Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: ESSAYS ON ASSET ALLOCATION OPTIMIZATION PROBLEMS UNDER UNCERTAINTY
Autor: BETINA DODSWORTH MARTINS FROMENT FERNANDES
Colaborador(es): CRISTIANO AUGUSTO COELHO FERNANDES - Orientador
ALEXANDRE STREET DE AGUIAR - Coorientador
Catalogação: 30/ABR/2019 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=37857&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=37857&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.37857
Resumo:
In this thesis we provide two different approaches for determining optimal asset allocation portfolios under uncertainty. We show how uncertainty about expected returns distribution can be incorporated in asset allocation decisions by using the following alternative frameworks: (1) an extension of the Bayesian methodology proposed by Black and Litterman through a dynamic trading strategy built on a learning model based on fundamental analysis; (2) an adaptive dynamic approach, based on robust optimization techniques. This latter approach is presented in two different specifications: an empirical robust loss model and a covariancebased robust loss model based on Bertsimas and Sim approach to model uncertainty sets. To evaluate the importance of the proposed models for distribution uncertainty, the extent of changes in the prior optimal asset allocations of investors who embody uncertainty in their portfolio is examined. The key findings are: (a) it is possible to achieve optimal portfolios less influenced by estimation errors; (b) portfolio strategies of such investors generate statistically higher returns with controlled losses when compared to the classical mean-variance optimized portfolios and selected benchmarks.
Descrição: Arquivo:   
COMPLETE PDF