three variance levels (In this
scenario, δp = 0 in all cases); (2) stochastic processing times within three lev-
els of variance (In this scenario, δr = 0 in all cases); (3) stochastic release dates
and processing times within three variance levels (In this scenario δp = δr in
all cases). One can note that Scenario 3 corresponds to the E-RPD distribu-
tions for the SimIG-Exp algorithm depicted in Figure 8.3. Figure 8.4 shows
the E-RPD distributions for the SimIG-Exp for the three proposed scenarios.
Again, the zero-line corresponds to the best deterministic solution.

Based on the boxplots, one can note a higher disturbance on the expected

DBD
PUC-Rio - Certificação Digital Nº 1712647/CA



Chapter 8. Iterated Greedy Simheuristic with Embedded Monte Carlo
Simulation for the stochastic PLSVSP 105

●

●

●

●

●

●

●

●

●

●

●

●

Stochastic 
 release dates

Stochastic 
 processing times

Stochastic 
 release dates and 
 processing times

Low Medium High Low Medium High Low Medium High

0

5

10

15

20

Variance Level

E
−

R
P

D
(%

)

SimIG−Exp

Figure 8.4: Boxplot of the E-RPD distributions for the SimIG-Exp algorithm
isolating the impact of the stochastic parameters.

objective function values with stochastic processing times than stochastic
release dates. This behavior can be explained by the lower values for the
release dates, thus having a higher probability of impacting the first scheduled
batches. Despite the discrepancy between the distributions when we isolate
each stochastic parameter’s impact, it is evident that the combination of
uncertainty in both parameters causes a more significant disruption in the
schedules, making the problem more challenging to be addressed.

In the next experiment, we evaluate the E-RPD distributions of the
best solutions generated by the SimIG-Exp algorithm for all combinations
between the variance levels for both stochastic parameters. To indicate the
specified variance level of each parameter, we introduce the following labels:
(N) no variance; (L) low variance; (M) medium variance; and (H) high
variance. For instance, the label MH means that the scenario considers medium
variance for the stochastic processing times and high variance for the stochastic
release dates, that is, δp = 2.0 and δr = 5.0. Figure 8.5 shows the E-RPD
distributions, with the horizontal axis sorted according to the distributions’
mean values, for a better visualization.

Note that configuration MM is centered in the graph, dividing the
scenarios between those with lower impact and higher impact on the solutions’
expected objective values. All combinations with at least one high variance
level are located on the right side of the graph (scenarios with higher average
values for the E-RPD). The increase in the mean of the distributions is evident
when both parameters assume the same variance level. Additionally, an almost
linear increase is noticed until the graph reaches the ML configuration, then
the increase is steeper between the ML and the MM configurations. The same
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Figure 8.5: Boxplot of the E-RPD distributions for the SimIG-Exp algorithm
with mixed variance levels among the stochastic parameters.

behavior occurs from the MM configuration on, it is almost linear up to the
HM configuration, and then there is a higher increase to the HH configuration.
This progression highlights the impact of considering stochastic processing
times and release dates in the problem.

8.2.3
Risk Analysis

In the next experiment, we evaluate the performance of the SimIG-CVaR
against the IG and SimIG-Exp algorithms, including the risk perspective to the
solutions’ analysis. We also consider the best solutions regarding the defined
selection criterion for the SimIG variants in this analysis. In addition to the
expected values, we are interested in analyzing the CVaR95% of the total
weighted completion times observations of the defined solutions. Figure 8.6
depicts the E-RPD and C-RPD distributions for the best solutions found
by the IG, SimIG-Exp, and SimIG-CVaR algorithms within the three variance
levels, considering the complete set of instances. The zero-line corresponds to
the best deterministic solution.

As noted in the first analysis, the superiority of the SimIG-Exp algorithm
upon the IG algorithm is evident. In this analysis it is noticed that the
SimIG-CVaR variant is also better than the IG algorithm in both criteria
analyzed (E-RPD and C-RPD). Moreover, although worse in the analysis of
the E-RPD, the advantage of SimIG-CVaR over SimIG-Exp is evident when the
criterion considered is the CVaR95%. This behavior was expected, given that
this criterion was used during optimization. However, an interesting result is
to realize that the reduction in the CVaR95% values when optimized by the
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Figure 8.6: Boxplot of the E-RPD and C-RPD distributions for each algo-
rithm within three variance levels.

SimIG-CVaR algorithm does not cause major impacts on the expected values.
The previous analysis highlights the challenge faced by planners when

choosing a schedule to be followed. We picked a large instance (50 operations),
within a high variance scenario (δp = δr = 5.0), to analyze the trade-off be-
tween the E-RPD and the C-RPD indicators, to reinforce the risk analysis.
Figure 8.7 depicts the described trade-off for all solutions generated by each
one of the algorithms (IG, SimIG-Exp, and SimIG-CVaR) regarding the ten
independent runs. Thus, 100 solutions are considered for the SimIG variants
and 10 solutions for the IG algorithm. In this analysis, we highlight the set
of dominant solutions (Pareto frontier). Among them, three were generated
by the SimIG-Exp algorithm, and two by the SimIG-CVaR. As expected, the
SimIG-Exp algorithm’s solutions have lower values for the E-RPD indicator,
while the solutions generated using the SimIG-CVaR algorithm have an advan-
tage over the C-RPD indicator. One can note that all solutions obtained by
the IG are dominated.

As highlighted, it is up to the decision-makers to choose a solution,
according to his risk profile, in this trade-off between risk and expected
return. In the example shown, the percentage differences are small. However,
depending on the problem, taking a 1% higher risk can significantly impact
the company’s expected returns, as in the case of oil and gas companies. The
operational cost is elevated in offshore oil and gas exploration, and choosing
good solutions is even more critical. However, extra statistical information over
the solutions can help the decision-makers in this process. As mentioned earlier,
any statistic can be evaluated regarding the distribution of the stochastic total
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Figure 8.7: Trade-off analysis, between the E-RPD and C-RPD, of all
proposed solutions for instance 50-4-222, considering the high variance level,
highlighting the dominant solutions.

weighted completion times of a solution generated in the simulation step. To
reinforce this discussion, we depict in Figure 8.8 the radar plots of the dominant
solutions for the selected instance (50-4-222) in terms of the expected objective
value (Exp.), the median of the distribution (Median), the third quartile of the
distribution (Q3), the value at risk at 95% (VaR), and the conditional value at
risk at 95% (CVaR). To allow comparing these statistics in the same scale, we
normalize all values within a range between 0 and 100 according to Equation 8-
4, where x = (x1, ..., xn) is the sample of a specific indicator (Exp., Median, Q3,
VaR or CVaR) among the different instances, and zi is the normalized value
of the ith element in x. Figure 8.8a shows these indicators for the two extreme
dominant solutions, i.e., the best solution regarding the expected objective
value and the best solution regarding the CVaR at 95%. Figure 8.8b depicts
the radar plot of the remaining dominant solutions.

zi = xi −min(x)
max(x)−min(x) × 100. (8-4)

One can note that the best solution regarding the expected objective
value presents extreme values for the value at risk and conditional value at
risk. Contrariwise, the best solution regarding the CVaR has extreme values for
other statistics (Q3 and Median). Thus, depending on the problem, choosing
a more balanced solution might be a better decision. Note that the remaining
dominant solutions are more balanced regarding the selected indicators and
might be a good option depending on the decision-maker, reinforcing their
role in the process.
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Figure 8.8: Radar plots of dominant solutions for instance 50-4-222 with
different statistics.

8.2.4
Simulation analysis

As previously highlighted, one of the main contributions of our simheuris-
tics is the use of the strategy of building confidence intervals around the mean
during the simulation stage. To show the behavior of this procedure within a
realistic instance, we present in Figure 8.9 the evolution of the expected objec-
tive value during the long simulation step for the 50-4-222 instance. The figure
includes the error computed from the confidence intervals, also displayed in the
graph. The horizontal axis is shown on a log10 scale for better visualization.
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Figure 8.9: Expected objective value evolution for instance 50-4-222 during
the long simulation step with the 99% confidence interval around the expected
value and with the interval error.

One can notice a higher variation in the expected objective value before
500 replications. After this point, the oscillation decreases while the expected
value converges to reach the desired interval error of 0.1%. Note that the
simulation requires a large number of replications to achieve the defined error.
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It is worth mentioning that, depending on the instance and the problem
addressed, the number of replications may vary significantly, emphasizing the
importance of the proposed strategy, thus having a more accurate statistic on
the simulated sample independently of the problem considered.

8.3
Discussion

In this chapter, we introduced a simheuristic algorithm to solve the
PLSVSP with stochastic processing times and release dates for the opera-
tions, combining an Iterated Greedy metaheuristic approach with a simulation
step to identify promising stochastic solutions. We conducted experiments on
the benchmark set of 72 PLSVSP instances, using Log-Normal distributions
to model the stochastic parameters. The results show a clear advantage of us-
ing the simulation step within the metaheuristic concepts, with statistically
significant reductions in the solutions’ expected objective value. The compu-
tational time overhead is low for the simulation step, resulting in a useful tool
for helping the decision-makers during the schedule developments. Moreover,
since it generates a pool of stochastic solutions, it allows the decision-makers
to choose the schedule that fits their risk profile.

Simheuristics have an important role due to their simplicity and low com-
putational overhead time compared to regular metaheuristics, emerging as an
exciting approach for solving stochastic combinatorial optimization problems.
The study highlights the importance of using simulation-optimization meth-
ods for solving stochastic problems, even when motivated by problems with
realistic backgrounds. A risk assessment is presented at the end of the com-
putational experiments section. In this analysis, a simheuristic variant that
focuses on minimizing the CVaR95% is compared with the approach that aims
to minimize the expected value of the solutions’ objective function. The com-
parison makes it possible to identify a set of dominant solutions for a given
instance, indicating the Pareto frontier, considering the trade-off between the
solutions’ expected objective values and the CVaR95%.
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9
Conclusion

The growth of oil and gas exploration in the Brazilian offshore basin,
due to the discovery of pre-salt fields, has forced companies operating in the
region to pay more attention to the efficient use of their resources. Among these
resources, the vessel’s fleet is fundamental to their operation, being responsible
for tasks extending from the field’s development to the production phase.
These vessels work in the appraisal, drilling, product distribution, platform
support, wells maintenance, among other tasks. This work focused on a specific
vessel, specially designed to connect pipelines between subsea oil wells and
production platforms in ultra-deepwater regions – The Pipe Laying Support
Vessel (PLSV). These vessels are among those with the highest operating and
acquisition costs. They not only connect the pipelines but transport them to
the wells site after loading it onto their deck. The connection of the wells is the
last performed step so that a well can start producing, thus being a task of high
impact on the expected annual production of an offshore oil and gas company.
Therefore, the PLSV scheduling problem (PLSVSP) consists of servicing a
demand of sub-sea oil wells connections, finding the best schedule for a limited
PLSV fleet, prioritizing the completion of wells with higher production levels.
The problem can be seen as a variant of a batch scheduling problem with
parallel machines to minimize the total weighted completion time. In this
analogy, vessels are machines, wells represent jobs that must be completed,
and batches are the voyages made by the vessels. Each voyage consists of the
pipeline loading process in the port, followed by a set of connections to be
performed in different wells, regarding the loaded pipelines.

This work addressed a PLSVSP, in its deterministic and stochastic
variants, from a company that operates in the Brazilian pre-salt region.
Thus, the work had the following objectives: (1) Define the problem properly,
modeling it according to some classic formulations of the scheduling literature;
(2) Propose a set of benchmark instances for the problem generated from
real data of the studied company; (3) Develop heuristic procedures with and
without hybridization aiming at improving solutions in terms of quality and
computational cost; (4) Propose a stochastic variant of the problem, using
an optimization-simulation method to generate solutions that better adjust to
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uncertainties.
In the first part of the work, we considered only the deterministic variant

of the problem, and four mathematical formulations were presented. Two of
them were used in two matheuristics, developed to provide faster solutions
for the PLSVSP. In the last part regarding the deterministic PLSVSP, we
introduce a metaheuristic that uses destruction and repair operators to escape
from local optimal solutions and provides faster solutions when compared to
the matheuristics. It is worth mentioning that methods that use mathematical
formulations, as in the matheuristics, tend to be more flexible in dealing with
the studied company’s real problem. This is due to the company’s management
guidelines, which can quickly change the characteristics of the problem. These
methods can be easily modified without much computational development
effort. We can add or remove constraints in the formulation without the need
for any modifications to the matheuristics. A benchmark with 72 instances
was generated with different characteristics of the problem to test the methods
and formulations. Within the experiments, we observed that the matheuristics
were able to improve the solutions generated by pure MIP formulations in
less than 1 minute on average, considering the complete set of instances. The
average computation time is below 10 minutes for matheuristics, and more
than 19,000 seconds for the MIP formulations, also considering the complete
set of instances. Finally, we compared the matheuristics with a metaheuristic,
with better performance for the metaheuristic in terms of solution quality and
computational time even with a high number of iterations. In our experiments,
we ran the metaheuristic with a maximum number of 7000 iterations. It was
able to generate solutions with an average deviation of 0.07% from the best
solutions achieved by the matheuristics in less than 23 seconds on average.
In comparison, the best matheuristic’s average deviation is 0.74%. However,
as highlighted previously, modifications in the metaheuristic requires a more
significant computational development effort. Providing different optimization
methods allows the company to evaluate them comparatively and define the
one that better adapts to their process.

In the second part of the work, we consider a stochastic variant of the
PLSVSP in which some of the problem parameters are random variables, fol-
lowing non-negative probability distributions. PLSVSP’s main uncertainties
regard the pipeline connections’ duration and pipelines’ arrival dates at the
port. The consideration of uncertainties represents a more practical problem,
making it possible to develop better solutions that suit the realistic environ-
ment. From our knowledge, the present work is the first one dealing with
the stochastic PLSVSP. We developed a simheuristic technique, defined by
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combining a metaheuristic structure with embedded Monte Carlo simulation,
to solve the problem. These methods have shown excellent results in dealing
with stochastic scheduling problems in the literature. We tested the simheuris-
tic within different variability scenarios for the uncertain parameters. Results
showed an advantage in using built-in simulation to deal with the stochas-
tic PLSVSP, with significantly better solutions in terms of expected costs
compared to a deterministic metaheuristic, without much computational time
overhead. The method provides a pool of stochastic solutions, allowing the
decision-makers to choose the schedule that fits their risk profile. Thus, we
present a Pareto frontier analysis, considering the trade-off between the solu-
tions’ expected objective values and the CVaR95%.

We fulfill all the thesis’s objectives by introducing several optimization
methods to deal with the PLSVSP in its deterministic and stochastic variants.
To the best of our knowledge, our work is the first to formulate and deal
with a complete PLSVSP version. Unlike other strategies in the literature, our
approaches allow the problem to be solved without reducing the solution space,
diminishing the risk of removing the optimal or high-quality solutions.

We limited our study to the PLSVSP in the Brazilian pre-salt region.
Other companies or regions may define different rules on how to schedule the
PLSV fleet. Some consider precedence constraints for the pipeline connection
tasks, others aim to minimize the tasks’ tardiness according to their pre-
established due dates, others deal with smaller capacity vessels, among other
characteristics. We also disregarded the occurrence of disruptions within the
schedule, such as ship wreckage, ship maintenance, equipment failure, and
others. The practical problem is susceptible to operational issues that can
interrupt one or more services in the wells. In the stochastic variant of the
problem, we limited the problem to two uncertainties. However, planners might
consider other relevant uncertainties to make the simulation step even more
suitable to the real process, such as duration uncertainty varying according to
the vessel, uncertainty on the pipeline loading times, and vessel eligibility.

A significant contribution of our work is to approach a complex real-
life scheduling problem with several aspects and constraints. Moreover, based
on the relations drawn between the studied problem and a parallel machine
scheduling problem, the work collaborates with this crucial area approached
by the operations research community. The results obtained show that the
planners can use the developed tools in practice and that, since it is a
complex machine scheduling problem, it can assist in similar works or simplified
variants of the PLSVSP, such as problems with batch scheduling, open shop
scheduling problems, family scheduling problems, among others. The PLSVSP
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combines several machine scheduling aspects simultaneously, such as job
splitting, machine eligibility, release dates, non-anticipatory setup times, and
others. Most of the works found in the machine scheduling literature do
not consider more than two or three aspects. Furthermore, one of the most
challenging considered aspects, the non-anticipatory family setup times, is
rarely found in the scheduling literature. To the best of our knowledge, our work
is the first to model the non-anticipatory setup times within a family scheduling
problem. Despite being a widely studied field, the machine scheduling theory
encompasses several industrial problems with their specificities, giving good
perspectives for new studies. We believe that family and batch scheduling
problems are of interest to many industries and deserve sustained attention.
Researchers could investigate some interesting variants as unrelated parallel
machine scheduling problems with non-anticipatory and machine-dependent
family setup times, machine scheduling problems with sequence-dependent
non-anticipatory family setup times, and serial batch scheduling with family
setup times and job availability. In batch scheduling problems with job
availability, a task concludes according to its completion time instead of its
assigned batch completion time.

9.1
Future Perspectives

Below we list some research perspectives for the continuity of the present
work:

– Study the PLSVSP regarding other exploratory regions in Brazil. It is
worth mentioning that given the similarity between the problems, it is
expected that few modifications in the methods are necessary.

– Consider disruptions to the problem, such as ship wreckage, ship mainte-
nance, equipment failure, and others. These interruptions can be studied
and considered a priori in a deterministic or stochastic approach based
on historical data.

– Study the integrated problem in which the PLSV fleet is scheduled in
conjunction with rigs to optimize the development phase of the wells.
Currently, the company defines the rigs’ schedules before the PLSV fleet
further. However, integrating these problems can generate an interesting
research study and result in financial and operational gains for the
company.

– Implement the methods proposed in the studied company to test it in
the real workday of the planners.
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– Evaluate other optimization approaches, as bio-inspired methods like
genetic algorithms, memetic algorithms, particle swarm optimization
algorithms, and others.

– Evaluate the performance of the methods in generalized instances. All
experiments were carried out on instances generated with real data from
the PLSVSP in the Brazilian pre-salt region. However, we can use the
machine scheduling literature to generate a more general set of instances,
following the most usual rules and distributions.

– Test the methods within established machine scheduling instances. The
problem’s complexity allows it to be simplified, resulting in other known
machine scheduling problems. Thus, it would be interesting to evaluate
the performance of the developed methods in solving these problems.

– Develop other stochastic optimization approaches for solving the
PLSVSP.

– Consider other probability distributions for modeling the stochastic
parameters.

– Approach the problem as an unrelated parallel machine scheduling
problem, in which the duration of tasks varies according to the assigned
machine to perform it. Also, extend the problem for the stochastic variant
of it, in which the uncertainty on the duration also depends on the
assigned machine.

– Assess the wait-and-see solutions in the stochastic PLSVSP. In this
analysis, the metaheuristic must be performed in each stochastic scenario
to generate the expected average value of the objective function if
the uncertainty parameters were known before the optimization. This
analysis can help to assess the impact of uncertainties in the problem.

– Test different statistics of the input distributions for the stochastic pa-
rameter during the deterministic evaluation of solution in the simheuris-
tic, instead of only considering the distribution’s mean.

– Consider the convex combination between the expected value and the
CVaR as the statistic selection for the simheuristic, allowing it to find
balanced solution regarding these aspects during its execution.

– Extend the simheuristic to a multi-objective approach, in which a weight
parameter defines which objective to prioritize. The idea is to adjust the
weight iteratively to build a complete set of Pareto Optimal solutions.
One objective may be the expected objective value in this approach, and
the other may be the CVaR.
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– Extend the simheuristic to a multi-objective approach, in which a weight
parameter defines which objective to prioritize. The idea is to adjust the
weight iteratively to build a complete set of Pareto Optimal solutions.
One objective may be the expected objective value in this approach, and
the other may be the CVaR.

DBD
PUC-Rio - Certificação Digital Nº 1712647/CA



Bibliography

Abu-Marrul, V., Martinelli, R., and Hamacher, S. (2019). Instances for the plsv
scheduling problem: An identical parallel machine approach with non-anticipatory
family setup times. URL: https://doi.org/10.17771/PUCRio.ResearchData.45799.

Abu-Marrul, V., Martinelli, R., and Hamacher, S. (2020). Scheduling pipe laying support
vessels with non-anticipatory family setup times and intersections between sets of
operations. International Journal of Production Research, 0(0):1–15.

Abu-Marrul, V., Martinelli, R., Hamacher, S., and Gribkovskaia, I. (2021a). Matheuristics
for a parallel machine scheduling problem with non-anticipatory family setup times:
Application in the offshore oil and gas industry. Computers & Operations Research.

Abu-Marrul, V., Mecler, D., Martinelli, R., Hamacher, S., and Gribkovskaia, I. (2021b).
Heuristics for Scheduling Pipe-laying Support Vessels: An Identical Parallel Machine
Scheduling Approach. In 17th International Workshop on Project Management and
Scheduling.

Allahverdi, A. (2015). The third comprehensive survey on scheduling problems with
setup times/costs. European Journal of Operational Research, 246(2):345–378.

Allahyarzadeh-Bidgoli, A., Salviano, L. O., Dezan, D. J., de Oliveira Junior, S., and
Yanagihara, J. I. (2018). Energy optimization of an fpso operating in the brazilian
pre-salt region. Energy, 164:390–399.

Azizoglu, M. and Webster, S. (2003). Scheduling parallel machines to minimize weighted
flowtime with family set-up times. International Journal of Production Research,
41(6):1199–1215.

Bassi, H. V., Ferreira Filho, V. J. M., and Bahiense, L. (2012). Planning and scheduling
a fleet of rigs using simulation–optimization. Computers & Industrial Engineering,
63(4):1074–1088.

Beck, J. C., Prosser, P., and Selensky, E. (2002). On the reformulation of vehicle routing
problems and scheduling problems. In International symposium on abstraction,
reformulation, and approximation, pages 282–289. Springer.

Beck, J. C., Prosser, P., and Selensky, E. (2003). Vehicle routing and job shop scheduling:
What’s the difference? In ICAPS, pages 267–276.

Behera, D. K. (2012). Complexity on parallel machine scheduling: A review. In Emerging
Trends in Science, Engineering and Technology, pages 373–381. Springer.

Beltrao, R. L. C., Sombra, C. L., Lage, A. C. V., Netto, J. R. F., Henriques, C. C. D., et al.
(2009). Pre-salt santos basin-challenges and new technologies for the development

DBD
PUC-Rio - Certificação Digital Nº 1712647/CA



Bibliography 118

of the pre-salt cluster, santos basin, brazil (otc-19880). In Offshore Technology
Conference, Houston, Texas, USA.

Bettayeb, B., Kacem, I., and Adjallah, K. H. (2008). An improved branch-and-
bound algorithm to minimize the weighted flowtime on identical parallel machines
with family setup times. Journal of Systems Science and Systems Engineering,
17(4):446–459.

Billaut, J.-C., Della Croce, F., and Grosso, A. (2015). A single machine scheduling
problem with two-dimensional vector packing constraints. European Journal of
Operational Research, 243(1):75–81.

Calvet, L., Wang, D., Juan, A., and Bové, L. (2019). Solving the multidepot vehicle
routing problem with limited depot capacity and stochastic demands. International
Transactions in Operational Research, 26(2):458–484.

Chen, Z.-L. and Powell, W. B. (2003). Exact algorithms for scheduling multiple families
of jobs on parallel machines. Naval Research Logistics, 50(7):823–840.

Cheng, T. and Sin, C. (1990). A state-of-the-art review of parallel-machine scheduling
research. European Journal of Operational Research, 47(3):271–292.

Christiansen, M., Fagerholt, K., Nygreen, B., and Ronen, D. (2007). Maritime trans-
portation. Handbooks in operations research and management science, 14:189–284.

Christiansen, M., Fagerholt, K., Nygreen, B., and Ronen, D. (2013). Ship routing and
scheduling in the new millennium. European Journal of Operational Research,
228(3):467–483.

Christiansen, M., Fagerholt, K., and Ronen, D. (2004). Ship routing and scheduling:
Status and perspectives. Transportation science, 38(1):1–18.

Ciavotta, M., Meloni, C., and Pranzo, M. (2016). Speeding up a Rollout algorithm for
complex parallel machine scheduling. International Journal of Production Research,
54(16):4993–5009.

Clevelario, J., Pires, F., Barros, C., and Sheldrake, T. (2010). Flexible pipe systems
configurations for the pre-salt area. In ASME 2010 29th International Conference
on Ocean, Offshore and Arctic Engineering, pages 457–464. American Society of
Mechanical Engineers Digital Collection.

Cunha, V., Santos, I., Pessoa, L., and Hamacher, S. (2020). An ILS heuristic for the
ship scheduling problem: application in the oil industry. International Transactions
in Operational Research, 27(1):197–218.

De Lima, H. F. (2007). Metodologia para a tomada de decisão no projeto de sistemas
submarinos de produção de óleo e gás. 2007. 169 p. Master’s thesis, COPPE/UFRJ.
Rio de Janeiro.

Della Croce, F., Grosso, A., and Salassa, F. (2014). A matheuristic approach for the two-
machine total completion time flow shop problem. Annals of Operations Research,
213(1):67–78.

DBD
PUC-Rio - Certificação Digital Nº 1712647/CA



Bibliography 119

Della Croce, F., Grosso, A., and Salassa, F. (2019). Minimizing total completion time
in the two-machine no-idle no-wait flow shop problem. Journal of Heuristics, pages
1–15.

Devold, H. (2013). Oil and gas production handbook: an introduction to oil and gas
production, transport, refining and petrochemical industry. ABB Oil and Gas.

Dunstall, S. and Wirth, A. (2005a). A comparison of branch-and-bound algorithms for
a family scheduling problem with identical parallel machines. European Journal of
Operational Research, 167(2):283–296.

Dunstall, S. and Wirth, A. (2005b). Heuristic methods for the identical parallel
machine flowtime problem with set-up times. Computers & Operations Research,
32(9):2479–2491.

Edis, E. B., Oguz, C., and Ozkarahan, I. (2013). Parallel machine scheduling with addi-
tional resources: Notation, classification, models and solution methods. European
Journal of Operational Research, 230(3):449–463.

Ekici, A., Elyasi, M., Özener, O. Ö., and Sarıkaya, M. B. (2019). An application of
unrelated parallel machine scheduling with sequence-dependent setups at vestel
electronics. Computers & Operations Research, 111:130–140.

Eom, D.-H., Shin, H.-J., Kwun, I.-H., Shim, J.-K., and Kim, S.-S. (2002). Scheduling
Jobs on Parallel Machines with Sequence-Dependent Family Set-up Times. The
International Journal of Advanced Manufacturing Technology, 19(12):926–932.

Fabri, M. and Ramalhinho, H. (2021). The in-house logistics routing problem. Interna-
tional Transactions in Operational Research.

Fanjul-Peyro, L., Perea, F., and Ruiz, R. (2017). Models and matheuristics for the
unrelated parallel machine scheduling problem with additional resources. European
Journal of Operational Research, 260(2):482–493.

Fanjul-Peyro, L. and Ruiz, R. (2010). Iterated greedy local search methods for unrelated
parallel machine scheduling. European Journal of Operational Research, 207(1):55–
69.

Fernández Pérez, M. A., Oliveira, F., and Hamacher, S. (2018). Optimizing workover rig
fleet sizing and scheduling using deterministic and stochastic programming models.
Industrial & Engineering Chemistry Research, 57(22):7544–7554.

Fonseca-Reyna, Y. C., Martínez-Jiménez, Y., Cabrera, A. V., and Sanchez, E. A. R.
(2019). Optimization of heavly constrained hybrid-flexible slowshop problems
using a multi-agent reinforcement learning approach. Investigación Operacional,
40(1):100–111.

Fuchigami, H. Y., Moccellin, J. V., and Ruiz, R. (2015). New priority rules for the
flexible flow line scheduling problem with setup times. Production, 25(4):779–790.

Gokhale, R. and Mathirajan, M. (2012). Scheduling identical parallel machines with ma-
chine eligibility restrictions to minimize total weighted flowtime in automobile gear

DBD
PUC-Rio - Certificação Digital Nº 1712647/CA



Bibliography 120

manufacturing. The International Journal of Advanced Manufacturing Technology,
60(9-12):1099–1110.

González, M. A., Vela, C. R., Varela, R., and González-Rodríguez, I. (2015). An advanced
scatter search algorithm for solving job shops with sequence dependent and non-
anticipatory setups. AI Communications, 28(2):179–193.

Gonzalez-Martin, S., Juan, A. A., Riera, D., Elizondo, M. G., and Ramos, J. J. (2018). A
simheuristic algorithm for solving the arc routing problem with stochastic demands.
Journal of Simulation, 12(1):53–66.

Gonzalez-Neira, E. M., Ferone, D., Hatami, S., and Juan, A. A. (2017). A biased-
randomized simheuristic for the distributed assembly permutation flowshop problem
with stochastic processing times. Simulation Modelling Practice and Theory, 79:23–
36.

González-Neira, E. M., Urrego-Torres, A. M., Cruz-Riveros, A. M., Henao-García, C.,
Montoya-Torres, J. R., Molina-Sánchez, L. P., and Jiménez, J.-F. (2019). Robust
solutions in multi-objective stochastic permutation flow shop problem. Computers
& Industrial Engineering, 137:106026.

Grasas, A., Juan, A. A., and Lourenço, H. R. (2016). Simils: a simulation-based extension
of the iterated local search metaheuristic for stochastic combinatorial optimization.
Journal of Simulation, 10(1):69–77.

Grenouilleau, F., Lahrichi, N., and Rousseau, L.-M. (2020). New decomposition methods
for home care scheduling with predefined visits. Computers & Operations Research,
115:104855.

Gruler, A., Panadero, J., de Armas, J., Pérez, J. A. M., and Juan, A. A. (2018). Combin-
ing variable neighborhood search with simulation for the inventory routing problem
with stochastic demands and stock-outs. Computers & Industrial Engineering,
123:278–288.

Gruler, A., Panadero, J., de Armas, J., Pérez, J. A. M., and Juan, A. A. (2020). A variable
neighborhood search simheuristic for the multiperiod inventory routing problem
with stochastic demands. International Transactions in Operational Research,
27(1):314–335.

Gruler, A., Quintero-Araújo, C. L., Calvet, L., and Juan, A. A. (2017). Waste
collection under uncertainty: a simheuristic based on variable neighbourhood search.
European Journal of Industrial Engineering, 11(2):228–255.

Guimarans, D., Dominguez, O., Panadero, J., and Juan, A. A. (2018). A simheuristic
approach for the two-dimensional vehicle routing problem with stochastic travel
times. Simulation Modelling Practice and Theory, 89:1–14.

Haddad, E. and Giuberti, A. C. (2010). Economic impacts of pre-salt on a regional
economy: the case of espírito santo, brazil. In 50th Congress of the European
Regional Science Association:“Sustainable Regional Growth and Development in

DBD
PUC-Rio - Certificação Digital Nº 1712647/CA



Bibliography 121

the Creative Knowledge Economy", Jönköping, Sweden. European Regional Science
Association (ERSA).

Ham, A., Fowler, J. W., and Cakici, E. (2017). Constraint programming approach for
scheduling jobs with release times, non-identical sizes, and incompatible families on
parallel batching machines. IEEE Transactions on Semiconductor Manufacturing,
30(4):500–507.

Hansen, P. and Mladenović, N. (2003). Variable neighborhood search. In Handbook of
metaheuristics, pages 145–184. Springer.

Hatami, S., Calvet, L., Fernández-Viagas, V., Framiñán, J. M., and Juan, A. A. (2018).
A simheuristic algorithm to set up starting times in the stochastic parallel flowshop
problem. Simulation Modelling Practice and Theory, 86:55–71.

Heath, S. K., Bard, J. F., and Morrice, D. J. (2013). A grasp for simultaneously assigning
and sequencing product families on flexible assembly lines. Annals of Operations
Research, 203(1):295–323.

Islam, M. and Khan, M. (2013). The petroleum engineering handbook: sustainable
operations. Elsevier.

Juan, A., Faulin, J., Grasman, S., Riera, D., Marull, J., and Mendez, C. (2011). Using
safety stocks and simulation to solve the vehicle routing problem with stochastic
demands. Transportation Research Part C: Emerging Technologies, 19(5):751–765.

Juan, A. A., Barrios, B. B., Vallada, E., Riera, D., and Jorba, J. (2014). A simheuristic
algorithm for solving the permutation flow shop problem with stochastic processing
times. Simulation Modelling Practice and Theory, 46:101–117.

Juan, A. A., Faulin, J., Grasman, S. E., Rabe, M., and Figueira, G. (2015). A review
of simheuristics: Extending metaheuristics to deal with stochastic combinatorial
optimization problems. Operations Research Perspectives, 2:62–72.

Kaabi, J. and Harrath, Y. (2014). A survey of parallel machine scheduling under avail-
ability constraints. International Journal of Computer and Information Technology,
3(2):238–245.

Kalinowski, T., Matthews, J., and Waterer, H. (2020). Scheduling of maintenance
windows in a mining supply chain rail network. Computers & Operations Research,
115:104670.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated
annealing. Science, 220(4598):671–680.

Kouki, Z., Chaar, B. F., Hammadi, S., and Ksouri, M. (2007). Analogies between flexible
job shop scheduling and vehicle routing problems. In 2007 IEEE International
Conference on Industrial Engineering and Engineering Management, pages 880–
884. IEEE.

LABANCA, E. L. (2005). Metodologia para a seleção de arranjos submarinos baseada
na eficiência operacional. Master’s thesis, Universidade Federal do Rio de Janeiro.

DBD
PUC-Rio - Certificação Digital Nº 1712647/CA



Bibliography 122

Lam, K. and Xing, W. (1997). New trends in parallel machine scheduling. International
Journal of Operations & Production Management.

Latorre-Biel, J. I., Ferone, D., Juan, A. A., and Faulin, J. (2021). Combining simheuristics
with petri nets for solving the stochastic vehicle routing problem with correlated
demands. Expert Systems with Applications, 168:114240.

Lawrence, S. A. (1972). International sea transport: the years ahead. Lexington Books.

Lee, C. (2017). A dispatching rule and a random iterated greedy metaheuristic for
identical parallel machine scheduling to minimize total tardiness. International
Journal of Production Research, 56:1–17.

Lee, Y. H. and Pinedo, M. (1997). Scheduling jobs on parallel machines with sequence-
dependent setup times. European Journal of Operational Research, 100(3):464–
474.

Li, K. and Yang, S.-l. (2009). Non-identical parallel-machine scheduling research with
minimizing total weighted completion times: Models, relaxations and algorithms.
Applied mathematical modelling, 33(4):2145–2158.

Liao, C.-J., Chao, C.-W., and Chen, L.-C. (2012). An improved heuristic for parallel
machine weighted flowtime scheduling with family set-up times. Computers &
Mathematics with Applications, 63(1):110–117.

Lin, B. M. and Cheng, T. E. (2005). Two-machine flowshop batching and scheduling.
Annals of Operations Research, 133(1-4):149–161.

Lin, S.-W. and Ying, K.-C. (2016). Optimization of makespan for no-wait flowshop
scheduling problems using efficient matheuristics. Omega, 64:115–125.

Lin, S.-W. and Ying, K.-C. (2019). Makespan optimization in a no-wait flowline
manufacturing cell with sequence-dependent family setup times. Computers &
Industrial Engineering, 128:1–7.

Lopes, T. C., Michels, A. S., Lüders, R., and Magatão, L. (2020). A simheuristic
approach for throughput maximization of asynchronous buffered stochastic mixed-
model assembly lines. Computers & Operations Research, 115:104863.

Lourenço, H. R., Martin, O. C., and Stützle, T. (2003). Iterated local search. In
Handbook of metaheuristics, pages 320–353. Springer.

Martinelli, R., Collard, J., and Gamache, M. (2019). Strategic planning of an under-
ground mine with variable cut-off grades. Optimization and Engineering, pages
1–47.

Mecler, D. (2020). A metaheuristic for the pipe laying support vessel scheduling problem.
Master’s thesis, Pontifical Catholic University of Rio de Janeiro - PUC-Rio.

Mecler, D., Abu-Marrul, V., Martinelli, R., and Hoff, A. (2021). Iterated greedy
algorithms for a complex parallel machine scheduling problem. arXiv.

Mehdizadeh, E., Tavakkoli-Moghaddam, R., and Yazdani, M. (2015). A vibration
damping optimization algorithm for a parallel machines scheduling problem with

DBD
PUC-Rio - Certificação Digital Nº 1712647/CA



Bibliography 123

sequence-independent family setup times. Applied Mathematical Modelling,
39(22):6845–6859.

Mendes, A. B. (2007). Programação de frota de apoio a operações\’offshore\’sujeita
à requisição de múltiplas embarcações para uma mesma tarefa. PhD thesis,
Universidade de São Paulo.

Mokotoff, E. (2001). Parallel machine scheduling problems: A survey. Asia-Pacific
Journal of Operational Research, 18(2):193.

Mönch, L. and Roob, S. (2018). A matheuristic framework for batch machine scheduling
problems with incompatible job families and regular sum objective. Applied Soft
Computing, 68:835–846.

Monemi, R. N., Danach, K., Khalil, W., Gelareh, S., Lima Jr, F. C., and Aloise, D. J.
(2015). Solution methods for scheduling of heterogeneous parallel machines applied
to the workover rig problem. Expert Systems with Applications, 42(9):4493–4505.

National Oilwell Varco (2020). Flexible pipe system accessories.

O Petróleo (2017). Sapura energy ganha us$ 352 milhões em contratos na malásia e no
brasil.

Obeid, A., Dauzère-Pérès, S., and Yugma, C. (2014). Scheduling job families on non-
identical parallel machines with time constraints. Annals of Operations Research,
213(1):221–234.

Offshore Energy Today (2013). Subsea 7 scores $600 mln in petrobras plsv contracts.

Omar, M. K. and Teo, S. C. (2006). Minimizing the sum of earliness/tardiness in
identical parallel machines schedule with incompatible job families: An improved
MIP approach. Applied Mathematics and Computation, 181(2):1008–1017.

Onggo, B. S., Panadero, J., Corlu, C. G., and Juan, A. A. (2019). Agri-food supply
chains with stochastic demands: A multi-period inventory routing problem with
perishable products. Simulation Modelling Practice and Theory, 97:101970.

Ozer, E. A. and Sarac, T. (2019). Mip models and a matheuristic algorithm for
an identical parallel machine scheduling problem under multiple copies of shared
resources constraints. Top, 27(1):94–124.

Pagès-Bernaus, A., Ramalhinho, H., Juan, A. A., and Calvet, L. (2019). Designing
e-commerce supply chains: a stochastic facility–location approach. International
Transactions in Operational Research, 26(2):507–528.

Panadero, J., Doering, J., Kizys, R., Juan, A. A., and Fito, A. (2020). A variable
neighborhood search simheuristic for project portfolio selection under uncertainty.
Journal of Heuristics, 26(3):353–375.

Pinedo, M. (2012). Scheduling. Theory, algorithms, and systems, volume 29. Springer.

Pisinger, D. and Røpke, S. (2007). A general heuristic for vehicle routing problems.
Computers & Operations Research, 34(8):2403–2435.

Potts, C. N. and Kovalyov, M. Y. (2000). Scheduling with batching: A review. European
Journal of Operational Research, 120(2):228–249.

DBD
PUC-Rio - Certificação Digital Nº 1712647/CA



Bibliography 124

Queiroz, M. M. and Mendes, A. B. (2011). Heuristic approach for solving a pipe layer
fleet scheduling problem. In Rizzuto, E. and Soares, C. G., editors, Sustainable
Maritime Transportation and Exploitation of Sea Resources, chapter 9, pages 1073–
1080. Taylor & Francis Group, London.

Quintero-Araujo, C. L., Gruler, A., Juan, A. A., de Armas, J., and Ramalhinho, H.
(2017). Using simheuristics to promote horizontal collaboration in stochastic city
logistics. Progress in Artificial Intelligence, 6(4):275–284.

Quintero-Araujo, C. L., Guimarans, D., and Juan, A. A. (2019). A simheuristic algorithm
for the capacitated location routing problem with stochastic demands. Journal of
Simulation, pages 1–18.

Raba, D., Estrada-Moreno, A., Panadero, J., and Juan, A. A. (2020). A reactive
simheuristic using online data for a real-life inventory routing problem with stochas-
tic demands. International Transactions in Operational Research.

Rabbani, M., Heidari, R., and Yazdanparast, R. (2019). A stochastic multi-period
industrial hazardous waste location-routing problem: Integrating nsga-ii and monte
carlo simulation. European Journal of Operational Research, 272(3):945–961.

Resende, M. G. C. and Ribeiro, C. C. (2019). Greedy Randomized Adaptive Search
Procedures: Advances and Extensions, pages 169–220. Springer International
Publishing, Cham.

Reyes-Rubiano, L., Ferone, D., Juan, A. A., and Faulin, J. (2019). A simheuristic for
routing electric vehicles with limited driving ranges and stochastic travel times.
SORT-Statistics and Operations Research Transactions, 1(1):3–24.

Rodrigues, L. A. and Sauer, I. L. (2015). Exploratory assessment of the economic gains
of a pre-salt oil field in brazil. Energy Policy, 87:486–495.

Rodriguez, F. J., Blum, C., García-Martínez, C., and Lozano, M. (2012). Grasp
with path-relinking for the non-identical parallel machine scheduling problem with
minimising total weighted completion times. Annals of Operations Research,
201(1):383–401.

Ronen, D. (1983). Cargo ships routing and scheduling: Survey of models and problems.
European Journal of Operational Research, 12(2):119–126.

Ronen, D. (1993). Ship scheduling: The last decade. European Journal of Operational
Research, 71(3):325–333.

Ropke, S. and Pisinger, D. (2006). An adaptive large neighborhood search heuristic
for the pickup and delivery problem with time windows. Transportation science,
40(4):455–472.

Roshanaei, V., Balagh, A. K. G., Esfahani, M. M. S., and Vahdani, B. (2010). A mixed-
integer linear programming model along with an electromagnetism-like algorithm
for scheduling job shop production system with sequence-dependent set-up times.
The International Journal of Advanced Manufacturing Technology, 47(5-8):783–
793.

DBD
PUC-Rio - Certificação Digital Nº 1712647/CA



Bibliography 125

Ruiz, R., Pan, Q.-K., and Bahman, N. (2019). Iterated greedy methods for the distributed
permutation flowshop scheduling problem. Omega, 83:213–222.

Ruiz, R., Şerifoğlu, F. S., and Urlings, T. (2008). Modeling realistic hybrid flexible
flowshop scheduling problems. Computers & Operations Research, 35(4):1151–
1175.

Ruiz, R. and Stützle, T. (2007). A simple and effective iterated greedy algorithm for
the permutation flowshop scheduling problem. European Journal of Operational
Research, 177(3):2033–2049.

Santos, M. S., Pinto, T. V., Ênio Lopes Júnior, Cota, L. P., Souza, M. J., and
Euzébio, T. A. (2020). Simheuristic-based decision support system for efficiency
improvement of an iron ore crusher circuit. Engineering Applications of Artificial
Intelligence, 94:103789.

Schaller, J. E. (2014). Minimizing total tardiness for scheduling identical parallel
machines with family setups. Computers & Industrial Engineering, 72:274–281.

Shin, H. J. and Leon, V. J. (2004). Scheduling with product family set-up times:
an application in TFT LCD manufacturing. International Journal of Production
Research, 42(20):4235–4248.

SINAVAL (2013). Technip e dof conquistam contrato para quatro navios plsv.

Speight, J. G. (2015). Handbook of Offshore Oil and Gas Operations. Elsevier.

Street, A. (2010). On the conditional value-at-risk probability-dependent utility function.
Theory and Decision, 68(1):49–68.

Su, L.-H. (2009). Scheduling on identical parallel machines to minimize total completion
time with deadline and machine eligibility constraints. The International Journal
of Advanced Manufacturing Technology, 40(5-6):572–581.

Subramanian, A., Drummond, L. M. d. A., Bentes, C., Ochi, L. S., and Farias, R. (2010).
A parallel heuristic for the vehicle routing problem with simultaneous pickup and
delivery. Computers & Operations Research, 37(11):1899–1911.

Ta, Q. C., Billaut, J.-C., and Bouquard, J.-L. (2018). Matheuristic algorithms for
minimizing total tardiness in the m-machine flow-shop scheduling problem. Journal
of Intelligent Manufacturing, 29(3):617–628.

Tavakkoli-Moghaddam, R., Tavakkoli-Moghaddam, R., and Mehdizadeh, E. (2007). A
new ilp model for identical parallel-machine scheduling with family setup times
minimizing the total weighted flow time by a genetic algorithm. Technical Report 2.

TecPetro (2015). Dutos submarinos.

Thomas, J. E. (2001). Fundamentos de engenharia de petróleo. Interciência.

Thompson, J. M. (2018). Exact or metaheuristic methods or a bit of both–the rise of
matheuristics. Keynote Papers, page 32.

Tseng, C.-T. and Lee, C.-H. (2017). A new electromagnetism-like mechanism for
identical parallel machine scheduling with family setup times. The International
Journal of Advanced Manufacturing Technology, 89(5-8):1865–1874.

DBD
PUC-Rio - Certificação Digital Nº 1712647/CA



Bibliography 126

UNCTAD, U. (2015). World investment report 2015: Reforming international investment
governance. United Nations Publications Customer Service, page 253.

Unlu, Y. and Mason, S. J. (2010). Evaluation of mixed integer programming formulations
for non-preemptive parallel machine scheduling problems. Computers & Industrial
Engineering, 58(4):785–800.

Ðurasević, M. and Jakobović, D. (2018). A survey of dispatching rules for the dynamic
unrelated machines environment. Expert Systems with Applications, 113:555–569.

Van Der Zee, D.-J. (2015). Family-based dispatching with parallel machines. Interna-
tional Journal of Production Research, 53:5837–5856.

Villarinho, P. A., Panadero, J., Pessoa, L. S., Juan, A. A., and Oliveira, F. L. C. (2021).
A simheuristic algorithm for the stochastic permutation flow-shop problem with
delivery dates and cumulative payoffs. International Transactions in Operational
Research, 28(2):716–737.

Webster, S. and Azizoglu, M. (2001). Dynamic programming algorithms for scheduling
parallel machines with family setup times. Computers & Operations Research,
28(2):127–137.

Weng, M. X., Lu, J., and Ren, H. (2001). Unrelated parallel machine scheduling with
setup consideration and a total weighted completion time objective. International
journal of production economics, 70(3):215–226.

Woo, Y.-B. and Kim, B. S. (2018). Matheuristic approaches for parallel machine
scheduling problem with time-dependent deterioration and multiple rate-modifying
activities. Computers & Operations Research, 95:97–112.

Yazdani, M., Kabirifar, K., Frimpong, B. E., Shariati, M., Mirmozaffari, M., and
Boskabadi, A. (2021). Improving construction and demolition waste collection
service in an urban area using a simheuristic approach: A case study in sydney,
australia. Journal of Cleaner Production, 280:124138.

DBD
PUC-Rio - Certificação Digital Nº 1712647/CA



A
Publications

Our publication strategy followed the order in which the thesis introduces
the optimization approaches. In this way, each chapter of methods (Chapters
4 to 8) generated a research paper, with four full research articles and one
extended abstract. The extended abstract is available in the proceedings of
a conference specialized in project management and scheduling problems.
Among the full articles, two were published in leading journals on applied
operations research and industrial engineering problems. And, the remaining
papers were submitted to high-standard operations research journals with
pre-print versions available online. More details about the research papers
developed during the thesis are given in the following:

Paper 1

Title: Scheduling pipe laying support vessels with non-anticipatory
family setup times and intersections between sets of opera-
tions (Abu-Marrul et al. 2020).

Authors: Victor Abu-Marrul, Rafael Martinelli, and Silvio Hamacher.
Content: Mathematical Formulations for the PLSVSP (Chapter 4).

Type: Full research paper.
Journal or

Conference: International Journal of Production Research (IJPR).

Status: Published (2020).

Paper 2

Title: Heuristics for Scheduling Pipe-laying Support Vessels: An
Identical Parallel Machine Scheduling Approach (Abu-
Marrul et al. 2021b).

Authors: Victor Abu-Marrul, Davi Mecler, Rafael Martinelli, Silvio
Hamacher, and Irina Gribkovskaia.

Content: Constructive Heuristics for the PLSVSP (Chapter 5).
Type: Extended abstract.

Journal or
Conference: 17th International Workshop on Project Management and

Scheduling (PMS).
Status: In proceedings (2021).
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Paper 3

Title: Matheuristics for a parallel machine scheduling problem
with non-anticipatory family setup times: Application in the
offshore oil and gas industry (Abu-Marrul et al. 2021a).

Authors: Victor Abu-Marrul, Rafael Martinelli, Silvio Hamacher, and
Irina Gribkovskaia.

Content: MIP-based Neighborhood Search Matheuristics for the
PLSVP (Chapter 6).

Type: Full research paper.
Journal or

Conference: Computers and Operations Research (COR).

Status: Published (2021).

Paper 4

Title: Iterated Greedy Algorithms for a Complex Parallel Machine
Scheduling Problem” (Mecler et al. 2021).

Authors: Davi Mecler, Victor Abu-Marrul, Rafael Martinelli, and
Arild Hoff.

Content: Iterated Greedy Algorithm for the PLSVSP (Chapter 7) and
other Iterated Greedy algorithm variants, applied to a new
benchmark set of instances.

Type: Full research paper.
Journal or

Conference: European Journal of Operational Research (EJOR)

Status: Submitted/Pre-print available (2021).

Paper 5

Title: Simheuristic algorithm for a stochastic parallel machine
scheduling problem.

Authors: Victor Abu-Marrul, Rafael Martinelli, Silvio Hamacher, and
Irina Gribkovskaia.

Content: Iterated Greedy Simheuristic with Embedded Monte Carlo
Simulation for the stochastic PLSVSP (Chapter 8).

Type: Full research paper.
Journal or

Conference: Annals of Operations Research (ANOR)

Status: Submitted to a special issue entitled “Recent Advances
in Simulation-based Optimization for Operations Research
Problems” (2021).
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B
Mathematical Formulations

B.1
Tables of Symbols

B.1.1
General Elements

Table B.1: General Elements for all formulations.

Type Name Description

Set O Set of operations to be scheduled.
Set M Set of heterogeneous machines.
Set N Set of jobs, which group operations.
Set F Set of families.
Set Oj Subset of operations composing job Jj ∈ N .
Set Og Subset of operations that composes to family Fg ∈ F .
Set Mi Subset of machines Mk ∈M eligible to process operation Oi ∈ O.
Set Ni Subset of jobs related to operation Oi ∈ O.

Parameter pi Processing time of operation Oi ∈ O.
Parameter ri Release date of operation Oi ∈ O.
Parameter li Load occupation of operation Oi ∈ O.
Parameter wj Weight of job Jj ∈ N .
Parameter wi Relative weight of operation Oi ∈ O, defined as max

Jj∈Ni

{wj}.

Parameter rk Release date of machine Mk ∈M.
Parameter qk Capacity limit of machine Mk ∈M (usually 1.0 or 100).
Parameter sg Setup time of family Fg ∈ F .
Parameter rmax Maximum operations release date, defined as max

Oi∈O
{ri}.

Parameter M Large number.
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B.1.2
Specific Formulations Elements

Table B.2: Positional Scheduling Formulation Elements.

Type Name Description

Set Pk Set of positions on machine Mk ∈M.
Binary variable Xp

ik If operation Oi ∈ O is scheduled in the p-th position on machine Mk ∈M.
Binary variable Y p

gk If a setup time of family Fg ∈ F is scheduled in p-th position on machine Mk ∈M.
Continuous variable Spk Starting time of the p-th position on machine Mk ∈M.
Continuous variable Lpk Total Load of the p-th position on machine Mk ∈M.
Continuous variable Rp

k Release of the p-th position on machine Mk ∈M.
Continuous variable Ci Completion time of operation Oi ∈ O.
Continuous variable Cj Completion time of job Jj ∈ N .

Table B.3: Time-Index Scheduling Formulation Elements.

Type Name Description

Set Tk Set of periods on machine Mk ∈M.
Binary variable X t

ik If operation Oi ∈ O is start on period t ∈ T on machine Mk ∈M.
Binary variable Y t

gk If the a setup of family Fg ∈ F starts at period t ∈ T on machine Mk ∈M.
Continuous variable Ltk Total accumulated load at period t ∈ T on machine Mk ∈M.
Continuous variable Rt

k Release defined for period t ∈ T on machine Mk ∈M.
Continuous variable Ci Completion time of operation Oi ∈ O.
Continuous variable Cj Completion time of job Jj ∈ N .

Table B.4: Batch Scheduling Formulations Elements.

Type Name Description

Set Bk Set of batches on machine Mk ∈M.
Set Oi Operations that will be executed before Oi ∈ O if they are in the same batch.

Binary variable Xb
ik If operation Oi ∈ O is scheduled in the b-th batch of machine Mk ∈M.

Binary variable Y b
gk If the b-th batch of machine Mk ∈M is of family Fg ∈ F .

Binary variable Zîı If operation Oi and Oı̂ are scheduled in the same batch and Oi precedes Oı̂. (Only for Batch-S formulation)
Continuous variable Sbk Starting time of the b-th batch on machine Mk ∈M.
Continuous variable P b

k Total processing time of the b-th batch on machine Mk ∈M.
Continuous variable Ci Completion time of operation Oi ∈ O.
Continuous variable Cj Completion time of job Jj ∈ N .

B.2
Lower bounds and root node relaxation solution comparison

In this section, we compare the relaxation quality of the developed for-
mulations. In Table B.5, we show the average deviations considering the re-
laxed solutions of the branch and bound root node (initial lower bounds)
and the final lower bounds, after executing the formulations. Information
on the number of operations (o) and the number of machines (m) are
shown in the first two columns of the table. Deviations are computed as
(Bound − BestBound)/BestBound × 100, where Bound is the lower bound
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generated by each formulation, while BestBound is the best lower bound be-
tween formulations, in each instance. The results are shown in terms of av-
erage deviation and organized by instance group. The last row summarizes
the assessment for all 72 instances. Note that, regarding the root node re-
laxation, Time-Index dominates the other formulations, generating the best
initial bounds in all groups (average deviation of 0.00%). The bounds gener-
ated by Positional and Batch are 24.03% and 22.61% worse, respectively,
considering all instances. Since we are dealing with a minimization problem,
negative deviations indicate less tight bounds. In the evaluation of the final
lower bounds, Time-Index also dominates, providing the best bounds for all
instances. In this case, Positional is 22.11% worse, while Batch is 15.48%
worse. It is important to highlight that Batch bounds are not valid since the
operations are heuristically sequenced within the batches in this formulation,
without considering the complete solution space of the problem. However, we
are presenting it for comparison. Note that, even limiting the solution space,
the relaxation is not good in this formulation, which can be explained by the
use of a large number M to compute the completion times of the operations.
This condition also affects Positional relaxation.

Table B.5: Average deviations between formulations for the root node relax-
ation solutions and for the final lower bounds on each group of instances.

o m
Root node relaxation Final lower bound

Positional Time-Index Batch† Positional Time-Index Batch†

15 4 -24.20 0.00 -22.50 -17.96 0.00 -10.07
15 8 -21.95 0.00 -19.66 -12.00 0.00 -4.13
25 4 -26.28 0.00 -25.18 -27.24 0.00 -20.05
25 8 -23.88 0.00 -22.08 -25.48 0.00 -14.68
50 4 -23.94 0.00 -23.37 -24.48 0.00 -20.93
50 8 -23.97 0.00 -22.90 -25.50 0.00 -23.03

All -24.03 0.00 -22.61 -22.11 0.00 -15.48

† Batch bounds are not valid since the formulation does not consider the complete
solution space of the problem.

B.3
Variables and constraints comparison

In this section, we present a comparison of the number of variables and
constraints generated by each of the developed formulations. In Table B.6, we
summarize the minimum, average, and the maximum number of variables and
constraints for each formulation by instance group. The last row of the table
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shows the same evaluation for all instances. Note that the number of variables
and constraints is lower for Batch in all groups, which explains the good
performance of the formulation compared to Time-Index and Positional.
Batch has 3,506 variables and 7,742 constraints on average, considering all
instances. If compared with Positional, it means 51.37% fewer variables and
5.56% fewer constraints. Compared to Time-Index, the reductions are 95.39%
and 71.81%, for variables and constraints, respectively.

Table B.6: Summary of the number of variables and constraints for each of the
developed formulations by instance group.

o m

Positional Time-Index Batch

Variables Constraints Variables Constraints Variables Constraints

min avg max min avg max min avg max min avg max min avg max min avg max

15 4 975 1296 1771 1254 1626 2175 8445 13352 17340 7262 9707 12298 463 618 846 881 1221 1659
8 1559 2361 2901 2017 2954 3576 19099 25993 34577 14982 19547 24113 729 1113 1372 1255 2149 2665

25 4 2158 2979 3769 2648 3541 4406 17836 29625 37948 10715 14664 17806 1040 1440 1825 2363 3188 3818
8 4727 5790 6678 5650 6842 7806 45632 59813 71304 24906 29897 34834 2265 2780 3213 4092 5946 7978

50 4 9889 11061 12755 11054 12289 14108 97579 119469 133974 26407 32306 34250 4850 5426 6262 10457 12373 14447
8 16611 19771 22007 18597 21936 24336 167833 208422 260429 54809 58653 68621 8106 9660 10762 16897 21575 25116

All 975 7210 22007 1254 8198 24336 8445 76112 260429 7262 27462 68621 463 3506 10762 881 7742 25116

B.4
Complete Results for the Mathematical Formulations

In this section, we present, in Table B.7, the total weighted completion
time (objective function) found by each formulation for the 72 PLSV instances.
The first two columns indicate the name of the instance and the best solution
(BEST) found between the formulations (optimal solutions are indicated with
an asterisk). For each formulation, the table includes the respective upper
bounds (UB), lower bounds (LB), and the gap between them (GAP). We
highlighted, in bold, the best solutions found in each instance.

To save space, we shorten the instance names. For example, in the
benchmark set, an instance named PLSV_o15_n5_q3_m4_111_1, indicates
a total of 15 operations (o15 ), associated with 5 jobs (n5 ), divided into 3
families (q3 ), to be scheduled on 4 machines (m4 ). Since the number of jobs
depends on the number of operations (calculated as n = bo/3c, following the
instance generation procedure defined in Chapter 4, we delete it from the
instance name. We also suppress the number of families and the last digit
because they are equal to 3 and 1 in all instances.
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Table B.7: Complete results by instance for each mathematical formulation.

Instance BEST

Positional Time-Index Batch

UB LB GAP UB LB GAP UB LB GAP

15-4-111 6903* 6903 5696.74 17.47 6903 6903.00 0.00 6927 6902.00 0.36
15-4-112 7717* 7760 5616.88 27.62 7717 7717.00 0.00 7842 6622.00 15.56
15-4-121 7498* 7525 6515.98 13.41 7498 7498.00 0.00 7562 7054.00 6.72
15-4-122 8608* 8608 6540.74 24.02 8608 8608.00 0.00 8608 7121.00 17.27
15-4-131 10964* 10964 10530.26 3.96 10964 10964.00 0.00 10964 10914.00 0.46
15-4-132 10685* 10685 10667.00 0.17 10685 10685.00 0.00 10685 10667.00 0.17
15-4-211 8822* 8822 6853.69 22.31 8822 8822.00 0.00 8822 7728.00 12.40
15-4-212 6579* 6801 4224.55 37.88 6579 6579.00 0.00 6681 4931.00 26.19
15-4-221 5929* 5929 5098.00 14.02 5929 5929.00 0.00 5929 5236.00 11.69
15-4-222 14545* 14604 11164.11 23.55 14545 14545.00 0.00 14726 12240.00 16.88
15-4-231 10755* 10778 9009.04 16.41 10755 10755.00 0.00 10755 9759.00 9.26
15-4-232 15747* 15747 12910.32 18.01 15747 15747.00 0.00 15747 14404.00 8.53

15-8-111 4306* 4306 3939.17 8.52 4306 4306.00 0.00 4306 4140.00 3.86
15-8-112 5453* 5475 4602.00 15.95 5453 5453.00 0.00 5453 5082.00 6.80
15-8-121 10790* 10790 10790.00 0.00 10790 10790.00 0.00 10790 10790.00 0.00
15-8-122 8369* 8369 7721.00 7.74 8369 8369.00 0.00 8369 8369.00 0.00
15-8-131 4339* 4339 3847.57 11.33 4339 4339.00 0.00 4339 4231.00 2.49
15-8-132 7371* 7378 6343.72 14.02 7371 7371.00 0.00 7371 6971.00 5.43
15-8-211 3189* 3189 2627.75 17.60 3189 3189.00 0.00 3196 3072.00 3.88
15-8-212 4256* 4256 3039.00 28.59 4256 4256.00 0.00 4256 3756.00 11.75
15-8-221 5519* 5519 4763.00 13.70 5519 5519.00 0.00 5519 5063.00 8.26
15-8-222 10461* 10461 9720.00 7.08 10461 10461.00 0.00 10461 9925.00 5.12
15-8-231 8002* 8017 6847.85 14.58 8002 8002.00 0.00 8002 8002.00 0.00
15-8-232 5127* 5145 4845.00 5.83 5127 5127.00 0.00 5127 5013.00 2.22

25-4-111 9151 9151 5554.34 39.30 9163 8922.14 2.63 9204 6418.00 30.27
25-4-112 18776 19116 8657.18 54.71 19095 16765.52 12.20 18776 10097.00 46.22
25-4-121 23134 23398 16521.37 29.39 23508 21676.10 7.79 23134 18087.00 21.82
25-4-122 12415 12415 9904.01 20.23 12415 11979.00 3.51 12423 10788.00 13.16
25-4-131 32800 33396 25556.36 23.47 32800 31436.25 4.16 33089 27144.00 17.97
25-4-132 27555* 27642 22707.04 17.85 27555 27555.00 0.00 27834 24242.00 12.91
25-4-211 30098 30259 15388.35 49.14 30098 26987.68 10.33 30168 17471.84 42.08
25-4-212 20012 20012 9720.21 51.43 20172 17661.94 12.44 20412 10982.00 46.20

Continued on next page
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Table B.7 – continued from previous page

Instance BEST

Positional Time-Index Batch

UB LB GAP UB LB GAP UB LB GAP

25-4-221 19944 20461 14420.32 29.52 20573 19004.43 7.62 19944 15431.00 22.63
25-4-222 27274 27274 18924.14 30.61 27666 24502.00 11.44 27306 22495.00 17.62
25-4-231 29552 29579 24569.09 16.94 29552 28908.83 2.18 29727 25365.00 14.67
25-4-232 29502 29544 24095.50 18.44 29502 27874.68 5.52 29605 25579.00 13.60

25-8-111 11558 11754 7020.29 40.27 11561 10985.29 4.98 11558 8879.00 23.18
25-8-112 16150 16153 8677.00 46.28 16150 15041.61 6.86 16397 13286.00 18.97
25-8-121 10478 10678 8037.00 24.73 10549 10416.18 1.26 10478 9116.00 13.00
25-8-122 19723 20154 14262.70 29.23 19723 18353.77 6.94 19900 14878.00 25.24
25-8-131 9700* 9992 7521.45 24.73 9700 9699.82 0.00 9753 8556.00 12.27
25-8-132 17947 18385 14525.00 21.00 17947 17613.80 1.86 18069 16304.00 9.77
25-8-211 8369 8399 5707.00 32.05 8369 8038.05 3.95 8454 6947.00 17.83
25-8-212 13518 13718 8439.00 38.48 13518 12741.30 5.75 14074 8904.00 36.73
25-8-221 10993 10993 8602.07 21.75 10993 10973.35 0.18 11004 9879.00 10.22
25-8-222 14140 14759 9818.00 33.48 14140 13003.73 8.04 14397 10140.00 29.57
25-8-231 9251 9260 7467.00 19.36 9251 9112.00 1.50 9401 8551.00 9.04
25-8-232 16929 17104 13922.00 18.60 16929 16430.36 2.95 17179 14319.00 16.65

50-4-111 64068 70430 31231.83 55.66 77915 53498.00 31.34 64068 35047.00 45.30
50-4-112 102246 105420 49573.18 52.98 141654 81876.00 42.20 102246 48787.00 52.28
50-4-121 65231 66821 49800.84 25.47 79298 59448.00 25.03 65231 52761.00 19.12
50-4-122 109078 111945 74609.00 33.35 139816 93961.00 32.80 109078 78618.00 27.93
50-4-131 92825 95613 77325.33 19.13 103406 86551.00 16.30 92825 79871.00 13.96
50-4-132 99080 101816 83992.55 17.51 108063 91768.00 15.08 99080 86368.00 12.83
50-4-211 84383 84383 36992.27 56.16 101148 72437.00 28.39 84445 40150.00 52.45
50-4-212 87761 89998 40072.31 55.47 116313 69962.00 39.85 87761 42139.00 51.98
50-4-221 106430 107875 73157.28 32.18 128244 94499.00 26.31 106430 77429.00 27.25
50-4-222 105136 108737 64687.01 40.51 130840 84786.00 35.20 105136 68495.00 34.85
50-4-231 89865 90592 77028.57 14.97 92482 82375.00 10.93 89865 80115.00 10.85
50-4-232 131034 133575 99852.99 25.25 162223 113917.00 29.78 131034 101660.00 22.42

50-8-111 34381 35214 19914.72 43.45 42281 30308.00 28.32 34381 22974.00 33.18
50-8-112 50521 50521 23712.00 53.07 63573 37204.00 41.48 50809 24163.00 52.44
50-8-121 31944 32317 22607.25 30.05 35628 28021.00 21.35 31944 23330.00 26.97
50-8-122 42961 44135 27248.00 38.26 55892 35185.00 37.05 42961 27689.00 35.55
50-8-131 60738 61587 48452.00 21.33 63390 56573.00 10.75 60738 49247.00 18.92

Continued on next page
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Table B.7 – continued from previous page

Instance BEST

Positional Time-Index Batch

UB LB GAP UB LB GAP UB LB GAP

50-8-132 65103 66941 46238.41 30.93 73496 53436.00 27.29 65103 49403.00 24.12
50-8-211 48355 49758 24093.00 51.58 59431 41047.00 30.93 48355 24109.00 50.14
50-8-212 60291 61043 26170.00 57.13 75680 45357.00 40.07 60291 26635.00 55.82
50-8-221 35471 36556 24375.00 33.32 41663 31017.00 25.55 35471 24741.00 30.25
50-8-222 56600 57164 32053.95 43.93 68310 45464.00 33.44 56600 32603.00 42.40
50-8-231 54080 55899 45961.00 17.78 59774 50996.00 14.69 54080 46400.00 14.20
50-8-232 62858 64263 45023.07 29.94 67058 57253.00 14.62 62858 46664.00 25.76
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C.1
Results by Instance for the constructive heuristics

In this section, we present the total weighted completion time (objective function) found by each constructive heuristic introduced
in Chapter 5 for the benchmark of 72 PLSVSP instances (Table C.1). The first two columns indicate the name of the instance and the
best solution found among the heuristics. To save space, we shorten the instance names as described in Appendix B.4.

Table C.1: Complete results for the constructive heuristics.

Instance Best ERD SPT LPT MCT
WSPT
-MAX-

WSPT
-SUM-

WSPT
-AVG-

WSPT
-WAVG-

WSPT
-WAVGA-

WMCT
-MAX-

WMCT
-SUM-

WMCT
-AVG-

WMCT
-WAVG-

WMCT
-WAVGA-

WMCT-Pair
-MAX-

WMCT-Pair
-SUM-

WMCT-Pair
-AVG-

WMCT-Pair
-WAVG-

WMCT-Pair
-WAVGA-

15-4-111 7444 9095 10713 11381 9364 7462 7462 8274 7997 8897 7618 7444 7618 7444 8007 7618 7444 7618 7444 8047
15-4-112 8551 11495 10318 11837 11348 9473 10236 10243 10596 10181 9527 9199 9469 9686 8551 9527 9199 9469 9686 8551
15-4-121 7969 9665 10938 13180 10499 10884 10884 11244 9019 7969 9524 9093 9425 8512 8512 9715 9093 9425 8431 8782
15-4-122 9799 9799 12461 13682 11765 12067 12018 11679 10876 11417 11190 11038 11092 9848 10175 11190 11038 11092 9888 10175
15-4-131 11094 13864 15040 14549 15040 13060 13308 13060 12557 11472 12040 11831 12328 11094 11094 12040 11831 12328 11094 11154
15-4-132 11948 12919 14861 13936 13044 13595 13668 14099 13744 13217 11948 12198 12343 12373 12308 11948 12198 12343 12462 12462
15-4-211 9677 11668 11742 13026 11662 11282 11123 11282 10160 9767 9961 10441 10446 11321 9677 9961 10441 10446 11321 9677
15-4-212 7037 8917 10525 10601 9805 9307 8383 8993 8106 7617 8416 7538 7969 8397 7037 8500 7538 7969 8236 7037
15-4-221 6608 8405 8012 8399 7983 7476 7250 7559 7524 6965 6619 6633 7101 6813 6813 6619 6633 7101 6608 6813
15-4-222 15948 22350 19317 18987 19255 18086 17544 17265 18170 16728 17724 17911 18497 16695 15948 17724 17911 18497 16695 15948

Continued on next page
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Table C.1 – continued from previous page

Instance Best ERD SPT LPT MCT
WSPT
-MAX-

WSPT
-SUM-

WSPT
-AVG-

WSPT
-WAVG-

WSPT
-WAVGA-

WMCT
-MAX-

WMCT
-SUM-

WMCT
-AVG-

WMCT
-WAVG-

WMCT
-WAVGA-

WMCT-Pair
-MAX-

WMCT-Pair
-SUM-

WMCT-Pair
-AVG-

WMCT-Pair
-WAVG-

WMCT-Pair
-WAVGA-

15-4-231 12002 13727 13534 14614 13034 13037 13444 13438 13233 12502 13179 12486 13884 12545 12002 13179 12486 13884 12545 12104
15-4-232 17847 20374 21169 21341 18869 19006 19326 19846 19006 19462 18027 18047 18184 18756 18436 17847 18005 18120 18696 18436
15-8-111 4586 5623 4964 5635 5095 5118 4855 5283 4760 4629 4690 4795 5169 4586 4795 4687 4795 5163 4586 4795
15-8-112 6064 7371 7242 6882 7251 6392 6392 6217 6392 6271 6147 6147 6151 6155 6064 6112 6112 6067 6143 6100
15-8-121 11195 11195 18692 11290 13544 13904 12435 13904 11751 11863 11195 11667 11195 11894 11195 11195 11667 11195 11894 11195
15-8-122 8929 11366 8929 9146 9113 9074 10456 8929 10864 9938 9749 10778 9016 9685 9209 9749 10778 9016 9685 9209
15-8-131 4603 6178 5812 5656 5509 4840 4840 5656 5053 4603 4798 4798 4702 4999 4633 4798 4798 4702 4999 4633
15-8-132 7723 8508 8173 9631 8108 7723 7863 7731 7787 7913 7787 7787 7754 7731 7731 7787 7787 7754 7731 7731
15-8-211 3396 4650 4233 3895 4176 3552 3552 3552 3581 3468 3582 3589 3582 3418 3396 3582 3589 3582 3406 3430
15-8-212 4342 5605 5626 5815 5619 4671 4715 4581 4705 4665 4749 4646 4342 4732 4646 4749 4568 4342 4715 4568
15-8-221 6475 7352 8000 7630 7158 6727 6727 6845 7055 6891 6801 6801 6475 6820 6860 6801 6801 6563 6820 6860
15-8-222 12337 13781 13585 14499 13585 15990 13479 13819 12873 12950 12750 12337 13343 12665 12511 13124 12337 13343 12665 12665
15-8-231 8110 9036 9185 8206 9261 8134 8134 8134 9086 8372 8134 8134 8134 8110 8309 8134 8134 8134 8110 8309
15-8-232 5454 6483 7218 6072 7233 5469 5778 5970 5778 5505 5832 5505 5466 5505 5454 5898 5454 5478 5454 5529
25-4-111 10263 15292 17505 17568 15435 12326 12057 13125 12344 11555 11173 11582 11997 10295 10263 11173 11582 11997 10295 10471
25-4-112 21655 27075 27488 33343 30831 25167 25723 25857 24620 23075 22554 24125 22323 22668 21842 21655 24125 22323 22668 21926
25-4-121 25371 35202 33992 36125 31063 29933 29172 29996 29045 27071 26121 27588 26871 25668 26632 25371 27588 26015 25748 26632
25-4-122 13905 18604 20013 19208 18008 17114 16874 18902 17629 17385 14121 15104 17895 13905 14163 14121 14782 16606 13905 14155
25-4-131 37019 42554 44623 49718 40155 43673 44628 41967 41089 39296 37019 38799 37481 38254 37828 37019 38656 37460 38254 38058
25-4-132 31571 33911 40801 45725 34202 38003 39559 41636 39928 35033 32217 34674 34873 32636 31571 32217 34674 35153 32072 32281
25-4-211 32367 44982 44580 51040 43400 42699 35517 40056 36627 32987 37544 35848 37662 35890 32367 37427 35662 38449 37393 34148
25-4-212 23303 29192 29934 31132 29002 27214 25979 29533 27875 25658 23353 27193 26524 25819 24641 23303 26263 28086 26131 24367
25-4-221 22267 29642 33937 32374 30899 29540 27733 28970 27055 26328 27669 25653 26930 23652 22267 27484 25653 26930 23839 22581
25-4-222 29749 31390 37468 33553 35605 33430 32620 38308 33240 33617 31953 30819 32481 30912 29749 31953 30819 32481 30912 29893
25-4-231 32329 38344 43323 42292 42184 41837 41337 41147 40656 37826 34740 35001 35950 33068 32329 34740 34906 35950 33068 32862
25-4-232 35049 36134 46387 45360 39399 45616 40586 47534 40885 37147 38086 35366 38644 35805 35049 38183 35366 39278 35805 35049
25-8-111 12438 14305 16780 16879 16521 15645 14709 15825 14906 13376 14846 14155 15450 12816 12884 14846 14155 15355 12816 12438
25-8-112 19767 21947 21283 23152 21231 22201 21225 22141 21577 21926 19767 20463 21469 22255 20044 19962 20463 21469 22255 20044
25-8-121 11367 14409 17130 15067 16169 14428 13414 14322 11867 11635 11643 11745 11866 11409 11367 11753 11745 11800 11494 11367
25-8-122 21984 24377 25257 25050 24363 23428 23062 24814 24425 22029 22776 24236 24218 24000 21984 22776 24236 23794 24000 22002
25-8-131 10001 14225 13626 15973 13527 12074 11657 12374 11295 10932 10572 10001 11967 10431 10505 10572 10001 11382 10502 10558
25-8-132 19133 21787 24434 22067 23196 24173 22211 22719 21502 20171 22511 21118 22226 19656 19133 21719 21118 21616 19656 19363
25-8-211 9393 12982 13825 13462 14637 10682 10339 10571 10023 9806 9899 10035 9680 9847 9393 10023 9723 9778 9687 9395
25-8-212 15149 16537 18523 19791 18228 18779 18656 19335 17190 16173 18621 19517 19184 16544 15149 18621 18163 19009 15911 15562
25-8-221 12185 14919 17180 16228 15538 14650 14521 14714 14836 14484 13910 13245 13604 13613 12185 13910 13245 13523 13035 12338

Continued on next page
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Table C.1 – continued from previous page

Instance Best ERD SPT LPT MCT
WSPT
-MAX-

WSPT
-SUM-

WSPT
-AVG-

WSPT
-WAVG-

WSPT
-WAVGA-

WMCT
-MAX-

WMCT
-SUM-

WMCT
-AVG-

WMCT
-WAVG-

WMCT
-WAVGA-

WMCT-Pair
-MAX-

WMCT-Pair
-SUM-

WMCT-Pair
-AVG-

WMCT-Pair
-WAVG-

WMCT-Pair
-WAVGA-

25-8-222 15772 17208 20235 17468 17947 18166 18245 18302 17767 16318 17669 16915 17362 16198 15858 16811 16791 17362 16198 15772
25-8-231 10157 11481 12339 10970 11378 10645 10928 11868 11136 10157 10183 10473 10823 10263 10180 10183 10473 10823 10165 10272
25-8-232 17813 20610 21909 20968 21123 19677 20062 19493 20489 19789 18118 18279 17813 19401 19230 18118 18279 17929 19401 19230
50-4-111 74774 108184 111179 129960 99840 91771 98297 98466 93228 82488 77235 88247 94768 86220 78466 74774 86880 88894 84173 79278
50-4-112 113765 145788 154836 153691 151717 144916 137004 144686 130922 119877 118963 127386 132296 125817 116919 116804 128155 128254 122312 113765
50-4-121 75727 101557 114354 119339 94268 102667 101916 103746 94912 87680 84837 88155 88798 80250 75727 84328 88110 88409 79643 75843
50-4-122 123813 154439 172323 191179 152129 158905 157955 162322 153978 143462 133152 149718 147096 140083 123813 128786 150146 145600 140083 123881
50-4-131 105604 130939 168283 145498 130204 143675 142495 143062 124464 121436 105604 119512 109447 116412 116498 106984 119248 108647 116412 117427
50-4-132 107780 133506 165648 154187 135527 161387 160165 157576 155081 145316 110442 132379 122785 123647 114357 107780 132404 122785 124296 113429
50-4-211 88068 121234 131463 135979 125447 113382 107610 121532 109450 98578 98004 96903 103978 96857 88068 98169 95908 102390 95728 88068
50-4-212 91988 130181 139964 144482 125511 129884 116569 127136 114736 105529 101005 109391 112401 99147 92556 96773 103666 111811 99196 91988
50-4-221 129455 162268 171369 184071 148045 149295 152045 158909 144899 133614 129771 157278 134604 137834 129682 131853 158772 134604 137834 129455
50-4-222 122095 133334 175586 154759 148554 156027 156152 164236 155422 142770 122095 142812 139128 143825 128304 123513 141656 139443 143287 128711
50-4-231 105334 112385 143965 166122 114861 127941 130149 131960 129579 118576 105334 110289 115546 115395 108208 106467 110588 115442 109627 108744
50-4-232 144658 163796 185888 181001 169699 179771 175133 181582 171171 157407 149780 165183 167808 161031 144661 148384 165183 165414 161031 144658
50-8-111 36764 55699 54547 64875 50867 44284 45075 45096 43275 42647 38490 40783 40225 39913 36764 38653 39905 40036 39239 37260
50-8-112 50915 68412 67045 70152 61249 65968 61328 66463 57451 54461 61761 59657 64491 55958 51512 61338 59288 63278 55537 50915
50-8-121 38062 44553 56482 54158 51716 44897 44443 46020 43537 40729 40143 40343 40232 38717 38062 40123 40336 40221 38717 38131
50-8-122 46364 55933 69336 58323 61350 58852 58907 62062 57208 53222 48859 51033 51687 49314 46364 49213 50293 51453 49315 46364
50-8-131 68008 77405 92697 91720 80622 86045 83778 89643 81077 73340 69379 75060 76571 73940 68008 70207 75290 76853 73940 69421
50-8-132 68833 78371 100479 82661 88875 94329 89336 94963 83000 79633 78562 76500 77251 75477 69662 79178 78097 77520 73063 68833
50-8-211 50009 66338 68135 76791 68205 64621 62416 64455 60205 54628 59005 59838 60807 56043 50520 58022 59173 55779 55611 50009
50-8-212 60848 77535 77491 81317 78535 72394 74184 73220 72552 63566 67058 71200 71149 70600 60848 65670 69974 71655 70516 60974
50-8-221 37090 52511 51315 53566 49627 43219 43746 48524 42549 38954 40077 42505 43371 38226 37090 39988 42021 43387 38160 37373
50-8-222 61897 70389 76352 74470 71178 73447 75879 74374 70175 67386 67125 67618 66752 68295 62205 64778 66386 65320 66949 61897
50-8-231 60485 68314 86694 87497 80227 78004 76486 82500 75266 64781 64779 66756 69242 62092 60485 65047 66662 69197 62272 60492
50-8-232 69575 83868 98096 100155 92059 94037 93982 96221 93828 93181 77229 84392 84036 77676 69575 76513 84256 84159 77592 70452
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D.1
Matheuristics Comparative Analysis

In this section, we compare the results for the matheuristic variations.
In Table D.1, the results for the ILS-Math variations are shown in terms of
the average RPD (RPD) and average computational time (time). The same
results but for the GRASP-Math variations are presented in Table D.2.

Table D.1: Average results for ILS-Math variations.

o m
ILS-Math1 ILS-Math2 ILS-Math3

RPD time RPD time RPD time

15
4 0.61 14 0.33 18 0.42 14
8 0.11 46 0.03 49 0.08 46

25 4 0.06 123 -0.13 143 -0.17 123
8 -0.15 247 -0.18 267 -0.20 244

50
4 -2.78 1054 -2.74 984 -3.02 1052
8 -3.99 972 -3.86 994 -4.09 990

All instances -1.02 409 -1.09 409 -1.16 412

Table D.2: Average results for GRASP-Math variations.

o m
GRASP-Math1 GRASP-Math2 GRASP-Math3

RPD CPU RPD CPU RPD CPU

15 4 0.49 25 0.29 28 0.30 26
15 8 0.05 53 0.02 65 0.01 54

25 4 -0.15 184 -0.38 217 -0.31 186
25 8 -0.20 298 -0.27 313 -0.27 297

50 4 -2.34 1140 -2.50 1194 -2.65 1159
50 8 -3.74 1038 -3.86 1173 -3.80 1066

All instances -0.98 456 -1.117 498 -1.119 465

Note that results for the ILS-Math are quite similar for all variations.
However, we can see an advantage for the ILS-Math3 approach when the size
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of the instances increases (instances with 25 and 50 operations). Regarding the
complete set of instances, ILS-Math3 advantage is clearer with it dominating
the other approaches in terms of the RPD with −1.16%. Similar behavior
can be noted for the GRASP-Math variations. GRASP-Math3 presented the best
overall RPD of -1.119% with a small difference in the average computational
time for the best approach in this criterion (465 seconds against 456 seconds
for the GRASP-Math1).
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D.2
Results by Instance for the Matheuristics

In this section, we present the total weighted completion time (objective function) found by each method introduced in Chapter 6
(Batch-WSPT, Batch-S, ILS-Math3 , and GRASP-Math3) for the benchmark of 72 PLSVSP instances with the respective computational times
(Table D.3). The first two columns indicate the name of the instance and its BKS found while running the pure mathematical formulations
(optimal solutions are indicated with an asterisk), described in Chapter 4. Then, the upper bound (ub) and the computational time (time)
for each formulation are presented, followed by the results of each matheuristic variation. The matheuristic results are presented in the
following order: minimum total weighted completion time (min), average total weighted completion time (avg), and average computational
time (time), among the runs. We highlighted, in bold, the best solution for each instance. We suppress computational times that have
reached the time limit (21600 seconds) defined for the MIP formulations. To save space, we shorten the instance names as described in
Appendix B.4.

Table D.3: Complete results by instance regarding the PLSVSP benchmark.

Instance BKS

Batch-WSPT Batch-S ILS-Math1 ILS-Math2 ILS-Math3 GRASP-Math1 GRASP-Math2 GRASP-Math3

ub time ub time min avg time min avg time min avg time min avg time min avg time min avg time

15-4-111 6903* 6927 12417 6903 12121 6927 6930.8 2 6903 6903.0 4 6903 6909.2 2 6903 6915.0 5 6903 6903.0 4 6903 6903.0 5
15-4-112 7717* 7842 - 7717 - 7760 7763.6 21 7717 7755.3 26 7760 7763.6 21 7717 7742.6 42 7717 7736.2 46 7717 7742.6 43
15-4-121 7498* 7589 - 7498 - 7589 7609.6 5 7498 7539.6 8 7498 7532.4 5 7589 7595.1 7 7498 7500.7 10 7498 7498.0 8
15-4-122 8608* 8608 - 8608 - 8608 8608.0 10 8608 8612.0 15 8608 8608.0 10 8608 8608.0 18 8608 8608.0 26 8608 8608.0 18
15-4-131 10964* 10964 16546 10964 20576 10964 10996.0 2 10964 10983.0 2 10964 10996.0 2 10964 11222.5 0 10964 11292.5 0 10964 11222.5 0
15-4-132 10685* 10685 - 10685 - 10685 10685.0 5 10685 10685.0 6 10685 10685.0 5 10685 10687.1 10 10685 10687.1 11 10685 10687.1 10
15-4-211 8822* 8822 - 8822 - 8822 8872.0 12 8822 8859.5 11 8822 8872.0 12 8822 8822.0 24 8822 8834.5 19 8822 8822.0 24
15-4-212 6579* 6681 - 6579 - 6681 6684.6 49 6579 6680.8 61 6579 6628.2 51 6579 6611.0 104 6579 6579.0 89 6579 6579.0 109
15-4-221 5929* 5929 - 5929 - 5929 5929.0 11 5929 5929.0 14 5929 5929.0 11 5929 5929.0 18 5929 5929.0 25 5929 5929.0 19
15-4-222 14545* 14712 - 14545 - 14712 14754.6 18 14545 14621.9 21 14712 14754.6 18 14545 14628.8 27 14545 14545.0 40 14545 14628.8 27
15-4-231 10755* 10755 - 10755 - 10755 10859.3 15 10755 10781.5 25 10755 10845.7 16 10755 10817.6 26 10755 10764.1 36 10755 10790.4 26
15-4-232 15747* 15747 - 15747 - 15747 15747.0 13 15747 15747.0 17 15747 15747.0 13 15747 15758.2 22 15747 15747.0 28 15747 15747.0 23
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Table D.3 – continued from previous page

Instance BKS

Batch-WSPT Batch-S ILS-Math1 ILS-Math2 ILS-Math3 GRASP-Math1 GRASP-Math2 GRASP-Math3

ub time ub time min avg time min avg time min avg time min avg time min avg time min avg time

15-8-111 4306* 4306 - 4306 - 4306 4306.0 32 4306 4306.0 42 4306 4306.0 32 4306 4306.0 44 4306 4306.0 56 4306 4306.0 45
15-8-112 5453* 5453 - 5453 - 5453 5453.0 73 5453 5453.0 97 5453 5453.0 73 5453 5453.0 92 5453 5453.0 117 5453 5453.0 93
15-8-121 10790* 10790 0 10790 1 10790 10790.0 1 10790 10790.0 2 10790 10790.0 1 10790 10790.0 1 10790 10790.0 2 10790 10790.0 1
15-8-122 8369* 8369 2 8369 2 8369 8369.0 9 8369 8369.0 10 8369 8369.0 9 8369 8369.0 19 8369 8369.0 17 8369 8369.0 19
15-8-131 4339* 4339 - 4339 - 4339 4339.0 10 4339 4339.0 13 4339 4339.0 10 4339 4339.0 14 4339 4339.0 15 4339 4339.0 14
15-8-132 7371* 7371 - 7371 - 7371 7386.3 125 7371 7379.8 123 7371 7386.3 125 7371 7382.3 132 7371 7383.1 136 7371 7382.9 132
15-8-211 3189* 3203 - 3189 - 3203 3203.3 72 3189 3191.8 69 3189 3193.2 74 3203 3203.0 74 3189 3189.0 109 3189 3189.0 78
15-8-212 4256* 4256 - 4263 - 4256 4256.7 112 4256 4258.5 97 4256 4256.7 112 4256 4256.0 111 4256 4257.4 133 4256 4256.0 111
15-8-221 5519* 5519 - 5519 - 5519 5519.0 26 5519 5522.0 30 5519 5519.0 26 5519 5519.0 35 5519 5519.0 44 5519 5519.0 36
15-8-222 10461* 10461 - 10461 - 10461 10530.3 7 10461 10461.0 8 10461 10530.3 7 10461 10461.0 9 10461 10461.0 11 10461 10461.0 9
15-8-231 8002* 8002 - 8002 - 8002 8002.0 36 8002 8005.0 35 8002 8002.0 36 8002 8002.0 55 8002 8003.5 68 8002 8002.0 55
15-8-232 5127* 5127 - 5127 - 5127 5127.0 50 5127 5127.0 60 5127 5127.0 51 5127 5127.0 54 5127 5127.0 69 5127 5127.0 54

25-4-111 9151 9192 - 9151 - 9192 9217.3 118 9166 9237.1 102 9151 9176.1 119 9151 9174.3 150 9151 9157.3 161 9151 9152.2 150
25-4-112 18776 18896 - 19012 - 18752 18795.2 151 18734 18817.7 174 18678 18751.8 153 18752 18790.9 192 18678 18707.4 222 18678 18743.5 195
25-4-121 23134 23364 - 23365 - 22927 23080.1 155 22865 23011.0 253 22865 23050.7 161 22865 23039.0 263 22865 23026.9 331 22865 22986.4 294
25-4-122 12415 12417 - 12415 - 12417 12417.6 51 12415 12415.6 52 12415 12416.8 51 12415 12429.9 77 12415 12415.0 90 12415 12422.8 78
25-4-131 32800 33092 - 32966 - 32854 32862.3 176 32800 32859.9 215 32854 32862.3 176 32800 32848.7 314 32820 32863.4 224 32800 32860.9 295
25-4-132 27555* 28036 - 27555 - 27651 27663.2 93 27555 27608.2 109 27555 27555.0 88 27555 27633.0 188 27555 27562.4 234 27555 27555.0 187
25-4-211 30098 30534 - 30301 - 30002 30103.6 132 29679 29924.1 184 30002 30099.3 133 29759 29794.8 180 29679 29710.2 220 29679 29766.2 181
25-4-212 20012 19669 - 20667 - 19669 19700.3 129 19595 19639.4 146 19595 19638.8 131 19628 19719.2 188 19595 19607.4 310 19595 19694.9 191
25-4-221 19944 20399 - 20637 - 19944 19970.3 120 19833 19955.7 148 19833 19929.8 124 19944 20018.9 155 19833 19945.3 225 19833 19987.3 153
25-4-222 27274 27220 - 27268 - 27307 27360.2 60 27148 27267.7 107 27185 27262.1 61 27155 27219.0 80 27148 27165.9 162 27148 27184.7 77
25-4-231 29552 29695 - 29552 - 29695 29698.2 91 29552 29580.6 81 29552 29552.0 89 29552 29638.1 174 29552 29552.0 155 29552 29552.0 186
25-4-232 29502 29894 - 29383 - 29540 29552.0 201 29383 29431.2 144 29383 29472.7 186 29383 29407.1 251 29383 29408.8 273 29383 29400.8 245

25-8-111 11558 11634 - 11479 - 11387 11464.1 204 11387 11447.5 255 11387 11464.1 205 11427 11465.1 361 11387 11444.4 334 11427 11453.0 363
25-8-112 16150 16191 - 16295 - 16165 16267.8 309 16056 16203.4 273 16061 16180.9 300 16053 16123.8 373 16053 16095.7 389 16053 16089.4 354
25-8-121 10478 10478 - 10571 - 10478 10537.1 282 10478 10539.0 278 10478 10548.8 254 10478 10544.9 287 10478 10541.9 294 10478 10548.5 309
25-8-122 19723 19802 - 19778 - 19647 19658.0 154 19647 19659.4 187 19647 19658.0 150 19647 19661.5 177 19647 19668.6 206 19647 19659.5 177
25-8-131 9700* 9716 - 9700 - 9700 9700.0 145 9700 9702.2 151 9700 9700.0 145 9700 9700.9 183 9700 9700.6 184 9700 9700.0 185
25-8-132 17947 17911 - 17989 - 17911 17931.0 198 17911 17941.6 223 17911 17934.8 194 17911 17964.6 214 17911 17946.4 265 17911 17956.2 225
25-8-211 8369 8367 - 8429 - 8261 8315.2 307 8261 8316.1 383 8261 8325.6 384 8308 8334.3 405 8261 8327.1 391 8294 8328.9 372
25-8-212 13518 13675 - 13963 - 13397 13539.1 298 13388 13505.4 378 13397 13530.6 275 13337 13472.4 432 13337 13454.3 417 13337 13454.1 413
25-8-221 10993 11026 - 11004 - 11019 11029.4 150 10993 11036.0 151 10993 11012.9 150 11004 11025.0 144 10993 11000.8 189 10993 11006.7 148
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Table D.3 – continued from previous page

Instance BKS

Batch-WSPT Batch-S ILS-Math1 ILS-Math2 ILS-Math3 GRASP-Math1 GRASP-Math2 GRASP-Math3

ub time ub time min avg time min avg time min avg time min avg time min avg time min avg time

25-8-222 14140 13998 - 14001 - 13819 13937.4 345 13819 13973.6 360 13845 13934.4 327 13902 13968.9 314 13845 13947.0 422 13844 13939.0 365
25-8-231 9251 9312 - 9282 - 9230 9232.5 241 9230 9237.6 229 9230 9231.4 239 9230 9233.9 348 9230 9241.8 265 9230 9238.2 338
25-8-232 16929 17005 - 17324 - 16867 16913.5 325 16863 16916.8 337 16863 16906.2 304 16889 16930.2 333 16880 16937.9 395 16879 16932.3 316

50-4-111 64068 68673 - 70886 - 61288 61935.1 1381 61237 61943.4 1238 61179 61697.1 1159 61346 62766.2 1311 61577 62328.9 1541 61023 62129.3 1242
50-4-112 102246 102201 - 102283 - 98283 98719.3 1165 98116 98668.3 1127 97260 98259.4 1010 98093 98912.2 1511 98332 99184.0 1082 98582 99068.3 1245
50-4-121 65231 65185 - 65367 - 63447 63728.6 1075 63578 63947.6 820 63395 63648.4 1038 63736 64064.0 1170 63693 64103.4 1018 63752 64133.9 974
50-4-122 109078 110531 - 108577 - 106608 107269.2 1067 106194 107162.2 895 106009 106811.5 1418 106776 107705.8 1153 106388 107780.3 1044 106491 107224.0 1229
50-4-131 92825 92011 - 92386 - 91497 91748.6 1166 91341 91698.6 1075 91481 91751.8 831 91532 92005.7 1047 91566 91803.9 1034 91398 91675.4 1054
50-4-132 99080 99690 - 99599 - 97906 98372.1 818 98343 98593.0 803 97906 98448.1 601 98208 98858.8 852 98382 98782.8 1095 98208 98760.3 1109
50-4-211 84383 82439 - 81604 - 80032 80469.9 1061 80254 80686.1 1160 79436 80281.2 1110 79792 80779.7 1193 79611 80506.8 1390 78988 80475.2 1333
50-4-212 87761 83410 - 86607 - 81350 81920.5 805 81448 82028.5 1110 81145 81713.8 934 81881 82204.4 1210 81678 81995.5 1453 80798 81669.1 1308
50-4-221 106430 105371 - 104586 - 103930 104350.2 1011 103516 104005.3 1086 103345 104019.3 1125 103732 104368.3 1449 103496 104426.2 1373 103538 104292.5 1232
50-4-222 105136 104714 20784† 107833 - 101723 102670.7 1177 101794 102557.0 768 100921 102190.6 1215 102113 102938.4 959 101563 102465.9 914 101225 102343.6 1234
50-4-231 89865 85913 - 87968 - 85588 85814.1 890 85401 85746.2 912 85290 85701.7 1062 85456 85827.3 797 85475 85839.8 1401 85393 85923.0 892
50-4-232 131034 133193 2948† 134424 - 129575 130260.5 1032 129334 130449.9 808 128913 129813.0 1125 130160 131671.3 1028 129823 131231.3 979 129649 130932.7 1056

50-8-111 34381 33354 - 35691 - 33248 33601.0 989 33402 33669.0 1029 33269 33514.7 997 33672 33804.2 933 33590 33751.7 901 33574 33800.8 882
50-8-112 50521 47910 - 48461 - 45320 45815.3 1074 45596 46078.9 899 44980 45704.9 1177 45906 46149.1 1191 45965 46225.8 1521 45609 46067.1 1676
50-8-121 31944 30906 - 32771 6026† 30393 30564.7 786 30276 30493.0 977 30349 30593.1 891 30332 30618.4 832 30321 30541.1 849 30336 30591.2 870
50-8-122 42961 41870 - 43002 - 41111 41419.7 890 41101 41496.5 875 41147 41379.2 1196 41178 41389.9 1077 41080 41339.6 1095 41204 41360.6 1173
50-8-131 60738 59588 - 60242 - 59018 59450.0 673 59377 59538.9 857 59111 59483.5 765 59276 59684.5 968 59410 59651.2 951 59335 59629.8 1096
50-8-132 65103 64953 17470† 68600 4164† 62657 63114.0 997 62797 63071.0 942 62486 62828.3 805 62387 63022.3 1118 62665 63116.7 988 62758 63019.4 1118
50-8-211 48355 48884 - 50349 - 46323 46927.1 1207 46664 46987.4 1258 46489 46861.7 1102 46589 47007.7 1400 46586 46971.6 1390 46510 47026.8 1178
50-8-212 60291 58338 6810† 60588 5296† 55215 55913.3 1258 55512 56081.6 1268 55375 55858.9 1417 54994 55895.1 1393 55372 55711.6 1586 55528 55873.1 1314
50-8-221 35471 36247 5467† 36632 5656† 33847 34086.6 1164 33894 34044.6 1138 33847 34081.7 883 33892 34208.0 897 33836 34141.8 1258 33711 34120.3 1207
50-8-222 56600 54512 - 57001 13619† 52738 53360.1 928 53051 53521.2 960 52740 53395.5 1122 53281 53579.8 948 52603 53360.3 1509 53094 53642.8 804
50-8-231 54080 53303 - 53941 - 52805 53019.7 844 52756 53049.8 1004 52699 52913.3 831 52896 53115.6 1041 52791 53058.1 1311 52940 53091.0 843
50-8-232 62858 62385 6017† 67546 2451† 61568 61976.8 856 61852 62099.2 724 61606 62009.1 701 61865 62197.0 654 61713 62091.8 722 61598 62105.5 630

† Execution interrupted before 21,600 seconds (time limit) due to memory limit.
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E.1
Results by Instance for the Iterated Greedy Algorithm

In this section, we present the complete results found by the Iterated Greedy Algorithm (Chapter 7) when running for 2500, 4500,
and 7000 iterations, considering the whole benchmark of 72 PLSVSP instances (Chapter 4). Table F.3 shows the results in terms of the
minimum (min), average (avg), maximum (max), and standard deviation (sd) of the total weighted completion time achieved by each
variant, considering the ten independent runs. The table also includes the average computational time (time). The first two columns
indicate the name of the instance and the Iterated Greedy Algorithm’s best solution. To save space, we shorten the instance names as
described in Appendix B.4.

Table E.1: Iterated Greedy Algorithm’s complete results by instance.

Instance Best

IG-RG-2500 IG-RG-4500 IG-RG-7000

min avg max sd time min avg max sd time min avg max sd time

15-4-111 6903 6903 6903.00 6903 0.00 0.44 6903 6903.00 6903 0.00 0.81 6903 6903.00 6903 0.00 1.24
15-4-112 7717 7717 7717.00 7717 0.00 0.61 7717 7717.00 7717 0.00 1.08 7717 7717.00 7717 0.00 1.68
15-4-121 7498 7498 7498.00 7498 0.00 0.55 7498 7498.00 7498 0.00 0.99 7498 7498.00 7498 0.00 1.50
15-4-122 8608 8608 8608.00 8608 0.00 0.57 8608 8608.00 8608 0.00 1.00 8608 8608.00 8608 0.00 1.53
15-4-131 10964 10964 10964.00 10964 0.00 0.51 10964 10964.00 10964 0.00 0.91 10964 10964.00 10964 0.00 1.40

Continued on next page
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Table E.1 – continued from previous page

Instance Best

IG-RG-2500 IG-RG-4500 IG-RG-7000

min avg max sd time min avg max sd time min avg max sd time

15-4-132 10685 10685 10685.00 10685 0.00 0.61 10685 10685.00 10685 0.00 1.08 10685 10685.00 10685 0.00 1.68
15-4-211 8822 8822 8822.00 8822 0.00 0.50 8822 8822.00 8822 0.00 0.89 8822 8822.00 8822 0.00 1.36
15-4-212 6579 6579 6579.00 6579 0.00 0.61 6579 6579.00 6579 0.00 1.07 6579 6579.00 6579 0.00 1.67
15-4-221 5929 5929 5929.00 5929 0.00 0.53 5929 5929.00 5929 0.00 0.93 5929 5929.00 5929 0.00 1.44
15-4-222 14545 14545 14545.00 14545 0.00 0.55 14545 14545.00 14545 0.00 1.00 14545 14545.00 14545 0.00 1.54
15-4-231 10755 10755 10755.00 10755 0.00 0.58 10755 10755.00 10755 0.00 1.02 10755 10755.00 10755 0.00 1.62
15-4-232 15747 15747 15747.00 15747 0.00 0.55 15747 15747.00 15747 0.00 0.98 15747 15747.00 15747 0.00 1.50
15-8-111 4306 4306 4306.00 4306 0.00 0.55 4306 4306.00 4306 0.00 0.97 4306 4306.00 4306 0.00 1.47
15-8-112 5453 5453 5453.00 5453 0.00 0.61 5453 5453.00 5453 0.00 1.05 5453 5453.00 5453 0.00 1.61
15-8-121 10790 10790 10790.00 10790 0.00 0.40 10790 10790.00 10790 0.00 0.71 10790 10790.00 10790 0.00 1.08
15-8-122 8369 8369 8369.00 8369 0.00 0.44 8369 8369.00 8369 0.00 0.78 8369 8369.00 8369 0.00 1.24
15-8-131 4339 4339 4339.00 4339 0.00 0.57 4339 4339.00 4339 0.00 1.01 4339 4339.00 4339 0.00 1.57
15-8-132 7371 7371 7371.00 7371 0.00 0.59 7371 7371.00 7371 0.00 1.08 7371 7371.00 7371 0.00 1.65
15-8-211 3189 3189 3189.00 3189 0.00 0.56 3189 3189.00 3189 0.00 0.98 3189 3189.00 3189 0.00 1.49
15-8-212 4256 4256 4256.00 4256 0.00 0.60 4256 4256.00 4256 0.00 1.07 4256 4256.00 4256 0.00 1.61
15-8-221 5519 5519 5525.60 5555 13.99 0.57 5519 5529.20 5555 16.50 1.00 5519 5525.60 5555 13.99 1.56
15-8-222 10461 10461 10461.00 10461 0.00 0.55 10461 10461.00 10461 0.00 0.97 10461 10461.00 10461 0.00 1.48
15-8-231 8002 8002 8002.00 8002 0.00 0.49 8002 8002.00 8002 0.00 0.85 8002 8002.00 8002 0.00 1.32
15-8-232 5127 5127 5127.00 5127 0.00 0.64 5127 5127.00 5127 0.00 1.14 5127 5127.00 5127 0.00 1.74
25-4-111 9151 9151 9151.00 9151 0.00 2.04 9151 9151.00 9151 0.00 3.66 9151 9151.00 9151 0.00 5.70
25-4-112 18678 18678 18678.00 18678 0.00 2.09 18678 18678.00 18678 0.00 3.73 18678 18678.00 18678 0.00 5.85
25-4-121 22865 22865 22865.00 22865 0.00 2.32 22865 22865.00 22865 0.00 4.15 22865 22865.00 22865 0.00 6.44
25-4-122 12415 12415 12415.00 12415 0.00 2.10 12415 12415.00 12415 0.00 3.78 12415 12415.00 12415 0.00 5.84
25-4-131 32800 32800 32838.40 32854 20.95 2.15 32800 32834.40 32854 25.95 3.84 32800 32819.90 32854 26.16 5.91
25-4-132 27555 27555 27555.00 27555 0.00 1.91 27555 27555.00 27555 0.00 3.35 27555 27555.00 27555 0.00 5.19
25-4-211 29679 29679 29679.00 29679 0.00 1.71 29679 29679.00 29679 0.00 3.05 29679 29679.00 29679 0.00 4.75
25-4-212 19595 19595 19595.00 19595 0.00 1.99 19595 19595.00 19595 0.00 3.50 19595 19595.00 19595 0.00 5.46
25-4-221 19833 19833 19833.00 19833 0.00 1.92 19833 19833.00 19833 0.00 3.41 19833 19833.00 19833 0.00 5.27
25-4-222 27148 27148 27148.00 27148 0.00 2.22 27148 27148.00 27148 0.00 4.03 27148 27148.00 27148 0.00 6.16
25-4-231 29552 29552 29552.00 29552 0.00 1.86 29552 29552.00 29552 0.00 3.32 29552 29552.00 29552 0.00 5.10
25-4-232 29383 29383 29383.00 29383 0.00 2.12 29383 29383.00 29383 0.00 3.80 29383 29383.00 29383 0.00 5.89
25-8-111 11387 11387 11434.10 11509 41.08 2.44 11387 11411.40 11448 26.49 4.36 11387 11391.30 11430 13.60 6.75
25-8-112 16053 16053 16053.00 16053 0.00 2.55 16053 16053.00 16053 0.00 4.52 16053 16053.00 16053 0.00 7.02
25-8-121 10478 10478 10502.00 10538 30.98 2.40 10478 10502.00 10538 30.98 4.28 10478 10484.00 10538 18.97 6.65
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Table E.1 – continued from previous page

Instance Best

IG-RG-2500 IG-RG-4500 IG-RG-7000

min avg max sd time min avg max sd time min avg max sd time

25-8-122 19647 19647 19647.00 19647 0.00 2.20 19647 19647.00 19647 0.00 3.91 19647 19647.00 19647 0.00 6.07
25-8-131 9700 9700 9700.00 9700 0.00 2.14 9700 9700.00 9700 0.00 3.82 9700 9700.00 9700 0.00 5.88
25-8-132 17911 17911 17916.20 17943 9.74 2.22 17911 17912.00 17916 2.11 3.96 17911 17911.00 17911 0.00 6.10
25-8-211 8261 8261 8283.80 8294 12.26 2.63 8261 8286.50 8300 9.72 4.69 8261 8281.10 8300 14.36 7.24
25-8-212 13337 13337 13392.10 13486 43.03 2.45 13337 13387.40 13433 22.66 4.35 13337 13377.80 13388 21.50 6.81
25-8-221 10993 10993 10994.10 11004 3.48 2.43 10993 10993.00 10993 0.00 4.40 10993 10993.00 10993 0.00 6.71
25-8-222 13806 13806 13816.30 13884 25.05 2.69 13806 13809.80 13831 8.50 4.85 13806 13806.00 13806 0.00 7.48
25-8-231 9230 9230 9230.00 9230 0.00 2.39 9230 9230.00 9230 0.00 4.24 9230 9230.00 9230 0.00 6.49
25-8-232 16863 16867 16887.30 16896 12.25 2.57 16867 16884.10 16896 13.41 4.59 16863 16870.70 16896 9.80 7.07
50-4-111 60849 60849 60977.60 61160 126.47 20.97 60849 60985.20 61160 145.85 37.56 60849 60878.00 61139 91.71 57.94
50-4-112 97260 97260 97535.30 97860 237.62 23.42 97260 97533.90 98058 266.85 42.01 97260 97466.30 97704 218.47 65.27
50-4-121 63251 63251 63423.10 63621 133.27 20.01 63251 63367.10 63620 130.72 36.06 63251 63316.00 63419 70.51 56.07
50-4-122 105884 105974 106168.50 106468 160.86 25.02 105974 106102.50 106229 110.80 45.70 105884 105945.30 106094 65.89 70.07
50-4-131 91144 91144 91188.20 91234 37.20 21.59 91144 91144.80 91152 2.53 39.20 91144 91144.00 91144 0.00 61.10
50-4-132 97889 97941 98104.10 98197 80.43 23.47 97915 98018.80 98248 133.22 41.61 97889 98001.40 98244 119.53 65.01
50-4-211 78714 78716 78999.90 79472 306.17 23.42 78714 78915.50 79405 270.30 42.18 78716 78837.50 79236 198.26 65.24
50-4-212 80798 80798 80947.90 81256 177.59 19.81 80798 80872.60 81203 138.48 35.68 80798 80811.30 80819 9.59 55.58
50-4-221 103316 103345 103349.20 103387 13.28 21.96 103316 103342.10 103345 9.17 39.78 103345 103345.00 103345 0.00 62.63
50-4-222 100694 100694 101140.30 101706 356.45 21.43 100694 100818.40 101536 258.86 38.63 100694 100764.70 101234 168.87 60.43
50-4-231 85140 85219 85319.40 85576 131.55 19.65 85219 85241.40 85298 31.71 34.94 85140 85235.40 85330 51.87 54.68
50-4-232 128964 128964 129016.70 129032 22.49 22.35 128971 129000.70 129042 23.29 40.42 128964 128990.80 129032 22.14 62.37
50-8-111 32981 33037 33142.50 33242 60.62 18.56 33046 33119.70 33184 54.28 33.38 32981 33083.20 33180 64.17 51.64
50-8-112 44341 44692 44872.90 45241 184.45 23.38 44436 44701.80 44975 183.88 42.17 44341 44599.20 44885 157.06 66.22
50-8-121 30195 30211 30269.30 30358 40.71 20.98 30195 30233.60 30339 41.66 37.30 30206 30246.10 30281 26.72 58.57
50-8-122 40462 40529 40677.70 40821 93.02 24.38 40462 40626.80 40774 104.55 43.77 40462 40562.50 40794 101.46 67.96
50-8-131 58598 58637 58783.80 58937 101.44 18.17 58598 58713.00 58913 100.23 32.74 58598 58689.70 58837 87.98 50.75
50-8-132 61763 61782 61970.50 62476 232.15 20.75 61763 61896.10 62163 129.67 37.12 61763 61903.90 62133 139.64 56.82
50-8-211 45431 45606 45876.60 46132 167.93 22.62 45603 45808.30 45980 115.87 41.37 45431 45609.00 45976 169.13 63.81
50-8-212 53890 53943 54187.40 54364 133.93 26.14 53985 54198.20 54683 201.90 46.62 53890 54041.70 54302 109.60 72.28
50-8-221 33418 33505 33571.40 33624 43.75 21.50 33465 33521.70 33624 55.82 38.45 33418 33515.70 33612 65.00 59.78
50-8-222 52032 52274 52358.90 52627 102.34 22.12 52032 52308.90 52495 119.14 39.50 52032 52261.00 52429 104.68 60.81
50-8-231 52499 52702 52775.70 52866 50.52 23.27 52504 52640.50 52831 96.27 42.02 52499 52605.40 52726 74.50 65.08
50-8-232 61450 61502 61578.60 61758 80.57 17.08 61487 61536.50 61708 63.28 30.46 61450 61509.50 61591 40.63 47.43
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F.1
Results by Instance and Variance Level for the Simheuristics

In this section, we present the complete results of the simheuristics introduce in Chapter 8 when running for the three different
variance levels (Low, Medium, and High), considering the complete benchmark of 72 PLSVSP instances (Chapter 4). Table F.1 shows
the results of the low variance scenario in terms of the deterministic objective function value (Det.), the expected value of the stochastic
objective values (Exp.), the CVaR95% of the stochastic objective values (CVaR), and the computational time (Time), considering the best
solution among ten independent runs. The first column indicates the name of the instance. Tables F.2 and F.3 depict the same results for
the medium and high variance levels, respectively. To save space, we shorten the instance names as described in Appendix B.4.

Table F.1: Simheuristics complete results by instance regarding the low variance level scenario.

Instance

IG SimIG-Exp SimIG-CVaR

Det. Exp. CVaR Time Det. Exp. CVaR Time Det. Exp. CVaR Time

15-4-111 6903 6967.18 7559.25 0.54 6903 6959.09 7542.08 1.5 6903 6964.87 7532.47 1.52
15-4-112 7717 8029.6 8856.58 0.73 7785 8015.42 8861.99 2.0 7717 8020.85 8810.58 1.99
15-4-121 7498 7690.44 8272.28 0.59 7498 7686.73 8266 1.3 7648 7730.95 8250.22 1.24
15-4-122 8608 8833.09 9580.45 0.62 8608 8828.19 9579.56 1.3 8699 8896.31 9532.38 1.31
15-4-131 10964 11241.1 12395.7 0.57 10964 11221 12462.1 1.7 11232 11385.7 12202.8 1.64

Continued on next page
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Table F.1 – continued from previous page

Instance

IG SimIG-Exp SimIG-CVaR

Det. Exp. CVaR Time Det. Exp. CVaR Time Det. Exp. CVaR Time

15-4-132 10685 11003.9 11996.2 0.72 10767 10987.8 11948.3 1.6 10779 10995 11914.2 1.60
15-4-211 8822 8991 9755.85 0.56 8822 8987.2 9744.45 1.6 8822 8991.85 9731.96 1.46
15-4-212 6579 6948.11 7743.11 0.73 6593 6940.74 7711.43 2.3 6691 6977.62 7668.52 2.21
15-4-221 5929 6113.36 6624.97 0.57 5929 6063.48 6530.54 1.3 5967 6086.1 6518.03 1.32
15-4-222 14545 14911.9 15925.3 0.66 14545 14828.8 15848.3 1.1 14807 14927 15834.2 1.15
15-4-231 10755 11139.3 12032.3 0.68 10776 11052 11768.5 1.3 10850 11067.6 11715 1.19
15-4-232 15747 16095 17233 0.63 15747 16081 17204.3 1.2 15747 16090.1 17201.6 1.17
15-8-111 4306 4426.07 4846.69 0.63 4309 4402.88 4842.2 1.8 4343 4403.14 4830.96 1.71
15-8-112 5453 5652.26 6213.02 0.68 5471 5627.78 6220.39 2.0 5453 5651.19 6194.82 1.98
15-8-121 10790 10994.3 12481.2 0.51 10790 10813.6 12393 3.2 10790 10951.5 12398.5 2.81
15-8-122 8369 8668.77 9614.99 0.61 8369 8654.76 9601.81 1.8 8456 8725.93 9579.89 1.74
15-8-131 4339 4411.11 4783.07 0.63 4339 4407.08 4766.17 1.4 4339 4427.38 4770.64 1.47
15-8-132 7371 7638.31 8274.83 0.67 7377 7586.93 8222.21 1.6 7377 7595.45 8210.07 1.49
15-8-211 3189 3272.26 3701.48 0.69 3196 3255.7 3693.57 2.7 3203 3259.75 3695.76 2.65
15-8-212 4256 4481.92 5098.71 0.76 4263 4427.12 4986.13 2.6 4263 4434.82 4973.41 2.54
15-8-221 5519 5708.81 6320.27 0.64 5519 5703.61 6307.01 1.7 5555 5715.08 6216.24 1.67
15-8-222 10461 10879.7 11777.5 0.61 10461 10839.5 11701.5 1.4 10461 10837.9 11696.6 1.42
15-8-231 8002 8177.97 8854.58 0.56 8023 8042.52 8781.74 1.5 8017 8073.41 8782.89 1.48
15-8-232 5127 5365.46 5978.59 0.76 5127 5341.84 5981.22 2.3 5127 5357.62 5969.35 2.56
25-4-111 9151 9470.93 10318.5 2.14 9163 9457.02 10278.6 3.5 9163 9470.12 10299.9 3.48
25-4-112 18678 19073.4 20434.1 2.16 18678 19046 20376.3 2.9 18678 19056.4 20347.2 2.92
25-4-121 22865 23781.6 25358.8 2.37 22865 23768.2 25359.1 3.1 22865 23794.2 25309.5 3.05
25-4-122 12415 12767.6 13691.2 2.21 12415 12731.9 13646.1 3.0 12415 12745.1 13623.4 3.08
25-4-131 32800 33912.8 35864.2 2.15 32907 33483.5 35181.5 2.7 32907 33523.1 35174.4 2.63
25-4-132 27555 28566.7 30406.8 1.96 27555 28518.4 30330 2.6 27816 28606.5 30218.5 2.61
25-4-211 29679 30431.4 32413.8 1.79 29679 30383.6 32273.7 2.4 29679 30430.8 32297.9 2.45
25-4-212 19595 20158.9 21655.4 2.06 19595 20147.8 21656.9 3.0 19595 20156.7 21636.2 3.01
25-4-221 19833 20494.1 21853.9 1.99 19833 20447.9 21753.2 2.6 19840 20456.6 21750 2.76
25-4-222 27148 27923 29729.7 2.24 27192 27520.9 29078.9 2.9 27192 27554.1 29047.2 3.03
25-4-231 29552 30494.2 32258.7 1.87 29632 30241.7 31803.5 2.4 29632 30236.2 31764.4 2.40
25-4-232 29383 30586.8 32323.7 2.22 29589 30246 31836.3 2.7 29589 30250.8 31857.9 2.73
25-8-111 11387 11802.8 12750.1 2.49 11387 11758.8 12723.6 3.6 11433 11812 12721.3 3.50
25-8-112 16053 16752.6 18051.2 2.67 16067 16681.7 17925.6 3.5 16068 16704.8 17924.5 3.49
25-8-121 10478 10937.4 11706.3 2.44 10593 10897.3 11743 3.4 10593 10917.9 11662.7 3.38
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Table F.1 – continued from previous page

Instance

IG SimIG-Exp SimIG-CVaR

Det. Exp. CVaR Time Det. Exp. CVaR Time Det. Exp. CVaR Time

25-8-122 19647 20372.2 21612.7 2.39 19752 20217.1 21317.5 2.8 19806 20247.3 21258.2 2.86
25-8-131 9700 10022 10732.2 2.26 9751 9955.83 10657.2 2.9 9728 10040 10636.8 2.96
25-8-132 17911 18891.9 20204 2.26 17966 18701 20040.2 3.2 17966 18705.3 20063.8 3.18
25-8-211 8261 8736.56 9506.17 2.69 8357 8606.38 9443.22 4.1 8443 8692.47 9432.57 4.07
25-8-212 13337 14089.6 15187 2.50 13383 14088.7 15194 3.3 13789 14163.4 15091 3.39
25-8-221 10993 11413.2 12235.6 2.48 10993 11377.3 12179.2 3.3 10993 11388.5 12162.3 3.28
25-8-222 13806 14433.1 15421.3 2.80 13806 14408.9 15368.3 3.5 13918 14441.7 15368.2 3.50
25-8-231 9230 9647.28 10255.7 2.37 9271 9582.43 10205.5 3.1 9271 9591.58 10168.7 3.00
25-8-232 16867 17591.1 18775.1 2.71 16947 17464.9 18624.6 3.4 16957 17473.1 18643.2 3.31
50-4-111 60849 62797.7 66393 20.78 60849 62727 66228 22.0 61238 62893.7 66152.9 21.90
50-4-112 97260 99079.2 103482 23.65 97260 99071.6 103400 24.3 97510 99077.5 103233 24.55
50-4-121 63251 65499.7 68664.5 20.39 63264 65409.1 68416.7 21.2 63720 65691.9 68408.3 21.82
50-4-122 105974 109849 114708 25.72 106209 109491 115076 26.3 106446 109592 114293 26.28
50-4-131 91144 94182.2 98321.4 21.69 91377 93617.3 97177.6 22.7 91377 93661.1 97219.3 23.17
50-4-132 97941 101286 105364 23.73 98102 100869 105092 24.8 98102 100884 104945 24.84
50-4-211 78716 80477.2 84596.8 22.95 78946 80422.4 84142.9 25.3 78716 80494 84316.3 24.22
50-4-212 80798 83418.6 87934.7 20.37 81001 82999.7 87360.3 21.2 81895 83189.7 87059.1 20.86
50-4-221 103345 107609 112093 22.15 103415 107029 111464 23.3 103420 107204 111551 23.32
50-4-222 100694 104056 108682 21.65 100893 103981 108638 22.7 101427 104094 108180 22.42
50-4-231 85219 88778 92256.5 19.89 85684 88689.3 92247.1 20.4 85526 88832.7 92166.8 20.23
50-4-232 128964 131835 136670 22.98 129365 131622 136209 23.0 129365 131686 136222 23.21
50-8-111 33037 34579.9 36590.9 18.77 33348 34424.7 36451.2 20.1 33149 34509.5 36326.9 20.05
50-8-112 44692 46542.2 48931.7 24.31 44716 46524.9 48893 24.9 44807 46617.5 48894 25.05
50-8-121 30211 31665.6 33503.9 20.54 30427 31619.2 33406.5 23.3 30427 31602.8 33271.4 22.23
50-8-122 40529 42638.4 45101.8 24.87 40699 42307 44346.1 25.2 40699 42342.4 44268.3 25.23
50-8-131 58637 60948.4 63430.9 18.22 58671 60895.9 63264.5 19.1 58671 60879.9 63271.3 19.14
50-8-132 61782 64709.1 67853.4 20.42 61891 64128.2 67347 21.8 61891 64168.4 67239.1 21.60
50-8-211 45606 47561.8 50196.8 22.92 45875 47194.8 49630.3 24.3 46000 47198.7 49532.7 23.55
50-8-212 53943 56393.9 59260.7 25.82 54125 56139.7 58841.2 26.9 54239 56270.7 58813.3 27.45
50-8-221 33505 35096.4 36869.7 21.09 33840 34992 36557.8 22.6 33840 35014.9 36558.6 22.28
50-8-222 52274 54115.2 56869.3 22.36 52314 53982.2 56414.2 23.2 52314 54013.2 56364 22.66
50-8-231 52702 55146.2 57699.4 24.24 52956 54741 57076.6 24.7 52956 54742.1 57076.3 24.55
50-8-232 61502 63340.5 66453.1 17.59 61523 63028 66148.5 18.4 61561 63170.2 66148.9 18.11
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Table F.2: Simheuristics complete results by instance regarding the medium variance level scenario.

Instance

IG SimIG-Exp SimIG-CVaR

Det. Exp. CVaR Time Det. Exp. CVaR Time Det. Exp. CVaR Time

15-4-111 6903 7200.89 8624.74 0.69 6903 7190.8 8604.16 5.5 6903 7193.55 8586.43 5.484
15-4-112 7717 8557.67 10634.1 0.96 7834 8489.71 10542.6 7.8 7840 8503.12 10521.5 7.407
15-4-121 7498 8008.27 9465.75 0.78 7648 7968.77 9265.84 4.2 7648 7989.65 9281.57 4.081
15-4-122 8608 9338.07 11160.7 0.78 8732 9328.65 11042.7 4.8 8756 9341.77 10965.8 4.701
15-4-131 10964 11749.7 14152.2 0.74 11084 11656.5 14239.3 5.2 11432 11738 13508.9 5.042
15-4-132 10685 11556.7 13726.1 0.82 10779 11458.2 13449.9 4.8 10779 11460 13433.9 4.712
15-4-211 8822 9357.56 11177.1 0.73 8947 9279.73 11109.5 5.2 8822 9356.23 11148.1 5.132
15-4-212 6579 7517 9419.67 1.03 6828 7415.91 9076.97 7.8 6828 7436.94 9094.42 7.692
15-4-221 5929 6486.33 7746.33 0.73 5967 6375.76 7474.51 4.6 5967 6377.57 7485.83 4.525
15-4-222 14545 15563.7 18114.3 0.74 14807 15455.4 17806.2 3.5 14807 15462.5 17759.6 3.467
15-4-231 10755 11842.4 13940.8 0.82 10776 11588.2 13375.4 3.8 10904 11609.8 13313.1 3.922
15-4-232 15747 16761.5 19420.2 0.75 15747 16747.7 19430 3.7 16229 16937.9 19221.7 3.421
15-8-111 4306 4656.78 5648.68 0.82 4309 4627.64 5616.15 6.0 4309 4627.26 5612.79 5.871
15-8-112 5453 5936.24 7231.47 0.91 5544 5877.16 7343.79 6.9 5453 5933.95 7204.3 6.559
15-8-121 10790 11277 14476.9 0.92 10790 11002.2 14320.4 10.6 10790 11051.6 14317.8 9.771
15-8-122 8369 9237.29 11263.6 0.74 8456 9149.08 11217.3 6.2 8624 9272.3 11208.5 5.896
15-8-131 4339 4594.97 5462.04 0.84 4339 4587.52 5443.32 4.6 4411 4672.25 5436.32 4.491
15-8-132 7371 8067.59 9498.1 0.81 7432 7940.58 9366.9 4.7 7408 7984.83 9355.5 4.583
15-8-211 3189 3473.77 4443.43 1.05 3196 3427.63 4368.47 9.0 3203 3432.51 4380.11 8.858
15-8-212 4256 4869.79 6257.47 1.04 4263 4773.73 6092.54 8.8 4263 4775.13 6042.34 8.697
15-8-221 5519 6070.19 7608.39 0.91 5585 6040.72 7281.98 5.8 5585 6079.59 7269.69 5.617
15-8-222 10461 11597.2 13765.4 0.77 10615 11526.9 13603.5 4.9 10615 11558.2 13636.5 4.738
15-8-231 8002 8542.12 9982.22 0.69 8035 8267.15 9808.33 4.7 8023 8270.7 9762.43 4.49
15-8-232 5127 5722.46 7109.99 0.98 5166 5695.66 7129.24 7.4 5145 5697.13 7091.42 7.556
25-4-111 9151 9980.06 12043.4 2.44 9332 9933.2 11933.9 8.7 9311 9957.55 11940.8 8.638
25-4-112 18678 19902.5 23119.2 2.30 18678 19878.4 23049.8 6.3 18772 19912.7 23032 6.095
25-4-121 22865 25232.9 28878.9 2.47 22959 25152.6 28551.5 5.8 23132 25163.1 28550.6 5.722
25-4-122 12415 13427.9 15572.4 2.31 12444 13358.1 15498.9 6.5 12697 13515.7 15409.9 6.238
25-4-131 32800 35653.5 40117.9 2.32 32877 34996.6 39120.1 4.5 32907 35035.4 39206.7 4.533
25-4-132 27555 30607.1 34786.2 2.07 27866 30352.8 34146.8 4.9 27866 30334.1 34078.7 4.847
25-4-211 29679 31888 36612.1 1.90 29971 31643.2 36151 5.3 29918 31890.6 36270.2 5.152
25-4-212 19595 21294.8 24776.4 2.28 19595 21273.8 24735.4 6.9 19821 21294.3 24761 6.689
25-4-221 19833 21600.2 24824.2 2.11 19833 21531.8 24764.9 5.3 20036 21555.9 24542.9 5.422
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Table F.2 – continued from previous page

Instance

IG SimIG-Exp SimIG-CVaR

Det. Exp. CVaR Time Det. Exp. CVaR Time Det. Exp. CVaR Time

25-4-222 27148 29395.7 33688.2 2.41 27316 28438 32143.1 5.3 27316 28409.3 32020.1 5.354
25-4-231 29552 31958.1 36256.1 2.02 29632 31598.7 35578.6 4.4 29775 31717 35457.8 4.381
25-4-232 29383 32381.6 36344.2 2.30 29589 31839.5 35745.4 4.7 29589 31860.1 35813.5 4.711
25-8-111 11387 12573.6 14926.3 2.69 11442 12520.9 14906.4 7.7 11559 12577.7 14929.8 7.824
25-8-112 16053 17829.1 20921.5 2.86 16213 17572.6 20383.6 6.9 16250 17636.8 20332.1 6.727
25-8-121 10478 11627.2 13483.6 2.60 10593 11513.6 13454.2 6.9 10604 11552.6 13365.7 6.608
25-8-122 19647 21689.9 24750.8 2.50 19752 21328.8 24202.9 5.1 19806 21389.8 24173.1 5.045
25-8-131 9700 10642.3 12397.1 2.35 9748 10507.2 12225.1 6.0 9832 10585.7 12091 5.674
25-8-132 17911 20359 23617.6 2.50 17966 20033.6 23365.2 6.4 18337 20270.8 23257 6.286
25-8-211 8261 9458.12 11357.6 2.94 8354 9202.04 11217.4 9.0 8471 9257.36 11047.8 8.94
25-8-212 13337 15268.7 18023.2 2.79 13673 15024 17465.6 7.0 13673 15049 17481.5 7.059
25-8-221 10993 12229.6 14307.3 2.66 11136 12055.1 14026.7 6.7 11294 12192.2 14004.1 6.719
25-8-222 13806 15583.9 18195.2 2.96 13948 15446.2 17859.8 6.6 13912 15504.2 17947.4 6.631
25-8-231 9230 10223.5 11699.4 2.53 9289 10079.2 11350.9 5.1 9271 10085.9 11401.6 5.232
25-8-232 16867 18689.7 21313.3 2.81 17134 18382.7 21140.3 5.8 16918 18502.4 21021.9 5.705
50-4-111 60849 66243.4 74204.5 20.86 60914 66231.9 74265.1 24.7 60898 66217 74136 24.734
50-4-112 97260 102741 113268 23.62 97982 102237 112951 26.0 97996 102039 111728 25.931
50-4-121 63251 68851.7 76261.5 20.50 64005 68453.6 74688.8 23.3 63936 68513 74911.1 22.964
50-4-122 105974 116016 127581 25.71 106177 115054 126793 28.6 106957 115472 126499 28.641
50-4-131 91144 98655.8 107632 21.69 91363 97768.6 106239 24.5 91419 97883 106124 23.954
50-4-132 97941 106790 116654 23.37 98254 106358 115862 26.3 98270 106549 115827 27.247
50-4-211 78716 83757 93398.5 23.00 78946 83408.7 92575.2 27.8 78783 83586.8 92818.9 26.754
50-4-212 80798 87422.2 97764.6 20.61 81576 85944.6 95607.8 23.1 82057 86505.7 95376.5 23.603
50-4-221 103345 113478 123878 22.26 104411 112561 122384 24.8 104585 112724 122389 24.139
50-4-222 100694 109567 120136 21.88 101427 109003 118771 24.0 101427 109011 118771 24.539
50-4-231 85219 94110.4 102132 19.96 85683 93864.3 101946 22.1 86975 94435 101897 21.711
50-4-232 128964 136876 148638 22.97 130086 136411 147981 25.4 129271 136664 147963 24.795
50-8-111 33037 36789.9 41566.4 19.98 33485 36387.5 40786.7 23.2 34180 36704 40890.8 22.978
50-8-112 44692 49821.1 55957.2 24.15 44968 49690 55485.7 27.9 44860 49844.8 55723.5 27.818
50-8-121 30211 33969.2 38389.8 20.81 30478 33646 37703.7 25.3 30831 33854.5 37675.3 25.207
50-8-122 40529 45880.4 51986.6 25.00 40963 45287.5 50682 28.8 41432 45483.1 50656.2 29.431
50-8-131 58637 64870.3 70825.9 18.17 58797 64760.9 70491.1 20.4 58797 64759.4 70463.1 20.367
50-8-132 61782 69281.8 76964.5 20.30 61901 68291.2 75841.8 23.9 62003 68397.1 75496.1 22.947
50-8-211 45606 50598.5 56952.9 22.69 45929 49637.2 55484.7 26.6 46044 49939.9 55671.5 26.701
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Table F.2 – continued from previous page

Instance

IG SimIG-Exp SimIG-CVaR

Det. Exp. CVaR Time Det. Exp. CVaR Time Det. Exp. CVaR Time

50-8-212 53943 60271.8 67323.1 26.09 54778 59528.4 66175.2 30.5 54201 59607.4 66207.2 30.536
50-8-221 33505 37719.7 41995.5 21.19 33840 37284.7 41196.8 24.5 34309 37376.2 41254.6 24.681
50-8-222 52274 57837.4 64608.2 22.05 52469 57399.2 63842.9 26.1 52314 57533.2 63788.3 24.907
50-8-231 52702 58661 64512.8 24.29 53006 57796.1 63165.2 26.2 52972 58068 63730.5 25.907
50-8-232 61502 66672.7 73535.2 17.36 61632 66124.5 73014 19.5 61523 66318.9 73147.9 20.441

Table F.3: Simheuristics complete results by instance regarding the high variance level scenario.

Instance

IG SimIG-Exp SimIG-CVaR

Det. Exp. CVaR Time Det. Exp. CVaR Time Det. Exp. CVaR Time

15-4-111 6903 7592.13 10391.6 1.18 6903 7579.85 10401.8 15.6 6903 7590.32 10347.5 15.397
15-4-112 7717 9266.46 13388.5 1.68 7990 9121.23 12964 20.1 7990 9124.46 12955.7 19.713
15-4-121 7498 8468.77 11341.7 1.13 7648 8364.63 10898 11.1 7714 8389.04 10764.7 11.002
15-4-122 8608 10032.9 13527.9 1.18 8732 9942.8 13283.6 13.2 9133 10153.8 13152.3 12.666
15-4-131 10964 12483.5 16704.6 1.10 11432 12255.4 15685.5 12.3 11432 12255.3 15659.4 11.402
15-4-132 10685 12369.9 16259.3 1.16 10849 12181.8 15803.8 11.4 10849 12185.3 15784.7 11.366
15-4-211 8822 9929.15 13439.1 1.21 8947 9704.03 13146.5 14.0 8947 9731.26 13190.4 14.689
15-4-212 6579 8225.96 11961.3 1.69 6943 8002.88 11235.6 20.2 6894 8052.82 11247.3 20.164
15-4-221 5929 6973.7 9341.17 1.10 5967 6794.16 8924.88 12.0 6225 6938.31 8897.91 12.007
15-4-222 14545 16507.5 21496.6 1.06 14807 16368.3 21071.2 9.8 14934 16385 20694.3 9.569
15-4-231 10755 12792.1 16744 1.08 10904 12292.6 15555.4 9.8 10904 12289.5 15547.2 9.889
15-4-232 15747 17714.5 22691.1 0.99 15747 17718.4 22678.6 9.0 16229 17753 22127 9.038
15-8-111 4306 4974.92 6896.29 1.37 4320 4958.05 6861.37 16.3 4335 4972.94 6863.14 16.095
15-8-112 5453 6313.6 8765.25 1.45 5553 6191.71 8622.97 17.5 5553 6199.09 8624.07 17.205
15-8-121 10790 11755.2 17279.5 1.51 10790 11470.8 17062 24.1 10790 11487.9 17032.6 22.714
15-8-122 8369 10037 13841.2 1.22 8539 9861.58 13672.1 16.1 8539 9918.18 13702.2 16.04
15-8-131 4339 4869.54 6464.89 1.17 4477 4860.17 6488.57 12.1 4411 4944.56 6380.07 11.659
15-8-132 7371 8647.1 11351.4 1.22 7456 8446.13 11140.1 12.8 7382 8496.8 11098.5 11.24
15-8-211 3189 3772.19 5644.29 1.80 3250 3686.54 5406.79 23.3 3250 3686.32 5409.63 22.916
15-8-212 4256 5364.58 8046.73 1.85 4296 5235.95 7776.85 23.4 4263 5243.53 7771.39 23.312
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Table F.3 – continued from previous page

Instance

IG SimIG-Exp SimIG-CVaR

Det. Exp. CVaR Time Det. Exp. CVaR Time Det. Exp. CVaR Time

15-8-221 5519 6572.06 9514.02 1.55 5593 6510.18 8932.09 15.0 5649 6568.97 8870.1 15.041
15-8-222 10461 12541.6 16783.3 1.17 10615 12428.1 16530.7 13.0 10615 12471.3 16590.1 13.019
15-8-231 8002 9055.71 11786.9 0.98 8035 8697.39 11424.5 11.4 8023 8704.63 11333.7 11.147
15-8-232 5127 6228.23 8850.86 1.51 5166 6191.38 8861.82 19.4 5166 6210.21 8806.29 18.936
25-4-111 9151 10716.1 14727.9 3.06 9332 10604.6 14431.2 20.9 9584 10760.1 14299.3 20.725
25-4-112 18678 21213.6 27447 2.70 18772 21153.7 27319.3 14.1 19212 21327.9 27106.1 13.915
25-4-121 22865 27162 34061.3 2.82 23287 26874.4 33328.6 11.7 23268 27043.7 33185.9 11.727
25-4-122 12415 14367.9 18496.9 2.71 12444 14243 18300 14.3 12709 14465.1 18184.7 13.895
25-4-131 32800 38101.9 46318.3 2.47 32877 37279.9 45182.9 8.9 33619 37659.5 44860.8 8.82
25-4-132 27555 33438 41250.3 2.28 28068 32735.3 40003.4 10.2 27899 32740.2 39939.1 10.012
25-4-211 29679 33917.5 42916 2.24 29971 33528.9 42534 12.2 29902 33728.5 42198.5 11.751
25-4-212 19595 22901 29604.5 2.62 19821 22808.7 29515.9 15.2 20232 22835.6 29267.3 15.175
25-4-221 19833 23188.6 29205.4 2.39 20036 23109.6 29131.5 11.6 20453 23346.1 28546.9 11.406
25-4-222 27148 31533.9 39736.1 2.71 27316 30023.4 37421.8 11.7 27352 30422.5 37336.4 11.491
25-4-231 29552 34086.4 42330.3 2.27 29852 33625 40638.9 9.5 30642 33921.7 40687.7 9.349
25-4-232 29383 34830.9 42243.4 2.50 29540 34144.6 41624.9 9.3 29449 34400.8 41615.9 9.428
25-8-111 11387 13689.2 18476.9 3.29 11559 13569.3 18425.8 18.7 11779 13834.3 18324.5 18.312
25-8-112 16053 19320.4 25444.4 3.33 16187 18880.6 24367.9 15.3 16187 18880.6 24367.9 15.45
25-8-121 10478 12525.3 16090.7 3.05 10593 12376.3 16028.8 14.2 10661 12406.4 15763.7 13.734
25-8-122 19647 23504.4 29680.7 2.83 19992 22962.2 28784.5 11.6 20428 23165.8 28749.5 11.03
25-8-131 9700 11510.1 14918.3 2.77 9856 11296.8 14407.4 13.6 10155 11529.8 14226.5 13.307
25-8-132 17911 22358.5 28826 2.79 17966 22012.6 28605.3 14.6 18306 22068.1 27890 14.286
25-8-211 8261 10392.3 14095.3 3.52 8451 9970.56 13505.7 21.6 8425 10005.1 13540.5 20.59
25-8-212 13337 16845.7 22490.4 3.24 13673 16429.4 21570.5 16.4 13658 16450 21621.7 16.356
25-8-221 10993 13346.1 17466.2 3.10 11136 13070.8 16965.1 14.9 11425 13258.7 16752.8 14.441
25-8-222 13806 17199.8 22593.7 3.41 13948 16911.6 21894.4 14.9 13948 16905 21859.1 15.017
25-8-231 9230 10990.8 13739.5 2.86 9494 10729 13307 10.4 9360 10802.8 13195 10.428
25-8-232 16867 20302 25318.8 3.06 17134 19749.5 24892.1 11.4 16918 19930.6 24686.1 11.543
50-4-111 60849 71340.7 86574.9 21.10 61024 71202.6 86534.6 31.7 60909 71246.2 86206 32.07
50-4-112 97260 108029 128188 24.15 97996 106866 125970 31.4 98856 107708 126266 31.396
50-4-121 63251 73656.9 87383.6 20.59 64005 72575.5 84413.6 27.7 64005 72564.6 84405.9 27.406
50-4-122 105974 124336 145771 26.13 106684 122479 142613 33.6 107047 122598 142385 32.545
50-4-131 91144 104752 120755 21.83 92519 103000 117300 27.1 93179 104108 117952 27.052
50-4-132 97941 114429 132564 23.72 98960 113786 130465 30.2 98293 113969 131130 30.284
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Table F.3 – continued from previous page

Instance

IG SimIG-Exp SimIG-CVaR

Det. Exp. CVaR Time Det. Exp. CVaR Time Det. Exp. CVaR Time

50-4-211 78716 88579.5 106094 23.41 78946 88111 105449 34.0 79958 89002.9 105718 33.309
50-4-212 80798 92861.1 112059 20.73 81576 90840.5 109798 29.4 82612 91277.8 108625 30.38
50-4-221 103345 121364 140427 22.13 105521 119819 137454 29.0 104644 120580 138015 28.934
50-4-222 100694 117098 136249 22.81 102318 115893 135122 28.3 101427 116164 134063 27.892
50-4-231 85219 101200 116080 20.23 85684 100713 115686 25.0 86678 101276 114738 25.415
50-4-232 128964 144538 166641 23.40 129933 143579 165577 28.6 131915 143859 163640 28.631
50-8-111 33037 39826.7 49171.3 19.40 33485 39072.1 47742.6 31.4 34180 39269.2 47430.7 31.123
50-8-112 44692 54532.5 67449.8 24.63 44968 54222.8 66445 36.0 46425 54618.7 66472 35.964
50-8-121 30211 37174.1 45567.2 21.04 30970 36551.6 43945.6 32.1 30935 36533.9 43859.8 33.043
50-8-122 40529 50512.1 62700.7 26.26 41040 49643.8 60403.7 37.7 40737 49881.5 60603.4 36.226
50-8-131 58637 70363 81846.6 18.42 59000 69963.2 81320.7 24.5 58797 70137.7 81102.4 24.161
50-8-132 61782 75857.2 91045.5 20.69 62925 74071.3 88008.8 30.0 64753 74964.3 88196.1 31.69
50-8-211 45606 54693.4 67294.6 23.21 46149 53303.6 65142.7 34.7 45872 53213.9 64925.8 34.287
50-8-212 53943 65510.8 79795.7 26.45 54778 64357 78216.6 37.7 54201 64501.9 78049 37.335
50-8-221 33505 41298.2 49788.7 21.79 34309 40557.2 48141.6 30.4 34462 40752.8 48082 30.777
50-8-222 52274 63398.9 77134.1 22.35 52643 62735.5 75754.3 32.0 53477 63677.8 75853 31.639
50-8-231 52702 63532.3 74542.7 24.45 52956 62460.8 73032.2 30.9 53682 62498.9 72665.1 30.341
50-8-232 61502 72003.2 85085.1 17.52 61583 71344.7 84537.2 25.4 62340 71625.3 83841.6 25.213
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