Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: PROGRAMAÇÃO DE PROFISSIONAIS DE SAÚDE USANDO OTIMIZAÇÃO SOB INCERTEZA E SIMULAÇÃO
Autor: JANAINA FIGUEIRA MARCHESI
Colaborador(es): SILVIO HAMACHER - Orientador
Catalogação: 13/JAN/2020 Língua(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=46493&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=46493&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.46493
Resumo:
Nesta tese, abordamos o escalonamento de profissionais de saúde para propor um uso mais eficiente da capacidade existente e fornecer acesso oportuno em diferentes serviços de saúde. Apresentamos um conjunto de problemas relacionados à programação de equipes de saúde. O primeiro problema procura reduzir o tempo de porta-médico em uma unidade de pronto atendimento; o segundo problema visa reduzir o tempo de espera total de tratamento também em uma unidade de pronto atendimento; o terceiro problema visa fornecer acesso oportuno à consulta clínica e à cirurgia em uma unidade cirúrgica especializada. Foram propostos e resolvidos modelos de programação estocástica de dois estágios que procuram representar com precisão as características particulares inerentes a cada problema. Um aspecto importante em problemas de saúde é o grande número de incertezas envolvidas nos processos. A incorporação da incerteza aumenta a complexidade do problema e, portanto, torna-se impossível computacionalmente considerar todos os cenários possíveis. Essa dificuldade é contornada usando a Aproximação por Média Amostral (SAA) para representar a incerteza na demanda. Modelo de simulação de eventos discretos (DES) é usado para representar os problemas. Por fim, as soluções foram aplicadas a estudos de caso reais, mostrando que os modelos propostos são adaptáveis a diferentes prestadores de serviços de saúde. Ao longo da tese, resolvemos com eficiência os modelos utilizando casos reais de hospitais no Brasil e nos EUA.
Descrição: Arquivo:   
NA ÍNTEGRA PDF