Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: OPTIMIZATION UNDER UNCERTAINTY FOR ASSET ALLOCATION
Autor: THUENER ARMANDO DA SILVA
Colaborador(es): MARCUS VINICIUS SOLEDADE POGGI DE ARAGAO - Orientador
DAVI MICHEL VALLADAO - Coorientador
Catalogação: 27/ABR/2016 Língua(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=26187&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=26187&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.26187
Resumo:
Asset allocation is one of the most important financial decisions made by investors. However, human decisions are not fully rational, and people make several systematic mistakes due to overconfidence, irrational loss aversion and misuse of information, among others. In this thesis, we developed two distinct methodologies to tackle this problem. The first approach has a more qualitative view, trying to map the investor s vision of the market. It tries to mitigate irrationality in decision-making by making it easier for an investor to demonstrate his/her preferences for specirfic assets. This first research uses the Black-Litterman model to construct portfolios. Black and Litterman developed a method for portfolio optimization as an improvement over the Markowitz model. They suggested the construction of views to represent an investor s opinion about future stocks returns. However, constructing these views has proven difficult, as it requires the investor to quantify several subjective parameters. This work investigates a new way of creating these views by using Verbal Decision Analysis. The second research focuses on quantitative methods to solve the multistage asset allocation problem. More specifically, it modifies the Stochastic Dynamic Dual Programming (SDDP) method to consider real asset allocation models. Although SDDP is a consolidated solution technique for large-scale problems, it is not suitable for asset allocation problems due to the temporal dependence of returns. Indeed, SDDP assumes a stagewise independence of the random process assuring a unique cost-to-go function for each time stage. For the asset allocation problem, time dependency is typically nonlinear and on the left-hand side, which makes traditional SDDP inapplicable. This thesis proposes an SDDP variation to solve real asset allocation problems for multiple periods, by modeling time dependence as a Hidden Markov Model with concealed discrete states. Both approaches were tested in real data and empirically analyzed. The contributions of this thesis are the methodology to simplify portfolio construction and the methods to solve real multistage stochastic asset allocation problems.
Descrição: Arquivo:   
COMPLETE PDF