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Abstract

Peres, Igor Tona; Oliveira, Fernando Luiz Cyrino (Advisor); Ha-
macher, Silvio (Co-Advisor). Essays on length of stay predic-
tion in Intensive Care Units. Rio de Janeiro, 2021. 124p. Tese
de Doutorado – Departamento de Engenharia Industrial, Pontifícia
Universidade Católica do Rio de Janeiro.
The length of stay (LoS) in Intensive Care Units (ICU) is one of the

most used metrics for resource use. This thesis proposes a structured data-
driven methodology to approach three main demands of ICU managers.
First, we propose a model to predict the individual ICU length of stay,
which can be used to plan the number of beds and staff required. Second,
we develop a model to predict the risk of prolonged stay, which helps
identifying prolonged stay patients to drive quality improvement actions.
Finally, we build a case-mix-adjusted efficiency measure (SLOSR) capable
of performing non-biased benchmarking analyses between ICUs. To achieve
these objectives, we divided the thesis into the following specific goals: (i)
to perform a literature review and meta-analysis of factors that predict
patient’s LoS in ICUs; (ii) to propose a data-driven methodology to predict
the numeric ICU LoS and the risk of prolonged stay; and (iii) to apply this
methodology in the context of a big set of ICUs from mixed-type hospitals.
The literature review results presented the main risk factors that should
be considered in future prediction models. Regarding the predictive model,
we applied and validated our proposed methodology to a dataset of 109
ICUs from 38 different Brazilian hospitals. The included dataset contained
a total of 99,492 independent admissions from January 01 to December
31, 2019. The predictive models to numeric ICU LoS and to the risk of
prolonged stay built using our data-driven methodology presented accurate
results compared to the literature. The proposed models have the potential
to improve the planning of resources and early identifying prolonged stay
patients to drive quality improvement actions. Moreover, we used our
prediction model to build a non-biased measure for ICU benchmarking,
which was also validated in our dataset. Therefore, this thesis proposed a
structured data-driven guide to generating predictions to ICU LoS adjusted
to the specific environment analyzed.

Keywords
Data science; Machine learning; Predictive modeling; Length of stay;

Intensive care units.
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Resumo

Peres, Igor Tona; Oliveira, Fernando Luiz Cyrino; Hamacher, Silvio.
Ensaios em predição do tempo de permanência em Uni-
dades de Terapia Intensiva. Rio de Janeiro, 2021. 124p. Tese
de Doutorado – Departamento de Engenharia Industrial, Pontifícia
Universidade Católica do Rio de Janeiro.
O tempo de permanência (LoS) é uma das métricas mais utilizadas

para avaliar o uso de recursos em Unidades de Terapia Intensiva (UTI). Esta
tese propõe uma metodologia estruturada baseada em dados para abordar
três principais demandas de gestores de UTI. Primeiramente, será proposto
um modelo de predição individual do LoS em UTI, que pode ser utilizado
para o planejamento dos recursos necessários. Em segundo lugar, tem-se
como objetivo desenvolver um modelo para predizer o risco de permanência
prolongada, o que auxilia na identificação deste tipo de paciente e assim
uma ação mais rápida de intervenção no mesmo. Finalmente, será proposto
uma medida de eficiência ajustada por "case-mix" capaz de realizar análi-
ses comparativas de "benchmark" entre UTIs. Os objetivos específicos são:
(i) realizar uma revisão da literatura dos fatores que predizem o LoS em
UTI; (ii) propor uma metodologia data-driven para predizer o LoS indivi-
dual do paciente na UTI e o seu risco de longa permanência; e (iii) aplicar
essa metodologia no contexto de um grande conjunto de UTIs de diferentes
tipos de hospitais. Os resultados da revisão da literatura apresentaram os
principais fatores de risco que devem ser considerados em modelos de pre-
dição. Em relação ao modelo preditivo, a metodologia proposta foi aplicada
e validada em um conjunto de dados de 109 UTIs de 38 diferentes hospitais
brasileiros. Este conjunto continha um total de 99.492 internações de 01 de
janeiro a 31 de dezembro de 2019. Os modelos preditivos construídos usando
a metodologia proposta apresentaram resultados precisos comparados com
a literatura. Estes modelos propostos têm o potencial de melhorar o plane-
jamento de recursos e identificar precocemente pacientes com permanência
prolongada para direcionar ações de melhoria. Além disso, foi utilizado o
modelo de predição proposto para construir uma medida não tendenciosa
para benchmarking de UTIs, que também foi validada no conjunto de dados
estudado. Portanto, esta tese propôs um guia estruturado baseado em dados
para gerar predições para o tempo de permanência em UTI ajustadas ao
contexto em que se deseja avaliar.

Palavras-chave
Ciência de dados; Aprendizado de máquina; Modelos preditivos; Tempo

de permanência; Unidades de terapia intensiva.
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1
Introduction

Hospitals are facing continuous pressure to improve efficiency and reduce
costs. Intensive Care Units (ICUs) are complex environments that provide
expensive care [Halpern and Pastores, 2015; Halpern et al., 2004]. Despite
differences in definitions of prolonged length of stay (LoS), studies have shown
that a small percentage of ICU patients (4% to 11%) presented a prolonged
LoS [Arabi et al., 2002; Higgins et al., 2003b; Laupland et al., 2006; Schoffelen
et al., 2010; Zampieri et al., 2014; Zimmerman et al., 2006]. However, those
few patients account for a large proportion of ICU days (40% to 52%) [Arabi
et al., 2002; Higgins et al., 2003b; Laupland et al., 2006; Schoffelen et al., 2010;
Zampieri et al., 2014; Zimmerman et al., 2006]. Since hospital costs are strongly
related to ICU LoS [Arabi et al., 2002; Halpern et al., 2004; Higgins et al.,
2003b; Kahn et al., 2008; Laupland et al., 2006; Schoffelen et al., 2010; Zampieri
et al., 2014; Zimmerman et al., 2006], few ICU admissions must account
for a large proportion of hospital costs. Therefore, the early identification of
prolonged stay patients can assist in improving unit efficiency. In short, the
main reasons for hospital administrators to predict ICU LoS are threefold: (i)
planning the number of ICU resources required; (ii) identifying patients with
greater risk of prolonged stay aiming to drive quality improvement actions; and
(iii) enabling case-mix1 adjustments for benchmarking analysis [Kahn et al.,
2008; Marik and Hedman, 2000; Verburg et al., 2017; Zampieri et al., 2014].

This thesis developed a structured data-driven methodology to deal with
each of these three hospital administrators’ demands. First, we propose a model
to predict the individual ICU length of stay, which can be used to plan the
number of beds and staff required. Second, we develop a model to predict
the risk of prolonged stay, which helps identifying prolonged stay patients to
drive immediate quality improvement. Finally, we build a case-mix-adjusted
efficiency measure capable of performing non-biased benchmarking analyses
between ICUs. To achieve these objectives, we divided the thesis into the
following specific goals: (i) perform a systematic literature review (SLR) and
meta-analysis of factors that predict patient’s LoS in ICUs; (ii) propose a data-

1Case-mix: The relative numbers of various types of patients being treated as categorized
by disease-related groups, severity of illness, rate of consumption of resources, and other
indicators; used as a tool for managing and planning health care services.
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Chapter 1. Introduction 13

driven methodology to predict the numeric ICU LoS and the risk of prolonged
stay; and (iii) apply this methodology in the context of a big set of ICUs from
mixed-type hospitals. The literature review results presented the main risk
factors that should be considered in future prediction models. Regarding the
predictive model, we applied the methodology to a dataset of 109 ICUs from
38 different Brazilian hospitals.

This thesis is organized into five chapters, as follows. Chapter 2 will
present an SLR and meta-analysis of factors that predict the patient length of
stay in the ICU. Chapter 3 will present a data-driven methodology to predict
the numeric ICU LoS and the risk of prolonged stay, and a methodology
to perform benchmarking analysis between ICUs. Chapter 4 presents an
application in a dataset with 109 mixed-type ICUs from 38 different Brazilian
hospitals. Chapter 5 presents the conclusions and future perspectives.
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2
What factors predict length of stay in the Intensive Care Unit?
Systematic Review and Meta-Analysis

This chapter aims to analyze what factors were associated with ICU
length of stay. To accomplish this goal, we performed a systematic review and
meta-analysis of papers that reported risk factors for ICU LoS. This study was
published in the Journal of Critical Care [Peres et al., 2020].

2.1
Introduction

Recent studies have analyzed the association of factors with ICU LoS.
A variety of designs have been used, including different factors related to
prolonged stay and reporting a range of statistical measures (i.e., correlations,
t-test statistics, mean, standard deviation). The existing reviews deal with
specific populations – Neonatal Unit [Seaton et al., 2016] and after coronary
artery bypass grafting ICU [Atashi et al., 2018] patients – or focus on models
used to predict LoS [Atashi et al., 2018; Awad et al., 2017; Verburg et al., 2017].
Although a comprehensive synthesis of factors associated with ICU LoS that
considers general adult population would be of great interest to researchers and
administrators, to the best of our knowledge, no updated Systematic Literature
Review (SLR) or meta-analysis exists in this field.

In the present study, we performed an SLR and meta-analysis to un-
derstand the risk factors of ICU LoS. The goals were twofold: to provide the
characteristics of existing studies and to perform a meta-analysis of the statis-
tics reported.

2.2
Materials and methods

The SLR and meta-analysis were conducted and reported according to
the recommendations of the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) statement [Liberati et al., 2009; Moher et al.,
2009]. The protocol was registered on PROSPERO (ID: CRD42019121642) in
April 2019. In what follows, we describe our search strategy, recount eligibility
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Chapter 2. What factors predict length of stay in the Intensive Care Unit?
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criteria for study selection, and how data extraction, quality assessment, and
statistical analysis were performed.

2.2.1
Information Source and Search Strategy

From inception to November 20, 2018, we searched MEDLINE, Embase
and Scopus databases. The searching process was limited to the English
language and the publication types “article”; “article in press”; and “review”.
The search comprised the fields “title”; “abstracts”; and “keywords” and no
restriction was made for the publication period. We used the following query:
(“ICU” or “Intensive Care” or “Critical Care” or “Critically Ill”) and (“length
of stay”) and (“predict” or “predictive” or “prediction” or “predictor” or
“prognosis” or “prognostic”). Moreover, an advanced search was performed to
retrieve different spelling occurrences of the keywords (e.g., “length-of-stay”
instead of “length of stay”) in both the singular and plural forms. The review
was subsequently updated until May 22, 2020, with a forward snowballing
search.

2.2.2
Study selection

The study selection was fourfold: (i) formulating eligibility criteria; (ii)
abstract reading and selection for full-text reading; (iii) full-text reading and
selection for SLR and meta-analysis; (iv) including new studies by backward
and forward search [Liberati et al., 2009; Moher et al., 2009; Thomé et al.,
2016].

We considered the following eligibility criteria for study inclusion in the
SLR: (i) study deals with general adult ICU population; (ii) study analyzes
one or more factors related to patient LoS in the ICU; (iii) study does not
deal strictly with research in the medical field related to clinical treatment
or diseases; (iv) study does not deal with experiments in animals; and (v)
systematic reviews. For meta-analysis inclusion, we also consider the following
criteria: (vi) studies reporting appropriate statistics (i.e., correlations, t-test
statistics, mean, standard deviation) that could be converted to one of the
following effect sizes: partial correlation and standardized mean difference.
The studies whose abstract or full-text did not meet any of the above criteria
were excluded. Inclusion and exclusion criteria were pilot tested randomly in
ten papers, and disagreements were debated by at least three authors until
an agreement about exclusion was reached. Studies that were not available for
online download were also excluded from the analysis. The previous systematic
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reviews related to the research topic were used to enlighten the discussion
section only and to enrich the comparisons with previous results.

2.2.3
Data Extraction

We developed a data extraction sheet, pilot-test it on ten randomly-
selected included studies, and refined it accordingly. The following data were
recorded (when available): study characteristics (cohort size, year, continent,
setting, and design), patient characteristics (inclusion and exclusion criteria),
statistical method used, type of LoS measured (continuous or categorical),
basic statistics of ICU LoS (e.g., mean and standard deviation), time of
variables’ measurement, significant and non-significant variables, and statistics
presented (e.g., correlations, t-test statistics).

2.2.4
Quality Assessment

Study quality was discussed using an adaptation of the Quality In Prog-
nostic Studies (QUIPS) tool [Hayden et al., 2013]. We considered all domains
of QUIPS tool: study participation (a cohort should include medical and surgi-
cal patients consecutively admitted to the ICU and not a specific population);
study attrition (the sample available for analysis should be representative);
factors measurement (the definition and measurement of factors and the meth-
ods used for missing data should be appropriate); outcome measurement (the
definition and measurement of ICU LoS should be proper); study confound-
ing (the model should be adjusted by potential confounders) and statistical
analysis and reporting (the model building should be appropriate, considering
validation and with no selective reporting of results). We included a rate for
each article based on the attendance of the domains. This rate could vary from
one to six, according to the number of domains attended. The total number of
domains attended in each paper was called “number of stars”.

2.2.5
Statistical analysis

A meta-analysis was performed, when possible, seeking to estimate the
average relationship across studies between a given factor and the ICU LoS.
We used the following effect sizes: (1) the partial correlation rp [Aloe, 2014;
Aloe and Thompson, 2013] for studies reporting multiple regression statistics;
and (2) the standardized mean difference (Cohen’s d) [Cohen, 1988] for studies
reporting means of ICU LoS for each factor category. Where data were reported
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as medians and interquartile ranges, it was converted to means and standard
deviation [Luo et al., 2018; Wan et al., 2014]. The I2 test was used to describe
the proportion of the total variation in the study estimates that is due to
heterogeneity in the meta-analysis [Higgins et al., 2003a]. The effect sizes,
as well as the associated 95% confidence intervals (CI), were computed with
a random-effects model due to expected heterogeneity. Publication bias was
detected by Begg’s test [Begg and Mazumdar, 1994]. Statistical analyses were
performed using the package Metafor in R software version 3.4 [R Core Team,
2018]. To assess the robustness of the estimates’ stability, a sensitivity analysis
was also performed.

2.3
Results

2.3.1
Study selection

The initial search identified 8935 papers. After removing duplicates,
6906 articles were screened for eligibility based on their title or abstract. The
remaining 168 studies were screened based on their complete text, leaving a
total of 85 research articles. After screening references, 16 papers were included,
leaving a total of 101 research articles. The review was updated until May 2020
with a forward search on articles that cited these 101 papers, resulting in the
addition of 12 new articles. We presented the complete searching process in
Figure 2.1.

2.3.2
Summary of studies

Only nine studies used a cohort size smaller than 100 patients [Brascher
et al., 2020; Cander et al., 2011; da Silva et al., 2015; Ely et al., 2001; Limaye
et al., 2011; Makrygiannis et al., 2018; Piva et al., 2015; Thorevska et al.,
2003; Zafar et al., 2014], and the median cohort, first and third quartile were,
respectively, 443, 200, and 2,588 patients. The total cohort of all papers was
equal to 2,163,424 patients. Most studies consider for inclusion criteria patients
with ICU LoS longer than 24h and with age older than 18 years old. There
was a range of exclusion criteria used in the studies, as follows: presence
of missing values, burns, surgical patients, post-operative patients, pregnant
women, patients not expected to survive, readmissions, admissions from or
transfers to another ICU, and other less common exclusions.
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Figure 2.1: Flow diagram of study inclusion.
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Regarding the time of variables’ measurement, over half of the studies
took the measurements on admission or within the first 24 h. The large majority
of articles performed some type of univariate analysis. Some articles also used
multivariate methods in order to adjust the effects by potential confounders.
Most studies consider the ICU LoS as a continuous dependent variable, and
few articles consider the LoS as a categorical variable (i.e., prolonged stay
or normal stay). Of these, the majority considered as prolonged ICU stay
admissions greater than 14 days [Arabi et al., 2002; Higgins et al., 2003b;
Laupland et al., 2006; Schoffelen et al., 2008; Zampieri et al., 2014].

2.3.3
Quality Assessment

The overall quality of the studies was moderate: 69 articles (61%) met at
least five of the six QUIPS domains analyzed, and 101 articles (89%) attended
at least four domains. The number of articles that attended each quality
domain is as follows: 84 for study participation, 108 for study attrition, 93 for
factors measurement, 112 for outcome measurement, 38 for study confounding,
and 90 for statistical analysis and reporting.

2.3.4
Risk factors of ICU stay

The 113 identified studies presented a total of 163 possible risk factors of
ICU LoS. Because of this great number, we selected for discussion only factors
analyzed by more than one article. Therefore, 89 factors were analyzed and will
be discussed next. These variables were grouped into broad categories of pa-
tient demographics; severity scores; characteristics of admission; interventions;
clinical conditions; acute diagnoses; APACHE IV diagnoses; chronic health
items; reasons for ICU admission; and clinical information. Table 2.1 summa-
rizes our findings related to predictors of ICU stay and provides all factors
assessed at least three times. The table presents the number of studies that
found each factor to be significant (or non-significant), the relative percentage
“N (%)”, the corresponding references and also the references when the effect
was positive or negative.

We begin by reporting on factors related to the patient demographics,
namely age, gender, and body mass index (BMI). Age was the most analyzed
factor among all articles, but the results were not conclusive. Most studies
that found age to be significant considered this factor as a categorical variable,
and noted that: from 18 to about 60 years, the greater the age, the greater
the ICU LoS; and from 61 years, the higher the age, the shorter the ICU LoS
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Table 2.1: Summary of factors associated with increased ICU LOS identified
by each study.
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[Higgins et al., 2003b; Knaus et al., 1993; Nicolas et al., 1987; Straney et al.,
2017]. Almost all studies found gender not to be a significant predictor. Over
half of the studies that analyzed BMI found that obese patients presented a
significantly longer ICU LoS than non-obese ones.

Next, we report on severity scores, such as Acute Physiology and Chronic
Health Evaluation (APACHE), Simplified Acute Physiology Score (SAPS),
Glasgow Coma Scale (GCS) and Sequential Organ Failure (SOFA). We can
note that the great majority of studies found a significant relationship between
the severity scores and ICU LoS. Most articles that included APACHE III
and IV, SAPS II and III, GCS, and SOFA found them to be significant, and
the majority presented a positive effect. APACHE II was the most analyzed
severity score, but the results were inconclusive. Two studies compared the
influence of both APACHE II and SAPS II in ICU LoS, concluding that the
latter had a stronger association [Arabi et al., 2002; Bellia et al., 2019]. Two
studies analyzed the influence of both APACHE IV and GCS, noting that the
former had a stronger one [Kramer and Zimmerman, 2010; Vasilevskis et al.,
2009]. Two studies showed a nonlinear association between the severity scores
[Arabi et al., 2002; Knaus et al., 1993] and the ICU LoS: the ICU stay increases
as the score increases, but from a certain high score, it starts to decrease.

Regarding the characteristics of ICU admission, most studies found the
admission type to be significant: elective surgery patients presented lower LoS
compared to medical patients, while emergency surgery patients tend to have
a longer ICU stay. The admission source was a significant predictor in most
studies: patients from other hospital tend to have a longer ICU LoS, followed
by patients from the ward, emergency room and operating recovery room.
The majority of studies found that readmitted patients tend to have a longer
ICU stay. In all four studies, hospital LoS before ICU admission was not a
significant factor. The ICU type was always found to be significant, but the
results were inconclusive regarding which type provided longer stay. In all three
studies, patients unable to access GCS due to sedation or paralysis presented
statistically greater ICU stay.

Some studies analyzed factors related to clinical conditions. The influence
of hypomagnesemia, coma, and malnutrition was uncertain. Regarding the
influence of delirium, most studies found it to be positively related to ICU LoS.
The two studies of hypernatremia found that patients with this condition tend
to have a longer ICU stay. Twelve articles analyzed the effect of interventions,
such as mechanical ventilation, and the vast majority found that ventilated
patients presented higher ICU stay.

Regarding the acute diagnoses, all gastrointestinal (GI) bleeding studies
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did not find it to be a significant predictor. Patients with infectious diseases
and with cerebrovascular accident were found to have a greater ICU stay. Some
studies also analyzed the APACHE IV diagnoses for both non-operative and
post-operative patients. Most studies found trauma and respiratory diagnoses
to be positively related to ICU LoS for both types of patient.

Next, we report on factors related to chronic health items. The majority
of studies found the following diseases to be positively associated with ICU
LoS: chronic obstructive pulmonary disease (COPD), chronic cardiovascular
disease, and respiratory system disease. Regarding the reasons for ICU admis-
sion, sepsis was the most analyzed one, and most studies found that sepsis
patients tend to have greater ICU stay. Moreover, all studies found myocar-
dial infarction, intracerebral hemorrhage, pulmonary edema, and subarachnoid
hemorrhage to be positively related to ICU LoS.

Some articles analyzed the influence of clinical information in the ICU
LoS. The majority of studies found that red blood cell indices, albumin-
creatinine ratio, body temperature and MR-proANP were positively associated
with ICU stay. PaO2:FiO2 ratio was a significant factor, but negatively related
to ICU LoS. The influence of mortality and organizational factors in the ICU
LoS were inconclusive.

2.3.5
Meta-analysis

We included 28 studies reporting appropriate statistics that could be
converted to one of the following effect sizes: partial correlation (rp) and
standardized mean difference (d). Six factors reported appropriate statistics
and were meta-analyzed. The effect size for age, gender and mechanical
ventilation was the partial correlation (Figure 2.2), and for hypomagnesemia,
delirium, and malnutrition we used the standardized mean difference (Figure
2.3). The overall quality of the included studies was high: 20 articles (71%)
met at least five of the six QUIPS domains analyzed, and 27 articles (96%)
attended at least four domains.

Five studies reported statistics for age and the meta-analysis demon-
strated non-significant association with ICU LoS (Rp= 0.02; 95%CI: -0.03,
0.07; p-value = 0.44; I2 = 95.46%) [Choi and Lee, 2016; Ely et al., 2001; Moran
et al., 2008; Reini et al., 2012; Vasilevskis et al., 2009]. The meta-analysis
for gender (reference = female) also demonstrated non-significant relationship
with ICU LoS (Rp= 0.005; 95%CI: 0.00, 0.01; p-value = 0.05; I2 = 2.61%)
[37,42,52]. Regarding the meta-analysis for mechanical ventilation (reference
= no), we noted a significant and positive association with ICU LoS (Rp=
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Figure 2.2: Meta-analysis for the impact of age, gender and mechanical
ventilation in ICU length of stay.
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Figure 2.3: Meta-analysis for the effect of hypomagnesemia, delirium and
malnutrition in ICU length of stay.
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0.07; 95%CI: 0.02, 0.13; p-value = 0.0097; I2 = 99.82%) [Moran et al., 2008;
Straney et al., 2017; Vasilevskis et al., 2009; Zimmerman et al., 2006].

The meta-analysis for hypomagnesemia showed a significant and positive
association with ICU LoS (d = 1.41; 95%CI: 0.49, 2.33; p-value = 0.0026;
I2 = 98.41%): hypomagnesemia patients tend to stay 1.41 days longer. The
meta-analysis for delirium showed also a significant and positive relationship
with ICU LoS (d = 1.01; 95%CI: 0.70, 1.33; p-value < 0.0001; I2 = 88.11%)
[67,84–88]: delirium patients tend to stay 1.01 days longer. The meta-analysis
for malnutrition showed a significant but weaker relationship with ICU LoS (d
= 0.42; 95%CI: 0.24, 0.60; p-value < 0.0001; I2 = 45.42%) [35,90–92,97,104]:
malnourished patients (NUTRIC score >= 5) tend to stay 0.42 days longer.

Publication bias was detected by Begg’s test [Begg and Mazumdar, 1994].
There was no evidence of publication bias for all meta-analyses considering 5%
of significance level.

2.3.6
Sensitivity analysis

To assess the robustness of the estimates’ stability, a sensitivity analysis
was performed after excluding one study at a time. We found heterogeneous
studies for the meta-analysis of age, hypomagnesemia, and delirium. After ex-
cluding those studies, the heterogeneity was significantly reduced (Figure 2.4).
None of the results in terms of statistical significance was altered. Regarding
the mean estimate, we noted a significant change only for hypomagnesemia.

The meta-analysis for age remained to show a non-significant association
with ICU LoS (Rp= 0.04; 95%CI: 0.00, 0.09; p-value = 0.08; I2 = 78.3%)
[Choi and Lee, 2016; Ely et al., 2001; Reini et al., 2012; Vasilevskis et al.,
2009]. For hypomagnesemia, the results remained significantly associated with
ICU LoS. The heterogeneity decreased from 98.41% to 0%, and the mean effect
size reduced from 1.41 to 0.21 (d = 0.21; 95%CI: 0.10, 0.32; p-value = 0.0003;
I2 = 0%) [Chen et al., 2015; Gupta et al., 2016; Kumar et al., 2015; Limaye
et al., 2011; Soliman et al., 2003; Zafar et al., 2014]. Regarding the sensitivity
analysis of delirium, the results also remained significantly associated with ICU
LoS, and the heterogeneity decreased from 88.11% to 0% (d = 1.05; 95%CI:
0.90, 1.20; p-value < 0.0001; I2 = 0%) [Kishi et al., 1995; Ouimet et al., 2007;
Salluh et al., 2010; Tsuruta et al., 2010].
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Figure 2.4: Sensitivity analysis of the meta-analysis.
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2.4
Discussion

This work systematically reviewed 113 papers dealing with risk factors of
ICU LoS. We performed an extensive analysis of risk factors that should be in-
cluded in future prediction models to improve their predictive capacity. We also
performed a meta-analysis of six factors from 28 articles. The meta-analyses
concluded that patients with mechanical ventilation, hypomagnesemia, delir-
ium, and malnutrition tend to have higher ICU stay, and showed that age and
gender were not significantly associated with an extended stay. Table 2.2 sum-
marizes our findings regarding risk factors more frequently associated with a
higher ICU stay.

Table 2.2: Summary of potential risk factors of ICU stay.

This study analyzed 89 possible risk factors of ICU LoS and reported a
summary list of relevant ones, as presented in Table 2.2. We recommend future
studies related to the prediction of ICU stay to include at least these risk
factors in their models. Accurate prediction models can bring the information
whether a patient may have a short or prolonged ICU LoS, which can help
the decision-makers to act accordingly. Patients with a very short ICU stay
means that the unit has the potential to release the bed in a few days. This
information is important to the managers, especially if the ICU is crowded.
On the other hand, a long ICU LoS means that the patient may hold the
bed for a prolonged period. So, this information can be used by managers to
change the protocol of care for this patient, trying to reduce the time in the
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ICU. Next, we discuss our findings in light of previous reviews. Of note, the
existing reviews deal with a specific population [Atashi et al., 2018; Seaton
et al., 2016] or focus on models used to predict LoS [Atashi et al., 2018; Awad
et al., 2017; Verburg et al., 2017] and, to the best of our knowledge, no updated
SLR and meta-analysis exist for factors associated with ICU LoS considering
general population. Therefore, we compared our results with a range of specific
reviews.

Jiang et al. [2017] performed a meta-analysis for the impact of hypomag-
nesemia on ICU outcomes and concluded that ICU stay for hypomagnesemia
group was 1.85 days longer. We updated the previous meta-analysis, and our
results were in line with theirs. Zhang et al. [2013] performed a meta-analysis to
evaluate the impact of delirium in critically ill patients. The meta-analysis in-
cluded ten studies, some of them from specific ICU population, and the results
showed that delirious patients tend to stay 7.32 days longer. We performed a
meta-analysis considering only studies from general ICU population, and our
results also demonstrated a significant association. However, the mean effect
was shorter (d = 1.01 days).

Zhang et al. [2015] performed a meta-analysis to assess the effects of
gastric tonometry guided therapy on patient outcome in ICUs and suggested
that it could not significantly reduce the days spent in the ICU. Muscedere
et al. [2017] performed a meta-analysis regarding the impact of frailty on
ICU outcomes and demonstrated a non-significant relationship with ICU
LoS. Chant et al. [2011] evaluated the effect of catheter-associated urinary
tract infection (CAUTI) in critically ill patients through a meta-analysis and
demonstrated a significant increase in the ICU stay of 2.4 days in CAUTI
patients. We did not find any other new study to update those three previous
meta-analyses.

Regarding the severity scores, almost all studies that analyzed APACHE
IV and SAPS III found them to be significant predictors of ICU stay. Since
both severity scores consider in their formulations other potential predictors,
like the ICU admission reason, it may explain the significance of those scores.
The previous reviews on this topic suggested that APACHE IV provides better
predictions compared to SAPS III. APACHE IV includes 116 specific ICU
admission reasons, whereas SAPS III includes only ten. Since the admission
reason is one of the main predictors of outcome, it may explain the accuracy
of APACHE IV model [Breslow and Badawi, 2012b; Keegan et al., 2011]. We
did not find case studies comparing those two scores, and we suggest future
studies to include those scores and present their comparison results.

We analyzed two studies that showed a nonlinear association between
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the severity scores [Arabi et al., 2002; Knaus et al., 1993] and the ICU stay:
the LoS increases as the score increases, but from a certain score it starts to
decrease. Two reviews of severity scores presented the same behavior and noted
that it could be explained by the greater mortality rate in the highest severity
levels [Breslow and Badawi, 2012a; Higgins, 2007].

Four articles analyzed large datasets and reported their results regarding
the relative importance of each variable for ICU LoS prediction [Knaus et al.,
1993; Kramer and Zimmerman, 2010; Weissman et al., 2018; Zimmerman et al.,
2006]. The following factors were commonly reported as relevant predictors:
APACHE scores, GCS, PaO2:FiO2 ratio, mechanical ventilation, reason for
ICU admission, inability to access GCS, and ICU admission source. Of note,
those results are in line with our findings.

This work has the following limitations. Regarding the systematic review,
we did not include non-English written articles in our literature search because
it would complicate the process of title, abstract, and full-text screening,
requiring a translation pre-process, and could prevent the process of consensus-
building among authors when disagreements on exclusion of studies arises.
Regarding the quality of studies, most of them considered a cohort with both
medical and surgical patients. However, there was a range of inclusion and
exclusion criteria, which could generate cohorts with more severe or less severe
patients. Furthermore, only 38 studies adjusted their models for potential
confounders, which may also affect our results. Regarding the meta-analysis,
the high heterogeneity found for some studies could be partly explained
by the differences in clinical characteristics of individual studies (settings)
and study designs (retrospective vs. prospective). Therefore, we performed a
random-effects meta-analysis by assuming that the true effects were normally
distributed. In this model, more weight is assigned to small-sized studies
compared to the fixed-effects model [Thompson and Sharp, 1999]. Moreover,
we did a sensitivity analysis to assess the robustness of the estimates’ stability.
After excluding the high heterogeneous studies, we concluded that none of the
results in terms of statistical significance was altered, and we noted a significant
change only for the estimate of hypomagnesemia.

To make possible more reviews and meta-analyzes in this topic, we
recommend future studies to include the statistics for all variables analyzed,
and not only for significant ones. Moreover, studies should report not only p-
values but also the effect-sizes (i.e., regression coefficients, confidence interval
and p-values). From 113 studies, we could only meta-analyze 28 of them,
because the majority did not present appropriate statistics, which is also a
limitation of this work. So, only six factors were meta-analyzed from 89 that
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could have been if we had the appropriate statistics. It would be of great value
to perform a meta-regression related to predictors of ICU LoS, but we need
future studies to report the complete statistics.

2.5
Conclusions

This work systematically reviewed and meta-analyzed papers dealing
with risk factors of ICU stay and suggested a list of factors that should be con-
sidered in prediction models for ICU LoS. In summary, the main risk factors
that should be considered in future prediction models are, as follows: severity
scores, BMI, admission source, admission type, readmission (yes/no), inability
to access GCS (yes/no), mechanical ventilation (yes/no), clinical conditions
(hypomagnesemia, delirium, malnutrition, infectious diseases, cerebrovascular
accident, trauma, and respiratory diagnoses), chronic health items (COPD and
chronic cardiovascular disease), reasons for ICU admission (sepsis, intracere-
bral hemorrhage, myocardial infarction, pulmonary edema and subarachnoid
hemorrhage) and clinical information (levels of red blood cell, body tempera-
ture, MR-proANP, albumin-creatinine ratio, and PaO2:FiO2 ratio). Our find-
ings can be used by future prediction models to improve their predictive ca-
pacity of prolonged stay patients, which can assist in planning the number of
resources required, driving quality improvement actions, and enabling case-mix
adjustments for benchmarking analysis.
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3
Data-driven methodology to predict ICU length of stay

This chapter presents a structured data-driven methodology to approach
the main demands for ICU managers regarding the prediction of ICU LoS:
(i) planning the number of beds and staff required to fulfill the need for ICU
care (Section 3.2); (ii) identifying patients with a high risk of prolonged ICU
LoS to drive immediate quality improvement (Section 3.3); and (iii) enabling
case-mix correction when comparing the LoS between ICUs (benchmarking)
(Section 3.4). Figure 3.1 shows the proposed framework, which summarizes the
topics covered in this chapter.

Figure 3.1: Framework of ICU LoS prediction topics covered in this chapter

First, we will preprocess the dataset, applying transformations that can
improve future models performance (Section 3.1). Second, after preprocessing
the dataset, we can apply the methodology to predict the numeric ICU length
of stay (Section 3.2), which is the leading information necessary for planning
the ICU resources. This section will show the topics of training and evaluating
regression models. Third, we will use the best type of model found applying
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the methodology of Section 3.2 to train a classification model to predict the
patient’s risk of being a prolonged stay (Section 3.3), which helps to identify
possible prolonged stay patients. This section presents the particularities that
should be considered when using classification models to ICU LoS. Finally,
we will use our best model of Section 3.2 to predict the grouped length of
stay for each ICU and then present a methodology to perform a non-biased
benchmarking analysis between ICUs (Section 3.4).

3.1
Data Preparation and Preprocessing

Figure 3.2 presents the framework of data preparation and preprocessing
methodology. Each step is explained in detail considering the prediction of the
numeric ICU length of stay. The framework includes the following steps:

– Data Preparation: Import the database, understand the characteristics,
and propose some new features based on the existing ones (feature
engineering);

– Visualization and Data Cleaning: Analysis of missing values, descriptive
analysis, and outliers detection and treatment;

– Data Splitting: Splitting the data into training and testing;

– Data Preprocessing: Treating the dataset before the application of re-
gression models.

Figure 3.2: Framework of the Data Preparation and Preprocessing methodol-
ogy
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3.1.1
Data Preparation

In this section, we will present the data preparation. First, we will import
the database and observe the features. After that, we will analyze which feature
can be created based on the existing ones. This is an important step called
"feature engineering".

Some authors proposed general definitions for feature engineering. Kuhn
and Johnson [2019] defines it as a process that includes the following topics:
the transformation of a predictor, interaction of two or more predictors such
as a product or ratio, the functional relationship among predictors, equivalent
re-representation of a predictor. Feature transformation is the process of
constructing new features from existing ones [Dong and Liu, 2018]. According
to Morid et al. [2019], using temporal variables with greater granularity (e.g.,
each invasive procedure taken in the past six months) could improve the
prediction model’s performance since these variables expose more information
than using aggregated variables (e.g., the sum of procedures in the past six
months). Therefore, in this step of the methodology, we will propose new
features from existing ones.

3.1.2
Visualization and Data Cleaning

This section will present the strategy to: treat missing values, show the
descriptive statistical analysis, and detect and treat outliers.

3.1.2.1
Missing values

Our study follows the guidelines for reporting analysis potentially affected
by missing data [Chevret et al., 2015; Sterne et al., 2009], which recommend
reporting the missing data structure, the multiple imputation approach, and
comparing the imputed and the observed data (if the variable has a large
proportion of missing). Features with more than 30% of missing must be
excluded from the analysis. We will present the complete treatment for missing
data in the "Imputation" section.

3.1.2.2
Descriptive statistical analysis

After the data preparation, we recommend presenting a descriptive
analysis of the data. This analysis aims to understand the variables presented
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in the dataset and provide insights into factors related to prolonged length of
stay.

3.1.2.3
Outlier detection and treatment

A common approach to visualize univariate extreme values is the use
of box plots. In a boxplot, the statistics of a univariate distribution are
summarized in terms of five quantities: “minimum/maximum” (whiskers), the
upper and lower quartiles (boxes), and the median (line in the middle of the
box) [Aggarwal, 2017]. The distance between the upper and lower quartiles is
referred to as the interquartile range (IQR). If there are points bigger than 1.5
IQR (above the third quartile and bellow the first quartile), they are considered
moderate outliers. If there are points higher than 3 IQR, they are considered
extreme outliers.

There are basically three approaches for treating outliers in a dataset
[Kwak and Kim, 2017]: (i) removing outliers by trimming the dataset; (ii)
replacing the values of outliers with expected values or reducing the influence
of outliers through outlier weight adjustments; (iii) estimate the values of
outliers using robust techniques. The first and second approaches may not
be statistically valid in general, and they can lead to serious bias. These biases
can be overcome considering the third approach and using multiple imputation
methods to estimate the value of outliers [Sterne et al., 2009]. Therefore, for
the numeric covariates of the model, we recommend analyzing the presence
of extreme outliers with boxplots and then applying the third treatment
approach. A detailed explanation about multiple imputation methods will be
presented in Section 3.1.4.2 (Imputation section).

Regarding the dependent variable (ICU length of stay), because of
the non-normality of its distribution, truncation of the data or deleting
outliers have been undertaken before possible data transformation. Studies
implementing the APACHE III and IV algorithms for ICU LoS prediction used
the truncation at 30 days (99% percentile) to treat the outliers, truncating 1%
of the data [Kramer and Zimmerman, 2010; Niskanen et al., 2009; Vasilevskis
et al., 2009; Verburg et al., 2014; Zimmerman et al., 2006]. Therefore, for the
dependent variable, we recommend following the literature not removing the
outliers and applying the truncation at high percentiles (e.g., 99% or 95%).
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3.1.3
Data Splitting

Before data preprocessing and modeling, we have to decide which samples
will be used to evaluate performance. According to Kuhn and Johnson [2013],
to provide an unbiased sense of model effectiveness, we should evaluate the
predictive model on samples that were not used to build or tune the model.
The “training” dataset is the general term for the samples used to create the
model, while the “testing” dataset is used to measure performance.

In order to split the dataset in training and test, it is recommended to use
stratified random sampling, which applies random sampling within subgroups
(such as the classes) [Kim, 2009; Molinaro et al., 2005]. This strategy accounts
for the outcome when splitting the data, providing a higher likelihood that
the outcome distributions will match. When the outcome is a number (ICU
LoS), we can use a similar approach; the numeric values are broken into
groups (e.g., low, medium, and high), and the randomization is executed within
these groups. Therefore, we recommend applying this sampling methodology,
splitting 80% of the dataset for training and 20% for testing (as proposed by
Kuhn and Johnson [2013]).

3.1.4
Data Preprocessing

Data preprocessing techniques refer to transformations of the training
and testing datasets to improve model performance. Transformations can be
used to reduce the impact of data skewness or outliers, to remove predictors
based on their lack of information content, or to extract new features. The
need for data preprocessing is determined by the type of model being used.
Kuhn and Johnson [2013] proposed the main preprocessing steps that should
be considered before applying prediction models, which can be summarized
by the following steps: dimension reduction, imputation, transformations to
resolve skewness, normalization, and one-hot encoding. Next, we will present
each one in detail.

3.1.4.1
Dimension reduction

There are potential advantages to removing predictors before modeling.
First, fewer predictors mean lower computational time and complexity. More-
over, removing zero variance (and near zero) predictors and correlated predic-
tors can improve the model’s performance. These transformations might lead
to a more parsimonious and interpretable model [Kuhn and Johnson, 2013].
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- Zero and Near-Zero Variance Predictors
A predictor that has a single unique value is considered a zero variance

predictor. This variable does not add any additional information to the models
and should be removed. Some models are invariant to this variable (like tree-
based models); however, other models can have problems in the computations
(like linear regression). Another type of problematic predictor is the near-zero
variance predictor, which has the vast majority of cases presenting a unique
value and few cases showing other values. A rule of thumb for detecting near-
zero variance predictors is: the fraction of unique values over the sample size is
low (≤10%); and the ratio of the frequency of the most prevalent value to the
frequency of the second most prevalent value is large (≥20). If both criteria are
true, these variables should be removed from the model [Kuhn and Johnson,
2013]. We recommend excluding zero and near-zero variance features.

- Identifying Correlated Predictors
The term "collinearity" refers to the situation where a pair of predic-

tors have a substantial correlation with each other. There are good reasons to
avoid data with high collinearity. First, redundant predictors can add more
complexity to the model than information. Second, we commonly have a cost
and time associated when obtaining each predictor data; therefore, fewer vari-
ables are better for the model. Moreover, there are mathematical disadvantages
to having correlated predictors. For instance, using highly correlated predic-
tors in techniques like linear regression can result in highly unstable models,
numerical errors, and degraded predictive performance. A statistic called the
variance inflation factor (VIF) can be used to identify predictors that are im-
pacted [Myers and Myers, 1990]. However, this method may be inadequate for
several reasons: it was developed for linear models, it requires more samples
than predictor variables, and, while it does identify collinear predictors, it does
not determine which should be removed to solve the problem [Kuhn and John-
son, 2013]. A recommended approach to dealing with this issue is to remove the
minimum number of predictors to ensure that all pairwise correlations are be-
low a certain threshold. While this method only identifies collinearities in two
dimensions, it can positively affect the performance of some models [Kuhn and
Johnson, 2013]. Therefore, we recommend considering this approach, which
has some differences according to the type of feature. For numeric variables,
we recommend using Pearson Correlation with a threshold of 0.75 [Kuhn and
Johnson, 2013]. For categorical ones, we suggest employing Cramér’s V with
a threshold of 0.5 [Cohen, 1988].
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3.1.4.2
Imputation

Missing data occur in almost all medical research. Inadequate handling
of them can lead to biased or inefficient estimates of parameters and incorrect
confidence intervals. In all statistical analyses, some assumptions are made
about the missing data [White et al., 2011]. Little and Rubin [2019] proposed
a framework to classify the missing data, which can be (i) missing completely
at random (MCAR — the probability of data being missing does not depend
on the observed or unobserved data), (ii) missing at random (MAR — the
probability of data being missing does not depend on the unobserved data,
conditional on the observed data) or (iii) missing not at random (MNAR —
the probability of data being missing does depend on the unobserved data,
conditional on the observed data). The distinction between MAR and MNAR
can not be made from the dataset alone. However, the MAR assumption can
be more plausible by collecting more explanatory variables and including them
in the analysis [White et al., 2011].

When it is plausible that data are missing at random (MAR) but not
completely at random (MCAR), analyses based on complete cases (excluding
missing values) may be biased. A variety of ad hoc approaches are commonly
used to deal with missing data: replacing missing values with the mean of the
observed values, with the last measured value, or using a missing category
indicator. None of these approaches is statistically valid in general, and
they can lead to serious bias. These biases can be overcome using multiple
imputation methods, which allow individuals with incomplete data to be
included in analyses [Sterne et al., 2009].

In large data sets, it is common to occur missing values in several
variables. Multiple imputation by chained equations (MICE) is a practical
approach to generating imputations based on a set of imputation models, one
for each variable with missing values. An advantage of MICE is the ability to
handle different variable types (continuous, binary, unordered categorical, and
ordered categorical), because each variable is imputed using its own imputation
model [White et al., 2011]. The MICE algorithm works as follows. First, all
missing values are filled in by simple random sampling with replacement from
the observed values. The first variable with missing values (x1) is regressed on
all other variables (x2, . . . , xk), restricted to individuals with the observed
x1. Missing values in x1 are replaced by simulated values from the posterior
predictive distribution of x1. Then, the next variable with missing (x2) is
regressed on all other variables (x1, x3, . . . , xk), restricted to individuals
with the observed x2, and using the imputed values of x1. As done before,
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Figure 3.3: Multiple imputation steps

the missing values in x2 are replaced by draws from the posterior predictive
distribution of x2. This process is repeated for all variables with missing values.
In order to stabilize the results, the whole process is repeated m times to give
m imputed data sets [Chevret et al., 2015; White et al., 2011]. Rubin’s rules
give overall estimates and corresponding standard errors from the m separate
analyses [Rubin, 2004]. The whole procedure is resumed in Figure 3.3.

Standard texts on multiple imputation suggest that small numbers of
imputed data sets (m = 3 or 5) are adequate. Graham et al. [2007] argued that
we should instead choose the number of imputations to limit the loss in power
for testing an association of interest. To limit the loss in power to no more
than 1%, they recommended m greater than 20. More recent advice is that m
should be at least equal to the percentage of incomplete cases [Chevret et al.,
2015; White et al., 2011]. Moreover, White et al. [2011] do not recommend
imputation in variables with more than 30% of missing, because it can add
imperfections in the imputation procedure.

Therefore, we suggest applying the MICE imputation algorithm to the
variables with incomplete data considering m at least equal to the percentage
of incomplete cases. Variables with fraction of incomplete data greater than
30% should not be included in the study.

3.1.4.3
Feature Selection

The feature selection has the objective to reduce the dimension of the
problem by removing variables that do not present a significant contribution to
the model. We recommend testing the Recursive Feature Elimination (RFE)
with random forest (RF-RFE), and the RFE with Bagging (Treebag-RFE), as
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proposed by Kuhn and Johnson [2013].

3.1.4.4
Transformation to Resolve Skewness

Several literature studies noted skewness in numerical ICU features
from different datasets and had to use transformations to treat this problem
[Caetano et al., 2014; Choi and Lee, 2016; Li et al., 2019; Moran et al.,
2008; Moran and Solomon, 2012; Niskanen et al., 2009; Straney et al., 2017;
Verburg et al., 2014, 2018c; Zimmerman et al., 2006]. Those studies also showed
that the outcome variable (ICU LoS) demonstrated a markedly right skewed
distribution and most of them used log-transformations for this problem.

A general rule of thumb to consider is that skewed data whose ratio of the
highest value to the lowest value is greater than 20 have significant skewness.
Therefore, replacing that data with the log, square root, or inverse may help to
remove the skew [Kuhn and Johnson, 2013]. However, it is important to find
which one of those statistical methods would be better to get the appropriate
transformation. Box and Cox [1964] propose a family of transformations that
are indexed by a parameter, denoted as λ:

x∗ =


xλ−1
λ

if λ 6= 0

log (x) if λ = 0
(3-1)

In addition to the log transformation, this family can identify square
transformation (λ = 2), square root (λ = 0.5), inverse (λ = -1), and others
in-between. Box and Cox [1964] used maximum likelihood estimation to de-
termine λ in training data. We suggest applying this procedure independently
to each numeric predictor that has significant skewness.

3.1.4.5
Normalization

The data normalization refers to set the numerical variables of the
database on a common scale. These transformations are generally used to
improve the numerical stability of some calculations. Normalization methods
affect differently on different classifiers. Distance-based classifiers like SVM,
KNN, and neural networks dramatically benefit from normalization [Kuhn
and Johnson, 2013]. Other length of stay prediction studies also used the
normalization in their data [Caetano et al., 2014; Li et al., 2019; Liu et al.,
2006]. A common method to normalize the dataset is to scale the data between
0 and 1, also known as "Min-Max Normalization" or "Normalization by Range".
This method is demonstrated in Equation 3-2, where x = (x1, ..., xn) and zi
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is the ith normalized data. We recommend using this method to scale the
numerical variables.

zi = xi −min (x)
max (x)−min (x) (3-2)

3.1.4.6
One-hot encoding

One-hot encoding is a method used to handle datasets with mixed
data types (numerical, categorical, and binary) since some machine learning
prediction models do not accept this type of data. The method is used to
encode a categorical feature with k possible values to k features. The feature
representing the corresponding category has a value of 1, and all other features
have values of 0.

3.2
Predicting the Numeric ICU Length of Stay

There are a set of prediction studies to the length of stay in the Intensive
Care Unit [Caetano et al., 2014; Li et al., 2019; Liu et al., 2006; Weissman
et al., 2018]. A range of models was tested, but none presented a structured
methodology to develop prediction models. This section aims to develop a
structured data-driven methodology for numeric ICU LoS prediction. The
objective is to predict the patient length of stay in a specific ICU admission
based on the first 24h data, which helps planning the number of resources
required to fulfill the need for ICU care. Despite not being our aim, it is
important to note that another possible objective would be to predict the total
patient time in all ICUs, which considers the multiple patient admissions. In
this thesis, we will consider the ICU LoS prediction for each independent ICU
admission.

A recent literature review analyzed six prediction articles that applied
and compared different regression models to predict ICU LoS [Peres et al.,
2021]. The authors noted that Support Vector Regression (SVR), Gradient
Boosting Machine (GBM), and Random Forests (RF) presented superior re-
sults compared to other data-driven models. Therefore, we recommend testing
the following regression models, as implemented in the caret package [Kuhn,
2009]: Nonlinear Regression models, like SVR and k-Nearest Neighborhood
(kNN); Tree-based models, such as GBM, CART, RF, and Bagging; and Lin-
ear Regression models, like Linear Regression (LR), and Generalized Linear
Model (GLM) with Negative Binomial distribution.

Support Vector Machines (SVMs) [Cortes and Vapnik, 1995] are sparse
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kernel machines, a type of models that rely only on a subset of data, the
support vectors. SVMs allows the use of kernels to project the input data to a
higher-dimensional space. The model separates the training data by means of a
good-fitting hyperplane into two classes. Kernels can be used to transform this
hyperplane into a nonlinear input separator, making it a very effective classifier.
Support vector regression (SVR) is the application of SVMs to regression, in
which a linear function is fit through the training set. Also, kernels can be used
to transform the linear fit to a nonlinear curve.

K-Nearest Neighbors [Altman, 1992] is a learning algorithm capable of
regression as well as classification. In the kNN model, a new sample is predicted
based on the training set’s k-closest data points. The question remains as to
how many neighbors should be used since too few neighbors may generate
over-fitting while too many may not be sensitive enough to achieve reasonable
performance. In the kNN regression, the model considers the average neighbor
value, while in classification the mode of the class of the k-nearest neighbors
is used.

Tree-based models are learning algorithms that performs one or more
if-then statements for the predictors to partition the data. These models
generalize training data by building a tree structure. Within the tree partitions,
a model is used to predict the outcome [Kuhn and Johnson, 2013]. There are
many techniques for constructing regression trees. One of the oldest and most
utilized is the Classification and Regression Trees (CART) [Breiman et al.,
1984]. CART is a decision tree algorithm capable of regression as well as
classification. For regression, the model begins with the entire data set, S,
and searches every distinct value of every predictor to find the predictor and
split value that partitions the data into two groups (S1 and S2) such that
minimizes the overall prediction error measure. Then, within S1 and S2, this
method searches for the predictor and split value that best reduces error. So,
because of the recursive splitting nature of regression trees, this method is also
known as recursive partitioning.

Bootstrap Aggregation (Bagging) was one of the earliest developed
ensemble techniques [Breiman, 1996]. Bagging is a general approach that uses
bootstrapping in conjunction with any regression (or classification) model to
construct an ensemble. Each model in the ensemble is then used to generate
a prediction for a new sample, and these m predictions are averaged to give
the bagged model’s prediction. Bagged models provide advantages over models
that are not bagged. While the "simple" CART decision tree used to produce
unstable predictions, using bagged trees tend to reduce the prediction variance
by aggregating many versions of the training data generated by k different
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CART decision trees [Breiman, 1996].
Generating bootstrap samples introduces a random component into the

tree building process, which induces a distribution of trees, and therefore a
distribution of predicted values for each sample. However, the trees in bagging
are not completely independent of each other since all of the original predictors
are considered at every split of every tree. Considering many original samples
and a relationship between predictors and response that a tree can model, then
trees from different bootstrap samples may have similar structures to each
other due to the underlying relationship. This characteristic (tree correlation)
prevents bagging from optimally, reducing the variance of the predicted values
Breiman [2001]. Dietterich [2000] developed the idea of random split selection,
where trees are built using a random subset of the top k predictors at each split
in the tree. After evaluating this method, Breiman [2001] constructed a unified
algorithm called Random Forests. Each model in the ensemble is then used to
generate a prediction for a new sample, and these m predictions are averaged
to give the forest’s prediction. Since the algorithm randomly selects predictors
at each split, tree correlation will necessarily be lessened. Random forests (RF)
is an ensemble machine learning method based on the construction of multiple
CART decision trees to achieve a better performance than a "single" tree model
(for either regression or classification). The main underlying technique used
in random forests is bootstrap aggregating (Bagging). RF estimates “simple”
decision trees by resampling the dataset and the feature space, obtaining their
predicted response. Random Forests algorithm’s predicted value is the mode
in case of classification or the average value of the k different decision trees in
case of regression.

Gradient Boosting Machine (GBM) [Friedman, 2002] was originally
developed for classification problems and later extended to regression. The
basic principles of GBM are as follows: given a loss function (e.g., error measure
for regression) and a learner (e.g., regression trees), the algorithm tries to
find an additive model that minimizes the loss function. The algorithm is
initialized with the best guess of the response (e.g., the mean of the response in
regression). The residual is calculated, and a model is then fit to the residuals
to minimize the loss function. The current model is added to the previous
one, and the procedure continues for a user-specified number of iterations.
Therefore, GBM has clear similarities to Random Forests since an ensemble of
decision trees estimates the final prediction. However, the way the ensembles
are constructed differs substantially between each method. In Random Forests,
all trees are created independently and contribute equally to the final model. In
GBM, however, new trees are dependent on past ones and contribute unequally
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to the final model. Despite these differences, both Random Forests and GBM
offer competitive predictive performance.

Linear Regression models [Graybill, 1976] are the most common type
of model used in the length of stay literature, mainly for inference problems.
The advantage of this type of model is the ease of understanding and imple-
mentation. However, because of the assumption of linear relationship with the
response, this model’s performance in LoS prediction problems is not reported
as competitive [Peres et al., 2020]. We recommend to include the Linear Regres-
sion (LR) and the Generalized Linear Model (GLM) [Nelder and Wedderburn,
1972] with Negative Binomial distribution in prediction tests just to have a
baseline model for comparison reasons. LR (or Ordinary Least Squares Linear
Regression) aims to find the plane that minimizes the error measure between
the observed and predicted response. LR chooses the parameters of a set of
explanatory variables by the principle of least squares: minimizing the sum of
the squares of the differences between the observed dependent variable in the
training data and those predicted by the linear function [Graybill, 1976]. GLM
model is a flexible generalization of LR that allows for response variables that
have error distribution other than Normal distributed. This model generalizes
LR by allowing the linear model to be related to the response variable via a
link function and allowing the magnitude of each measurement’s variance to
be a function of its predicted value [Nelder and Wedderburn, 1972].

As stated in Section 3.1.3, we recommend splitting the dataset into
training and testing sets, using random sampling with the 80%/20% ratio.
With the training set, we suggest using 5-fold cross-validation to obtain the
best model parameters, in which each model set is evaluated in one part of
the dataset and the other four are used to estimate the model. The hyper-
parameters of the model must be selected in order to minimize the prediction
error, which should be calculated by the Root Mean Square Error (RMSE).
We recommend testing the following parameters in each model [Caetano et al.,
2014; Houthooft et al., 2015; Kuhn and Johnson, 2013]:

– SVR with radial kernel: σ ∈ {2−3, 2−2, ..., 23}; and C ∈ {2−3, 2−2, ...,
23};

– SVR with linear kernel: C ∈ {2−15, 2−14, ..., 23};

– kNN: k ∈ {2, 3, ..., 60};

– GBM: Interaction depth ∈ {5, 10, 15, 20}; Number of trees = 300;
Shrinkage ∈ {0.1, 0.01, 0.001}; Minimal number of observations in

each node = 20.

– CART: cp ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1}
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– RF: Number of variables to possibly split at each node (mtry) ∈
{5, 6, ..., 10}; Minimal node size ∈ {5, 6, ..., 10}; Splitting rule ∈
{variance, extratrees,maxstat, beta};

– GLM with Negative Binomial distribution: Link ∈ {log,sqrt,identity};

– Linear Regression and Bagging do not have tuning parameters.

After training the models and selecting the best set of hyper-parameters,
we suggest comparing them using the following performance indicators: Root
Mean Square Error (RMSE), Mean Absolute Error (MAE), and Coefficient
of Determination (R2). It’s important to analyze their calibration plotting
predicted versus observed length of stay for the best models. Moreover, the
performance indicators can be analyzed in LoS ranges, such as [0-3]; ]3-7];
]7-10]; ]10-14]; and >14 days.

3.3
Predicting the Risk of Prolonged Stay

Another relevant information used by ICU managers is the risk of a
patient being a prolonged stay, which makes possible to early identify prolonged
stay patients and drive immediate quality improvement [Marik and Hedman,
2000; Rapoport et al., 2003; Verburg et al., 2014]. The response feature in this
model is whether the patient presented a low or high ICU LoS. We proposed
two different alternatives of prediction models for this problem, which can be
used by managers depending on their objectives, as follows:

– The first alternative predicts a patient’s risk to stay over 14 days,
following the literature [Houthooft et al., 2015; Laupland et al., 2006;
Zampieri et al., 2014]. This model aims to identify the prolonged stay
patients regardless of their diagnosis at admission, which is an important
tool to plan the resources and operations required to fulfill ICU care.

– The second proposition predicts a patient’s risk to stay over a specific
threshold, which is defined as the 90% percentile of ICU stay for
his diagnosis group. This model aims to predict patients with critical
conditions inside their diagnosis group to drive ICU care’s immediate
improvement.

Several literature papers defined the prolonged stay threshold based
on clinical judgments [Azari et al., 2012; Hachesu et al., 2013; Houthooft
et al., 2015; Laupland et al., 2006; Liu et al., 2006; Weissman et al., 2018;
Zampieri et al., 2014]. Most of them defined prolonged stay as an ICU LoS
bigger than 14 days [Houthooft et al., 2015; Laupland et al., 2006; Zampieri
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et al., 2014]. We proposed model A following the literature, which predicts
the patient’s risk to stay over 14 days. This information is an important tool
to plan the resources required. Moreover, we noted from the literature review
performed in Chapter 2 that several papers noted a significant association
between the reasons (or diagnosis) of ICU admission and the ICU length
of stay [Peres et al., 2020]. Sepsis was the most analyzed factor, and most
studies found that sepsis patients tend to have greater ICU stay [da Silva
et al., 2015; Knaus et al., 1993; Makrygiannis et al., 2018; Morello et al., 2019].
Moreover, myocardial infarction, intracerebral hemorrhage, pulmonary edema,
and subarachnoid hemorrhage were also found to be positively related to ICU
LoS [Al Tehewy et al., 2010; Knaus et al., 1993; Kramer and Zimmerman, 2010;
Lim et al., 2010]. Therefore, it may not be reasonable to use just one threshold
to define prolonged stay for all patients since the expected length of stay may
depend on the admission diagnosis. For this reason, we included the second
alternative (model B), predicting the risk using a variable threshold defined as
a stay over the 90% percentile of the patient’s diagnosis group. To the best of
our knowledge, no literature article noted this relevant behavior, giving more
information to the ICU managers about patients with critical conditions inside
their diagnosis group and improving ICU care.

We will train a classification model to predict the probability to be a
prolonged stay. As our response variable is binary, some model training pa-
rameters must be changed. A standard performance metric used to optimize
models is the Brier Score, which simultaneously addresses calibration, statisti-
cal consistency between the predicted probability and the observations, as well
as sharpness [Gneiting and Raftery, 2007; Rufibach, 2010]. Equation 3-3 shows
the Brier Score formulation. The terms xi, pi and n represent, respectively, the
observed type of stay (0 or 1), the predicted probability of prolonged stay,
and the number of observations. Still, other indicators should be analyzed, like
the Area Under the Curve (AUC), the Positive Predictive Value (PPV), and
the Negative Predictive Value (NPV). We will train the model to predict the
risk of prolonged ICU LoS using the best-performing type of model and set of
features obtained from the analysis of Section 3.2.

BrierScore =
∑n
i=1(xi − pi)2

n
(3-3)

3.4
Performing a Benchmarking Analysis between ICUs

The ICU length of stay can be a surrogate of cost and efficiency and
typically reflects several aspects of care, including admission and discharge
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policies, adherence to best practices, and patient safety. Insightful information
can be obtained when this indicator is analyzed in association with data on ICU
staffing and resources, bed availability and capacity strain, case mix, mortality
and infection rates, and hospital structure [Salluh et al., 2017; Verburg et al.,
2018a].

Rothen et al. [2007] evaluated ICU efficiency using the Standardized
Resource Use (SRU). This measure uses the ICU length of stay to estimate
the average amount of resources used per surviving patient in a specific unit.
Equation 3-4 shows the SRU formulation, a measure of efficiency for each Unit
(u). The terms ObservedICULOSiu and ExpectedICULOSiu represent the
observed ICU LoS and the expected ICU LoS for each patient i attended in
the referred ICU u. Rothen et al. [2007] estimated the expected ICU LoS using
deciles of the SAPS3 severity score. In the first step, the aggregate data were
stratified according to SAPS 3 admission score. For each stratum, the sum of
ICU LoS of all patients in that stratum was calculated. For each stratum, this
sum was divided by the number of patients, resulting in the expected ICU
LoS. Therefore, to find the expected ICU LoS for each patient, one would have
to get the patient admission SAPS3, observe in which stratum this SAPS3 is
allocated, and get the referred expected ICU LoS.

SRUu =
∑n
i=1 ObservedICULOSiu∑n
i=1 ExpectedICULOSiu

(3-4)

This SRU measure proposed by Rothen et al. [2007] is simple to be im-
plemented and used by several managers and researchers to evaluate ICUs’
efficiency [Bastos et al., 2020; Soares et al., 2015; Vincent et al., 2012; Wor-
tel et al., 2021]. However, there is a limitation regarding how accurate is a
prediction for ICU LoS using just the SAPS3 feature. We will demonstrate in
Section 4.2.4 that the prediction accuracy using only severity score features
tends to be inferior to using the main important features for ICU LoS predic-
tion (selected by feature selection techniques). For that reason, Verburg et al.
[2018a] proposed another way to measure ICU efficiency, named Standardized
Length of Stay Ratio (SLOSR). SLOSR has a similar formulation compared
to SRU (3-5). However, instead of using the SAPS3 to predict the expected
ICU LoS, the authors build a prediction model using ordinary least square
regression with a log-link function. SLOSR tends to improve case-mix correc-
tion, which is essential when comparing the LoS between ICUs (benchmarking)
[Marik and Hedman, 2000; Rapoport et al., 2003; Verburg et al., 2017]. We
used a similar approach and developed a SLOSR measure using our proposed
prediction model of Section 3.2. This approach aims to perform a non-biased
benchmarking analysis between ICUs. Since our model considers the patient’s
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main clinical features, the predictions tend to be case-mix corrected. Efficient
ICUs have SLOSR lower than one (total observed < total expected LoS), while
inefficient ICUs present SLOSR bigger than one (total observed > total ex-
pected LoS). Moreover, the lower the SLOSR, the more efficient the ICU is
considered in terms of resource use.

SLOSRu =
∑n
i=1 ObservedICULOSiu∑n
i=1 ExpectedICULOSiu

(3-5)

First, we will compare the grouped length of stay per Unit by plotting the
sum of predicted and observed LoS for each ICU, showing the determination
coefficient (R2). This plot analyzes the calibration of our model to predict the
grouped ICU LoS per Unit. We proposed another calibration measure, named
overall SLOSR (see SLOSRT in Equation 3-6), which has the same formulation
of SLOSR, but considers all patients and not just the patients from a specific
ICU. Overall SLOSR bigger than one means that the model underestimates
the predictions, while lower than one implies overestimation. We recommend
future papers reporting this calibration measure, which is currently neglected
by the literature. Regarding the particular SLOSR (SLOSRu), we will use this
measure to evaluate ICUs efficiency.

SLOSRT =
∑n
i=1 ObservedICULOSi∑n
i=1 ExpectedICULOSi

(3-6)

Funnel plots can be used to present the values of a quality indicator
associated with individual ICUs and compare these values to the benchmark.
An example of a funnel plot is presented in Figure 3.4. The value of each unit’s
quality measure is plotted against a measure of its precision, often the number
of admissions. Control limits, illustrated in dashed lines, indicate a range in
which the quality measure’s values would be expected to fall. The control limits
form a “funnel” shape around the benchmark, presented as a horizontal line. If
an ICU falls outside the control limits, it is seen as performing differently than
expected, given the value of the benchmark [Mayer et al., 2009; Rakow et al.,
2015; Spiegelhalter, 2005; Verburg et al., 2018b]. Incorrectly constructed funnel
plots could lead to incorrect judgments being made about ICUs, which could
represent severe consequences, especially if one use them to judge or choose
ICUs. It is important to assume that ICUs inside the control limits perform
according to the benchmark, while ICUs falling outside do not perform as
expected [Verburg et al., 2018b]. In our example, ICUs 2, 5, 6, 9, 12, and 13
falls outside the 95% control limits, which indicates that these ICUs perform
differently than the benchmark considering the confidence level. If we consider
the 99.8% control limits, only ICUs 2, 5, and 9 would fall outside. We can
also note that the overall SLOSR was close to one, showing an accurate model
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calibration. Therefore, we used the funnel plot to analyze the calibration of
our proposed SLOSR measure.

Figure 3.4: Example of funnel plot for the Standardized Length of Stay Ratio
(SLOSR).
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4
Application in a dataset with 109 mixed-type ICUs

This chapter will show the application of our proposed data-driven
methodology to predict ICU LoS to a big Brazilian dataset of mixed-type
ICUs. All analyses were performed using R software version 3.6.3.

4.1
Materials

This section presents the dataset that will be studied. The data represents
a set of 109 mixed-type ICUs from 38 different Brazilian hospitals.

4.1.1
Inclusion Criteria

The extracted dataset contains a total of 103,195 independent admissions
from January 01 to December 31, 2019. The complete dataset is a join
of five tables of the hospital database: demographic and admission data,
comorbidities, ICU complications (first 24 hours), physiological and laboratory
data (first one hour), and secondary diagnosis. The inclusion criteria were as
follows: patients aged 16 years old or more, with ICU LoS bigger than six hours,
that presented previous hospital LoS lower than 60 days, with unit admission
date bigger than hospital admission date, and presenting the main admission
code. These criteria was defined following the literature [Peres et al., 2020;
Verburg et al., 2017] and clinical judgments. After applying the criteria, the
final dataset remained with 99,492 admissions, as illustrated in Figure 4.1.

4.1.2
Features

Table 4.1 presents the complete dataset dictionary. The dataset presets
more than 100 features, which shows the complexity of our analysis.
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Figure 4.1: Registries inclusion criteria
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Table 4.1: Complete data dictionary
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The basic descriptive analysis for some numeric features is presented in
Table 4.2. The average ICU length of stay was 4.54 with a standard deviation
of 4.82. The patients were on average 61 years old, with BMI equal to 26.8,
previous length of stay before ICU admission equal to 1.8 days, with on average
42.7 SAPS3 points, and 1.16 SOFA score. Table 4.3 presents the description for
some categorical features. 52.8% of the patients were female gender, 81.24%
were admitted for clinical reasons, 68.61% came from the emergency, 2.7%
were readmissions, 4.3% needed mechanical ventilation, 5.8% needed non-
invasive ventilation, and 5.2% used a vasopressor. The ICU length of stay
was more considerable for clinical or urgent patients coming from the ward,
semi-intensive unit, another unit, or another hospital. The readmissions and
the use of invasive and non-invasive supports seem to be important features,
which increased approximately two times the ICU length of stay. In Section
4.2.2, we will explore more details about the association of the covariates with
the ICU LoS, and in Section 4.2.3, we will perform a collinearity analysis of
the variables.

Table 4.2: Descriptive analysis for numeric features
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Table 4.3: Descriptive analysis for categorical features
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4.1.3
Hospitals’ Descriptive Analysis

The dataset includes 38 hospitals with different ICU types and patient
case mixes. The distribution of hospitals’ size in terms of number of ICU beds
was as follows: minimum = 7 ICU beds; first quarter = 29; median = 47;
third quarter = 54; maximum = 110. Figure 4.2 presents the variability of
ICU length of stay per hospital ordered by median ICU LoS. We separated
the analysis by hospital size: red color represents hospitals with less than 30
ICU beds, green color for hospitals with 30 to 54 beds, and blue color for
hospitals with more than 55 beds. We can see in general that the hospitals are
not homogeneous, presenting different distributions of ICU LoS. The hospital
with the lowest median ICU LoS was "Hospital 8" (1.7 days), and the one with
the highest median LoS was "Hospital 17" (4.7 days). Figure 4.3 shows the
same analysis but grouping the hospitals of the same size. We can note that
medium-size hospitals presented a bigger ICU LoS than other sizes (2.69 days
for small; 2.85 days for medium; 2.75 days for big). However, this difference
was small and may be related to the case-mix attended by each ICU.
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Figure 4.2: Boxplot of ICU LoS by Hospitals
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Figure 4.3: Boxplot of ICU LoS by Hospital Size
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We had the following description regarding the types of ICUs: 70 general
(mixed medical and surgical), 25 cardiac, five surgical, four neurological, three
oncological, and two orthopedic-type ICUs. The number of admissions in each
type was 69973, 20284, 5050, 1791, 1474, and 1174, and the average ICU LoS
was 4.9, 5.1, 3.4, 3.8, 4.7, and 8.02, respectively. The distribution of length of
stay for each type of ICU is presented in Figure 4.4. General, cardiac, and
oncological ICUs presented a similar behavior. Orthopedic ICUs showed a
significantly higher ICU LoS, while surgical and neurological-type presented
a lower length of stay. This figure indicates that our database includes a
heterogeneity set of ICUs, with different distributions of ICU LoS.

The next sections will present the results obtained after applying the
data-driven methodology to predict ICU length of stay (presented in Section
3) to our dataset.

Figure 4.4: Boxplot of ICU LoS for each ICU type
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4.2
Data Preparation and Preprocessing

First, we will show the results of the application of data preparation and
preprocessing methodologies, as presented in Section 3.1.

4.2.1
Data Preparation

We analyzed the extracted dataset and adjusted issues that occurred for
some features, as follows:

– Feature "Hospital length of stay prior to unit admission" had some
missings values. So, we used the dates and updated the calculation of
this feature ("Unit Admission Date" - "Hospital Admission Date").

– Feature "Gender": "Undefined" was replaced by “Not informed” and then
will be imputed.

– Feature "Admission source" was reclassified from eight categories to the
following three: "Surgical center", "Ward/Room/Semi-intensive Unit",
and "Home-care/Transfers/Others".

Regarding the feature engineering, we proposed the follow-
ing new features from existing ones: number of first day complica-
tions (“n_complication”), and presence of any first day complication
(“has_complication”).

4.2.2
Visualization and Data Cleaning

As illustrated in Table 4.1, we analyzed the behavior of the missing
data for each variable. Following White et al. [2011], features with more than
30% of missing were excluded from the analysis: "ICDCode" (100%); "Lowest-
PaCO21h" (94%); "LowestPaO21h" (94%); "LowestFiO21h" (92%); "Highest-
PaO21h" (75%); "HighestPaCO21h" (75%); and "HighestFiO21h" (61%). The
following features were not removed in this step because of their clinical rele-
vance: PaO2FiO2, PH, Lactate, Bilirubin and BMI. Variables with less than
30% of missing will be imputed.

Regarding the descriptive statistical analysis, we applied a univariate
analysis between the explanatory variables and the ICU LoS. For numerical
variables we used Pearson Correlation, and for categorical ones we used
Cramer’s V.

Table 4.4 shows the Pearson Correlation between the numeric variables
and ICU LoS. SAPS3, Glasgow and SOFA presented higher correlation with
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Table 4.4: Correlation with LoS for numeric variables

LoS (0.14, -0.13, and 0.12, respectively). We noted that some features may be
correlated with each other (e.g., "Saps3DeathProbability" and "Saps3Points"
), which will be treated in the preprocessing step.

Table 4.5 shows the Cramer’s V coefficient between the categorical
features and ICU LoS. We can observe that the admission main diagnosis,
the use of mechanical ventilation, and the use of vasopressors has greater
correlation with LoS (0.29, 0.26, and 0.22, respectively).
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Table 4.5: Correlation with LoS for categorical variables
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Regarding the data cleaning, we analyzed the boxplot of each numeric
feature. 376 values presented extreme outliers and were replaced by "not
informed" (Supplementary Table A.1). These values will be imputed in the
preprocessing step. For ICU LoS, following statistical and clinical judgments,
we did the truncation at 21 days. This value corresponds to the 96% percentile
of ICU LoS distribution, as can be seen in Figure 4.5.

Figure 4.5: Histogram of ICU LoS

4.2.3
Data Preprocessing

In this section, we will present the results of data preprocessing, which
includes: dimension reduction, imputation, feature selection, transformation
to resolve skewness, normalization and one-hot encoding. Before preprocessing
the dataset, we split the data into training and testing set using a 80%/20%
proportion.

We applied two methods to reduce the dimension (complexity) of
our dataset. First, we removed features with zero or near-zero vari-
ance. The following variables presented near-zero variance and were re-
moved from the dataset: "IsReadmission24h", "IsReadmission48h", "IsOther-
SolidOrganTransplant", "IsAtrialFlutter", "IsCombinedPancreaskidneyTrans-
plant", "IsHyperthyroidism", "IsAllogeneicBMT", "IsAutologousBMT", "Is-
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PepticDisease", "IsNeutropenia", "IsVentricularSustainedCardiopulmonary",
"IsCombinedLiverkidneyTransplant", and "PaO2FiO2". Second, we did a
collinearity analysis and removed the correlated features. Table 4.6 shows
the collinearity analysis for numeric features, and Table 4.7 for categorical
ones. For numeric variables, we used the recommended threshold of 0.75
to exclude collinear features [Kuhn and Johnson, 2013], and for categor-
ical ones, we used the recommended threshold of 0.5 [Cohen, 1988]. The
following features reported high correlation with others and were removed:
"BUN", "MFIpoints", "Saps3DeathProbabilityStandardEquation", "LowestDi-
astolicBloodPressure1h", and "LowestSystolicBloodPressure1h" (for numeric
features); and "IsCardiopulmonaryArrest", "IsImmunossupression", "Admis-
sionReasonName", and "has_complication" (for categorical features).

Table 4.6: Collinearity analysis for numeric variables
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Table 4.7: Collinearity analysis for categorical variables
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After reducing the dimension of our dataset, we applied the MICE impu-
tation algorithm to the variables with incomplete data. Therefore, the MICE
imputation was applied to the following features: "BMI", "SofaScore", "Urea",
"HighestCreatinine1h", "LowestPlateletsCount1h", "LowestGlasgowComaS-
cale1h", "HighestTemperature1h", "HighestRespiratoryRate1h", "Charlson-
ComorbidityIndex", "LowestMeanArterialPressure1h", "HighestHeartRate1h",
and "MFIScore". We also observed some laboratory variables not missing
at random (MAR). These features were not collected because of the lack
of need for these tests. In these cases, we considered the missing values as
normal values for each variable, replacing by the median value. We applied
this procedure to the following features: "PH", "Lactate" and "Bilirubin".

The next steps were the feature selection and the transformations to
resolve skewness, which we will present in the next section. The preprocess-
ing techniques related to normalization and one-hot encoding were applied
depending on the requirement of each regression model.

4.2.4
Preprocessing Sensitivity Analysis

Before running all models to our dataset, we analyzed some scenarios of
dataset transformations created by the preprocessing techniques to understand
which one would best predict ICU LoS. These scenarios were modeled consid-
ering the GBM model. Therefore, the description of each sensitivity analysis
is presented as follows:

– Analysis 1 - Comparison between different grouping strategies to the
feature "Main Diagnosis": The original feature presents 851 diagnosis
codes. We will test the original dataset and two alternatives of grouping
this feature: into 19 classes and into eight classes. The grouping rule to
this feature was based on the similarity of the diagnoses regarding the
distribution of length of stay.

Table 4.8 shows the results for each grouping strategy. All three scenarios
tested presented close results in RMSE, MAE, and R2, both for training
and testing. Therefore, we will select the scenario with less complexity (eight
groups), desiring to improve the efficiency of the models.
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Table 4.8: Analysis of different grouping strategies to the feature "Main
Diagnosis"

– Analysis 2 - Comparison between different types of transformation for
the response variable "ICU LoS": We will test the ICU LoS in its original
form, truncated at 21 days, and Box-Cox transformed.

Table 4.9 shows the results for each transformation strategy for ICU
LoS. To make the comparison without any bias, we updated the predictions
bigger than 21 days of all strategies truncating at 21 days. As can be seen
from Table 4.9, the scenario with truncated LoS presented best results for all
performance indicators (RMSE = 3.99; MAE = 2.65; R2 = 30%; Correlation
= 0.55). Therefore, we selected this strategy for ICU LoS transformation.

Table 4.9: Analysis of different transformations for the response variable "ICU
LoS"

– Analysis 3 - Feature selection analyses: Comparison between different
sets of features.

A relevant analysis included in this study was to test different sets of
features with feature selection techniques. Severity scores like SAPS3, SOFA,
MIF, and Charlson Comorbidity include several covariates in their formulation,
and this correlation could be harmful to the model. First, we tested the
influence of severity scores alone to see the explanation produced by these
features. Then, we tested scenarios including and excluding severity scores
features before applying the feature selection techniques. Finally, we tested
scenarios excluding features with a high proportion of missing to test whether
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their inclusion is effectively good to the model or not. Table 4.10 shows the
results for scenarios with different sets of features. The scenarios represent the
following characteristics, respectively:

– Baseline scenario: dataset including all features (no feature selec-
tion);

– Severity score analysis: dataset only including severity scores (no
feature selection); and dataset excluding severity scores (no feature
selection);

– Feature selection analyses: dataset applying feature selection using
Treebag-RFE; dataset applying feature selection using RF-RFE;
dataset excluding severity scores and applying feature selection
using Treebag-RFE; dataset including the ICU code, excluding
severity scores and applying feature selection using Treebag-RFE;

– Missing data analyses: dataset excluding imputed features that
presented more than 15% of missing; dataset excluding imputed
features that presented more than 3% of missing.
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Table 4.10: Analysis of different datasets of Feature Selection

As can be seen from Table 4.10, compared to the baseline scenario (RMSE
= 3.99; MAE = 2.65; R2 = 30%), the scenario with the dataset considering
only severity scores did not perform well (RMSE = 4.29; MAE = 2.85; R2 =
19%). This result shows that adjusting models using just severity score features
could imply severe bias, which was one great reason for using SLOSR instead
of SRU (as explained in Section 3.4). Although these severity scores represent
combinations of several other variables, they did not fully capture the effect of
all original features presented in our dataset. Regarding the scenario excluding
the severity scores, we can see that the performance indicators remain similar
to the baseline scenario (RMSE = 4.01; MAE = 2.67; R2 = 29%). This similar
result may be explained by the fact that the dataset without the severity scores
still has 86 features, a great number of covariates to explain the ICU LoS.

Regarding the feature selection analysis, first we compared the Treebag-
RFE to the RF-RFE using the complete dataset (90 features). The Treebag-
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RFE selected 26 features with best importance to the model, while the RF-
RFE selected 27. We also tested a scenario excluding the severity scores from
the original dataset and applying the Treebag-RFE, which selected 28 features
with the best importance. We can note that when we ran the model considering
only the best importance variables of each feature selection scenario, all three
previous scenarios presented similar results (RMSE = 4.03; MAE = 2.68; R2
= 29%). We ran a feature selection scenario including the ICU code (and
excluding the severity scores) to check if the ICUs should be considered or not.
The results were also very close to the scenario without this feature (RMSE
= 4.01; MAE = 2.60; R2 = 32%). However, this scenario with the ICU code
would be a problem for benchmarking purposes since we are adjusting the
prediction considering possible ICU efficiencies or lack of efficiency, including
bias in the benchmarking model. Therefore, since the performance difference
between the model with and without this feature is low, we preferred not to
include this feature.

We also did a sensitivity analysis excluding imputed features with more
than 15% of missing and other excluding variables with more than 3% of
missing, and then applying the Treebag-RFE to select the best set of features.
The model without these imputed features performed worse than the other
models that included these features. So, we preferred to remain with these
features.

Therefore, after analyzing several sets of features with the help of feature
selection techniques, we chose to use the 28 features selected by the Treebag-
RFE from the dataset without the severity score features. This set of features
presented a result similar to the one obtained by the scenario with all features
(28 selected features: RMSE = 4.03, MAE = 2.68, R2 = 29%; all 90 features:
RMSE = 3.99; MAE = 2.65; R2 = 30%). The relative importance of each
selected feature is presented in Table 4.11. We will use this dataset with 28
features to compare all regression models to predict ICU LoS, since it will
improve the models’ efficiency and avoid overfitting.

DBD
PUC-Rio - Certificação Digital Nº 1712644/CA



Chapter 4. Application in a dataset with 109 mixed-type ICUs 70

Table 4.11: Importance of selected features
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4.3
Predicting the Numeric ICU Length of Stay

After preprocessing the dataset and selecting the best set of features, we
applied the proposed methodology to predict the numeric ICU LoS (see Section
3.2). So, we ran and compared nine different types of regression models. The
comparison results are presented in Table 4.12.

Table 4.12: Statistical comparison between Regression Models

From Table 4.12 we can note that the best result was obtained by the
Random Forests (RF) model (RMSE = 3.84; MAE = 2.58; R2 = 0.35). The
second best model was the GBM (RMSE = 4.03; MAE = 2.68; R2 = 0.29),
which is also a tree-based model. The other models presented inferior results
compared to the best two models.

To compare the calibration of the best models, we analyzed the curve
of predicted versus observed ICU LoS in the testing sample, as illustrated in
Figures 4.6 and 4.7. We can note that, for patients with observed LoS bigger
than ten days, Random Forests model starts to underestimate the ICU LoS.
From the perspective of calibration, GBM seems to have a better result for
patients with a longer length of stay, presenting a confidence interval of the
predicted curve closer to the observed curve.
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Figure 4.6: Calibration of Random Forests model. The predicted curve is in
blue, and the perfect calibration curve is in back color.

Figure 4.7: Calibration of GBM model. The predicted curve is in blue, and the
perfect calibration curve is in back color.
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Another relevant analysis to check the calibration of the models is the
analysis of the prediction variability under ICU LoS stratum. We analyzed the
distribution of ICU LoS predictions under the ranges of ICU LoS, as illustrated
in Figures 4.8 and 4.9. We can see that both models presented a similar number
of predicted cases (N Pred.) for all ranges of ICU LoS. Besides, both models
overestimate the ICU LoS for the range "<=3" and underestimate for the
ranges bigger than seven days (7-10; 10-14; >14). The predictions for the range
"3-7" seems to be the best in both models. Moreover, the number of predictions
for the range ">14" was very low compared to the observations in this range,
which is related to the difficulty of predicting this type of patient.
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Figure 4.8: Boxplot of Random Forests model

Figure 4.9: Boxplot of GBM model
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Tables 4.13 and 4.14 presents the RMSE and the number of correctly
predicted cases for each model. We can observe that RF shows a lower RMSE
for all ICU LoS ranges compared to GBM, except for the range "<=3" in which
the RMSE is almost the same for both models. Moreover, RF also presents a
bigger proportion of correctly predicted cases for all LoS ranges. In terms of
correctly predicted versus total observed cases (N Observ.), we can note that
the best proportions of correctly predictions for RF model are in the ranges
"<3" (46.7%) and "3-7" (64.5%), and the worst in ranges "10-14" (15.5%) and
">14" (14.7%). However, the proportion of correctly predicted cases versus
total predicted cases was the biggest for this range ">14" (88.2%), which means
that the model predicts few cases for this range, but the cases predicted have
a high probability of being right.

Table 4.13: RF correct predictions for each ICU LoS range

Table 4.14: GBM correct predictions for each ICU LoS range
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Therefore, from Figures 4.6 and 4.7, we noted that the calibration curve
of GBM model seemed to be better compared to RF. However, when we
analyzed the calibration by ranges of ICU LoS (Figures 4.8 and 4.9), we noted
that both RF and GBM presented similar calibrations. The models showed
almost the same proportion of predicted patients in each range and similar
distribution of predicted ICU LoS, with an underestimation trend for ICU
stays over seven days. Finally, when we analyzed the RMSE and the number
of correct predictions in each range of ICU LoS (Tables 4.13 and 4.14), we
observed that the RMSE of RF model was lower for all LoS ranges compared
to GBM, and the proportion of correctly predicted cases was higher for all
ranges. In short, the Random Forests model presented a lower general RMSE
(3.84) compared to GBM (4.03), a lower RMSE for all ICU LoS ranges, and
more correctly predicted patients for all ranges. In this way, we selected the
Random Forests to be our prediction model.

4.4
Predicting the Risk of Prolonged ICU Stay

Another relevant information used by ICU managers is the risk of a
patient being a prolonged stay. For that reason, we used the model with the
best performance in our tests (Random Forests) to build two propositions of
prediction model, as described in Section 3.3. The first alternative predicts the
risk of a patient to stay over 14 days (model A), and the second one predicts
the risk of a patient to stay over the 90% percentile of ICU stay distribution
for his diagnosis group (model B).

Regarding the second alternative, we performed statistical and clinical
analyses in our dataset and noted that the distribution of ICU LoS presented a
great variability according to the patient diagnosis group. Table 4.15 shows the
behavior of ICU LoS between the twenty most representative admission main
diagnosis groups. For example, patients admitted with community-acquired
pneumonia presented a mean ICU LoS equal to 6.7 days and a 90% percentile
equal to 17.4 days, while patients with chest pain stayed on average 2.6 days
and had a 90% percentile equal to 4.7 days. The complete table with the
behavior of ICU LoS for all admission main diagnosis groups is presented in
Table A.2. Therefore, since the expected length of stay may depend on the
admission diagnosis, model B can be a good strategy to identify patients with
critical conditions inside their diagnosis group and drive ICU care’s immediate
improvement.
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Table 4.15: Behavior of ICU LoS between the most representative admission
main diagnosis groups

Regarding the hyper-parameters, we used the best combination of param-
eters obtained in our tests (mtry = 6; minimal node size = 5) and tested three
types of splitting rules (gini; extratrees; hellinger). The best training result
was obtained by hellinger’s splitting rule for both models, and the complete
training results are presented in Tables B.1 and B.2. We trained the model
with Random Forests and the results of the prediction for the testing set was
as follows: (i) for model A, Brier Score = 0.05, AUC = 0.88, PPV = 0.87,
NPV = 0.95; for model B, Brier Score = 0.08, AUC = 0.78, PPV = 0.86, NPV
= 0.90. Other studies developed models to predict the risk of prolonged stay
and reported the results in terms of AUC: Azari et al. [2012] reported 0.813,
and Houthooft et al. [2015] reported 0.82, which were lower than our reported
AUC for model A (0.88). Regarding the Brier Score, this metric simultaneously
addresses calibration, consistency and sharpness, being a measure that varies
in the range (0,1). Brier Score values close to zero represent more accurate
models [Gneiting and Raftery, 2007; Rufibach, 2010]. Therefore, analyzing the
Brier Score of both models, which were close to zero (model A: 0.05; model B:
0.08), and considering the results of the other measures (e.g., AUC = 0.88),
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we can conclude that both models presented accurate predictions.
Figure 4.10 shows the confusion matrix for both models (considering a

cutoff equal to 0.5). We can see that model B predicts more prolonged stay
patients (368) compared to model A (327). However, the proportion of true
positives was similar in both models (86%). We can also note that the models
presented a different number of observed prolonged stay patients (model A:
1318; model B: 2192) because of the difference in definitions of prolonged stay.
Since model B presented more patients defined as prolonged stay (which tend
to be more difficult to predict), this may be one reason for worse outcomes
than model A.

Figure 4.10: Confusion Matrix for Models A and B

We analyzed the calibration of each model by calibration belts, as illus-
trated in Figures 4.11 and 4.12. From Figure 4.11, we can see that, considering
a confidence interval of 95%, model A predicts accurately until the probability
of prolonged stay equal to 44%. After that, the model underestimates the risk
of prolonged stay (prediction curve becomes above the red line). For model
B, Figure 4.12 shows a similar behavior. However, the underestimation starts
earlier, at the probability of prolonged stay equal to 31%, which indicates that
model B underestimates the risk of prolonged stay for a higher range of pre-
dicted risk (31% - 100%) than model A (44% - 98%). In short, the predictions
of risk in these ranges tend to be lower than the true risk of prolonged stay
and should be analyzed with parsimonious.
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Figure 4.11: Calibration Belt for Model A

Figure 4.12: Calibration Belt for Model B
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We can also analyze the number of observed high ICU LoS patients in
each range of predicted risk for each model, as illustrated in Tables 4.16 and
4.17. The first, second, and third columns represent, respectively: the number
of observed high ICU LoS patients included in each range of predicted risk, the
number of predicted patients in each risk range, and the proportion of observed
above the predicted ones. An accurate model should have as many high ICU
LoS patients as possible inside the high-risk predicted ranges and minimize the
number of high LoS patients inside the low-risk ranges. Analyzing the results of
Tables 4.16 and 4.17, we can note that both models A and B presented similar
behavior. The models accurately predict the high-risk patients since 97% of the
predicted high-risk patients were really high ICU LoS patients. Moreover, the
proportions of high ICU LoS patients inside the low and moderate risk ranges
were small (2.1% and 15.4% for model A; 4.6% and 15.9%, for model B).
Therefore, the analyses of both models show accurate results for the problem
of predicting the risk of a patient to be a prolonged ICU LoS, and the decision
about using each model depends on the main objective: to plan resources
(model A) or to identify patients with critical conditions inside their diagnosis
group (model B).

Table 4.16: Model A - Number of observed high ICU LoS patients in each
range of predicted risk

Table 4.17: Model B - Number of observed high ICU LoS patients in each range
of predicted risk
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4.5
Performing a Benchmarking Analysis between ICUs

We can also demonstrate how to use the proposed prediction model of
Section 4.3 to perform a benchmarking analysis between ICUs. Figure 4.13
presents the comparison between the observed grouped length of stay per Unit
and the predicted one. We can note an accurate calibration of the curve and a
high coefficient of determination (R2=0.93). Moreover, we can observe that the
underestimation issue presented in the previous calibration curve of Figure 4.6
does not occur in the current analysis with grouped ICU LoS. The coefficient
of determination reported for the individual prediction model of Section 4.3
was 0.35 compared to 0.93 for the grouped model, which also demonstrates
the better calibration of the current model.

Figure 4.13: Calibration comparison between the observed grouped length of
stay per Unit and the predicted one. The sum of observed ICU LoS is presented
on the vertical axis and sum of predicted ICU LoS on the horizontal axis. Small
dots represent ICUs and the solid line represents the reference value. Gray area
represents confidence intervals.
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Figure 4.14 presents a funnel plot for the Standardized Length of Stay
Ratio (SLOSR) of each ICU. The overall SLOSR was equal to 0.99, which
means an almost perfect calibration with a value very close to one. We could
not compare our calibration to other papers because of the lack of measures
reported in terms of R2 and overall SLOSR. From Figure 4.14, we can see that
16 ICUs (14.7%) fall outside the 99.8% control limits and 33 ICUs (30.3%)
outside the 95% control limits. So, 93 ICUs (85.3%) stayed inside the 99.8%
control limits, performing according to the benchmark (considering the referred
statistical confidence). These variability results reveal a proper calibration of
the SLOSR model, in which a great proportion of ICUs stayed inside the
control limits.

Figure 4.14: Funnel plot for the Standardized Length of Stay Ratio (SLOSR).
The value of the quality indicator is presented on the vertical axis and the
number of ICU admissions included when calculating the quality indicator is
presented on the horizontal axis. Small dots with numbers represent ICUs and
the solid line represents the benchmark value. Dashed lines represent control
limits. Different types of dashed lines are used to differentiate between the 95%
and 99.8% control limits.
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We can also analyze the calibration of SLOSR for ICU types. So, we
plotted the distribution of SLOSR for each ICU type (Figure 4.15). From this
figure, we can see that the types of ICU with more admissions reported an
almost perfect calibration, which is the case of General and Cardiac ICUs
(median SLOSR=1, mean SLOSR=0.99). Surgical ICUs reported a lower
median SLOSR (0.95), which shows a small trend of overestimation in our
prediction model for ICU LoS. The dataset presented few admissions for
Neurological, Oncological, and Orthopedic ICUs, which reported less than 400
cases each. For Orthopedic ICUs, our model presented an accurate calibration.
However, the calibration for Neurological and Oncological types was not
accurate. These types of ICUs will have a tendency to be efficient because
of the calibration issue. This problem may be related to the small number
of cases. Therefore, we do not recommend making any conclusions about the
efficiency of the ICUs inside these two groups.

Figure 4.15: Boxplot for SLOSR for each ICU Type.

Regarding the efficiency analysis, using SLOSR measure we can find the
efficient ICUs (SLOSR < 1) and the inefficient ones (SLOSR > 1). The most
inefficient ICU was Unit 23 (SLOSR = 1.37), which means that the ICU used
37% more resources than expected. On the other side, we can see Unit 18
(SLOSR = 0.56), which can be noted as a very efficient ICU. The complete
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table with SLOSR results for each ICU is presented in Supplementary Table
C.1 and the general description of each ICU is presented in Supplementary
Table C.2. Tables 4.18 and 4.19 show the main characteristics of the more
efficient ICUs (SLOSR lower than 0.8) and more inefficient ones (SLOSR
higher than 1.2), respectively. We can observe that the efficient ICUs from
Table 4.18 showed the following characteristics: average age equal to 64.4 years
old, average Glasgow equal to 14.3, and 6.6% of the patients were ventilated
at admission. The admission type was 64.5% clinical, 28.8% elective surgery,
and 6.7% urgent surgery. Regarding the inefficient ICUs from Table 4.19, the
Units showed the following characteristics: average age equal to 66.3 years old,
average Glasgow equal to 14.1, and 6.4% of the patients were ventilated at
admission. The admission type was 84.7% clinical, 11.7% elective surgery, and
3.6% urgent surgery. We can note that inefficient ICUs presented, on average,
older patients, with a lower Glasgow scale, and a small proportion of elective
surgery patients compared to the efficient ICUs from Table 4.18, which seems to
have a more severe case-mix. For this reason, the average expected ICU LoS
predicted by our model was higher for this group compared to the efficient
ones (5.7 versus 4.7) since our model considers the main features to predict
an adjusted expected ICU LoS. So, despite presenting a more severe case-mix,
the ICUs from Table 4.19 were considered inefficient because the observed ICU
LoS was greater than the case-mix adjusted expected ICU LoS. Therefore,
this information about efficient and inefficient ICUs can be used by managers
to understand which ICU’s organizational aspects could be associated with
the ICU efficiency (e.g., the ratio of physicians per patient, number of beds,
the process of care, etc.). Moreover, we can note that one Neurological (Unit
6) and one Oncological ICU (Unit 61) were considered inside the efficient
group. However, we can not conclude anything about the efficiency of these
ICUs because of the calibration issue shown in the previous analysis, which
demonstrated that these types of ICUs have a tendency to be efficient.
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Table 4.18: Main characteristics of ICUs with SLOSR lower than 0.8 (more
efficient ICUs)

Table 4.19: Main characteristics of ICUs with SLOSR higher than 1.2 (more
inefficient ICUs)
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Therefore, we can conclude that our prediction model for grouped length
of stay presented a high explanation and can be used to perform case-mix
adjustments for benchmarking analysis between ICUs. We build a SLOSR
measure using our prediction model as a source of information, and the model
presented an almost perfect calibration (overall SLOSR equal to 0.99). Our
model’s accurate results show the importance of using the proposed data-
driven methodology instead of standard literature models.
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5
Conclusions

The main demands for ICU managers regarding the prediction of ICU
LoS are: (i) planning the number of beds and staff required to fulfill the
need for ICU care; (ii) identifying patients with a high risk of prolonged
ICU LoS to drive immediate quality improvement; and (iii) enabling case-mix
correction when comparing the LoS between ICUs (benchmarking). This thesis
developed a structured data-driven methodology to approach each of these
three clinical demands (explained in Sections 3.2, 3.3, and 3.4) and applied
this methodology to a dataset with 109 mixed-type ICUs from 38 different
Brazilian hospitals (Sections 4.3, 4.4, and 4.5). First, we proposed a model
to predict the individual ICU length of stay, which can be used to plan the
number of beds and staff required. Second, we proposed a model to predict the
risk of prolonged stay, which helps identifying prolonged stay patients to drive
immediate quality improvement. Finally, we used our prediction model for ICU
LoS to build a case-mix adjusted measure (SLOSR) capable of performing non-
biased benchmarking analyses between ICUs.

Regarding the prediction of individual ICU LoS, we compared nine re-
gression models and concluded that Random Forests presented the best results
(RMSE = 3.84; MAE = 2.58; R2 = 0.35). We noted that the RMSE tends to
increase for patients with higher observed ICU LoS, and the predictions for
patients with observed high ICU LoS (>7days) tend to be underestimated. Be-
sides, the predictions in the range "3-7 days" have the best calibration, and we
noted a small prediction overestimation for short stays (< 3 days). Moreover,
the number of predictions greater than 14 days was lower than the observa-
tions in this range, which is related to the difficulty of predicting this type
of patient. However, the proportion of correctly predicted cases versus total
predicted cases was high for these patients (88.2%), which means that the
model predicts few cases for this range, but the predicted cases have a high
probability of being right.

Regarding the prediction of the prolonged stay risk, we built two different
models. One predicts the patient’s risk of staying over 14 days (model A).
The other predicts the risk of a patient staying over the 90% percentile of
ICU stay distribution for his diagnosis group (model B). Model A follows the
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type of classification defined by the literature. This model aims to identify
the prolonged stay patients regardless of their diagnosis at admission, which is
an important tool to plan the resources and operations required to fulfill ICU
care. The results obtained by model A (Brier Score = 0.05, AUC = 0.88, PPV
= 0.87, NPV = 0.95) reveals great accuracy compared to other studies (Azari
et al. [2012] reported AUC = 0.813; and Houthooft et al. [2015] reported AUC
= 0.82). We noted that it might not be reasonable to use just one threshold
to define prolonged stay for all patients since the expected length of stay may
depend on the admission diagnosis. For this reason, we proposed model B,
which predicts a patient’s risk to stay over the 90% percentile of ICU stay
for his diagnosis group. To the best of our knowledge, no paper noted this
relevant behavior. This model gives to the ICU managers more information
about patients with critical conditions inside their diagnosis group, helping to
improve their process of care. Model B presented similar results compared to
model A. Both models accurately predict the high-risk patients since 97% of
the predicted high-risk patients were really high ICU LoS patients. Moreover,
the proportions of high ICU LoS patients inside the low and moderate risk
ranges were small (2.1% and 15.4% for model A; 4.6% and 15.9%, for model B).
Therefore, the analyses of both models show accurate results for the problem
of predicting the risk of a patient to be a prolonged ICU LoS, and the decision
about using each model depends on the main objective: to plan resources
(model A) or to identify patients with critical conditions inside their diagnosis
group (model B).

We also used our prediction model to build a case-mix adjusted measure
(SLOSR) capable of performing non-biased benchmarking analyses between
ICUs. The traditional measure used by ICUs to evaluate ICU efficiency is
the Standardized Resource Use (SRU) proposed by Rothen et al. [2007]. This
measure analyzes the observed and expected ICU length of stay to estimate
the average amount of resources used in a specific unit. SRU uses SAPS3 to
estimate the expected ICU LoS, being simple to be implemented and used by
several managers and researchers to evaluate ICUs’ efficiency [Bastos et al.,
2020; Soares et al., 2015; Vincent et al., 2012; Wortel et al., 2021]. However,
there is a limitation regarding how accurate is a prediction for ICU LoS using
just the SAPS3 feature. In our application, we noted that limitation since the
scenarios using only severity scores to predict ICU LoS performed worse than
the scenario with the selected important features. For that reason, we used
another measure of ICU efficiency, named Standardized Length of Stay Ratio
(SLOSR) [Verburg et al., 2018a], which has a similar formulation compared to
SRU. However, instead of using the SAPS3 to predict the expected ICU LoS, we

DBD
PUC-Rio - Certificação Digital Nº 1712644/CA



Chapter 5. Conclusions 89

used our prediction model considering several relevant features, which improves
case-mix correction and is essential when comparing the LoS between ICUs
(benchmarking) [Marik and Hedman, 2000; Rapoport et al., 2003; Verburg
et al., 2018a, 2017]. The prediction model of ICU LoS (grouped by ICUs)
presented a high coefficient of determination (R2=0.93) and can be used to
perform non-biased case-mix adjustments for benchmarking analysis between
ICUs. The SLOSR measure, built using our prediction model as a source of
information, presented an almost perfect calibration (overall SLOSR equal to
0.99). Our model’s accurate results show the importance of using the proposed
data-driven methodology to build SLOSR instead of standard SRU. Therefore,
SLOSR can be used to compare the general ICUs efficiency and also to make
specific subgroups analyses, such as comparing the ICUs efficiency for each
patient diagnosis.

In terms of regression models used to predict ICU LoS, our recent
literature review analyzed six prediction articles that applied and compared
different regression models to predict ICU LoS [Peres et al., 2021]. The
authors noted that Support Vector Regression overcame the other models in
two studies. Gradient Boosting Machine and Random Forests also presented
superior results compared to other data-driven models. In our analysis, the
Random Forests overcame SVR and GBM. Moreover, GBM was the model that
presented the closest result to Random Forests (RMSE = 4.03; MAE = 2.68;
R2 = 0.29). GBM has clear similarities to Random Forests, since both estimate
the final prediction throughout an ensemble of decision trees. However, the way
the ensembles are constructed differs substantially between each method. In
Random Forests, all trees are created independently and contribute equally
to the final model, while in GBM new trees are dependent on past ones and
contribute unequally to the final model. However, both models have a random
process of resampling the dataset and the feature space to estimate several
decision trees that will be further averaged [Breiman, 2001; Friedman, 2002].
This random process may be contributing to the superior results presented
by these two regression models in our analysis, which is in line with previous
literature.

Regarding the accuracy of the prediction model for the numeric ICU
LoS, we can compare our performance indicators to the ones reported in other
prediction studies. Verburg et al. [2014] compared six regression models to
predict the ICU LOS for a dataset of 32,667 ICU admissions, and the Linear
Regression presented the best result (RMSE = 7.28; R2 = 0.15). Moran and
Solomon [2012] compared seven regression models to predict the ICU LOS for
a dataset of 111,663 ICU admissions, and the best model was the Linear Mixed
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Model (LMM) (RMSE = 4.50; R2 = 0.22). Houthooft et al. [2015] compared
different data-driven models to predict the ICU LOS for patients remaining
in the ICU on day 5, and the best performing model was SVR (R2 = 0.22).
Li et al. [2019] created a predictive model using preprocessing techniques and
used Least Absolute Shrinkage and Selection Operator (LASSO) as prediction
model (R2 = 0.35). As we did not have the reported results in terms of RMSE
for all papers, we compared the results based on the coefficient of determination
(R2). Therefore, the results obtained by Random Forests model using our
proposed methodology presented a greater coefficient (R2 = 0.35) compared to
Verburg et al. [2014], Moran and Solomon [2012] and Houthooft et al. [2015],
and similar results compared to Li et al. [2019].

Although our results reported better accuracy compared to the literature,
we can observe that this coefficient is not good enough in terms of predictive
explanation. The low R2 values reported by most literature prediction studies
may be explained by the fact of being difficult to predict the ICU LoS at the
time of admission. Several relevant interventions are done after the patient
admission, like the use of invasive devices, which may change the patient
prognosis and evolution, being determinant to the understanding of ICU length
of stay distribution. Then, we are planning for future studies to update the
prediction for each day considering temporal variables (e.g., if the patient was
not using a device and then turned to use; if the patient was using a device
and then took it off; and if the patient was using a device and then continues
to use).

In Chapter 2, we performed a systematic review and meta-analysis of
risk factors for ICU LoS and concluded that the following features were po-
tential risk factors: severity scores (e.g., APACHE and SAPS), Glasgow scale,
BMI, admission source, admission type, readmission, inability to access Glas-
gow score, mechanical ventilation, clinical conditions (hypomagnesemia, delir-
ium, malnutrition, infectious diseases, cerebrovascular accident, trauma, and
respiratory diagnoses), chronic health items (COPD and chronic cardiovas-
cular disease), reasons for ICU admission (sepsis, intracerebral hemorrhage,
myocardial infarction, pulmonary edema, and subarachnoid hemorrhage) and
clinical information (levels of red blood cell, body temperature, MR-proANP,
albumin-creatinine ratio, and PaO2:FiO2 ratio) [Peres et al., 2020]. Our data-
driven analysis started with 90 features, and after the preprocessing steps, we
selected the 28 with the highest importance to the model (see Table 4.11).
The most important feature reported in our model was Glasgow scale, which
most literature also reported as a significant variable. Other significant fea-
tures of the literature that was also important in our model were: admission
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main diagnosis, admission source, admission type, BMI, mechanical ventila-
tion, leukocyte count, body temperature, and creatinine. Urea, prior hospital
length of stay, heart rate, bilirubin, and respiratory rate also reported high
importance in our study and should be included in future prediction studies.

This thesis has the following limitations. The prediction models were
trained considering the year 2019 and not consider possible case-mixes pre-
sented in other years. We did not include COVID-19 patients in this analysis,
which might present a specific behavior that should be counted for future stud-
ies. The application represents a dataset of a big network of Brazilian private
hospitals, which implies not having a complete case-mix context that includes
public patients. We used Gradient Boosting Machine to perform the prepro-
cessing sensitivity analyses, not running all scenarios for all models because
of the problem’s combinatorial nature. We trained the prediction model for
the risk of prolonged stay using the best model (Random Forests) and set of
hyper-parameters obtained in the previous tests for ICU LoS prediction, not
considering all combinations of possible models and parameters. We were un-
able to assess the presence of possible discharge policies on certain days of the
week, which is noted to occur in some Brazilian ICUs.

This thesis presented a structured data-driven methodology to approach
three ICU managers’ mains demands: planning the number of resources
required, identifying patients with prolonged stay, and enabling non-biased
benchmarking analyses between ICUs. The aim was not to deliver a standard
model that fits all ICU types but rather a data-driven guide to generating
predictions adjusted to the specific environment analyzed. Several studies
have shown the importance of building data-driven guidelines to develop
and validate models for routine use in clinical practice and reinforced the
limitations of using standard models to any problem [Johnson et al., 2016;
Rajkomar et al., 2019; Shillan et al., 2019]. For instance, the best result
presented by Random Forests in our application does not mean that this model
will perform well on any dataset. The recommendation is to follow the proposed
methodology, test and compare the main predictive models, and check which
one fits best. Preprocessing the dataset is an important step that should always
be analyzed, with particular attention to feature selection techniques. The
preprocessing analyses showed that some features needed to be transformed
and others were not necessary for our model, reinforcing the need to analyze
the dataset before running the tests. For future studies, we want to perform an
external validation in another dataset of patients to check if our models could
be used for other sets of hospitals. Moreover, we aim to evaluate the adherence
of prediction models after including COVID-19 patients. Another extension for
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this study would be to analyze prediction models for bed occupancy considering
the ICU LoS prediction as a source of information. We also want to propose a
model to predict the total patient time in all ICUs, considering the multiple
patient admissions. Regarding the SLOSR, we want to compare our model to
others, such as SRU. Finally, we want to clarify that predicting the length of
stay at the time of ICU admission is not easy, and future studies should try
to incorporate temporal features to the problem trying to get the evolution
process of the patient.
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This appendix provides the supplementary results for data preparation and
preprocessing.
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Table A.2: Behavior of ICU LoS for all admission main diagnosis groups
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This appendix provides the supplementary results for the risk of prolonged
stay prediction.

DBD
PUC-Rio - Certificação Digital Nº 1712644/CA



Appendix B. Supplementary Results for the Risk of Prolonged Stay Prediction115

Table B.1: Complete training results for risk prediction (model A)

DBD
PUC-Rio - Certificação Digital Nº 1712644/CA



Appendix B. Supplementary Results for the Risk of Prolonged Stay Prediction116

Table B.2: Complete training results for risk prediction (model B)
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This appendix provides the supplementary results for the Benchmarking
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Table C.1: Standardized Length of StayRatio (SLOSR) for each ICU
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Table C.2: General description of each ICU

DBD
PUC-Rio - Certificação Digital Nº 1712644/CA


	Essays on length of stay prediction in Intensive Care Units
	Resumo
	Table of contents
	Introduction
	What factors predict length of stay in the Intensive Care Unit? Systematic Review and Meta-Analysis
	Introduction
	Materials and methods
	Information Source and Search Strategy
	Study selection
	Data Extraction
	Quality Assessment
	Statistical analysis

	Results
	Study selection
	Summary of studies
	Quality Assessment
	Risk factors of ICU stay
	Meta-analysis
	Sensitivity analysis

	Discussion
	Conclusions

	Data-driven methodology to predict ICU length of stay
	Data Preparation and Preprocessing
	Data Preparation
	Visualization and Data Cleaning
	Missing values
	Descriptive statistical analysis
	Outlier detection and treatment

	Data Splitting
	Data Preprocessing
	Dimension reduction
	Imputation
	Feature Selection
	Transformation to Resolve Skewness
	Normalization
	One-hot encoding


	Predicting the Numeric ICU Length of Stay
	Predicting the Risk of Prolonged Stay
	Performing a Benchmarking Analysis between ICUs

	Application in a dataset with 109 mixed-type ICUs
	Materials
	Inclusion Criteria
	Features
	Hospitals' Descriptive Analysis

	Data Preparation and Preprocessing
	Data Preparation
	Visualization and Data Cleaning
	Data Preprocessing
	Preprocessing Sensitivity Analysis

	Predicting the Numeric ICU Length of Stay
	Predicting the Risk of Prolonged ICU Stay
	Performing a Benchmarking Analysis between ICUs

	Conclusions
	Bibliography
	Supplementary Results for Data Preparation and Preprocessing
	Supplementary Results for the Risk of Prolonged Stay Prediction
	Supplementary Results for the Benchmarking Analysis between ICUs



