Título: | OPTIMIZATION UNDER UNCERTAINTY FOR ASSET ALLOCATION | ||||||||||||
Autor: |
THUENER ARMANDO DA SILVA |
||||||||||||
Colaborador(es): |
MARCUS VINICIUS SOLEDADE POGGI DE ARAGAO - Orientador DAVI MICHEL VALLADAO - Coorientador |
||||||||||||
Catalogação: | 27/ABR/2016 | Língua(s): | ENGLISH - UNITED STATES |
||||||||||
Tipo: | TEXT | Subtipo: | THESIS | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=26187&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=26187&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.26187 | ||||||||||||
Resumo: | |||||||||||||
Asset allocation is one of the most important financial decisions made
by investors. However, human decisions are not fully rational, and people
make several systematic mistakes due to overconfidence, irrational loss aversion
and misuse of information, among others. In this thesis, we developed two
distinct methodologies to tackle this problem. The first approach has a more
qualitative view, trying to map the investor s vision of the market. It tries to
mitigate irrationality in decision-making by making it easier for an investor to
demonstrate his/her preferences for specirfic assets. This first research uses the
Black-Litterman model to construct portfolios. Black and Litterman developed
a method for portfolio optimization as an improvement over the Markowitz
model. They suggested the construction of views to represent an investor s
opinion about future stocks returns. However, constructing these views has
proven difficult, as it requires the investor to quantify several subjective
parameters. This work investigates a new way of creating these views by using
Verbal Decision Analysis. The second research focuses on quantitative methods
to solve the multistage asset allocation problem. More specifically, it modifies
the Stochastic Dynamic Dual Programming (SDDP) method to consider real
asset allocation models. Although SDDP is a consolidated solution technique
for large-scale problems, it is not suitable for asset allocation problems due
to the temporal dependence of returns. Indeed, SDDP assumes a stagewise
independence of the random process assuring a unique cost-to-go function
for each time stage. For the asset allocation problem, time dependency is
typically nonlinear and on the left-hand side, which makes traditional SDDP
inapplicable. This thesis proposes an SDDP variation to solve real asset
allocation problems for multiple periods, by modeling time dependence as a
Hidden Markov Model with concealed discrete states. Both approaches were
tested in real data and empirically analyzed. The contributions of this thesis
are the methodology to simplify portfolio construction and the methods to
solve real multistage stochastic asset allocation problems.
|
|||||||||||||
|