Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: SELEÇÃO DE PORTFÓLIO USANDO OTIMIZAÇÃO ROBUSTA E MÁQUINAS DE SUPORTE VETORIAL
Autor: ROBERTO PEREIRA GARCIA JUNIOR
Colaborador(es): ALEXANDRE STREET DE AGUIAR - Orientador
DAVI MICHEL VALLADAO - Coorientador
Catalogação: 26/OUT/2021 Língua(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=55471&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=55471&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.55471
Resumo:
A dificuldade de se prever movimento de ativos financeiros é objeto de estudo de diversos autores. A fim de se obter ganhos, se faz necessário estimar a direção (subida ou descida) e a magnitude do retorno do ativo no qual pretende-se comprar ou vender. A proposta desse trabalho consiste em desenvolver um modelo de otimização matemática com variáveis binárias capaz de prever movimentos de subidas e descidas de ativos financeiros e utilizar um modelo de otimização de portfólio para avaliar os resultados obtidos. O modelo de previsão será baseado no Support Vector Machine (SVM), no qual faremos modificações na regularização do modelo tradicional. Para o gerenciamento de portfólio será utilizada otimização robusta. As técnicas de otimização estão sendo cada vez mais aplicadas no gerenciamento de portfólio, pois são capazes de lidar com os problemas das incertezas introduzidas na estimativa dos parâmetros. Vale ressaltar que o modelo desenvolvido é data-driven, i.e, as previsões são feitas utilizando sinais não-lineares baseados em dados de retorno/preço histórico passado sem ter nenhum tipo de intervenção humana. Como os preços dependem de muitos fatores é de se esperar que um conjunto de parâmetros só consiga descrever a dinâmica dos preços dos ativos financeiros por um pequeno intervalo de dias. Para capturar de forma mais precisa essa mudança na dinâmica, a estimação dos parâmetros dos modelos é feita em janela móvel. Para testar a acurácia dos modelos e os ganhos obtidos foi feito um estudo de caso utilizando 6 ativos financeiros das classes de moedas, renda fixa, renda variável e commodities. Os dados abrangem o período de 01/01/2004 até 30/05/2018 totalizando um total de 3623 cotações diárias. Considerando os custos de transações e os resultados out-of-sample obtidos no período analisado percebe-se que a carteira de investimentos desenvolvida neste trabalho exibe resultados superiores aos dos índices tradicionais com risco limitado.
Descrição: Arquivo:   
NA ÍNTEGRA PDF