Título: | ESSAYS ON LENGTH OF STAY PREDICTION IN INTENSIVE CARE UNITS | ||||||||||||
Autor: |
IGOR TONA PERES |
||||||||||||
Colaborador(es): |
FERNANDO LUIZ CYRINO OLIVEIRA - Orientador SILVIO HAMACHER - Coorientador |
||||||||||||
Catalogação: | 28/JUN/2021 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=53451&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=53451&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.53451 | ||||||||||||
Resumo: | |||||||||||||
The length of stay (LoS) in Intensive Care Units (ICU) is one of the
most used metrics for resource use. This thesis proposes a structured datadriven
methodology to approach three main demands of ICU managers.
First, we propose a model to predict the individual ICU length of stay,
which can be used to plan the number of beds and staff required. Second,
we develop a model to predict the risk of prolonged stay, which helps
identifying prolonged stay patients to drive quality improvement actions.
Finally, we build a case-mix-adjusted efficiency measure (SLOSR) capable
of performing non-biased benchmarking analyses between ICUs. To achieve
these objectives, we divided the thesis into the following specific goals: (i)
to perform a literature review and meta-analysis of factors that predict
patient s LoS in ICUs; (ii) to propose a data-driven methodology to predict
the numeric ICU LoS and the risk of prolonged stay; and (iii) to apply this
methodology in the context of a big set of ICUs from mixed-type hospitals.
The literature review results presented the main risk factors that should
be considered in future prediction models. Regarding the predictive model,
we applied and validated our proposed methodology to a dataset of 109
ICUs from 38 different Brazilian hospitals. The included dataset contained
a total of 99,492 independent admissions from January 01 to December
31, 2019. The predictive models to numeric ICU LoS and to the risk of
prolonged stay built using our data-driven methodology presented accurate
results compared to the literature. The proposed models have the potential
to improve the planning of resources and early identifying prolonged stay
patients to drive quality improvement actions. Moreover, we used our
prediction model to build a non-biased measure for ICU benchmarking,
which was also validated in our dataset. Therefore, this thesis proposed a
structured data-driven guide to generating predictions to ICU LoS adjusted
to the specific environment analyzed.
|
|||||||||||||
|