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Abstract

Marchesi, Janaina Figueira; Hamacher, Silvio (Advisor). Health-
care staff scheduling using optimization under uncertainty
and simulation. Rio de Janeiro, 2019. 205p. Tese de Doutorado
– Departmento de Engenharia Industrial, Pontifícia Universidade
Católica do Rio de Janeiro.

In this thesis, we approach the problem of healthcare staff scheduling
to propose a more efficient use of existing capacity to provide timely access
in different health services. We present a set of problems related to health-
care staff scheduling. The first problem seeks to reduce the door-to-doctor
time in an Emergency Department; the second problem aims to reduce the
waiting time of the overall treatment also in an Emergency Department;
the third problem aims to provide timely access to both clinic and surgery
in a specialized surgical unit. We formulate and solve two-stage stochastic
programming models that seek to accurately represent the particular fea-
tures that are inherent of each problem. An important aspect in healthcare
problems is a large number of uncertainties involved in the processes. The
incorporation of the uncertainty increases the complexity of the problem,
and it, therefore, becomes computationally infeasible to consider all of the
possible scenarios. We circumvent this difficulty by relying on Sample Ave-
rage Approximation (SAA) to address the demand uncertainty. We also use
a discrete-event simulation (DES) model to represent the problems. Finally,
we apply the framework to real case studies showing that the proposed mo-
dels are adaptable to different healthcare providers. Throughout the thesis,
we efficiently solve the models using real cases of Brazil and USA hospitals.

Keywords
OR in health services; Staff scheduling; Physician; Stochastic pro-

gramming; Discrete event simulation.
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Resumo

Marchesi, Janaina Figueira; Hamacher, Silvio. Programação de
profissionais de saúde usando otimização sob incerteza e
simulação . Rio de Janeiro, 2019. 205p. Tese de Doutorado –
Departamento de Engenharia Industrial, Pontifícia Universidade
Católica do Rio de Janeiro.

Nesta tese, abordamos o escalonamento de profissionais de saúde para
propor um uso mais eficiente da capacidade existente e fornecer acesso opor-
tuno em diferentes serviços de saúde. Apresentamos um conjunto de pro-
blemas relacionados à programação de equipes de saúde. O primeiro pro-
blema procura reduzir o tempo de porta-médico em uma unidade de pronto
atendimento; o segundo problema visa reduzir o tempo de espera total de
tratamento também em uma unidade de pronto atendimento; o terceiro pro-
blema visa fornecer acesso oportuno à consulta clínica e à cirurgia em uma
unidade cirúrgica especializada. Foram propostos e resolvidos modelos de
programação estocástica de dois estágios que procuram representar com pre-
cisão as características particulares inerentes a cada problema. Um aspecto
importante em problemas de saúde é o grande número de incertezas envolvi-
das nos processos. A incorporação da incerteza aumenta a complexidade do
problema e, portanto, torna-se impossível computacionalmente considerar
todos os cenários possíveis. Essa dificuldade é contornada usando a Aproxi-
mação por Média Amostral (SAA) para representar a incerteza na demanda.
Modelo de simulação de eventos discretos (DES) é usado para representar
os problemas. Por fim, as soluções foram aplicadas a estudos de caso reais,
mostrando que os modelos propostos são adaptáveis a diferentes prestadores
de serviços de saúde. Ao longo da tese, resolvemos com eficiência os modelos
utilizando casos reais de hospitais no Brasil e nos EUA.

Palavras-chave
PO em serviços de saúde; Escalonamento; Médico; Programação

estocástica; Simulação de eventos discretos.
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"If you would attain to what you are not yet,
you must always be displeased by what you
are. For where you are pleased with yourself
there you have remained. Keep adding, keep
walking, keep advancing."

St. Augustine, S. 169, 18.
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1
Introduction

Increased attention about preventive care and the aging population have
raised demand for health services over the last few decades [Granja et al., 2014].
Healthcare providers face a significant challenge in providing timely access to
care. Timely access is important not only because it is an essential determinant
of patient satisfaction but also because it affects the medical outcomes [Gupta
and Denton, 2008]. Patients often experience serious delays due to capacity
constraints, and highly variable patient demands [Green, 2005]. Adding ca-
pacity is a drastic strategic measure and often infeasible due to cost pressures,
regulatory constraints, or shortage of appropriate personnel [Green, 2005; Hans
et al., 2012]. Therefore, to meet demand properly, healthcare administrators
often struggle to use existing capacity more efficiently, since tactically allocat-
ing and organizing the available resources may be more effective and cheaper
[Hans et al., 2012; Turhan and Bilgen, 2017]. In this context, mathematical
techniques, including Operational Research, offer particularly suitable tools for
tackling modern healthcare challenges such as process design, capacity alloca-
tion, admission control, appointment, and staff scheduling [Barz and Rajaram,
2015; Granja et al., 2014; Turhan and Bilgen, 2017].

Staff scheduling (also termed personnel scheduling or rostering) is the
process of creating work timetables for the staff to ensure that an organization
will satisfy a certain demand for goods or services. Healthcare staff scheduling
is of particular importance because inadequate scheduling leads to inappro-
priate patient treatment, decreasing both patient and provider satisfaction
[Ganguly et al., 2014]. Satisfying personnel demands in the healthcare sector
is, however, a particularly complex task due to the multi-skill nature of human
resources in this sector.

An important feature in healthcare problems is a large number of
uncertainties involved in the processes, such as: non-deterministic patient
arrival times and service durations, emergency care, among others. Since the
1960s, healthcare staff scheduling has been addressed by using management
science and operations research, surveys on the topic are given in [Burke et al.,
2004; Cheang et al., 2003; Erhard et al., 2018]. Although the research literature
in this fields is very extensive, few studies have included uncertainty in the
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Chapter 1. Introduction 19

formulation. However, if the tasks are subject to uncertainty, it is important
to account for them when perform the optimization of the schedule for a given
period.

1.1
Objectives

In this thesis, our principal objective is to address the problem of health-
care staff scheduling to propose a more efficient use of existing capacity to
provide timely access in different health services, taking into consideration the
effects of demand uncertainty. In order to accomplish this objective, we present
a set of problems related to healthcare staff scheduling, its particular features,
and a complete framework to solve each one of the problems. Such a frame-
work consists of a mathematical model to represent the problem, techniques to
include the uncertainty in demand into this model, and techniques to evaluate
the results of the models proposed.

As for secondary objectives, we list the following: we consider the use of
Sample Average Approximation (SAA) as a technique to address the demand
uncertainty, and we show how one can use this technique to deal with the
uncertainty; we present the Monte Carlo and Latin Hypercube as sampling
methods to use with the SAA technique, and we evaluate the performance of
both to handle the scenario generation. In addition to that, we use a discrete-
event simulation model to represent the problems and evaluate the results given
by the model. Another objective is the successful application of the framework
to real case studies showing how the proposed models are adaptable to different
health care providers. Throughout the thesis, we show how one can consider
the uncertainty in the problems presented and efficiently solve them using real
cases of Brazil and USA hospitals.

1.2
Thesis Organization

This thesis is organized into seven chapters, as follows:
In Chapter 2, we present a background of health care staff scheduling.

We summarize the findings of existing studies, propose a taxonomy of existing
solution methods, identify limitations, and point directions for future research.

In Chapter 3, we discuss the Sample Average Approximation (SAA) to
deal with the uncertainty. We show two sampling methods to handle the
scenario generation and how to evaluate the scenario generation methods.
Then, we show the methodology steps adopted in this thesis to deal with
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Chapter 1. Introduction 20

uncertainty. We finish that chapter presenting the solution framework proposed
in this thesis to include the methodology steps to deal with uncertainty.

In Chapter 4, we present the ’Physician Staffing and Scheduling for
Reducing Door-to-Doctor Time in an Emergency Department’ problem, giving
details about the context considered and describing the assumptions that are
made. Our contributions is related to the fact that we not only correctly
determine the number of physicians in service during each shift, for each
day of the planning horizon, but we also assign individual physicians to
each shift following the service requirements and the contractual agreements,
taking into consideration uncertainty in patient arrival patterns. In Chapter
4, we address these problems in an integrated manner, i.e., by performing
both staffing and scheduling together. Moreover, we present a model that
may perform staffing and scheduling, either in a cyclic or non-cyclic manner;
we model multiple overlapped shifts, and different physician skill categories;
and we treat physicians individually considering preferences and restrictions.
We present a model formulation developed for the problem based on two-
stage stochastic programming. We apply the model in two real case studies in
Brazilian hospitals. We solve the problem using scenarios generating by SAA
technique, which results suggest that using the proposed technique, we can
efficiently obtain solutions that are statistically guaranteed to be close enough
to the true optimal solution.

In Chapter 5, we present the ’Resources Staffing and Scheduling to Re-
duce Waiting Time in an Emergency Department’ problem and its character-
istics. In this Chapter, we extend the problem of Chapter 4 to consider several
stages of treatment in an ED, consider physicians and nurse as human re-
sourses, and consider beds and chairs as physical resources while maintain all
contributions presented before. We present the model formulation developed
for the problem using two-stage stochastic programming and SAA to deal with
the uncertainty. We close this chapter providing numerical results based on the
real case of a Brazilian hospital.

In Chapter 6, we present the ’Coordinating physician scheduling for clinic
and surgery appointments to deliver timely access in a specialized surgical unit’
problem and its specific features. Here the contibutions is ralated by the fact
that the concept of coordinating physician scheduling to clinic and surgery
appointments addressing the uncertainty in demand is unique and novel. We
proposed three prioritization policies that varies according to how the surgical
unit want/need to handle the access to services. Moreover, the model proposed
also considers the continuous of care between patient-surgeon. We also develop
a mathematical model based on two-stage stochastic programming and use
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Chapter 1. Introduction 21

SAA to handle the uncertainty in demand. We end this chapter presenting
numerical results of a real case study on a hospital in the USA.

In Chapter 7, we make the final considerations, we assert the contribu-
tions made, and we point future directions for further development of this
work.
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2
Background of Physician Scheduling Problem

Health staff (nurses and physicians) share many general features but
differ significantly with regards to employment contracts and regulations. As a
result, the problem of health staff scheduling has been traditionally addressed
in two separate instances: Nurse Scheduling Problem (NSP) and Physician
Scheduling Problem (PSP). The former has been addressed since the 1960s
and is currently the most investigated staff scheduling problem in healthcare;
recent comprehensive surveys on the topic are given in [Burke et al., 2004;
Cheang et al., 2003]. In contrast, significantly fewer studies have addressed
PSP, with early works dating from the 2000s (see e.g. Erhard et al. [2018]). As
in this thesis we are mainly interested in the PSP, in this Chapter we aim to
present a background related to this problem.

To select related literature, we used the Scopus database ([Scopus, 2017]),
which is the largest online database of peer-reviewed literature and includes
MEDLINE. Our search for PSP papers was done for studies published up to
January of 2017, yielding a total of 40 papers. A complete account of the studies
screened, assessed for eligibility, and included in this review, with reasons for
exclusions at each stage, is given in Appendix A.

Hence, in this chapter, we provide a systematic review of the problems
of nurse and physician scheduling in which techniques, solution methods,
and characteristics of the problem are analyzed, and trends and potential
future research directions are identified. First, we integrate and summarize the
findings of existing studies using a systematic approach. Secondly, we propose a
taxonomy of existing solution methods based on three descriptive dimensions.
Thirdly, we identify limitations associated with existing solution techniques
and discuss trends and suggestions for future research directions.

2.1
Staff Scheduling Problem and Classification

To avoid ambiguity with regards to terminology, we begin with some
important definitions. Shift is a set of consecutive work periods within a day
that usually have a start time and well-defined order. Roster is a combination
of shifts and days off assignments that encompasses a fixed period of time,
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frequently called a line-of-work [Brunner, 2010]. Staffing is the step that
immediately precedes staff scheduling and involves determining the number
of personnel with a given set of skills that are needed to meet certain service
demands [Burke et al., 2004]. Finally, scheduling is performed by assigning
individual staff members to shifts to meet required staffing levels at different
times; duties are then assigned to individuals during their shifts [Ernst et al.,
2004]. At this point, it is important to note that scheduling is the allocation of
resources to objects in space-time, while rostering is the placing of resources
into slots in a pattern [Gondane and Zanwar, 2012]. Of note, although rostering
has been classified as a special case of scheduling, as in da Silva Rocha [2013],
these terms have been inconsistently used in literature. For this review, we
consider them to be synonymous, and will henceforth use them interchangeably
whenever no confusion arises.

The Dantzig set covering formulation and its variations [Ernst et al.,
2004] provided one of the earliest modeling frameworks for the staff scheduling
problem. The basic concepts of scheduling problems, as well as some facets
of staff scheduling, are discussed in [Blöchliger, 2004], while general surveys
of staff scheduling can be found in [ Bergh et al., 2013; Alfares, 2004; Baker,
1976; Bechtold et al., 1991; Ernst et al., 2004].

One of the most studied applications of personnel scheduling involves
healthcare staff, as surveyed in [Fries, 1976]. However, a variety of formulations
exist for the healthcare staff scheduling problem because different healthcare
institutions around the world have diverse administrative procedures [Burke
et al., 2004]. In light of this, we propose a taxonomy of healthcare staff schedul-
ing that is general enough to classify much of the work in this area. Our
classification extends those of [Burke et al., 2004] and [Van Huele and Van-
houcke, 2014] and considers three descriptive dimensions of the healthcare staff
scheduling problem: problem definition, modeling framework, and implemen-
tation issues.

2.1.1
Problem Definition

The features that define the healthcare staff scheduling problem are
planning horizon, shift types, and personnel characteristics. The planning
horizon refers to the time interval over which scheduling is done. Shift types are
defined in terms of periodicity (cyclic or acyclic shifts), overlay (overlapping or
non-overlapping shifts), and restriction of start/end times (fixed or definable
shifts). In cyclic shifts, all employees within a certain category do exactly the
same line of work (pattern or tour), which is repeated every planning period.
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In the case of acyclic shifts, the lines of work are completely independent,
and a new schedule is generated for each planning period. Overlapping shifts
are adjacent shifts that share part of the work period, while non-overlapping
shifts are adjacent shifts with no intersection of hours. Fixed shifts are those
with a well-defined beginning, length, and end, in contrast to definable shifts,
where the length, start, and end times are decision variables of the model.
Finally, personnel characteristics refer to information on how many skill
categories are considered and which scheduling rules must be observed for
the different categories (i.e., whether categories will be scheduled separately or
in substitution). When substitution is allowed, staff with higher skill categories
may be allowed to undertake jobs that are normally carried out by lower skilled
employees; alternatively, only some staff may be allowed to replace staff from
another skilled category in a user-defined way.

2.1.2
Modeling Framework

The modeling framework is defined in terms of performance measures
and constraints. With regards to the performance measure, existing works
are compared based on their choice of objectives. The type and amount
of constraints defined in each formulation are analyzed by distinguishing
between hard and soft constraints. Inability to satisfy the former will imply in
infeasibility, while the latter are allowed to be violated but a penalty must be
assured if there is a violation.

2.1.3
Implementation Issues

The issues contemplated in our analysis include a selection of solution
techniques, incorporation of uncertainty, and research applicability. Existing
works are compared in terms of their choice of solution technique, with options
ranging from exact methods (i.e., mathematical programming) to heuristics
and metaheuristics. We also compare works based on whether/how they were
able to incorporate some kind of uncertainty into their formulation. Finally,
research applicability refers to whether or not existing formulations were
applied to real healthcare systems, and whether or not real data was used
to generate measurable results.
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2.2
Physician Scheduling Problem

A total of 40 published journal articles dealing with Physician Schedul-
ing Problem (PSP) were analyzed in this review, as shown in Table 2.1. The
header “Country” in Table 2.1 refers to the name of the country where case
studies were run, and the term “n.a.” is used to designate works in which no
such case studies were run, and only theoretical data was used to test the
models. As can be seen in Table 2.1, 30% of papers conducted studies in the
USA, followed Germany (12,5%), Turkey (12,5%), and Canada (10%). Of note,
the vast majority of existing PSP works focus on resident scheduling, seldom
addressing important distinguishing features such as physician preferences. In
what follows, we scrutinize this issue and compare the selected PSP papers in
terms of the descriptive dimensions presented in Section 2.1.

Table 2.1: Complete list of surveyed PSP papers

Paper Country

Bard et al. [2013] USA
Bard et al. [2014] USA
Bard et al. [2016] USA
Baum et al. [2014] USA

Beaulieu et al. [2000] Canada
Bowers et al. [2016] USA

Bruni and Detti [2014] Italia
Brunner and Edenharter [2011] Germany

Brunner et al. [2009] Germany
Brunner et al. [2011] Germany

Carrasco [2010] Spain
Carter and Lapierre [2001] Canada

Cohn et al. [2009] USA
Day et al. [2006] et al. USA
Elomri et al. [2015] Qatar
Ferrand et al. [2011] USA
Fügener et al. [2015] Germany
Gendron et al. [2005] n.a

Güler [2013] Turkey
Güler et al. [2013] Turkey
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Gunawan and Lau [2010] Singapore
Gunawan and Lau [2013] Singapore
Hidri and Labidi [2016] Saudi Arabia
Huang et al. [2016] Taiwan

Kazemian et al. [2014] USA
Lo and Lin [2011] Taiwan

Rosocha et al. [2015]. Slovakia
Savage et al. [2015] Canada
Shamia et al. [2015] Qatar
Sherali et al. [2002] n.a

Smalley and Keskinocak [2016] USA
Smalley et al. [2015] USA

Stolletz and Brunner [2012] Germany
Topaloglu [2006] Turkey
Topaloglu [2009] Turkey

Topaloglu and Ozkarahan [2011] Turkey
Turner et al. [2013] n.s

Van Huele and Vanhoucke [2014] Belgium
Wang et al. [2007] n.a

White and White [2003] Canada

n.s. – not specified; n.a. – not applicable

2.2.1
Problem Definition

A summary of information on shift types and personnel characteristics
of studies dealing with PSP is given in Table 2.2. The column “Total” displays
the number of papers (out of the 40 reviewed PSP papers) that account for
any given feature, and table headers include a single letter under parenthesis,
which we will subsequently use in reference to the headers. As seen in row
(A) of Table 2.2, PSP formulations commonly deal with one or two shifts.
Furthermore, PSP studies that admit a user-defined number of shifts also
allow for the shift start time and shift length to be defined by the user, the
only exception being the model in [Kazemian et al., 2014], in which the start
time is fixed. From rows (B) and (C), we note that the majority of PSP
models consider fixed shift start time and length, while a small number of
them [Brunner et al., 2009, 2011; Brunner and Edenharter, 2011; Stolletz and
Brunner, 2012] perform flexible shift scheduling, i.e., shifts are constructed
implicitly on a period-by-period basis over the day and shift-building rules
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are implemented as constraints. Additionally, as seen in row (D), most PSP
studies do not account for overlapping shifts, and a number of those that do
so address the case of on-call or medical consultation shifts (e.g., the models
in [Bowers et al., 2016; Topaloglu and Ozkarahan, 2011] consider three shifts,
two of them traditional and one on-call 24 hour shift; the authors in [Beaulieu
et al., 2000; Gunawan and Lau, 2013] model three traditional shifts and one
medical consultation shift of 4h). Finally, observe the row (E) in Table 2.2, we
note that approximately the same ratio of studies adopt cyclical shifts in PSP
(7.5%) and NSP (6.5%).

In terms of personnel characteristics, shown in row (F) of Table 2.2, no
PSP studies were found in which the user is allowed to define substitutions
or the number of skill categories. Additionally, hierarchical substitution is
considered only in Brunner and Edenharter [2011]; Sherali et al. [2002]; White
and White [2003]. Althought PSP studies rarely address substitutability, a
greater proportion of PSP models (42.5%) account for three or more skill
categories. This comes as no surprise, however, given that most PSP studies
deal with resident scheduling.

Table 2.2: General model variables
Features Definition Total

Shifts number (A)

1 6

2 15

3 8

4 or more 5

user-definable 5

Shift length (B)
fixed 35

user-definable 6

Shift start (C)
fixed 37

user-definable 4

Shift overlapping (D)
non-overlapping 27

overlapping 14

Cyclical shifts (E) 3

Skill categories (F)

1 18

2 6

3 8

4 or more 9

user-definable 7

schedule separately 38

hierarchical substitution allowed 3
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Table 2.3 present the planning periods consider in works addressing PSP.
The most common planning horizon for PSP is 1 month (used in approximately
25% of the surveyed studies), but a significant number of PSP models use
longer time horizons such as 3 months [Baum et al., 2014; Güler, 2013], 51
weeks [Smalley et al., 2015], and 1 year [Carrasco, 2010; Cohn et al., 2009;
Ferrand et al., 2011; Smalley and Keskinocak, 2016]. It is also interesting to
note instances in which scheduling is performed over small consecutive time
intervals that span a longer planning period. For example, in [Cohn et al.,
2009] planning is performed weekly over a time horizon of one year, and in
[Bard et al., 2013, 2014] monthly planning is performed over the same time
horizon. Finally, it is worth mentioning that user-defined planning horizons are
less frequently verified in PSP. Moreover, most of the PSP works that allow
for user-definable planning periods deal with more than one instance of the
problem and use different planning horizons for each instance.

Table 2.3: Quantity of PSP papers that account for different planning horizons
Planning Horizon Total

1 day 2
5 days 1
1 week 3
2 weeks 3
4 weeks 7
1 month 10
2 months 2
9 weeks 1
3 months 2
51 weeks 1
1 year 4
user-definable 5

2.2.2
Modeling Framework

In terms of performance measure (Table 2.4), the trend verified among
PSP is that most models seek to minimize penalties related to soft con-
straints. The second most common objective addresses physician preferences,
generally defined in terms of two different objectives: maximizing staff pref-
erence/satisfaction and minimizing total preference cost. Another frequently
occurring goal deals with minimizing overtime costs to address the issue of
workload.

Min – Minimize; Max – Maximize

Some issues such as coverage and service quality are particularly relevant
in staff scheduling problems. PSP models that take this into account typically
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Table 2.4: Quantity of PSP papers that account for different performance
measures

Objective Min/Max Total

Soft Constraint Violations Min 16
Preferences Max 8
Preference Cost Min 6
Overtime Assignment Costs Min 6
Cost of outside physicians Min 5
Understaffing Min 4
Hour worked by residents Max 3
Fairly in the scheduling Max 3
Remuneration Min 3
Patient handoff continuity Min 3
Overstaffing Min 2
Deviation from Equality Min 8
Other – 8

minimize understaffing and/or overstaffing. Topics of fairness and patient
handoffs continuity are also translated into performance measures to ensure
equity and decrease the frequency of transitions in patient care.

Finally, some studies propose more particular objectives. The model from
Stolletz and Brunner [2012] aims at minimizing paid out time (i.e., not compen-
sated overtime) in addition to minimizing overtime and the number of outside
physicians. The authors in [Gunawan and Lau, 2013] focus on unscheduled du-
ties beyond preferences, while those in [Smalley and Keskinocak, 2016] choose
to minimize the variance of intervals between consecutive physician duties. To
construct annual block schedules for family medicine, the authors in [Bard
et al., 2016] generate monthly schedules for the house staff that minimize the
maximum absolute deviation between the number of patients that can be seen
during any session over the week and minimize the number changes that result
from reassigning clinic sessions over the week.

For the purposes of our analysis, PSP constraints were grouped into
five categories: time related constrains; weekend related constrains; shifts pat-
tern/sequencing constrains; coverage related constraints; preference/fairness
related constraints. A summary of this classification for the PSP studies in-
cluded in this review is given in Table 2.5. The most common categories of
constraints in PSP are time-related constraints and constraints related to shift
pattern/sequencing. Among the former, the most frequently occurring con-
straints include a minimum interval between shift allocation, maximum con-
secutive working days, and maximum/minimum number of hours a physician
must work in period. With regards to the latter, the majority of constraints
are cast as assigning some shift pattern, assigning specific shift patterns to
skills and keeping to a maximum number of certain shift types.

DBD
PUC-Rio - Certificação Digital Nº 1521900/CA



Chapter 2. Background of Physician Scheduling Problem 30

Table 2.5: Quantity of PSP papers that account for different constraint
categories

Constraint category Type Total

Time related
HC 40

SC 16

Weekend related
HC 12

SC 6

Shifts pattern/sequencing
HC 22

SC 10

Cover related
HC 32

SC 10

Preference/Fairness related
HC 13

SC 28

Otherd
HC 9

SC 3

HC – Hard Constraints; SC – Soft Constraints

As in most staff scheduling problems, PSP models typically include
coverage-related constraints, and the most commonly occurring constraint in
this category is termed “Cover required”. Due to the importance of meeting
the required number of employees to cover the workload, this constraint is
defined as a hard constraint in essentially all PSP formulations that include it,
with the exception of the models in [Carter and Lapierre, 2001; Sherali et al.,
2002; Topaloglu and Ozkarahan, 2011] (we refer the reader to Appendix B
for a detailed account of the constraints defined within each category, and
to Appendix C for a complete assessment of issues pertaining to problem
definition and modeling framework). Preference/fairness related constraints
are also well addressed in PSP studies, but unlike coverage constraints,
they are most commonly defined as soft constraints. The most frequently
occurring constraints in this category deal with equally distributing work hours
among physicians and residents, and allocating physicians according to their
preferred schedule. Finally, some studies, in particular those concerned with
resident scheduling, include constraints related to more specific issues, such as
professional training in addition to service delivery.
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2.2.3
Implementation Issues

A summary of issues related to solution techniques, applicability of the
models and instances used in the test phase, and incorporation of uncertainty
in studies dealing with PSP is presented in Table 2.6.
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Table 2.6: Implementation issues accounted for in PSP papers

Ref. (A) Solution technique (B)
Applicability (C)

Uncertainty addressed (D)
A NAR NAT Instances

Bard et al. [2013] Exact (GP) - x - Healthcare provider -
Bard et al. [2014] Exact (GP/MINP)/Network Optimization - x - Healthcare provider -
Bard et al. [2016] Exact (MINP)/Heuristics - x - Healthcare provider -
Baum et al. [2014] Exact (MIP) x - - Healthcare provider -

Beaulieu et al. [2000] Exact (IP) - x - Healthcare provider -
Bowers et al. [2016] Exact (MIP) x - x Healthcare provider -

- - - + generated data -
Bruni and Detti [2014] Exact (MIP/B&C) - x - Healthcare provider -

Brunner and Edenharter [2011] Exact (MIP/CG) - x - Healthcare provider -
Brunner et al. [2009] Exact (MIP) - x - Healthcare provider -
Brunner et al. [2011] Exact (CG/B&P) - x x Healthcare provider -

- - - + generated data -
Carrasco [2010] Metaheuristic (GS)/Heuristics x - - Healthcare provider -

Carter and Lapierre [2001] Metaheuristic (TS) - x - Healthcare provider -
Cohn et al. [2009] Exact (MIP)/Heuristics x - - Healthcare provider -
Day et al. [2006] Exact (MIP) - x - Healthcare provider -

Elomri et al. [2015] Exact (GP) - x - Healthcare provider -
Ferrand et al. [2011] Exact (IP) x - - Healthcare provider -
Fügener et al. [2015] Exact (MIP) - x - Healthcare provider -
Gendron et al. [2005] Exact (CG)/CP - - x generated data -

Güler [2013] Exact (GP) - x - Healthcare provider -
Güler et al. [2013] Exact (GP) x - - Healthcare provider -
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Gunawan and Lau [2010] Exact (IP)/Metaheuristic (WS/HC/eC) - x x Healthcare provider -
- - - + generated data -

Gunawan and Lau [2013] Exact (IP)/Heuristics - x x HC provider -
- - - + generated data -

Hidri and Labidi [2016] Exact (IP) - x - Healthcare provider -
Huang et al. [2016] Exact (IP) - x - Healthcare provider -

Kazemian et al. [2014] Exact (IP) - x - Healthcare provider -
Lo and Lin [2011] Metaheuristic (PSO) x - - Healthcare provider -

Rosocha et al. [2015] Metaheuristic (SA) - x - Healthcare provider -
Savage et al. [2015] Exact (MIP) - x - Healthcare provider -
Shamia et al. [2015] Exact (GP) - x - Healthcare provider -
Sherali et al. [2002] Exact (MIP)/Metaheuristic (SH) - - x generated data -

Smalley and Keskinocak [2016] Exact (IP) - x - Healthcare provider -
Smalley et al. [2015] Exact (MIP)/Heuristics x - - Healthcare provider -

Stolletz and Brunner [2012] Exact (MIP) - x - Brunner et al. (2009) -
Topaloglu [2006] Exact (GP) - x - Healthcare provider -
Topaloglu [2009] Exact (MIP) - x x Healthcare provider -

- - - + generated data -
Topaloglu and Ozkarahan [2011] Exact (MIP/CG)/CP - x - Healthcare provider -

Turner et al. [2013] Exact (SP) - x - Healthcare provider x
Van Huele and Vanhoucke [2014] Exact (MIP) - x - Healthcare provider -

Wang et al. [2007] Metaheuristic (GA) - - x generated data -
White and White [2003] Metaheuristic (TS)/CP x - - Healthcare provider -

IP - Integer Programming; GP - Goal Programming; MIP - Mixed Integer Programming; CG - Column Generation; B&P - Branch & Price; B&C - Branch & Cut; MINP - Mixed Integer
Nonlinear Programming; SP – Stochastic Programming; GA - Genetic Algorithms; TS – Tabu Search; SA - Simulated Annealing; HC - Hill-climbing; GS - Greedy Search; PSO - Particle
Swarm Optimization; eC – e-Constraint; WS – Weighted-Sum; SH – Sequential Search A – Applied; NAR – Not Applied, Real data; NAT – Not Applied, Theoretical data

DBD
PUC-Rio - Certificação Digital Nº 1521900/CA



Chapter 2. Background of Physician Scheduling Problem 34

A variety of solution techniques have been employed in PSP studies,
as shown in column (B) of Table 2.6. We classify these techniques as exact
methods, heuristics, and metaheuristics. Of note, the former is more frequently
applied to PSP than the latter two.

With regards to exact methods, the majority of PSP models make use
of Mixed Integer Programming (MIP) [Baum et al., 2014; Bowers et al.,
2016; Bruni and Detti, 2014; Brunner et al., 2009; Brunner and Edenharter,
2011; Day et al., 2006; Fügener et al., 2015; Sherali et al., 2002; Smalley
et al., 2015; Stolletz and Brunner, 2012; Topaloglu, 2009; Topaloglu and
Ozkarahan, 2011; Van Huele and Vanhoucke, 2014], Integer Programming
(IP) [Beaulieu et al., 2000; Ferrand et al., 2011; Gunawan and Lau, 2010,
2013; Hidri and Labidi, 2016; Huang et al., 2016; Kazemian et al., 2014], or
Goal Programming (GP) [Bard et al., 2013, 2014; Elomri et al., 2015; Güler
et al., 2013; Shamia et al., 2015; Topaloglu, 2009]. It is worth noting that
GP is particularly well suited to the structure of PSP, where staff preferences
and individual employment contracts are commonly addressed (in contrast,
nurses typically respect collective agreements). To ensure an adequate balance
between education and patient care activities, resident scheduling is performed
in [Topaloglu, 2009] of an analytical hierarchy process (AHP) based goal
programming approach. In a similar application, the assignment of residents
and senior academic staff to outpatient clinics is addressed, and AHP is used to
incorporate the experiences of the department into a GP model [Güler, 2013].
GP is also used for resident scheduling in Bard et al. [2013] and [Elomri et al.,
2015]. In the former, residents must rotate through different clinical experiences
monthly and in the latter residents are assigned to two types of shifts in
two different departments. Focusing on improved patient care, the authors
in [Shamia et al., 2015] propose a GP model to satisfy as many physicians’
preferences and duty requirements as possible while ensuring optimum usage
of available resources.

PSP studies commonly make use of Column Generation (CG) and
Branch-and-Price (B&P) techniques to address large instances. In [Brunner
and Edenharter, 2011], CG is applied to solve a long-term staffing model
for flexible shift scheduling of physicians with different experience levels.
The authors in [Brunner et al., 2011] implicitly construct shifts using a
MIP model in association with both CG and a B&P algorithm that applies
two different branching strategies to extend the planning horizon of solvable
instances. Addressing many aspects of the residency program, a model is
proposed in [Topaloglu, 2009] for resident scheduling in which CG is used
for solving larger problem instances. Applying constraint programming-based
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CG, two search strategies are proposed in [Gendron et al., 2005] to improve the
coordination between master and sub problems. A flexible MIP formulation is
given in [Bruni and Detti, 2014] to schedule different medical guard services
in hospital departments. To solve this NP-hard problem, a Branch-and-Cut
(B&C) procedure is used that involves running a branch and bound algorithm
and using cutting planes to tighten the linear programming relaxations.

Among the classes of heuristic and metaheuristics algorithms, a variety
of different techniques are reported. Emergency room physician scheduling
is performed using tabu search in [Beaulieu et al., 2000] and particle swarm
optimization in [Lo and Lin, 2011]; both studies consider three non-overlapped
shifts and allow user-definable planning horizons. The authors in [Rosocha
et al., 2015] focus on optimizing medical staff preferences through a simulated
annealing-based algorithm. Resident scheduling is addressed in [Wang et al.,
2007], where a genetic algorithm’s mutation operator is proposed for cost
minimization. A combination of random and greedy strategies with heuristics is
reported in [Carrasco, 2010] for assigning guard shifts to physicians. The main
issues addressed in this study are strict equity of the workload, regularity
of intervals between consecutive shifts, creation of teams with randomly
distributed pairings, and long-term scheduling.

Additionally, several studies combine exact methods with heuris-
tic/metaheuristic approaches. PSP in the context of a surgery department
is addressed in [Gunawan and Lau, 2010] by incorporating a large number of
rostering and resource constraints with physician preferences; for such, three
different models are proposed based on the ε–constraint and weighted-sum
methods, as well as the hill-climbing algorithm. In a subsequent extension of
their work, a bi-objective mathematical programming model is used along with
a weighted-sum model in which the varying values of weights are calculated by
linear interpolation between solutions [Gunawan and Lau, 2013]. The authors
in [White and White, 2003] use a constraint programming logic formalism fol-
lowed by a Tabu Search optimization algorithm to produce a call schedule.
The problem of assigning physicians to service and call shifts in a pediatric
intensive care unit is addressed in [Smalley et al., 2015], where both a MIP
model and an iterative heuristic that incorporates modified versions of the
MIP are developed in collaboration with physicians. In [Bard et al., 2016], a
MIP model with nonlinear constraints is proposed for annual family medicine
block scheduling, and solved using optimization-based heuristics involving re-
laxations of the original model, post-processing feasibility, and neighborhood
search.

Column (C) in Table 2.6 characterizes the approach to model valida-
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tion. A minority of the analyzed PSP studies report having their models
implemented in existing healthcare institutions. Some of the distinguishing
characteristics of studies in which real-world applications were performed in-
clude their ability to account for greater flexibility in meeting the needs of
both the organization and physicians, as well as the existence of interac-
tion/collaboration with physicians throughout the modeling process. This not
only granted physicians with flexibility in choosing their time-off requests [Fer-
rand et al., 2011] but also allowed the development of, e.g., schedules that
can be modified by the chief resident to accommodate last-minute personnel
changes [White and White, 2003].

The vast majority of surveyed PSP formulations do not deal with
uncertainty, as shown in Column (D) of Table 2.6. Turner et al. [2013] was
the only work to address this issue by incorporating uncertainty in future
surgical demand.

2.3
Discussion

Physician scheduling problems deal with a wide range of interesting op-
timization questions whose answers have practical implications for healthcare
providers, patients, and policy makers. Currently, the focus on healthcare staff
scheduling is, on one side, on increasing provider efficiency and thus decreasing
operational costs, and, on the other side, on reconciling staff preferences and in-
creasing patient satisfaction. Although the trade-off between operational and
social aspects is addressed in the literature, several extensions may be sug-
gested to improve formulations. In what follows, we provide suggestions for
future research directions in light of the descriptive dimensions identified in
our analysis.

Problem definition: The main shortcoming of existing PSP models in
this regard has to do with limited flexibility of current problem settings. In
effect, the majority of surveyed studies consider fixed values of planning hori-
zon, number, length, start and overlap of shifts, and substitutability/number
of skill categories. Moreover, no PSP studies were found in which the user is
allowed to define substitutions and/or the number of skill categories. In this
context, allowing the user to input meaningful case-specific settings is the first
step towards building more realistic staff scheduling formulations. Additional
settings, such as the availability of shared staff between different hospital de-
partments, could also be taken into account. Hence, future research on increas-
ing model flexibility is required and should be undertaken as a collaborative
effort between algorithm developers and end users from healthcare institutions.
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Modeling framework: The current trend in physician scheduling is to
account for staff preferences in the problem formulation. This points to the
importance of uncovering which aspects of the work schedule are most relevant
to healthcare staff, to ensure that these will be adequately addressed in ensuing
formulations. Future research would thus profit from incorporating findings
from social science studies dealing with employee needs/priorities. Of note, due
to the complexity of accounting for staff preferences when dealing with non-
resident scheduling, existing PSP models seldom do so, and there is much room
for developing models that address such important distinguishing features.
Furthermore, most of the surveyed studies disregard issues related to staffing
(i.e., determining the number of required personnel with a given set of skills)
and assume the number of staff members for each day and shift to be previously
known. This limitation could be addressed by extending the existing models
to capture practical assumptions such as uncertainty of demand and multi-
type demand (e.g., variable patient arrival rates, different classes of patients
depending on the type of required care, etc.). The inclusion of constraints
referring to mandatory breaks, e.g., lunch breaks, would also lead to more
realistic models. Examples of considerations relative to mandatory breaks
include what time such breaks should be taken; maximum cumulative time
without a break; how to split breaks to better distribute them over the working
day, among others. Finally, new formulations and/or model extensions should
include stochastic and dynamic conditions that account for variations in the
problem setting over time, e.g., significant changes in management objectives
and patient population characteristics.

Implementation issues: Exact methods have had limited success in deal-
ing with the enormous search space of real staff scheduling problems, and
for this reason, a prominent line of research focuses on hybridizing exact and
heuristic approaches. Recent algorithmic advances warrant further investiga-
tion into novel combinations of existing methods and improvements upon exist-
ing combinations. Alternatively, continued research is required into improved
applications of exact methods to large-sized instances. Also of interest is the
incorporation of robust and efficient solution methods in decision support sys-
tems, which would allow for real-time evaluation of a variety of scheduling
scenarios. Finally, addressing more realistic real-world applications in an un-
certain dynamic setting calls for future research into multi-stage uncertain
programming, such as multi-stage stochastic programming, stochastic dynamic
programming, or adjustable robust optimization approaches.

A minority of surveyed studies takes into account factors such as the
unpredictable presence of workers due to illness, arrival delays, demand uncer-
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tainty, uncertainty in task duration, and patient-related uncertainties. Hence,
future research on stochastic nurse and physician scheduling is required. In
addition to investigating how to incorporate uncertainty into PSP models,
improved applications of stochastic simulation of demand patterns and staff
availability could be devised to test the robustness of deterministic approaches.
Another poorly addressed facet of healthcare staff scheduling has to do with
the issue of the rescheduling (or rerostering). Further analysis is warranted
on coping with post hoc reevaluation of existing schedules due to, e.g., the
existence of staff members who become unable to perform assigned tasks.

Most of the reviewed PSP formulations offer simplistic representations of
practical settings that are not directly applicable to real healthcare institutions.
Hence, there is a gap between the current literature and the required necessities
of existing hospital environments that must be addressed by future research.
Moreover, in cases when real data is used to generate and validate schedul-
ing models, implementation details are scarcely provided. Hence, increased
disclosure will play a crucial role in promoting the successful employment of
healthcare staff scheduling algorithms in real-world settings. Finally, compar-
isons between similar or competing approaches are a challenging task due to
the intrinsic variability of problem formulations accruing from the plethora of
national and regulatory settings in existence worldwide. To address the issue
of replication and equivalence of solution, benchmark test problems for NSP
and PSP need to be made publicly available.

Additional related issues: Further research into several associated topics
would also serve to leverage improvements in healthcare staff scheduling
solution methods. For one, the development of predictive models for demand
forecasting could lead to PSP formulations that are more robust to planning
period specifications. Additionally, further research is needed in designing
statistical methods to estimate the input parameters of existing models.
Another issue that warrants consideration relates to integrating quality of
care metrics and other strategic, tactical, and operational decisions with
scheduling arrangements. Finally, further work is required on incorporating
engineering economic models into the design phase of multi-period models,
and on accounting for budget constraints and various types of costs related to
the healthcare system and its clients.

2.4
Conclusions

In this chapter, we surveyed literature dealing with the physician schedul-
ing and identified a lack of updated reviews on the subject. We addressed this
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shortcoming by providing a background of the problems of physician schedul-
ing. A comprehensive framework for classifying such problems was introduced
that focused on three descriptive dimensions of healthcare staff scheduling,
namely problem definition, modeling framework, and implementation issues.
PSP formulations were found to be similar with regards to the limited flexi-
bility of current problem settings. Additionally, we recognized a current trend
in accounting for staff preferences within both formulations and noted the
scarcity of PSP models dealing with stochastic and dynamic conditions. Physi-
cian scheduling formulations were also analyzed in terms of a variety of im-
plementation issues and other associated topics, whereby it was possible to
suggest directions for future research.

In this Thesis, we addressed several aspects pointed in the previous
Section as trends and research directions. In the models proposed in the course
of the Thesis, we include different settings to increase model flexibility and to
address more realistic applications, e.g. we consider different shift lengths,
overlapped shifts, flexibility in the shift’s start time, different skill categories,
and we also considered cyclic and acyclic approaches to perform staff schedule
in the models presented in Chapters 4 and 5. We treated physicians individually
to account for preferences and/or restrictions such as start time allowed for
each physician, weekend scheduling rules, availability of each physician. Finally,
in the models presented in Chapter 4, 5 and 6, we addressed uncertainty in the
demand once the vast majority of the works do not deal with this important
feature, as pointed before.
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3
Methods

In this chapter we discuss the Sample Average Approximation (SAA) to
deal with the uncertainty. Moreover, we present a solution framework adopted
in the thesis showing the methodology steps adopted in this thesis to deal with
uncertainty.

3.1
Dealing with Demand Uncertainty Using Sample Average Approximation

To take into account uncertainty in the course of this thesis, we assume
that uncertainty is discretely represented by SC possible realization scenarios.
However, the number of possible realization scenarios for a given probability
distribution is infinite, thus it is not computationally feasible to consider all
of the possible scenarios. To circumvent this difficulty, we can use sampling
techniques that consider a random subset of possible realizations to obtain
approximate results.

The Sample Average Approximation (SAA) is a technique proposed by
Shapiro and Homem-de Mello [1998]. The main idea of this technique is
to approximate the value of the objective function considering the average
value of the successive solution to several problems composed of subsets of
scenarios sampled successively. The resulting sample average approximation
of the stochastic program is then solved by some appropriate deterministic
optimization procedure. The process must be repeated with different samples
to obtain candidate solutions along with statistical estimates of their optimality
gaps.

SAA has been widely used in the literature to avoid dealing with a large
number of scenarios but still treating uncertainty adequately. The papers of
[Kleywegt et al., 2002; Linderoth et al., 2006; Mak et al., 1999] presented im-
portant theoretical considerations regarding the method. We see some appli-
cations of SAA in scheduling problems in healthcare, for example: to generate
an optimal surgery schedule of elective surgery patients with uncertainty both
in surgery durations and availability of downstream resources [Min and Yih,
2010]; to perform nurse scheduling taking into account uncertainties in demand
and length of stay of patients over time [Bagheri et al., 2016]; and to perform
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physician staffing in an Emergency Department considering uncertainties in
patient arrival and service times [Daldoul et al., 2018; EL-Rifai et al., 2015].

In this chapter, we present the development of SAA techniques to
deal with uncertainty. In this thesis, more specifically, uncertainty related
to patient arrivals in an Emergency Department considered in the model
presented in Chapter 4 and 5 and the patient referred to a specialty surgical
unit considered in the model presented in Chapter 6. We show how to
approximate the solution by means of statistical bounds to be obtained
by repeatedly solving the problem considering samples from the original
scenario set. We used two methods of scenario generation to represent the
uncertainty addressed. Moreover, we show techniques to evaluate the stability
of the scenario generation methods to establish the best option between these
methods; and thus determine the number of suitable scenarios to solve the
problem accurately.

3.1.1
Sample Average Approximaton

We consider scenario-based optimization problems represented of the
form:

v∗ = min
x∈X

{
f(x) = EF (x, ξ)

}
(3-1)

Here ξ is a random vector whose distribution is assumed known, X is a
infinite set, F (x, ξ) is a real valued function of two (vector) variables x and ξ,
and EF (x, ξ) =

∫
Ω F (x, ξ)P (dξ)} is the corresponding expected value.

In realistic applications, the main concern about solving the problem in
(3-1) is related to the calculation of EF (x, ξ) due to the large dimensionality
of ξ. For this, the basic idea of the SAA approach proposed in [Shapiro and
Homem-de Mello, 1998] is that a sample of N independent replications of the
random vector ξ is generated and consequently the expected value function is
approximated by the average function:

v̂N = min
x∈X

{
f̃N(x) = 1

N

∑
n=1,...,N

F (x, ξN)
}

(3-2)

The function f̃N is a sample-average approximation (SAA) to the objec-
tive f of (3-1).The value of v̂N is random once it is a function of the corre-
sponding random sample. However, for a particular realization ξ1, ..., ξN , the
problem (3-2) is deterministic and, thus, can be solved by some appropriate
deterministic optimization procedure.

The SAA problem (3-2) has two important properties showed in [Mak
et al., 1999]:

DBD
PUC-Rio - Certificação Digital Nº 1521900/CA



Chapter 3. Methods 42

Property 1. f̃N(x) is an unbiased estimator for f(x).
Property 2. v̂N is a lower bound for v∗.
Linderoth et al. [2006] showed that, using the SAA approach and the

ideas introduced by Norkin et al. [1998] and Mak et al. [1999], it is possible
to obtain upper and lower bounds for the optimal value of the real problem
and, furthermore, that such boundaries converge to the true solution with
probability 1 as N increases. The ideas showed by Linderoth et al. [2006] are
presented in Sections 3.1.1.1, 3.1.1.2 and 3.1.1.3 as follows.

3.1.1.1
Lower bound estimates

The expected value Ev̂N can be estimated as follows. We generate M
independent samples, each sample with N replications, ξnm, n = 1, ...N ;m =
1, ...M , and we solve the corresponding SAA problem:

v̂mN = min
x∈X

{ 1
N

∑
n=1,...,N

F (x, ξnm)
}

(3-3)

Therefore, we can compute an approximation for Ev̂N as:

LNM = 1
M

∑
m=1,...,M

v̂mN (3-4)

According to Property 1, the estimate LNM is an unbiased estimator to
E[v̂N ] and therefore, provides a statiscal lower bound for the true optimal value
of v∗ in (3-1) [Linderoth et al., 2006; Mak et al., 1999].

We have by the Central Limit Theorem that
√
M [LNM − E[v̂N ]⇒ N(0, σ2

L), as M →∞, (3-5)
where σ2

L = V ar[v̂N ] and "⇒" denotes convergence in distribution. To approx-
imate σ2

L , we can used the sample variance estimator s2
L(M), which is defined

as

s2
L(M) = 1

M − 1
∑

m=1,...,M
(v̂mN − LNM)2. (3-6)

Defining zα as the standard normal deviate such that P (z ≤ zα) = 1−α,
and using the approximation s2

L(M) to σ2
L, we can define a (1−α)% confidence

interval for LNM as[
LNM −

zα
2
sL(M)
√
M

,LNM +
zα

2
sL(M)
√
M

]
. (3-7)
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3.1.1.2
Upper bound estimates

An upper bound can be obtained by noting that for any x̂ ∈ X, we have
immediately from (3-1) that f(x̂) ≥ v∗. Therefore, by selecting x̂ to be a near-
optimal solution (possible using the SAA problem (3-2)), and by using some
unbiased estimator of f(x̂), we can obtain an estimate of an upper bound for
v∗. To obtain such an estimate, we generate T independent batches of samples
of size N̄ , denoted by ξnt, n = 1, ..., N̄ ; t = 1, ..., T , and we define

E
[
f̂ tN̄(x) = 1

N̄

∑
n=1,...,N̄

F (x̂, ξnt)
]

= f(x), ∀x ∈ X. (3-8)

We can then use the average value defined by

UN̄,T (x̂) = 1
T

∑
t=1,...,T

f̂ tN̄(x̂) (3-9)

as an estimate of f(x̂). By applying the Central Limit Theorem again, we have
that

√
T [UN̄,T (x̂)− f(x̂)]⇒ N(0, σ2

U(x̂)), as T →∞, (3-10)
where σ2

U(x̂) = V ar[f̂ t
N̄

(x̂)] and "⇒" denotes denotes distributional convergence
to a normal distribution. We can replace σ2

U(x̂) by the sample variance
estimator s2

U(x̂, T ), defined by

s2
U(x̂, T ) = 1

T − 1
∑

t=1,...,T
(f̂ tN̄(x̂)− UN̄,T (x̂))2. (3-11)

By replacing σ2
U(x̂) with s2

U(x̂, T ), we can proceed as to Lower Bound
estimation to obtain a (1− α)% confidence interval for f(x̂):[

UN̄,T (x̂)−
zα

2
sU(x̂, T )
√
T

, UN̄,T (x̂) +
zα

2
sU(x̂, T )
√
T

]
. (3-12)

Kleywegt et al. [2002] highlights that an important question is how the
choice about the number of samples should be made to estimate both lower
bound and upper bound. The authors affirm that with larger N , the objective
function of the SAA problem (3-2) tends to be a more precise approximate of
the true objective function. However, the computational complexity for solving
the SAA problem (3-2) increases at least linearly, and often exponentially, in
the sample size N . According to the same authors, although computational
complexity motivate to choose a small sample size N for the SAA problem, it
makes sense to choose a larger sample size N̄ . Since in this case the evaluation
of f provided a fixed solution x̂ is not computationally demanding and can
also take advantage from techniques such as decomposition and parallelization.
Another issue addressed by Kleywegt et al. [2002] is the choice of the number
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of replications M for the lower bound estimates and T for the upper bound
estimates. They advocate that this choice, like the choice of sample size N and
x̂, may be done dynamically.In related to this topic, Bayraksan and Morton
[2006] assessing solution quality in stochastic programs, they advocate that
quality is defined via the optimality gap and they proposed a procedure which
the output is the confidence interval on this gap. Thus, they showed how to use
a small number of replications can be used to make a valid statistical inference
on the quality of a candidate solution.

3.1.1.3
Estimating the Gap

Wemay wish to estimate the optimality gap f(x̂)−v∗. Provided estimates
in (3-4) and (3-9) for the lower bound and upper bound, respectively, we can
consider the gap as the difference

GapN,M,N̄,T (x̂) = UN̄,T (x̂)− LN,M . (3-13)
By the Law of Large Numbers we have that GapN,M,N̄,T (x̂) converges to

f(x̂) − v∗ with probability one as N , M , N̄ , and T tend to ∞. The variance
s2
GAP of GapN,M,N̄,T (x̂) is the estimated by

s2
GAP = s2

U(x̂, T ) + s2
L(M) (3-14)

Of note, three factors contribute to the error in the statistical estimator
GapN,M,N̄,T (x̂) of the gap f(x̂)− v∗, that are:

(1) variance of UN̄,T (x̂);

(2) variance of LN,M ;

(3) bias v∗ − E[v̂N ].

Recall that UN̄,T (x̂) and LN,M are unbiased estimators of f(x̂) and E[v̂N ],
respectively [Linderoth et al., 2006; Mak et al., 1999]. We have here that
GapN,M,N̄,T (x̂) is an unbiased estimator of f(x̂)−E[v̂N ], and that f(x̂)−E[v̂N ] ≥
f(x̂) − v∗. That is, GapN,M,N̄,T (x̂) overestimates the true gap f(x̂) − v∗, and
has bias v∗ − E[v̂N ].

In addition, Linderoth et al. [2006] expose that for ill-conditioned prob-
lems, this bias may be relatively large and tends to zero at a rate of O(N−1/2);
the bias can be reduced by increasing the sample size N of the corresponding
SAA problems or by sampling more intelligently (e.g., using LHS); an increase
in N leads to a larger problem instance to be solved, while increases in N̄ , M
and T to reduce factors (1) and (2) that contribute to the error lead only to
more instances of the same size to be solved.
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3.1.2
Scenario Generation Methods

Several sampling techniques can be used to generate scenarios for stochas-
tic optimization problems. The Monte Carlo Sampling method is the most
commonly used with SAA since the technique was originally proposed using
this type of sampling. However, as mentioned above, the bias can be reduced
by sampling using another method. Following is a brief description of two sam-
pling methods, from the several available in the literature, that we used in this
study.

3.1.2.1
Monte Carlo Sampling

Monte Carlo Sampling (MCS) provide approximate solutions to a variety
of mathematical problems by performing statistical sampling experiments
[Pengelly, 2002]. This technique has formally existed since the early 1940s,
when it was applied in nuclear fusion research.

At the heart of any Monte Carlo method is a random number generator
which is a procedure that produces an infinite sample of random variables that
are independent and identically distributed (iid) according to some probability
distribution [Kroese et al., 2013].

According to Kroese et al. [2013], most computer languages already con-
tain a built-in random number generator. Hence, it is only requested the input
of an initial number, called the seed, and upon invocation, the random num-
ber generator produces a sequence of independent random uniform variables
on the interval (0,1). The vast majority of current random number genera-
tors are based on simple algorithms that produce a sequence U1, U2, U3, ... of
pseudorandom numbers. They are called pseudorandom numbers because once
starting from a certain seed, the sequence of random numbers must repeat itself
since the state space is finite.

The convergence rate associated with the MCS is O(1/
√
K), i.e., the

speed at estimator error decreases as the sample size K increase [Glasserman,
2013].

3.1.2.2
Latin Hypercube Sampling

A large number of samples are typically required in traditional MCS to
achieve good precision; for this reason, various techniques exist to improve
MCS accuracy. Latin Hypercube Sampling (LHS) is one of these techniques
widely-used to generate controlled random samples. Firestone et al. [1997]
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states that LHS is considered to be more efficient than MCS since it requires
fewer simulations to produce the same level of precision, and it is generally rec-
ommended when the model is complex or when time and resource constraints
are an issue.

LHS constructs a highly dependent joint probability density function
for the random variables in the problem, which allows good precision in
the response parameters using a small number of samples [Huntington and
Lyrintzis, 1998]. In this way, LHS operates by dividing the subspace of each
vector component si; i = 1, ..., N into M = n disjoint subsets (strata) of equal
probability Ωik; i = 1, ..., N ; k = 1, ...,M . Samples of each vector component
are drawn from the respective strata according to

xik = D−1
xi

(Uik); i = 1, ..., N ; k = 1, ...,M (3-15)
where Uik are iid uniformly distributed samples on [ξlk, ξuk ] with ξlk = (k−1)/M
and ξuk = (k/M) [Shields and Zhang, 2016]. Thus, the samples xik is randomly
selected from each vector component (without replacement), these terms are
grouped to produce a sample, and this process is repeated M = n times.

3.1.3
Evaluation of Scenario Generation’s Methods

We discussed in Section 3.1.1 that, due to the difficulty of solving the
original problem, we replace it with the scenario-based problem (3-1). As
a result, we solve only an approximation of 3.1.1, and the quality of the
approximation is directly linked to the quality of the scenario tree [Kaut and
Wallace, 2007].

Kaut and Wallace [2007] outline that different scenario generation meth-
ods represent the relationships among the data in different ways, and hence
end up with different trees. In this manner, the authors focus on the eval-
uation of a given scenario generation method instead of trying to find the
optimal method. Therefore, they proposed the stability tests in-sample and
out-of-sample that allow users who already have one or more scenario genera-
tion methods implemented to test how they perform for a given optimization
problem.

Stability tests are based on SAA and used to determine the number of
scenarios required to solve a stochastic optimization problem accurately. The
in-sample and out-of-sample stability tests are defined below.
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3.1.3.1
In-sample stability

In-sample stability condition guarantees that for every scenario tree
chosen, the optimal value of the objective function reported by the model
should be (approximately) the same. Thus, if to solve a stochastic programming
model we perform L replications of an independent sample ξl, l = 1, ..., L
with K scenarios generated from a probability distribution of an uncertain
parameter ξ we have:

F (x∗l , ξl) ≈ F (x∗l′ , ξl′) l, l′ ∈ 1, ..., L (3-16)
where x∗l is the optimal first-stage solution of replication l.

3.1.4
Out-of-sample stability

The out-of-sample condition states that solving the stochastic program-
ming problem for each scenario tree, the optimal first-stage solution x∗l of each
replication l should get (approximately) the same value in the objective func-
tion when evaluated with the true distribution of the uncertain parameter ξ,
i.e.,

F (x∗l , ξ) ≈ F (x∗l′ , ξ) l, l′ ∈ 1, ..., L. (3-17)
The problem with this definition of stability is that we can test it only

if we can evaluate the true objective function and for this, it is necessary to
know completely the distribution of the uncertain parameter. In such cases,
one option is to define a set of reference scenarios large enough to approximate
the true distribution.

3.2
Solution framework

The solution framework we propose is shown in Figure 3.1. Our solution
framework is divided into two environments. The real data environment, where
we have the real data from the case studies addressed. These data is processed,
cleaned and used in the study environment. The study environment is where
we no longer work with real data but with inferred statistical distributions from
the data, scenarios generated by the methods presented above and simulated
data.

The first step in our solution framework is to perform a statistical analysis
to fit patient arrival data to known probability distributions, and then generate
scenarios using these distributions. In the second step, we run preliminary tests
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using Sample Average Approximation and the optimization model to define the
settings (number of scenarios and scenario generation method) to be used for
each case study of each problem. The third step consists of using the settings
from Step 2 to generate the recommended schedule for each case study. In the
last step, we use a stochastic discrete-event simulation model to evaluate the
performance of the recommended schedule, using the settings from Step 2.

Statistical

analysis

Sample

Average

Approximation

Two-stage
stochastic

model

Discrete-event
simulation

model

Step 1

Probability

distribution of

patient’s arrival

rates

Step 2

Number of

scenarios and

sampling method

settings

Step 3

Recommended

schedule

Performance

indicators

Step 4

- Interarrival time;

- Current schedule;

Real data environment

Study environment - data analyzed and simulated

Two-stage
stochastic
model

Figure 3.1: Solution framework

3.2.1
Statistical analysis

To account for uncertainty in demand, we fit a distribution for the
patients arrival patterns. With the probability distribution that represent the
patients arrival, we generate the scenarios used in the SAA. Each scenario
representing a possible demand curve for the planning horizon considered in
the problem. We also used the probability distributions of the patients arrival
in the simulation model.

We can then write that:

DEM c
ht = f(λht) (3-18)

where DEM is the demand per hour h, period t, and scenario c and parameter
λht represents the average number of patients who arrive at the ED during each
hour h, and period t.
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3.2.2
Methodology using Sample average approximation to deal with uncer-
tainty in the thesis

By modeling patient arrival using the probability distributions from
Section 3.2.1, an infinite number of possible realization scenarios could be
generated. Since it is not computationally feasible to consider all possible
scenarios of demand levels we use Sample Average Approximation (SAA) to
circumvent this difficulty as was discussed in Section 3.1.

The procedure for incorporating SAA in our numerical experiments
is shown in Algorithm 1, with the following parameters: the number of
replications M for lower bound calculation; the initial number of scenarios
N for lower bound calculation; the number of replications T for upper bound
calculation; the number of scenarios N̄ for upper bound calculation; the stop
criterion ε which is the difference of 1% between the lower and upper bounds
(i.e. an estimated gap of 1%) with 95% level of confidence interval (CI); δ which
is the increment for the number of scenarios N . The parameters received by
the procedure may change according to the problems addressed. Then, we use
Algorithm 1 to run preliminary tests that allow us to define our optimization
model settings which means define the sampling methodology and number of
scenarios to be used in each case study.

Algorithm 1 Numerical experiments steps following the SAA methodology
0: procedure SAA(M,N, T, N̄ , ε, δ)
1: while θ > ε do
2: Generate ξnm, n = 1, . . . , N ;m = 1, . . . ,M
3: Solve SAA problem (Eq. (3-3))
4: Calculate Lower Bound (LNM , Eq. (3-4)) and its variance (s2

L, Eq. (3-6))
5: Generate ξnt, n = 1, . . . , N̄ ;m = 1, . . . , T N̄ ,
6: Calculate Upper Bound (UN̄,T , Eq. (3-8)) and its variance (s2

U , Eq.
(3-11))

7: Estimate the Gap (GapN,M,N̄,T , Eq. (3-13)) and its variance (s2
GAP , Eq.

(3-14))
8: Choose the solution with the lowest Gap to be the optimal solution
9: Gap← GapN,M,N̄,T

1

10: CI ← (zα ∗ sGAP )/
√
M

11: θ ← Gap+ CI

12: N ← N + δ

13: end while
14: return Gap and x∗N
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aThe GapN,M,N̄,T is the lowest Gap

3.2.3
Two-stage stochastic programming formulation

The optimization model is based on the two-stage stochastic program-
ming formulation. In the course of the thesis, we propose three models once
we addressed three different problems, each model is related to one problem.
These models are detailed in the chapter related to each problem. Uncertain-
ties in the model are related to the levels of demand (patients arrivals in the
hospital), and we assume that uncertainties are discretely represented by a
number of possible realization scenarios (generated in the Step 1). In the op-
timization model, we assume equal probability of occurrence for the scenarios
used.

3.2.4
Discrete-event simulation model

We use discrete-event simulation to compare the results from the op-
timization model proposed with the results using the current configuration
adopted in the hospital studied, estimating the benefits in terms of patient
queue frequency, number of patient waiting, and waiting time. Since the sim-
ulation model is in the study enviroment, the results related to the current
configuration is also a simulated result. This means that we input in the sim-
ulation model the current configuration of the hospital and take as output
the indicators to this configuration. Then, we compare the indicators achieved
when run the results from the proposed model with the indicators achieved
when run the current configutation.

For simulation purposes, we use the distribution probability fit as ex-
plained in Section 3.2.1, and we assume an exponentially distributed interser-
vice times (as assumed in [EL-Rifai et al., 2015]). Moreover, we are working
with a system with multiple available servers.

3.3
Conclusions

In this chapter, we presented the methodology using the SAA to deal
with the uncertainty that we will consider in the following chapters. Moreover,
we present two scenario generation methods to test in the problems addressed
which method converges faster in terms of number of scenarios required to
statistically guarantee that the solutions obtained are good.
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In the following chapter, we will propose a model formulation to the
’Physician Staffing and Scheduling for Reducing Door-to-Doctor Time in an
Emergency Department’ problem based on two-stage stochastic programming.
Moreover, we will present the results for two Brazilian case studies using both
historical data as scenarios and results using scenario generation based on the
SAA technique presented in this chapter.
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4
Physician Staffing and Scheduling for Reducing Door-to-
Doctor Time in an Emergency Department

In this chapter, we present a description and the specific characteristics
of the physician staffing and scheduling problem in an emergency department
focusing on reducing door-to-doctor time. In the sequence, we propose the
mathematical model formulated to represent the problem. Finally, we present
the results of two real case studies on Brazilian hospitals.

4.1
Problem Description

The problem in question can be defined as the Physician Staffing and
Scheduling in an Emergency Department (PSSED), where one seeks to deter-
mine the number of physicians required to be in service during each shift, for
each day of the planning horizon, but also assigns individual physicians to each
shift in accordance with service requirements and contractual agreements, tak-
ing into consideration uncertainty in patient arrival patterns. Such decisions
arise in the context of tactical planning faced by hospitals. We consider this
problem as an integrated model able to perform both staffing and scheduling
phases together.

Typically, the patient flow through the Emergency Department (ED)
is represented as a queuing system consisting of treatment steps and the
resources needed. The process begins when patients arrive in the ED. Usually,
the patients go to a nurse (to the triage) who determine whether they need
vital medical care. If the patients do not need vital care, they stay in a waiting
room until a physician is available to do the first assessment. After the first
assessment, the patients may follow different paths varying from case to case
and depending on how each case is treated in each ED.

Figure 4.1 represents a small example of patient flow in the ED, which is
distinct per day and hour. Patients in the system wait in a queue until they are
served for one of the servers. Here we are concerned about first assessment, once
the door-to-doctor time is an important ED performance measure [Welch et al.,
2006]. Therefore, we are interested in performing the staffing and scheduling
for the physicians to be placed in this stage of service in the ED so that the
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door-to-doctor waiting time is minimized.

Figure 4.1: Simplified queue model that represents the process in the ED

The PSSDE is performed for a planning horizon that consists of a set
of subsequent days of finite and fixed length D. In our model, the planning
horizon can be divided into T periods over which the staffing level will be
repeated (we explain this feature in more detail later). We assume that a
fixed number of physicians P , belonging to K different skill categories, must
be scheduled over the planning horizon. Each day in the planning horizon
consists of H hours and is divided in S shifts that may overlap. Moreover,
each shift is associated with a specific number of hours, defined in terms of
the shift’s start time and duration. It is required that a minimum number of
physicians is always available in the ED. Each physician is scheduled for a
certain number of hours during the entire planning horizon, but distinguish
between weekday and weekend shifts. The physician scheduling should respect
a minimum interval between assignments. Eventually, when the physician is
assigned for the night shift, the interval between assignments should be higher
than when the physician is assigned to other shifts. Furthermore, physician
scheduling should respect the maximum allowed consecutive hours of work.

The patient’s arrival varies per day and hour and meeting appropriately
the patient’s arrival (that here is the demand) is important in the present
context. Therefore, the uncertainty of the demand must be considered into
the model so that the decisions are properly taken, considering different
possibilities for these uncertain events.

To address this issue, we propose a two-stage stochastic programming
formulation with fixed recourse. The mathematical model’s objective is to
guarantee that enough physicians will be available to meet patient demand,
to minimize the total number of patients waiting per hour while taking into
account scheduling requirements and contractual agreement constraints.

The first-stage decisions (assumed to be made before the realization of
random variables, i.e., previously to the unveiling of the uncertainties) define
how many physicians are required and the physicians to be assigned to each
day and shift in the planning horizon. Integer and binary variables, respectively
represent these decisions.
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Typically, these decisions are taken for one month. Given that the focus
of the model is to define the ideal number of physicians for each day and shift,
considering the available physicians for the ED operations, and schedule them,
aspects related to the strategic level, as number of physicians to be hired to the
ED are not considered as objects of this decision model but as aspects that
have already been decided in advance. However, the result of the proposed
model can be a good indicative if the total number of doctors available for
work in the ED is appropriate.

Second-stage decisions are taken under complete information of the
uncertainty. We assume that uncertainties (patients arrivals) are discretely
represented by SC possible realization scenarios. We further assume that the
probability of scenario c occurring is represented by a scenario-dependent
parameter PROBc, defined such that PROBc ≥ 0 and ∑SC

c=1 PROBc = 1.
We assume that the scenarios have the same probability of occurrence.

To propose the mathematical model, we presume the system is initially
empty. For this, we start the scheduling horizon at an hour when the system
is usually empty.

The literature on staffing and scheduling in EDs seldom accounts for un-
certainty in patient arrivals. Hung et al. [2007] incorporated stochastic demand
patterns into a Physician Scheduling Analysis Tool (PSAT) designed to assist
in physician staffing and use discrete-event simulation to test Pediatric ED
staffing scenarios. A simulation-optimization approach that explores solutions
iteratively was developed by Kuo [2014]. In Savage et al. [2015], a mixed integer
programming model was proposed to optimize ED physician staffing based on
the historical patient arrival data. More recently, Vile et al. [2016] introduced
a Decision Support System (DSS) that generates future demand predictions
through Singular Spectrum Analysis, suggests minimum staffing requirements
based on queueing theory and creates low-cost schedules through linear pro-
gramming.

Our work makes contributions in both a conceptual and practical level.
From a conceptual perspective, we propose a generalizable and integrated
model, which simultaneously accounts for ED physician staffing and scheduling
problems and, is in contrast with the majority of existing work, where staffing
and scheduling are treated as separate problems, neglecting the intrinsic inter-
action between them [Hung et al., 2007; Savage et al., 2015; Vile et al., 2016].
In fact, when staffing and scheduling are performed separately, the schedul-
ing phase may become infeasible, since service requirements and contractual
agreements may render impractical finding a scheduling that meets the estab-
lished staffing levels. By performing the two steps in an integrated manner, it
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is possible to guarantee that the best staffing level will be determined which
can be associated with a certain schedule.

Moreover, we consider that patient arrival is uncertain, varying per
day and hour. We address uncertainty in demand by adopting a two-stage
stochastic programming formulation with fixed recourse that minimizes the
expected total number of patients waiting per hour, and we note that such
approach has rarely been used in the literature. In fact, although other
techniques have been proposed to treat uncertainty (Ganguly et al. [2014];
Kuo [2014]; Sinreich and Jabali [2007]; Sinreich et al. [2012]), previous works
have addressed different variants of the problem we consider. For instance,
the models from Ganguly et al. [2014], Sinreich and Jabali [2007] and Sinreich
et al. [2012] do not perform staffing and scheduling simultaneously, while Kuo
[2014] uses an interactive approach for physician scheduling. We also note
that our model is tested using real data from two existing EDs, unlike, e.g.,
Ganguly et al. [2014]. We found some related papers to this study: Daldoul
et al. [2018] and EL-Rifai et al. [2015]. Both perform two-stage stochastic
optimization to determine the staffing level (i.e., the scheduling problem is
not addressed) for each staff category in an ED. These studies considered
that patient arrival is uncertain and vary per hour of the day. Besides, both
perform the staffing just considering a typical day of the week. The former
considers three stages of treatment in an ED, and considers as human resources
in the study both physicians and nurses; the latter extends the approach to
consider beds (physical resources) and other stages of treatment in an ED (six
stages of treatment). There are some differences between these studies and
ours. First, we propose a generalizable and integrated model that considers
uncertainty in patient arrival patterns and simultaneously accounts for ED
physician staffing and scheduling problems. Second, we consider uncertainty
by hour and day of the week, i.e., we consider that patient arrival rates vary
not only with the hours of the day but also according to the day of the week,
and we can perform the staffing and scheduling for a planning horizon that
can be defined by the manager. Besides the planning horizon can be different
for staffing and the scheduling. Lastly, to represent the uncertainty addressed,
we generate scenarios using Sample Average Approximation (SAA) testing two
scenario generation methods (which were described in Chapter 3 and which
the application is detailed in Section 4.4), while the related work mentioned
before just used the most common method of scenario generation.

Finally, our model may perform staffing and scheduling either in a cyclic
or acyclic manner. Cyclic staffing means that the staffing level is repeated every
T periods across the planning horizon, while in acyclic staffing, the level always
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changes. Similarly, cyclic scheduling indicates that the physician assignment
will be the same over the planning horizon, while in acyclic scheduling the
allocation always changes. To our knowledge, studies in the literature only
address one approach at the time, e.g., Ferrand et al. [2011] performed cyclic
scheduling while Savage et al. [2015] performed acyclic scheduling. Our model
is, therefore, more flexible than existing methods in the sense that it can deal
with both cyclic and acyclic staffing and scheduling, and can thus be more
easily adapted to different hospital realities.

From a practical perspective, we model multiple overlapped shifts, which
are predefined by ED managers (but whose duration and start time may be
flexible), and different physician skill categories, and we treat physicians indi-
vidually considering preferences and restrictions such as shift start time and
availability. We also consider differences between weekday and weekend shifts
and workload. These features constitute important and realistic characteris-
tics of ED operations. Also, our study identifies solutions to an important real
problem that directly influences the quality of service, e.g., by reducing patient
queue length and ultimately, the door-to-doctor time. Finally, we perform two
case studies using real data from two hospitals EDs to estimate the benefits of
the proposed schedules.

Table 4.1 summarizes the contributions of this chapter comparing with
related works in literature.
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Table 4.1: Summary of contributions from the Chapter 4
Chapter 4 Literature

Integrated model - simultaneously accounts for ED physi-
cian staffing and scheduling problems

Neglecting the intrinsic interaction between staffing and
scheduling

e.g. [Hung et al., 2007; Savage
et al., 2015; Vile et al., 2016]

Perform the staffing and scheduling for a planning horizon
that can be defined by the manager besides the planning
horizon can be different for the staffing and the scheduling

Just considering a typical day of the week e.g. [Daldoul et al., 2018; EL-Rifai
et al., 2015]

Address uncertainty by hour and day in the week Address uncertainty just by hour of a day e.g. [Daldoul et al., 2018; EL-Rifai
et al., 2015]

Stochastic Model with SAA testing two scenario genera-
tion methods

Stochastic Model with SAA justing using Monte Carlo e.g. [Daldoul et al., 2018; EL-Rifai
et al., 2015]

Solution quality assessment via statistical bounds Do not define the number of scenarios using statistical
bounds

e.g. Daldoul et al. [2018]; EL-Rifai
et al. [2015]

Flexibility to cyclic or acyclic staffing and scheduling Address just one approach e.g. Cyclic: [Ferrand et al., 2011];
Acyclic: [Savage et al., 2015]

Address physician restrictions – e.g. start time, weekend Studies address physician preferences e.g. [Bard et al., 2013; Bowers
et al., 2016]

Address the first assessment Consider several stages of treatment in an ED e.g. Daldoul et al. [2018]; EL-Rifai
et al. [2015]

Consider physicians as human resourses Consider phisicians and nurses e.g. Daldoul et al. [2018]; EL-Rifai
et al. [2015]

Do not consider physical resources Consider beds as physical resources e.g. Daldoul et al. [2018]
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We observe from Table 4.1 and from the discussion above that we
contribute with the literature in most aspects addressed in this kind of problem.
The three last rows of Table 4.1 show points considered by the works in
literature that are related to this study, and we do not address in this Chapter.
These points will be the object of the next Chapter.

4.2
Mathematical Model Framework

In this section, we present the mathematical model developed to deal
with the problem described above. The objective of this mathematical model
is to minimize the expeted total number of patients waiting. The decisions are
subject to constraints relating to contractual agreements, service requirements,
and service capacity to cover fluctuating demand levels.

Table 4.2 presents the domains in which our model attributes are defined,
while Tables 4.3 and 4.4 provide a complete listing of parameter and variable
definitions.

Table 4.2: Sets, subsets and corresponding domains
Sets Indexes Domain Description

Shifts (S) s, s’ {1, . . . ,|S|} Shifts in the ED
Physicians (P ) p {1, . . . ,|P|} Physicians of the ED
Days (D) d {1, . . . , PLAN_HORIZON} Days of the planning horizon
Hours (H) h, h’ {0, . . . , 23} Hours of the day (24 hour clock format)
Period (T ) t {1, . . . , PLAN_PERIOD} Period over which staffing level is repeated
Physician Category (K) k {1, . . . , |K|} Physician skill categories
Scenarios (SC) c {1, . . . , |SC|} Possible realization scenarios
Physician in certain cate-
gory (Pk)

- Subset of Physicians (P ) Physicians who belong to category k

Weekdays (WD) - Subset of Days (D) Weekdays on the planning horizon
Weekends (W ) - Subset of Days (D) Weekend days on the planning horizon
Night_Shifts (NIGHT ) - Subset of Shifts (S) Night shifts
N_Shifts (NS) - Subset of Shifts (S) Shifts that do not allow combined allocation
Y_Shifts (Y S) - Subset of Shifts (S) Shifts that allow combined allocation
Physicians_Week (P1) - Subset of Physicians (P ) Physicians that work only week days
Physicians_Both (P2) - Subset of Physicians (P ) Physicians that work both week and weekend days
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Table 4.3: Model parameters
Parameters Description Unit

PROBc Probability of each scenario c -
PLAN_HORIZON Number of days in the planning horizon -
PLAN_PERIOD Period (number of days) over which the staffing level is repeated -
DURs Duration of each shift s Hour
WL_WEEKp Number of hours available for each physician p in the week Hour
WL_WEEKENDp Number of hours available for each physician p in the weekend Hour
WL_TOTALp Total Number of hours available for each physician p Hour
MAX_ASSIGN1 Maximum number of assignments per day -
REL_SHIFTSss′ Indication if shift s can be combined with shift s′ {0, 1}
MAX_ASSIGN2 Maximum number of assignments per day -
MAX_TY PEps Maximum number of assignments in a certain shift type Hour
REL_PHY SHIps Indication if physician p can be schedule for shift s {0, 1}
START_COMBshp Indication of start time h of each shift s for each physician p {0, 1}
MINkh Minimum number of physicians required in hour h for each skill category k -
CAP_MINht Minimum number of physicians required per hour h and day t -
DAY_PERIODdt Indication if day d is included in period t 0, 1
DEM c

ht Demand (arrival of patients for each period t, hour h and scenario c) -
CAP Capacity (service rate per physician) -
I_PHY SICIANsdp Indication if physician p is available on day d and shift s {0, 1}

Of note, parameters that indicate whether shift combinations are allowed
(REL_SHIFTSss′) and whether any given physician is available to cover
certain shifts (I_PHY SICIANsdp) are generated as part of a pre-processing
stage. In the case of shift rules, information regarding which shifts allow
combined allocation is used to construct a binary matrix where the pairs of
shifts that allow combined allocation receive value 1 and the others receive 0.
Combined allocation is the allocation of the same physician for 2 or more
different shifts on the same day and shifts. This case can happen if the
shifts are non-overlapped, sequential, and respect the maximum number of
consecutive hours of work. In the case of physicians’ availability, a binary
matrix is constructed with information on which physician is available to be
assigned on each day and shift so that each entry takes value 1 when the
physician is available and 0 otherwise.

The parameter PLAN_HORIZON is a multiple of the
PLAN_PERIOD. With these two parameters, we define if the staffing
and scheduling are cyclic or acyclic. Figure 4.2 shows two examples to explain
how to use these parameters to do staffing cyclic or acyclic.
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Figure 4.2: Example of PLAN_HORIZON and PLAN_PERIOD behavior

Figure 4.2 (a) shows staffing and scheduling for 4-weeks given that the
staffing is cyclic, and the scheduling is acyclic. Hence, in the first day of
the PLAN_HORIZON , two physicians are assigned for the shift 1, and
we also have two physicians assigned for days 8, 15 and 22, because these
days corresponds to day 1 of PLAN_PERIOD. It means that the decisions
regarding staffing will be made for one week and repeated (cyclic) four times
over the PLAN_HORIZON while the decisions related to scheduling are
not repeated (acyclic) and will be made for each day. Thus, we can observe
that in the first day of the PLAN_HORIZON the physicians A and B are
allocated, in day 8 the physicians J and K are allocated, and so on, i.e., different
physicians. Figure 4.2 (b) shows staffing and scheduling for 4-weeks, given that
the staffing and the scheduling are cyclic. It means that the decisions regarding
staffing and scheduling will be made for one week and repeated (cyclic) four
times.

The parameter DAY_PERIODdt makes the correspondence between
the days of the PLAN_HORIZON and PLAN_PERIOD. Looking for
Figure 4.2 (a) we can see that, for example, days 1, 8, 15 and 22 of the
PLAN_HORIZON corresponds to day 1 of the PLAN_PERIOD. Thus,
DAY_PERIOD1,1 = 1, DAY_PERIOD8,1 = 1, DAY_PERIOD15,1 = 1,
DAY_PERIOD22,1 = 1, and the others assume value 0.

Table 4.4: Model variables
Variables Description Domain

waitcht Number of patients waiting in each hour h, each period t and each scenario c R+
xsdp Decision if physician p is assigned in the shift s in the day d {0, 1}
iccht Idle capacity in each hour h, period t and each scenario c R+
nht Number of physicians required for each hour h and each period t Z+

Constraints represent both necessary and desirable scheduling conditions.
The former includes service requirements and contractual agreements, which
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were modeled as hard constraints. The latter is associated with demand cover-
age, being modeled as soft constraints. Recall that we account for uncertainty
in demand, but physician assignment is the first-stage variable. Our objective
is thus to minimize the expected total number of patients waiting.

Our model can be easily adapted to reflect the operational characteristics
of several EDs. To provide greater clarity in the problem’s notation, the
domains of summations are omitted except when the summation is evaluated
only on a subset of the natural domain. When there is no mention of this fact,
its domain should be considered as the original set to which the index refers.
The proposed mathematical formulation is as follows:

MinZ =
∑
h

∑
t

∑
c

PROBcwait
c
ht (4-1)

The objective function in (4-1) consists of minimizing the expected value
of the total number of patients waiting.

Subject to:
∑

d∈WD

∑
s

xsdpDURs ≤ WL_WEEKp ∀p ∈ P1 (4-2)

∑
d∈W

∑
s

xsdpDURs ≤ WL_WEEKENDp ∀p ∈ P2 (4-3)

∑
d

∑
s

xsdpDURs ≤ WL_TOTALp ∀p ∈ P (4-4)

Constraints (4-2)–(4-4) ensure that the maximum allocation time for
each physician in the planning horizon is respected. Constraint (4-2) ensures
that the sum of the shift durations to which the physician has been assigned
in the week is less than or equal to the total number of hours available to
the week. This applies for physicians that work only on weekdays. Constrains
(4-3) enforces that the sum of the shift durations to which the physician has
been assigned on weekends is less than or equal to the total number of hours
available to the weekend. Constraint (4-4) enforces that the total number of
hours assigned in the entire planning horizon is less than or equal to the total
number of hours available.

∑
s

xsdp ≤MAX_ASSIGN1 ∀p ∈ P, ∀d ∈ D (4-5)

Constraint (4-5) guarantees that each physician is allocated to a maxi-
mum number of shifts per day.

xsdp + xs′dp(1−REL_SHIFTSss′) ≤MAX_ASSIGN1
∀p ∈ P, ∀d ∈ D, ∀s ∈ S,∀s′ ∈ Y S | s 6= s′ ∧ ¬REL_SHIFTSss′

(4-6)
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Constraint (4-6) ensure that, for any given day, physicians are not
assigned to any of the following: shifts that do not respect the minimum
interval between assignments; shifts that do not respect the maximum allowed
consecutive hours of work; overlapped shifts.

xsdp +
∑

s′|s′ 6=s
xs′dpREL_SHIFTSss′ ≤MAX_ASSIGN2

∀p ∈ P, ∀d inD,∀s ∈ Y S ∧ ∃s′ | REL_SHIFTSss′

(4-7)

Constraint (4-7) allows physicians to be assigned to different shifts on
the same day, as long as the shifts are non-overlapped and sequential and the
physician belongs to the group of physicians who can work on more than one
shift per day.

∑
s∈Night

xsdp + xs′,d+1,p ≤MAX_ASSIGN1 ∀p ∈ P, ∀d ∈ D, ∀s′ ∈ S (4-8)

Constraint (4-8) enforces that physicians allocated on the night shift will
not be allocated to any other shift on the same day and can only be allocated
on the night shift of the following day, thus guaranteeing that the minimum
interval between assignments is respected in the event of physicians being
allocated on night shifts.

∑
d

xsdp ≤MAX_TY PEps ∀p ∈ P, ∀s ∈ S | REL_PHY SHIps (4-9)

Constraint (4-9) guarantees that during the planning horizon each physi-
cian is allocated at most the number of times allowed for each type of shift.

∑
pinPk

∑
d

∑
h′
xsdpSTART_COMBsh′p ≥MINkh

∀h ∈ H,∀d ∈ D, ∀k ∈ K
(4-10)

Constraint (4-10) ensures that the minimum number of physicians per
hour required for each physician category will be met.

∑
p

∑
d

∑
h′
xsdpSTART_COMBsh′p ≥ nht + CAP_MINht

∀h ∈ H,∀d ∈ D, ∀t ∈ T | DAY_PERIODdt
(4-11)

Constraint (4-11) enforces that the schedule meets hourly staffing levels.
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Here, with parameter CAP_MINht, we guarantee, although we are doing the
staffing for first assessment, that there are physician enough to be allocated
every day and time to attend the other areas of the ED. Queue and idle ca-
pacity are computed through (4-12)–(4-13) based on the number of physicians
required per hour to meet demand.

waitcht + iccht = DEM c
ht − nhtCAP ∀h | h = 0,∀t ∈ T,∀c ∈ SC (4-12)

waitcht + iccht = DEM c
ht + waitch−1,t − nhtCAP ∀h | h ≥ 1,∀t ∈ T,∀c ∈ SC

(4-13)
Finally, constraints (4-14)–(4-17) define the domain of the decision

variables.

waitcht ∈ R+, ∀h ∈ H,∀t ∈ T,∀c ∈ SC (4-14)

iccht ∈ R+, ∀h ∈ H,∀t ∈ T,∀c ∈ SC (4-15)

xshp ∈ {0, 1}, ∀s ∈ S,∀h ∈ H,∀p ∈ P | ∃I_PHY SICIANsdp (4-16)

nht ∈ Z+, ∀h ∈ H,∀t ∈ T (4-17)

4.3
Simulation Modeling Framework

Here the simulation follows what is described in Section 3.2.4. The
simulation model developed is based in Figure 4.1. The input to our simulation
model is the schedule resulting from the optimization model (i.e., the number
of physicians assigned to each day and hour). The assumption made in
the optimization model that he system is initially empty is relaxed in the
simulation model.

4.4
Numerical Experiments

For numerical experiments, we present the application of the model
shown in Section 4.2 to two real case studies on the Brazilian hospitals. The
scenario generation methods were implemented in MATLAB R2013a. The
mathematical programming model was implemented and solved using AIMMS
4.26 and GUROBI 7.5 with default settings. The solutions were achieved on an
Intel i7 3.3 GHz 64GB RAM computer. The simulation model was implemented
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using Arena Simulation software version 14.7. All statistical analyses were
performed using R software version 3.3.1.

The computational experiments using SAA were performed considering
the two scenario generation methods - Monte Carlo Sampling (MCS) and Latin
Hypercube Sampling (LHS) - presented in Chapter 3.1. Following the Step 1
of the solution framework proposed in Section 3.2, by performing a fit test in
the data we conclude that the number of patients arriving every hour and day
follows a Poisson distribution for the two case studies (we will show the results
of the fit test later). Hence, we used this probability distribution to perform
the random sample draws in the generation of scenarios regarding the arrival
of patients (Demand). For the Step 2 of the solution framework proposed in
Section 3.2 we define the parameters used in the SAA procedure defined in
the Algorithm 1. For lower bound calculation, our in-sample analysis, we use
50 replications (M = 50) and we start using 100 scenarios (N = 100). We
use an additional independent set of samples of 10,000 independent scenarios
(T = 1 and N̄ = 10, 000), representing the true distribution, to calculate the
upper bound, our out-of-sample analysis. If the stop criterion presented in the
Section 3.2.2 is not achieved the required number of scenarios N is increased
by 100.

4.5
Case study in the Hospital A

Patient arrival data in the ED’s Clinical Medicine was made available by
the hospital between January 2015 and April 2016. Thus we work with 11,664
hours of ED data representing about 85,000 patients. The ED performs an
average of 5,000 medical encounters per month for Clinical Medicine (CM),
which is attended to by general practitioners and/or cardiologists. Some
physicians act as both general practitioners and cardiologists, while others
work as either general practitioners or cardiologists. Next, we detail such
characteristic and how they were used to calibrate model parameters.

For each planning period, CM is staffed by 44 physicians, bein the total
number of work hours available equal to 3,888 hours. On any given day,
physicians are assigned to one or several of seven overlapped shifts, which are
shown in Figure 4.3. The duration of each shift (DURs) is typically 6 hours,
and the night shift is 12 hours long. A physician may be allocated to more
than one shift per day as long as the shifts are non-overlapped and sequential,
and their combined length (in hours) does not surpass the maximum number
of allowable consecutive work hours (12h). Additional scheduling rules and
contractual agreements include: (i) the sum of the shift lengths to which a
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physician is assigned must respect the maximum number of hours available
for each physician in a four-week cycle (planning horizon), both in terms
of total number of hours available and number of hours available in the
weekend. Total number of hours available (WL_TOTALp) varies for each
physician, ranging from 48 to 144 hours, and number of hours available in
the weekend (WL_WEEKENDp) also varies for each physician, being 12,
24, or 36 hours. Hence, parameter PLAN_HORIZON takes the value of 28
days and parameter PLAN_PERIOD takes the value of 7 days. Of note, the
Friday night shift is accounted for within the number of hours available in the
weekend; (ii) a minimum of four physicians, including at least one cardiologist,
must always be available in the ED, meaning that parameter CAP_MINht

takes the value of 4 and MINk takes value 1; (iii) a minimum time interval
of six hours between consecutive assignments must be met, except when a
physician is assigned to the night shift, in which case the interval must be of
at least 12 hours; (iv) each physician may only be assigned to a maximum of
12 consecutive work hours; (v) overlapped shifts may not be used for combined
allocation; (vi) non-overlapped and sequential shifts allow combined allocation;
(vii) staffing levels must be repeated weekly. This last constraint, imposed by
ED managers, forces the same number of physicians to be repeatedly allocated
on each day across the four weeks of a planning horizon, thus ensuring the
same level of service throughout the planning horizon. For instance, if five
physicians were allocated to shift 1 (see Figure 4.3) on Monday of week 1, this
same number must be allocated to the first shift on Mondays of weeks 2, 3 and
4.

Figure 4.3: Shift distribution adopted by Clinical Medicine in the ED of
Hospital A (24 hour clock format)
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Here, the staffing and scheduling for 4-weeks given that the staffing is
cyclic over the weeks, i.e., the staffing level are repeated week by week, and
the scheduling is no cyclic. We set the PLAN_HORIZON = 28 and the
PLAN_PERIOD = 7.

4.5.1
Physician staff

As previously mentioned, in the staff scheduling literature, the staffing
phase involves determining the number of personnel, with a certain set of
skills, required to meet service demand within a given time frame (note that
in other contexts, this step is known as sizing). Presently, staffing at the real
ED we consider here is performed through an empirical analysis of demand
behavior. Generating a manually-defined schedule (shown in Table D.1 of
Appendix D) is notably quite a laborious task. More importantly, its solution
is not necessarily optimal, nor does it guarantee that all scheduling rules
and contractual agreements are met. Another aspect of the current schedule’s
inefficiency is reflected in the current levels of demand and capacity at the
ED. Figure 4.4 shows average waiting time per hour of the day considering the
current schedule in the ED of Hospital A. These are data from the simulation
model using the current schedule adopted by this ED. It is clear from Figure
4.4 that the waiting time increase along of the day. This happens beacause
there are several points in time when demand greatly exceeds capacity; this
occurs because the current schedule does not account for uncertainty in patient
arrival.

Figure 4.4: Average waiting time per hour in Hospital A
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4.5.2
Physician scheduling

The number of patients in the queue is an important measure of perfor-
mance for the hospital we analyze. The ED managers’ main concerns relates
to the occurrence and length of queues, which directly affect a patient’s wait
time and their total length of stay in the ED. In this context, ED managers
are particularly concerned about controlling queue length to avoid the need to
reallocate resources unexpectedly.

At this point, it is worth mentioning that the current manually-defined
schedule (see Table D.1 on the Appendix D) not only fails to address the
concerns of ED managers regarding the occurrence and length of patient queues
but also does not respect several of the scheduling mentioned above rules. For
one, the requirement that at least four physicians should be available every
hour is not consistently met. Moreover, the current roster does not guarantee
that a cardiologist will always be available in CM. Additionally, in some
cases, the total or weekend maximum workload is not respected, and in one
instance, the minimum interval between assignments is not met. Finally, the
current schedule does not ensure that staffing levels for each scheduling period
are repeated weekly. In total, our analysis revealed 420 hours of scheduling
rule violations of a total os 4,416 hours analyzed related to a schedule for a
planning horizon of 4-weeks. In this context, the ultimate goal of the physician
scheduling phase is to ensure that the available physician workforce is assigned
in such a way to minimize patient queues while taking into account all schedule
requirements and contractual agreements.

4.5.3
Simulation model

For the simulation model of the ED of Hospital A in addition to the
simulation model assumptions cited in section 3.2.4, we consider an estimated
service time of 20 minutes, as explained in Section 4.5.1, as an average for
the exponential distribution used in the simulation model. We assume that
the patients arrival follows a Poisson distibutions as showed in the fit test
performed using the real data (Figure D.1 in the Appendix D). In terms to
define whether the pattern ot patients arrival is different over the days of
week and the hour of the day, we conduct a Kruskal-Wallis test which results
indicated a statistically significant difference between patient interarrival times
for each day of the week and hour (Kruskal-Wallis test, chi-squared = 30263,
df = 23, p-value < 2.2e-16). We note that the Kruskal-Wallis test was used
due to the non-normality of the data set (Shapiro test, W = 0.7112, p-value
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< 2.2e-16). To determine which groups were different, and hence define which
hours and days of the week could be considered to have the same arrival rate,
we then performed a multiple comparison test (results shown in Table D.2 of
the Appendix D). These tests is performed using the data of patients arrival
in the ED for the period analyzed, as mentioned before we are working with
about 85,000 patients.

The current manually-defined ED schedule was used to define the warm-
up period and number of required replications, and to validate our simulation
model. A warm-up period of 15-hours and a total of 110 replications were found
to ensure that system occupancy corresponded to real starting conditions. Each
replication simulated 11,664 hours of operations, which amounts to the total
length of the period for which ED data was made available. Model validation
was performed by comparing the real number of patients treated in the ED
(85,619 patients) with the average number of patients serviced in the simulation
model (85,572 patients), which yielded a variation of approximately 0.05%
in the total number of treated patients. We considered such variation to be
negligible and hence indicative of the simulated model’s accuracy

4.5.4
Numerical results of the case study in the Hospital A

We start defining the number of scenarios that should be used in the
experiments. For this, we run preliminary tests as specified in Section 3.2.2
using Monte Carlo Sampling (MCS) and Latin Hypercube Sampling (LHS).
The size of the models (i.e.,variables and constraints), average execution times,
and their variances are shown in Table E.1 of Appendix E. The average solution
time of the experiments was 15.27 CPU seconds for 100 scenarios and 69.26
CPU seconds for 1,000 scenarios.

Table 4.5 present the results for each experiment in terms of the objective
function for the in-sample and out-of-sample tests and the optimality gap
showing the average and standard deviation.
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Table 4.5: Experiment results: in-sample and out-of-sample analysis and esti-
mative of the optimality gap

Monte Carlo Sampling Latin Hypercube Sampling

Objective
Function
In Sample

Objective
Function Out
of Sample

Gap Objective
Function
In Sample

Objective
Function Out
of Sample

Gap

100 Scenarios
Average 0.138 0.481 248.629 0.205 0.386 87.944
St.Dev 0.068 0.069 49.769 0.059 0.036 3.616

200 Scenarios
Average 0.194 0.374 92.834 0.274 0.325 18.525
St.Dev 0.043 0.027 13.768 0.034 0.019 6.972

300 Scenarios
Average 0.225 0.354 57.217 0.274 0.306 11.343
St.Dev 0.042 0.029 13.038 0.028 0.014 5.005

400 Scenarios
Average 0.241 0.339 40.927 0.281 0.296 5.407
St.Dev 0.039 0.022 9.185 0.027 0.009 3.136

500 Scenarios
Average 0.240 0.330 37.617 0.282 0.294 4.289
St.Dev 0.027 0.016 6.689 0.022 0.008 2.893

600 Scenarios
Average 0.248 0.320 29.156 0.290 0.290 0.012
St.Dev 0.028 0.019 7.812 0.019 0.007 2.287

700 Scenarios
Average 0.255 0.318 24.553 0.288 0.288 -0.031
St.Dev 0.026 0.018 6.926 0.013 0.004 1.405

800 Scenarios
Average 0.263 0.312 18.760 0.289 0.286 -0.957
St.Dev 0.026 0.017 6.425 0.014 0.004 1.345

900 Scenarios
Average 0.269 0.313 16.698 0.285 0.286 0.168
St.Dev 0.029 0.016 5.814 0.012 0.003 0.942

1000 Scenarios
Average 0.264 0.309 17.041 0.288 0.286 -0.870
St.Dev 0.027 0.015 5.835 0.012 0.003 1.010

The results suggest that the variability is regarding the number of
scenarios considered to obtain the solution and tend to reduce as we consider
more scenarios. This effect is related with the fact that, in general, a larger
number of scenarios leads to a more comprehensive staffing and scheduling
profile in terms of its ability to handle higher demands, which makes the
system more robust concerning variations in the demand and consequently
achieves small fluctuations in second-stage costs. Regarding the optimality
gap we observe that using the LHS method we have a faster convergence to a
gap ≤ 1% while using the MCS method even with 1,000 scenarios the gap still
large, ≥ 17%. We notice that optimality gap achieve the stop criterion defined
for about 600 scenarios using the LHS, being the gap 0.012% and the 95% level
of confidence interval (CI) is 0.012, thus the gap considering the CI is lower
than 1%. We show the CI for each experiment in Table F.1 of Appendix F. So
all results presented hereafter will be using this scenario setting.

We evaluate the average number of solutions in the in-sample analysis
(showed in Tables F.2 and F.3 of Appendix F) and we also evaluate the average
number of dominant solutions in the in-sample analysis (showed in Tables F.4
- F.23 of Appendix F.3). Even the analysis of dominant solutions for the MCS
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method point that using 1,000 scenarios the average number of solution is 1.0,
the optimality gap analysis does not allow us to affirm that this solution is the
true solution of the problem. However, by doing the same analysis using the
LHS method we have the hypothesis that we achieve solutions that are close
to the real optimal solution of the problem, i.e. the solutions have low gap,
within the established criterion, and the number of dominant solutions tends
to 1, so we can consider of the true solution for the problem according to the
SAA technique explain in the Chapter 3.

At this point, it is worth pointing out that we perform a preliminary
study in the Hospital A using just historical data (HD) as scenarios in the
optimization model. This preliminary study is presented in Appendix G. Using
the historical data we could generate only 68 demand scenarios, each of which
corresponded to the realization of real ED historical demand.

Table 4.6 contrasts indicators of service quality for the current schedule
with those obtained through discrete-event simulation of the optimal schedule
generated by model using SAA and using historical data. For results related to
the models, in addition to the value of each indicator, we present the percentage
variation for: model using historical data vs current schedule (∆1%); model
using SAA vs current schedule (∆2%); model using SAA vs model using
historical data (∆3%). In addition to the value of each indicator, we also report
the 95% level of confidence interval (CI).

Several points are worthy of mention: first, note the reduction of approx-
imately 73% in the frequency of queues, which is greater reduction than the
one shown when using historical data. Moreover, the frequency of queue with
more than 10 patients (one of the main quality indicators defined by managers
from the real ED we are analyzing) decrease approximately 96%, which is
considerably lower than both the current schedule and the schedule generated
using historical data. Additionally, with the model using SAA, we achieve a
reduction of approximately 92% in the number of patients in the queue, while
the average time door-to-doctor decrease by about 92% concerning the current
schedule.

Table 4.6: Discrete-event simulation results for case study in the Hospital A
using SAA

Current Allocation Model using HD Model using SAA

Value CI Value CI ∆1% Value CI ∆2% ∆3%

Number of patients 85623.66 78.28 85613.22 70.94 -0.01% 85622.92 70.96 0.00% 0.01%
Frequency of queue (%) 24.05 0.00 9.00 0.00 -62.58% 6.45 0.00 -73.18% -10.60%
Frequency of queue > 10 patients (%) 9.84 0.00 0.91 0.00 -90.75% 0.35 0.00 -96.44% -5.69%
Frequency of queue <= 10 patients (%) 14.21 0.00 8.08 0.00 -43.14% 6.10 0.00 -57.07% -13.93%
Average number in queue 3.00 0.08 0.42 0.01 -86.00% 0.23 0.01 -92.33% -6.33%
Average door-to-doctor time (min) 24.53 0.63 3.41 0.10 -86.10% 1.89 0.06 -92.30% -6.20%
Total numer of physicians hours used 3522.00 - 3888.00 - 10.39% 3888.00 - 10.39% 0.00%
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Figure 4.5 shows the comparison of the current empirically-defined
schedule of ED in the Hospital A and the schedule from the proposed model
in terms of service demand and capacity. From the Figure, we observed that
with the schedule from the proposed model, we were able to better adapt the
capacity to the demand of the day achieving better waiting times.

Figure 4.5: Average waiting time in Hospital A comparing the current
empirically-defined schedule of ED in the Hospital A and the schedule from
the proposed model

Figure 4.6 presents the histograms of idle capacity and queue frequency
for the current schedule and the schedule generated by Model using SAA. As
shown in Figure 4.6, we observe that queue using the scenarios generation are
even smaller than that presented in G.1(b) and also less frequent.
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Figure 4.6: Histogram of frequency distribution of idle capacity (negative
values) or queue (positive values) for the current schedule and the schedule
generated by model using SAA

Taken together, these results indicate that the schedule generated by
model using SAA takes advantage of the wide representation of the uncertainty
in the arrival of patients by the generation of scenarios and thus achieves better
results than those obtained using only historical data.

4.6
Case study in the Hospital B

Patient arrival data in the ED of Hospital B was available for the period
of October 2017 – July 2018. Thus we work with 6,585 hours of ED data
representing about 73,000 patients. The ED performs an average of 5,200
medical encounters per month for Clinical Medicine (CM), which is attended
to by general practitioners and/or cardiologists. Similarly to the case study
I, some physicians act as both general practitioners and cardiologists, while
others work as either general practitioners or cardiologists. Here, of the total
number of patients in the Clinical medicine, we consider only those patients
who go straight from triage to first care, discounting patients who need vital
care and patients who go direct to the beds.

For each planning period, CM is staffed by 85 physicians, bein the total
number of work hours available equal to 1,457 hours. Moreover, on any given
day, physicians are assigned to one or several of eleven overlapped shifts, which
are shown in Figure 4.7. The shifts differ in type according to the duration
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(DURs) of each one, so the shifts can be of type 6h, 9h, 10h, and 12h. Shifts
of type 10h are used only on the weekends.

Figure 4.7: Shifts distribution adopted by Clinical Medicine in the ED of
Hospital B (24 hour clock format)

Physicians at the hospital are classified as fixed physicians, usually
more experienced doctors with longer working hours in the hospital, and on-
callers. The former are physicians who must meet a fixed workload in the
emergency during the weekdays. The number of hours available in weekday
(WL_WEEKp) for fixed physicians is 27h, and each physician must be
assigned for each of the shift types (MAX_TY PEps = 1). The shifts types
are defined in terms of the duration. The Ed work with shift of 6h, 9h
and 12h . Fixed physicians are allocated on a rotational basis on weekends,
so each weekend a fixed physician is designated to be on duty (the same
doctor is allocated both on Saturday and Sunday) in a shift of type 10h
(MAX_TY PEps = 2). Hence, the number of hours available in the weekend
(WL_WEEKENDp) is 20h. The on-callers physicians may be allocated to
more than one shift per day as long as the shifts are non-overlapped and
sequential, and their combined length (in hours) does not surpass the maximum
number of allowable consecutive work hours which is 12h (MAX_TY PEps =
2). The total workload for (WL_TOTALp) varies for each physician, being 12
or 24 hours. These physicians can be assigned for both weekdays or weekends.
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Additional scheduling rules and contractual agreements for this groups include:
(i) each physician may only be assigned to one shift of type 12h; (ii) overlapped
shifts may not be used for combined allocation; (iii) non-overlapped and
sequential shifts allow combined allocation.

Of note, a minimum number of physicians must always available in
the ED, meaning that parameter CAP_MINht takes the value between 4
and 6. The staffing levels and scheduling defined is repeated weekly in a
four-week cycle; thus, the parameter PLAN_HORIZON takes a value of
7 days and parameter PLAN_PERIOD also takes the value of 7 days. This
last statement, states that this ED run the model once per month (e.g.,
at the beginning of the month) and uses the same schedule (staffing and
scheduling) for the four weeks of the month. In contrast to the case study
present previously, in this case study the scheduling is cyclic in the month, i.e.,
the assignment of the physicians is the same, week by week in a month, since
the PLAN_HORIZON and the PLAN_PERIOD takes the same value, so
the staffing and the scheduling is cyclic. In the first case study, only the staffing
was cyclic being the same week by week in a month, and the assignment of the
physician might be different over the weeks.

4.6.1
Physician staff

Currently, analagously to the previous case studied presented, staffing at
the ED of Hospital B is performed through an empirical analysis of demand
behavior. Generating a manually-defined schedule (shown in Table K.1 on the
Appendix K) is a laborious task and its solution is not necessarily optimal.
The current schedule’s inefficiency reflects in a gap between current levels of
demand and capacity at the ED. Figure 4.8 shows average waiting time per
hour of the day considering the current schedule in the ED of Hospital A.
These are data from the simulation model using the current schedule adopted
by this ED. It is clear from Figure 4.8 that the waiting time increase along of
the day. This happens beacause there are several points in time when demand
greatly exceeds capacity; this occurs because the current schedule does not
account for uncertainty in patient arrival.

DBD
PUC-Rio - Certificação Digital Nº 1521900/CA



Chapter 4. Physician Staffing and Scheduling for Reducing Door-to-Doctor
Time in an Emergency Department 75

Figure 4.8: Average waiting time per hour in Hospital B

4.6.2
Physician scheduling

ED managers’ main concerns also relate to the occurrence and length of
the queue, which directly affects a patient’s wait time and their total length
of stay in the ED. At this point, it is worth mentioning that the current
manually-defined schedule (see Table K.1 on Appendix K) fails to address
the concerns of ED managers regarding the occurrence and length of patient
queues, but, different from the previous case study, do not fail in respect to
the several aforementioned scheduling rules since in this case we verify fewer
service requirements and contractual agreements, which facilitates the task
of distributing doctors by the days and shifts. However, by being manually
made, the current schedule does not consider all shift flexibility that would be
possible. In Figure 4.7, we show that the physicians can be currently assigned
to eleven overlapped shifts, but in fact, the doctors’ entry time into the ED
could be flexibilized to meet the demand better. If that happened, the different
types of shifts used (6h, 9h, 10h, and 12h) in the ED could start any time from
7 am to 7 pm and the number of shifts would be doubled. In this context, the
ultimate goal of the physician scheduling phase is to ensure that the available
physician workforce is assigned in such a way to minimize patient queue and
allow the flexibility of work shifts in the ED, while taking into account all
schedule requirements and contractual agreements.
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4.6.3
Simulation model

For the simulation model of the ED of Hospital B, similarly to the
simulation model for the previous case study, we assume the premises cited
in section 3.2.4 and we consider an estimated service time of 20 minutes as
the average for exponential distribution. We assume that the patients arrival
follows a Poisson distibutions as showed in the fit test performed using the real
data (Figure K.1 in the Appendix K). To define whether the pattern ot patients
arrival is diffent over the days of week and the hour of the day, we conducted a
Kruskal-Wallis test which results indicated a statistically significant difference
between patient interarrival times for each day of the week and hour (Kruskal-
Wallis test, chi-squared = 8238.8, df = 23, p-value < 2.2e-16). We used the
Kruskal-Wallis test due to the non-normality of the data set (Shapiro test, W
= 0.7866, p-value < 2.2e-16). Then, we perform a multiple comparison test
(results are shown in Table K.2 of Appendix K) to define which hours and
days of the week could be considered to have the same arrival rate and, hence
be grouped. These tests is performed using the data of patients arrival in the
ED for the period analyzed, as mentioned before we are working with about
73,000 patients.

The current manually-defined ED schedule was used to define the warm-
up period and number of required replications, and to validate our simulation
model. A warm-up period of 10 hours and a total of 100 replications were found
to ensure that system occupancy corresponded to real starting conditions. Each
replication simulated 6,585 hours of operations, which amounts to the total
length of the period for which ED data was made available. Model validation
was performed by comparing the real number of patients treated in the ED
(72,988 patients) with the number of patients serviced in the simulation model
(72,799 patients), which yielded a variation of approximately 0.26% in the total
number of treated patients. We considered such variation to be negligible and
hence indicative of the simulated model’s accuracy

4.6.4
Numerical results of the case study in the Hospital B

We start defining the number of scenarios that should be used in the
experiments. We run preliminary tests as specified in Section 3.2.2 using Monte
Carlo Sampling (MCS) and Latin Hypercube Sampling (LHS). The size of
the models (i.e.,variables and constraints), average execution times, and their
variances are shown in Table H.1 of Appendix H. The average solution time of
the experiments was 172.99 CPU seconds for 100 scenarios and 2188.666 CPU
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seconds for 1,000 scenarios.
Table 4.7 present the results for each experiment in terms of the objective

function for the in-sample and out-of-sample tests and the optimality gap
showing the average and standard deviation.

Table 4.7: Experiment results: in-sample and out-of-sample analysis and esti-
mative of the optimality gap

Monte Carlo Sampling Latin Hypercube Sampling

Objective
Function
In Sample

Objective
Function Out
of Sample

Gap Objective
Function
In Sample

Objective
Function Out
of Sample

Gap

100 Scenarios
Average 52.044 139.590 168.216 53.279 90.366 69.607
St.Dev 1.899 2.431 3.085 0.869 0.988 1.316

200 Scenarios
Average 52.791 122.311 132.691 53.498 69.728 30.338
St.Dev 1.407 1.583 2.118 0.664 1.425 1.572

300 Scenarios
Average 53.377 112.590 110.935 53.694 62.411 16.235
St.Dev 1.257 1.508 1.964 0.547 1.045 1.180

400 Scenarios
Average 53.479 81.754 52.870 53.805 55.872 3.843
St.Dev 1.104 2.306 2.557 0.370 0.825 0.904

500 Scenarios
Average 53.643 75.505 40.757 54.136 54.532 0.731
St.Dev 0.908 1.162 1.475 0.379 0.339 0.509

600 Scenarios
Average 53.729 70.422 31.069 54.171 54.450 0.516
St.Dev 0.936 1.225 1.542 0.347 0.590 0.684

700 Scenarios
Average 53.952 64.944 20.374 54.237 54.442 0.379
St.Dev 0.768 1.185 1.412 0.324 0.749 0.816

800 Scenarios
Average 54.298 62.033 14.245 54.317 54.430 0.209
St.Dev 0.736 0.759 1.057 0.275 0.577 0.639

900 Scenarios
Average 54.316 59.820 10.133 54.409 54.460 0.092
St.Dev 0.587 0.975 1.138 0.267 0.295 0.398

1000 Scenarios
Average 54.492 58.819 7.942 54.485 54.508 0.041
St.Dev 0.718 1.334 1.515 0.278 0.654 0.711

Similar to the previous case study, we observe that using the LHS method
we have a faster convergence to a gap ≤ 1% while using the MCS method even
with 1,000 scenarios the gap still large, ≥ 7%. We notice that optimality gap
achieve the stop criterion defined for about 500 scenarios using the LHS, being
the gap 0.731% and the 95% level of confidence interval (CI) is 0.260, thus the
gap considering the CI is lower than 1%. We show the CI for each experiment
in Table I.1 of Appendix I. So all results presented hereafter will be using this
scenario setting.

We evaluate the average number of solutions in the in-sample analysis
(showed in Tables I.2 and I.3 of Appendix I) and we also evaluate the average
number of dominant solutions in the in-sample analysis (showed in Tables I.4
- I.23 of Appendix I). Even the analysis of dominant solutions for the MCS
method point that using 1,000 scenarios the average number of solution is close
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to 1.0, the optimality gap analysis does not allow us to affirm that this solution
is the true solution of the problem. However, by doing the same analysis using
the LHS method we have the hypothesis that we achieve solutions that are
close to the real optimal solution of the problem, i.e., the solutions have low
gap, within the established criterion, and the number of dominant solutions
tends to 1, so we can consider the true solution for the problem according to
SAA technique discussed in the Chapter 3.

At this point, it is worth pointing out that we also perform a preliminary
study in the Hospital B using just historical data (HD) as scenarios in the
optimization model. This preliminary study is presented in Appendix J. Using
the historical data, we could generate just 42 demand scenarios, each of which
corresponded to the realization of real ED historical demand.

Table 4.8 contrasts indicators of service quality for the current schedule
with those obtained through discrete-event simulation of the optimal schedule
generated by model using SAA and using historical data. For results related to
the models, in addition to the value of each indicator, we present the percentage
variation for: model using historical data vs current schedule (∆1%); model
using SAA vs current schedule (∆2%); model using SAA vs model using
historical data (∆3%). In addition to the value of each indicator, we also report
the 95% level of confidence interval (CI).

Several points are worthy of mention: first, note the reduction of approx-
imately 28% in the frequency of queues, which is greater reduction than the
one shown when using historical data. Moreover, the frequency of queues with
more than 10 patients (one of the main quality indicators defined by managers
from the real ED we are analyzing) decreases approximately 62%, which is
considerably lower than both the current schedule and the schedule generated
using historical data. Additionally, with the model using SAA, we achieve a
reduction of approximately 60% in the number of patients in the queue, while
the average time door-to-doctor decreases by approximately 48% in relation
to the current schedule.

Table 4.8: Discrete-event simulation results for case study in the Hospital B
using SAA

Current Allocation Model using HD Model using SAA

Value CI Value CI ∆1% Value CI ∆2% ∆3%

Number of patients 72798.72 60.18 72981.01 63.36 0.25% 72818.73 65.4 0.03% -0.22%
Frequency of queue (%) 32.21 0.00 25.25 0.00 -21.61% 23.12 0.00 -28.22% -6.61%
Frequency of queue > 10 patients (%) 12.75 0.00 7.83 0.00 -38.59% 4.79 0.00 -62.40% -23.81%
Frequency of queue <= 10 patients (%) 19.46 0.00 17.69 0.00 -9.10% 16.33 0.00 -16.08% -6.99%
Average number in queue 3.87 0.45 2.23 0.04 -42.45% 1.55 0.02 -59.95% -17.50%
Average door-to-doctor time (min) 36.55 0.45 25.02 0.47 -31.55% 18.86 0.23 -48.42% -16.86%
Total numer of physicians hours used 1457.00 0.00 1457.00 0.00 0.00% 1457.00 0.00 0.00% 0.00%

Figure 4.9 shows the comparison of the current empirically-defined
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schedule of ED in the Hospital A and the schedule from the proposed model
in terms of service demand and capacity. From the Figure, we observed that
with the schedule from the proposed model, we were able to better adapt the
capacity to the demand of the day achieving better waiting times.

Figure 4.9: Average waiting time in Hospital B comparing the current
empirically-defined schedule of ED in the Hospital B and the schedule from
the proposed model

Figure 4.6 presents the histograms of idle capacity and queue frequency
for the current schedule and the schedule generated by Model using SAA. As
shown in Figure 4.10, we observe that queue using the scenarios generation are
even smaller than that presented in J.1(b) and also less frequent.
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Figure 4.10: Histogram of frequency distribution of idle capacity (negative
values) or queue (positive values) for the current schedule and the schedule
generated by model using SAA

Taken together, these results indicate that the schedule generated by
model using SAA takes advantage of the wide representation of the uncertainty
in the arrival of patients by the generation of scenarios and thus achieves better
results than those achieved using only historical data.

4.7
Discussion

The methodology we propose is able to optimally generate a schedule
that aligns physician service capacity with patient arrivals in the ED because
an optimal staffing level is defined while accounting for all schedule require-
ments and contractual agreements, i.e., staffing and scheduling are performed
in an integrated manner. Our results show improvements in ED performance
indicators such as frequency of queue and average door-to-doctor time. More-
over, our methodology is generalizable to different ED characteristics, such as
shift configurations, number of physicians, category of physicians, cyclic and
acyclic approaches to staffing and scheduling, among others.

Both case studies performed attest to the importance of accounting for
differences in patient arrival rates by day and hour to better assign physicians
throughout the week. In addition, allowing for flexibility in physician entry
time was also found to contribute to a better alignment between demand and
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capacity. An essential feature of our model is that it is capable of considering
individual physician preferences and/or restrictions in terms of the start time in
the ED (START_COMBshp) and availability (I_PHY SICIANsdp). These
characteristics, in association with complex shift configurations (e.g., those
shown in Figures 4.3 and 4.7), and several contractual agreements and service
requirements, make it necessary to perform the staffing and scheduling phases
in an integrated manner. In fact, under these conditions, it is not possible to
generate a feasible schedule for an established staffing level if the two phases
are performed separately.

In our first case study, cyclic staffing and acyclic scheduling were per-
formed, while in the second case study, cyclic staffing and scheduling were
performed. In both Hospitals A and B, staffing is cyclic to guarantee the
same service level over the weeks. In terms of scheduling, Hospital A per-
forms scheduling in an acyclic manner over a period of 4-week because each
physician has a certain total numbers of hours available and a number of hours
available to weekends for the 4-week period, but this number of hours available
can be distributed differently over the weeks. Moreover, in Hospital A physi-
cians define their preferences for a 4-week cycle which can also be different over
the weeks. In Hospital B, physicians define their preferences for a period of 4
weeks, but these cannot change over the weeks, and each physician is required
to perform the same number of hours per week, thus the scheduling in this
hospital is cyclic. Hence, it is clearly important to be able to use a general
model capable of performing both cyclic and acyclic staffing and scheduling,
considering that real needs vary from hospital to hospital, and our model was
shown to be adaptable to these different ED needs.

We can see from the results that although Hospital B has more physicians
available, the result in terms of proportion of queue reduction and waiting
time is shorter. This is because despite more doctors, the total hours available
from these doctors is lower than observed for Hospital A. Hospital A has
44 physicians available with a total of 3,888 hours while Hospital B has 85
physicians available and a total of 1.457 hours. A feature of Hospital A is that
physicians dedicated exclusively to the hospital, but at Hospital B this doesn’t
happen, so with more doctors we still have fewer hours available. Another
important observation is the fact that Hospital A has more flexibility regarding
the allocation of doctors during the planning horizon. This means that doctors
can be allocated to any shift on weekdays or weekends, except for the personal
restrictions set by each physician. This added to the flexibility of the entry
time give to the proposed model much more freedom for optimization which
leads to a greater gain in the system. Hospital B, on the other hand, has no
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flexibility regarding the allocation of doctors by shifts and days of the week,
being the only flexibility related to the entry time.

Taken together, results indicate that the schedule generated by our model
using SAA takes advantage of the wide representation of the uncertainty in
the arrival of patients by scenario generation, and thus achieves better results
than those achieved using only historical data. In addition, we observe that
Latin Hypercube Sampling (LHS) converged faster in SAA for this type of
problem. This result corroborrates to the results shown in Homem-de Mello
et al. [2011]. [?] show that for larger problems it is important not only the
definition of efficient stopping criterion but also use a more efficient alternative
sampling techniques, like the LHS.

The main limitation of our study deals with the fact that we assumed
fixed and constant physician service rates across the entire planning horizon.
Nevertheless, as shown in Kuo [2014], this assumption is acceptable in an ED
setting because emergency physicians are cross-trained (i.e., equipped with all
essential medical knowledge for potential illnesses and injuries of patients in
EDs) and must work as efficiently as possible. Another important point is that
we are not taking into account the patient’s case mix to vary the physician’s
workload according to the complexity of the patients. These two points are
potential issues to be addressed in future work.

4.8
Conclusions

In sum, the methodology we propose can optimally generate a schedule
that aligns physician service capacity with patient arrivals in the setting of
two Brazilian hospitals, while accounting for all schedule requirements and
contractual agreements. Aligning physician schedule with patient demand is a
strategy for improving patient throughput in the ED. In the following chapter,
we present an extension of the problem presented in this chapter to deal with
the points considered by the works in the literature related with this study
and do not addressed here (points showed in the two last rows of Table 4.1).
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5
Resources Staffing and Scheduling to Reduce Waiting Time
in an Emergency Department

In this chapter, we address the problem of the Physician Staffing,
and Scheduling in an Emergency Department (PSSED) presented earlier in
Chapter 4. At that time, we were interested just in the door-to-doctor time,
i.e. we addressed just the first assessment, here we consider the entire clinical
pathway that a patient can follow in an ED. For this, we include the dynamics
of the patient flow through the ED. It is worth mentioning that we would
still need the model presented in Chapter 4. The reason is that not every
hospital has sophisticated information systems that record every stage of the
care delivery process, making it difficult to apply the extended model to their
case.

Figure 5.1 represents the overall flow in an ED with the key treatment
steps (prevalent in most EDs).
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Figure 5.1: Complete flow that represents the process in the ED
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In Figure 5.1, patients may follow different paths in an ED; these paths
vary from case to case and how each case is treated in each ED. The process
begins when patients arrive in the ED. Usually, the patients go to a nurse (to
the triage) who determines whether they need vital medical care. From here,
we can distinguish three possible cases: (i) patients who do not need vital care
but require special conditions of treatment go directly to a bed in the ED; (ii)
patients who need vital care are treated in the Life-Threatening room; (iii)
patients who do not need vital care stay in a waiting room until a physician
from Clinical Medicine (CM) is available to do the First General Assessment.

Patients from case (ii) may go to a Bed after the encounter in the Life-
Threatening room or after doing Auxiliary Examinations; and Patients from
case (iii), after the first encounter, may pass through Medication (where they
occupy a chair), Auxiliary Examinations, Second Assessment or go to a Bed.

The three types of health care providers that we observe in the Figure 5.1
are physicians, nurses, and lab technicians. From the flow explain above, we
can define that: physicians perform health assessments before and after having
auxiliary examinations, examine patients in the Medication phase, examine
patients in the Life-Threatening room and in the Beds; nurses handle the
triage of patients; lab technicians handle the auxiliary examinations. In this
chapter, we consider two main categories of human resources in an ED that
are, the physician and nurses. The lab technicians are out of scope since they
are often resources not entirely dedicated to the ED. Also, we consider a limit
for the main material resources, chairs in the medication phase, and beds
in the assignment to a bed phase respectively, which are considered critical
resources in ED [Daldoul et al., 2018]. Each activity in the Figure 5.1 represents
a treatment stage in the ED. The activities described in the doctor’s row can
be performed by any physicians that are allocated in that shift and belonging
to the category eligible for that treatment step.

The extended PSSED presented here follows the same assumptions
described in Chapter 4. Thus, the PSSDE is performed for a planning horizon
that consists of a set of subsequent days of finite and fixed length D. In our
model, the planning horizon can be divided into T periods over which the
staffing level will be repeated. We assume that a fixed number of physicians
P , belonging to K different skill categories, must be scheduled over the
planning horizon. Each day in the planning horizon consists of H hours and
is divided in S shifts that may overlap. Moreover, each shift is associated
with a specific workload, defined in terms of the shift’s start time and
duration. Each physician is scheduled for a certain number of hours during
the entire planning horizon, but differing between weekday and weekend. The
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physician scheduling should respect a minimum interval between assignments.
Eventually, when the physician is allocated for the night shift, the interval
between assignments should be greater than when the physician is assigned to
other shifts. Furthermore, physician scheduling should respect the maximum
allowed consecutive hours of work. It is required that a minimum number of
physicians is always available in each stage of treatment in the ED. The patients
may pass through several phases Q depends on their clinical pathway. Here,
we also consider that the patients arrival varies per day and hour. Besides,
we assume that the demand is uncertainty, and this characteristic should be
considered into the model so that the decisions are properly taken, considering
different possibilities for these uncertain events.

To address this issue, we propose a two-stage stochastic programming
formulation with fixed recourse. The mathematical model’s objective is to
minimize the total number of patients waiting per hour, considering all stages
of the treatment, while taking into account scheduling requirements and
contractual agreement for the physicians. Therefore, we seek to determine
the number of staff (physicians and nurses) required to be in service during
each shift, for each day of the planning horizon, and each stage of the
treatment. Also, we want to assign individual physicians to each day and shift
in accordance with service requirements and contractual agreements, taking
into consideration uncertainty in patient arrival patterns. We consider this
problem as an integrated model able to perform both staffing and scheduling
phases together.

As mentioned above, this is an extent of the problem Physician Staffing,
and Scheduling in an Emergency Department (PSSED) addressed in Chapter
4, thus here we address the points that we did not cover at that time. Therefore,
here, we will consider as in the work of [Daldoul et al., 2018; EL-Rifai et al.,
2015] several stages of treatment in an ED and other resources than physicians.
Daldoul et al. [2018] deal with three phases of treatment in an ED, and
consider physicians and nurses in the study; EL-Rifai et al. [2015] extend the
approach to contemplate beds and other stages of treatment in an ED (six
steps of treatment). Here, we address seven stages of treatment in an ED in
addition to accounting for nurse staffing, physician staffing, and scheduling,
and considering a limit for chairs and beds. In addition, the contributions
described previously still apply to the problem dealt with here. The Table 5.1
updates the Table 4.1 from Chapter 4.
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Table 5.1: Summary of contributions from the Chapter 5
Chapter 5 Literature

Integrated model - simultaneously accounts for ED physi-
cian staffing and scheduling problems

Neglecting the intrinsic interaction between staffing and
scheduling

e.g. [Hung et al., 2007; Savage
et al., 2015; Vile et al., 2016]

Perform the staffing and scheduling for a planning horizon
that can be defined by the manager besides the planning
horizon can be different for the staffing and the scheduling

Just considering a typical day of the week e.g. [Daldoul et al., 2018; EL-Rifai
et al., 2015]

Address uncertainty by hour and day in the week Address uncertainty just by hour of a day e.g. [Daldoul et al., 2018; EL-Rifai
et al., 2015]

Stochastic Model with SAA testing two scenario genera-
tion methods

Stochastic Model with SAA justing using Monte Carlo e.g. [Daldoul et al., 2018; EL-Rifai
et al., 2015]

Solution quality assessment via statistical bounds Do not define the number of scenarios using statistical
bounds

e.g. Daldoul et al. [2018]; EL-Rifai
et al. [2015]

Flexibility to cyclic or no cyclic staffing and scheduling Address just one approach e.g. Cyclic: [Ferrand et al., 2011];
No cyclic: [Savage et al., 2015]

Address physician restrictions – e.g. start time, weekend Studies address physician preferences e.g. [Bard et al., 2013; Bowers
et al., 2016]

Consider several stages of treatment in an ED Consider several stages of treatment in an ED e.g. Daldoul et al. [2018]; EL-Rifai
et al. [2015]

Consider physicians and nurse as human resourses Consider phisicians and nurses as human resourses e.g. Daldoul et al. [2018]; EL-Rifai
et al. [2015]

Consider beds and chairs as physical resources Consider beds as physical resources e.g. Daldoul et al. [2018]
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5.1
General Mathematical Model

In this section, we present the mathematical model developed to deal
with the problem mentioned above. The objective of this mathematical model
is to minimize the expected value of the total number of patients waiting.

The first-stage decisions (assumed to be made before the realization of
random variables, i.e., previously to the unveiling of the uncertainties) define
the number of nurses and physicians that are required to each day and shift
and define the physicians to be assigned to meet the established staffing level.
These decisions are represented by integer and binary variables, respectively.

Second-stage decisions are taken under complete information of the
uncertainty, that are: number of patients waiting in a queue and number
of patients served in a queue. We assume that uncertainties (patients ar-
rivals) are discretely represented by SC possible realization scenarios. We
further adopt that the probability of scenario c occurring is represented by
a scenario-dependent parameter PROBc, defined such that PROBc ≥ 0 and∑SC
c=1 PROBc = 1. We assume that the scenarios have the same probability of

occurrence.
From Chapter 4, we have seen that the flow of patients into an ED is

represented by a queuing system consisting of treatment steps and resources.
Here, each treatment step can also be seen as a queuing system. In this section,
we represent the problem described in the previous section by a queue system
showed in Figure 5.2.
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Figure 5.2: General queue model that represents the process in the ED
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The mathematical model presented in this section is based on the problem
described in the previous section and represented by Figure 5.2. The number of
patients arriving in the system at each period t an hour h is denoted DEMht.
After the patients enter in the system, they are counted as waiting by the
variable Whtq . Patients that are served in a queue are counted by the variable
Shtq. The number of patients served in a queue and which are transferred
to another queue depends on the transfer rate (αq, βq, ηq, µq, ρ1, ρ2). In this
section, queue and stages of treatment are used as synonyms.

We made some assumptions, following the definitions made by Daldoul
et al. [2018] and EL-Rifai et al. [2015], to solve the problem more efficiently:

– The system is initially empty. For this, we start the scheduling horizon at
an hour when the system is usually empty [Daldoul et al., 2018; EL-Rifai
et al., 2015];

– The waiting time of patients during the period they arrive is not counted
[EL-Rifai et al., 2015];

– We do not perform scheduling of patients (scheduling of patients is object
to some studies e.g. Bagwandeen and Carroll [2013]). Because of this,
the patients are divided into three possible cases (as we explained in
the previous Section) and each case has a well-defined flow from the
beginning of the treatment.

– We consider the physicians from the same skill categories and the nurses
to be homogeneous, i.e., we do not differentiate between them [EL-Rifai
et al., 2015];

– The patients who need auxiliary exams are just delayed because we
do not consider a staff for this stage of treatment, i.e., this phase
of treatment is considered to have infinite capacity, and we do not
consider queue for this phase and consequently we do not create variables
related to these treatment stages. Thus auxiliary examinations are always
assumed to have a fixed duration [EL-Rifai et al., 2015].

– The patients who need treatment in the life-threatening emergency room
are just delayed because we do not consider staff for this stage of
treatment. This is because the physicians are mostly not dedicated to this
phase of the treatment. Thus treatment in the life-threatening emergency
room is always assumed to have a fixed duration.

Some of this assumptions are relaxed in the simulation model presented
later in Section 5.2.
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Table 5.2 presents the domains in which our model attributes are defined,
while Tables 5.3 and 5.4 provide a complete listing of parameter and variable
definitions.

Table 5.2: Sets, subsets and corresponding domains of the general model
Sets Indexes Domain Description

Shifts (S) s, s’ {1, . . . ,|S|} Shifts in the ED
Physicians (P ) p {1, . . . ,|P|} Physicians in the ED
Days (D) d {1, . . . , PLAN_HORIZON} Days of the planning horizon
Hours (H) h, h’ {0, . . . , 23} Hours of the day (24 hour clock format)
Period (T ) t {1, . . . , PLAN_PERIOD} Period over which staffing level is repeated
Physician Category (K) k {1, . . . , |K|} Physician skill categories
Stages of treatment
(queue) (Q)

q {1, . . . , |Q|} Stages of treatment (queue) in the ED

Scenarios (SC) c {1, . . . , |SC|} Possible realization scenarios
Physician in certain cate-
gory (Pk)

- Subset of Physicians (P ) Physicians who belong to category k

Weekdays (WD) - Subset of Days (D) Weekdays on the planning horizon
Weekends (W ) - Subset of Days (D) Weekend days on the planning horizon
Night_Shifts (NIGHT ) - Subset of Shifts (S) Night shifts
N_Shifts (NS) - Subset of Shifts (S) Shifts that do not allow combined allocation
Y_Shifts (Y S) - Subset of Shifts (S) Shifts that allow combined allocation
Physicians_Week (P1) - Subset of Physicians (P ) Physicians that work only week days
Physicians_Both (P2) - Subset of Physicians (P ) Physicians that work both week and weekend days
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Table 5.3: General model parameters
Parameters Description Unit

PROBc Probability of each scenario c -
PLAN_HORIZON Number of days in the planning horizon -
PLAN_PERIOD Period (number of days) over which the staffing level is repeated -
DURs Duration of each shift s Hour
WL_WEEKp Number of hours available for each physician p in the week Hour
WL_WEEKENDp Number of hours available for each physician p in the weekend Hour
WL_TOTALp Total Number of hours available for each physician p Hour
MAX_ASSIGN1 Maximum number of assignments per day -
REL_SHIFTSss′ Indication if shift s can be combined with shift s′ {0, 1}
MAX_ASSIGN2 Maximum number of assignments per day -
MAX_TY PEps Maximum number of assignments in a certain shift type Hour
REL_PHY SHIps Indication if physician p can be schedule for shift s {0, 1}
START_COMBshp Indication of start time h of each shift s for each physician p {0, 1}
MINk Minimum number of physicians required for each skill category k -
DAY_PERIODdt Indication if day d is included in period t {0, 1}
DEM c

ht Demand (arrival of patients for each period t, hour h, and scenario c) -
αq Transfer rate of patients from the Triage to the stage of treatment q [0,1]
βq Transfer rate of patients from the First General Assessment to the stage

of treatment q
[0,1]

ηq Transfer rate of patients from the Second General Assessment to the
stage of treatment q

[0,1]

µq Transfer rate of patients from the Medication to the stage of treatment
q

[0,1]

ρ1 Transfer rate of patients from the Life-Threatening room direct to Beds [0,1]
ρ2 Transfer rate of patients from the Life-Threatening room to auxiliary

examinations
[0,1]

MAX_Rht Maximum number of registration staff available per hour h and day t -
MAX_PHYhtq Minimum number of physician required per hour h, day t and stage of

treatment q
-

Nc Number of chairs available to treatment in Medications step -
Nb Number of beds available to treatment in Beds room -
CAPhtq Capacity (service rate per physician) -
I_PHY SICIANsdp Indication if physician p is available on day d and shift s {0, 1}

Table 5.4: General model variables
Variables Description Domain

W c
htq Number of patients waiting in each hour h, each period t, each queue q and

each scenario c
R+

xsdp Decision if physician p is assigned in the shift s in the day d {0, 1}
nPhyhtq Number of physicians required for each hour h, each period t and stage of

treatment q
Z+

Schtq Number of patients served in each hour h, each period t, each stage of
treatment q and each scenario c

R+

nNurht Number of nurses required for each hour h, and each period t Z+

In the model, we perform the physicians staffing for each queue on a
day and shift, but the scheduling is not specific to a treatment phase, i.e., the
model ensures that the number of physicians allocated in the ED each day and
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shift cover the demand. However, these physicians can change between stages
of treatment.

The objective of the model is to minimize the total number of patients
waiting, i.e., patients in queue. Our model can be adapted to reflect the
operational characteristics of several EDs and/or considering other stages of
treatment by making minor changes. The proposed mathematical formulation
is as follows:

MinZ =
∑
h

∑
t

∑
c

PROBcW
c
htq

The objective function in (5.1) consists of minimizing the total number
of patients waiting per hour.

Subject to:
∑

d∈WD

∑
s

xsdpDURs ≤ WL_WEEKp ∀p ∈ P1 (5-1)

∑
d∈W

∑
s

xsdpDURs ≤ WL_WEEKENDp ∀p ∈ P2 (5-2)

∑
d

∑
s

xsdpDURs ≤ WL_TOTALp ∀p ∈ P (5-3)

Constraints (5-1)–(5-3) ensure that the maximum allocation time for
each physician in the planning horizon is respected. Constraint (5-1) ensures
that the sum of the shift durations to which the physician has been assigned
on week is less than or equal to the total allowable number of hours for week,
this for physicians that work only on weekdays. Constrains (5-2) enforces that
the sum of the shift durations to which the physician has been assigned on
weekends is less than or equal to the total allowable number of hours for
weekend. Constraint (5-3) enforces that the total number of hours assigned in
the entire planning horizon is less than or equal to the total number of hours
allowable.

∑
s

xsdp ≤MAX_ASSIGN1

∀p ∈ P, ∀d ∈ D
(5-4)

Constraint (5-4) guarantees that each physician is allocated to a maxi-
mum number of shifts per day.

xsdp + xs′dp(1−REL_SHIFTSss′) ≤MAX_ASSIGN1
∀p ∈ P, ∀d ∈ D, ∀s ∈ Y S, ∀s′ ∈ S | s 6= s′

(5-5)
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Constraint (5-5) ensure that, for any given day, physicians are not
assigned to any of the following: shifts that do not respect the minimum
interval between assignments; shifts that do not respect the maximum allowed
consecutive hours of work; overlapped shifts.

xsdp +
∑

s′|s′ 6=s
xs′dpREL_SHIFTSss′ ≤MAX_ASSIGN2

∀p ∈ P, ∀d inD,∀s ∈ Y S ∧ ∃s′
(5-6)

Constraint (5-6) allows physicians to be assigned to different shifts on
the same day, as long as the shifts are non-overlapped and sequential and the
physician belongs to the group of physicians who can work on more than one
shift per day.

∑
s∈Night

xsdp + xs′,d+1,p ≤MAX_ASSIGN1

∀p ∈ P, ∀d ∈ D, ∀s′ ∈ S
(5-7)

Constraint (5-7) enforces that physicians allocated on the night shift will
not be allocated to any other shift on the same day and can only be allocated
on the night shift of the following day, thus guaranteeing that the minimum
interval between assignments is respected in the event of physicians being
allocated on night shifts.

∑
d

xsdp ≤MAX_TY PEps

∀p ∈ P, ∀s ∈ S | REL_PHY SHIps
(5-8)

Constraint (5-8) guarantees that during the planning horizon, each
physician is allocated at most the number of times allowed for each type of
shift.

∑
pinPk

∑
d

∑
h′
xsdpSTART_COMBsh′p ≥MINkh

∀h ∈ H,∀d ∈ D, ∀k ∈ K
(5-9)

Constraint (5-9) ensures that the minimum number of physicians per
hour required for each physician category will be met.
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∑
p

∑
d

∑
h′
xsdpSTART_COMBsh′p ≥

∑
q

nPhyhtq

∀h ∈ H,∀d ∈ D, ∀t ∈ T | DAY_PERIODdt
(5-10)

Constraint (5-10) enforces that the number of physicians allocated (by
scheduling variable xsdp ) meets hourly the staffing levels defined for physicians
(by staffing variable nPhyhtq).

Constraints (5-11) limit the number of patients served in the Triage
phase.

Schtq ≤ nNurhtCAPhtq

∀h ∈ H,∀t ∈ T,∀q | q = 1,∀c ∈ SC
(5-11)

Constraints (5-12) limit the number of patients served in the phases
handle by the physicians.

Schtq ≤ nPhyhtqCAPhtq

∀h ∈ H,∀t ∈ T,∀q | (q = 2 ∨ q = 4 ∨ q = 5 ∨ q = 6),∀c ∈ SC
(5-12)

Constraints (5-13) specify a bound for the number of patients served
during a period.

Schtq ≤ waitchtq

∀h ∈ H,∀t ∈ T,∀q ∈ Q,∀c ∈ SC
(5-13)

Constraints (5-14)-(5-15) limit the number of patients served in the
Medication and Beds, respectively, according to the number of chairs and beds
available.

Schtq ≤ Nc

∀h ∈ H,∀t ∈ T,∀q | q = 5, ∀c ∈ SC
(5-14)

Schtq ≤ Nb

∀h ∈ H,∀t ∈ T,∀q | q = 4, ∀c ∈ SC
(5-15)

Constraint (5-16) limits the total number of nurses available to serve the
first queue.
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nNurht ≤MAX_Rht

∀h ∈ H,∀t ∈ T
(5-16)

Constraint (5-17) guarantee the minimum number of physicians required
in each queue.

nPhyhtq ≥MIN_PHY htq
∀h | h ≥ 1, ∀t ∈ T,∀q ∈ Q

(5-17)

Constraints (5-18)–(5-22) update the number of patients in each queue
at hours and day.

Triage Queue

W c
ht′q = W c

h−1,t′q +DEM c
htq − Sch−1,t′q

∀h ∈ H,∀t ∈ T,∀q | q = 1,∀c ∈ SC
(5-18)

In constraint (5-18) we observe the treatment of all patients that arrive in
the ED (DEM c

htq). After this stage, the patients are distributed in accordance
with the transfer rates.

First General Assessment Queue

W c
htq = W c

h−1,t′,q + αqS
c
h−1,t′,q−1 − Sch−1,t′,q

∀h ∈ H,∀t ∈ T,∀q | q = 2,∀c ∈ SC
(5-19)

The constraint 5-19 establishes that patients waiting in each hour in the
First General Assessment Queue are patients waiting previously in this stage
(wch−1,t,q) adding patients from the triage phase (αqsch−1,t,q−1), and discounting
the patiens served in the First General Assessment step (sch−1,t,q).

For the other phases of treatment, the number of patients waiting follow
this same logic by changing only the parcels equivalent to the transfers of
patients from other phases.
Medication Queue

W c
htq = W c

h−1,t′q + βqS
c
h−1,t′,q−3 + ηqS

c
h−1,t′,q+1 − sch−1,t′,q

∀h ∈ H,∀t ∈ T,∀q | q = 5, ∀c ∈ SC
(5-20)
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Second General Assessment Queue

W c
htq = W c

h−1,t′,q + βqS
c
h−2,t′′,q−4 + µqS

c
h−2,t′′,q−1 + ηqS

c
h−2,t′′,q − Sch−1,t′,q

∀h ∈ H,∀t ∈ T,∀q | q = 6,∀c ∈ SC
(5-21)

Beds Queue

W c
htq = W c

h−1,t′,q + αqS
c
h−1,t′,q−3 + βqS

c
h−1,t′,q−2 + αq−1 ∗ ρ1Sch−1,t′′,q−3

+ αq−1 ∗ ρ2 ∗ Sch−1,t′′′,q−3 + ηqS
c
h−1,t′,q+2 − Sch−1,t′,q

∀h ∈ H,∀t ∈ T,∀q | q = 4,∀c ∈ SC

(5-22)

Finally, constraints (5-23)–(5-27) define the domain of the decision
variables.

W c
htq ∈ R+, ∀h ∈ H,∀t ∈ T,∀c ∈ SC (5-23)

xsdp ∈ {0, 1}, ∀s ∈ S,∀d ∈ D, ∀p ∈ P | ∃I_PHY SICIANsdp (5-24)

nPhyhtq ∈ Z+, ∀h ∈ H,∀t ∈ T,∀q ∈ Q (5-25)

Schtq ∈ R+, ∀h ∈ H,∀t ∈ T,∀c ∈ SC (5-26)

nNurhtq ∈ Z+, ∀h ∈ H,∀t ∈ T,∀q ∈ Q (5-27)

5.2
Simulation Modeling Framework

Here the simulation also follows what is described in Section 3.2.4.
The simulation model developed is based in Figure 5.2. Some assumptions
take for the mathematical model are relaxed in the simulation model: (i)
patients requiring vital care that are seen in the Life-Threatening room are
not treated just as a delay but patients in this stage are attended by a
physician that is assigned in the Beds room treatment (shared resources);
(ii) all steps of treatment are no longer assumed to have a fixed duration but
follow exponentially distributed interservice times; (iii) the system does not
start empty. Instead we perform a warm-up period in the simulation model;
(iv) the waiting time is estimated precisely since the simulation uses a discrete
event paradigm.
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5.3
Numerical Experiments

For numerical experiments, we present the application of the model
presented in Section 5.1 to a real case study in a Brazilian hospital. The
scenario generation was implemented in MATLAB R2013a. The mathematical
programming model was implemented and solved using AIMMS 4.26 and
GUROBI 7.5 with default settings. The solutions were achieved on an Intel i7
3.3 GHz 64GB RAM computer. The simulation model was implemented using
Arena Simulation software version 14.7. All statistical analyses were performed
using R software version 3.3.1.

The computational experiments using SAA were performed considering
the Latin Hypercube Sampling (LHS) (see Chapter 3.1), since in Chapter 4 we
see that this method perform better. We used the probability distribution (take
from the fit test as specified in the Step 1 of the solution framework proposed
in Section 3.2) to performed the random sample draws in the generation of
scenarios regarding the arrival of patients (Demand). For the Step 2 of the
solution framework proposed in Section 3.2 we define the parameters used in
the SAA procedure defined in the Algorithm 1. For lower bound calculation,
our in-sample analysis, we use 10 replications (M = 10) and we start using
20 scenarios (N = 20). We use an additional independent set of samples
of 1,000 independent scenarios (T = 1 and N̄ = 1, 000), representing the
true distribution, to calculate the upper bound, our out-of-sample analysis. If
the stop criterion presented in the Section 3.2.2 is not achieved, the required
number of scenarios N is increased by 20. The stopping criterion for each
replication was 3,600s of computational time.

5.4
Case study

The case study addressed here was the same as the case study of Hospital
B presented in the previous Chapter, in Section 4.6. The characteristics
explained at that time remain the same, here we detail characteristics referring
to the extent of the problem addressed in this chapter.

Here, we consider all patients of Clinical Medicine (CM) instead of just
patients that go directly to the first assessment. After the triage, around 5%
of patients go straight to the beds, and approximately 5% need vital care in
the life-threatening room, and the others go to the first general assessment.
Subsequently to the first general assessment, 33.68% of the patients go to
medication, 33.65% need auxiliary examinations, 10% go to the beds, and
the others are discharged. Passing through medication, 25% of patients still
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need auxiliary examinations. After the second general assessment, 25% of
patients go to beds, 30% of patients need medication, and 15% of patients
need other exams. From patients who need treatment in the life-threatening
room, around 70% need auxiliary examinations. It is noteworthy that these
transition percentages from one service phase to another are not stationary,
i.e., variations may occur depending on the time and day of the week. However,
from the analyzed data set, we cannot infer how this change happens, so we
use the average transition rate in this study. The Figure 5.3 shows the transfer
rate of patients from one treatment stage to another described above using the
previously presented queuing system.
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Figure 5.3: Transfer rate of patients from one treatment stage to another in the ED
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To determine service capacity, we adopted the assumption (corroborated
by ED physicians and managers) that: each nurse in the triage can see 8
patients per hour, i.e., we considered the average service time to be 7.5 minutes;
physicians in the first and second general assessment can see 3 patients per
hour, i.e., we considered the average service time to be 20 minutes; physicians
in the medication can treat 6 patients simultaneously; physicians in the beds
can treat 4 patients simultaneously.

For numerical experiments in Chapter 4, as we were concerned just about
the first general assessment, we determine a parameter CAP_MINht which
takes a value from 4 to 6 and guarantee a minimum number of physicians must
always be available in the ED to cover the other treatment steps. Here, as we
are staffing physicians to all phases of treatment, we remove this parameter.

5.4.1
Simulation model

For the simulation model of the studied ED, we assume the premises
cited in section 5.2 and we consider an estimated service time as explained in
the previous section, considering an average for the exponential distribution.
We conducted a Kruskal-Wallis test which results indicated a statistically
significant difference between patient interarrival times for each day of the
week and hour (Kruskal-Wallis test, chi-squared = 8083.6, df = 23, p-value
< 2.2e-16). We used the Kruskal-Wallis test due to the non-normality of the
data set (Shapiro test, W = 0.7544, p-value < 2.2e-16). Then, we perform a
multiple comparison test (results are shown in Table L.1 of the Appendix L)
to define which hours and days of the week could be considered to have the
same arrival rate and, hence be grouped.

The current manually-defined ED schedule was used to define the warm-
up period and number of required replications, and to validate our simulation
model. A warm-up period of 12 hours and a total of 100 replications were found
to ensure that system occupancy corresponded to real starting conditions. Each
replication simulated 6,585 hours of operations, which amounts to the total
length of the period for which ED data was made available. Model validation
was performed by comparing the real number of patients treated in the ED
(80,287 patients) with the number of patients serviced in the simulation model
(80,051 patients), which yielded a variation of approximately 0.29% in the total
number of treated patients. We considered such variation to be negligible and
hence indicative of the simulated model’s accuracy.
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5.4.2
Numerical results of the case study

We start defining the number of scenarios that should be used in the
experiments. We run preliminary tests as specified in Section 3.2.2 using
Latin Hypercube Sampling (LHS). The size of the models (i.e.,variables and
constraints), average execution times, and their variances are shown in Table
M.1 of Appendix M. The average solution time of the experiments was 676.36
CPU seconds for 20 scenarios and 3,602.60s for 100 scenarios.

Table 5.5 present the results for each experiment in terms of the estima-
tive of the optimality gap to the true solution (see Section 3.1.1.3), showing
the confidence interval.

Table 5.5: Experiment results: estimative of the optimality gap and confidence
interval

Scenarios %Gap
Confidence Interval

Min Max

20 5.163 4.717 5.609
40 2.440 2.144 2.736
60 2.000 1.722 2.279
80 1.004 0.828 1.179
100 0.014 -0.042 0.069

The gap values vary from 5.163% in the experiments with 20 scenarios
to 0.014% in the experiments with 100 scenarios. Therefore, we notice that
optimality gap achieves the stop criterion defined for 100 scenarios, being the
95% level of confidence interval (CI) 0.056; thus the gap considering the CI
is lower than 1%. So all results presented hereafter will be using this scenario
setting.

To estimate the benefits of considering uncertainty into the model,
we first use two indicators, which were presented by Birge and Louveaux
[2011], the expected value of the perfect information (EVPI) and value of
the stochastic solution (VSS).

The EVPI compares the performance of the solution from the recourse
problem (solution here-and-now - RP), i.e., the solution of the stochastic
model with recourse which here is the proposed model, when compared with
a situation in which we have the perfect information, which means knowing
the realization of the uncertainty (solution wait-and-see - WS). The EVPI is
by definition, the difference between the RP and WS solutions:

EV PI = |RP −WS| (5-28)
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The VSS measures the gain in considering the uncertainty using the
stochastic model rather than merely basing the decision on the averages.
First, we consider the expected value problem, where all random variables
are replaced by their expected values and we solve a deterministic program:

EV = min
x∈X

z(x, ξ̄), (5-29)

where ξ̄ = E(ξ), this program yields first stage solutions. Let x̄(ξ̄) be an
optimal solution to (5-29), called the expected value solution and let EEV
be the expected cost when using the solution x̄(ξ̄), thus a second optimization
must then be performed after ξ is realized fixing the optimal solution to (5-29).
We have:

EEV = Eξ(z(x̄(ξ̄), ξ)) (5-30)
The VSS is then:

V SS = |EEV −RP | (5-31)
The RP, WS, and EEV values are shown in Table 5.6.

Table 5.6: Values of the RP, WS and EEV

Measures Value

Proposed Model (RP) 18.045
WS 8.01
EEV 100.974

The values presented in the Table 5.6 represent the expected number of
patients in the queue by the probability of each scenario considered. These
values suggest the efficiency of the proposed formulation in incorporating the
uncertainty. First, as the value of the WS solution is close to the RP solution we
can consider that the stochastic model considered represents the uncertainties,
i.e., represents the demand of the hospital since the WS solution is always
taken when the scenerio is known. Second, as the value of the EEV is greater
than RP, we can conclude that considering only the average demand to define
the staffing can lead to a larger number of patients in the queue.

Table 5.7 shows the stochastic indicators calculated using the measures
presented in the Table 5.6.
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Table 5.7: Values of indicators used to estimate the benefits of considering
uncertainty in the model

Stochastic Indicators Values

EVPI 10.035
VSS 82.928

The value 10.035 of the EVPI represents the difference between the
solution obtained by the decision maker with perfect prediction power (WS)
and the decision maker that solves the problem under uncertainty (RP), that
is, the lower the EVPI value, the better the stochastic model accommodates
the uncertainties. The VSS of 82.928 can be interpreted as an expected gain
of the decision maker who considers the uncertainty or as the expected loss of
the decision maker that opted for deterministic modeling using the mean of
the stochastic parameters. In this first analysis, the value of the VSS seems to
justify stochastic modeling.

We also use the model to evaluate the current schedule, which means
that we compare the real schedule used by the ED during the planning
horizon addressed in this study and run the proposed model. Using the current
schedule, the objective function of the model was 2,514.583, comparing with
the results presented in Table 5.7 we note a significant improvement.

After this first analysis, we used the discrete-event simulation model to
estimate the benefits of our proposed schedule (recommended ED schedule for
the hospital from the optimization model) against the schedule currently in use
at the ED. Results of the numerical experiments are presented in Table 5.8.
The columns titled “Current Allocation” includes the value of each indicator
associated with the current manually-defined ED schedule. In the columns
titled “Proposed Model”, we show results obtained through discrete-event
simulation of the optimal schedule generated by our proposed model (the RP).
When presenting results obtained by our optimization model, in addition to
the value of each indicator, we also report the 95% level of confidence interval
(CI). We present the results for each treatment phase, and we also show the
overall average waiting time.
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Table 5.8: Discrete-event simulation results

Treatment phase Indicators
Current Allocation Proposed Model

Value CI Value CI

First General Assessment

Frequency of queue (%) 31.14 0.00 12.16 0.00
Queue above 10 patients (%) 11.02 0.00 1.40 0.00
Queue between 1 and 10 (%) 20.12 0.00 10.76 0.00
Average number in queue 3.05 0.05 0.59 0.01
Average waiting time (min) 36.55 0.54 7.17 0.16
Average scheduled utilization (%) 51.60 0.00 41.59 0.00

Medication

Frequency of queue (%) 5.58 0.00 10.38 0.00
Queue above 10 patients (%) 0.18 0.00 0.29 0.00
Queue between 1 and 10 (%) 5.40 0.00 10.10 0.00
Average number in queue 0.18 0.01 0.33 0.01
Average waiting time (min) 4.46 0.22 7.94 0.14
Average scheduled utilization (%) 30.71 0.00 38.40 0.00

Second General Assessment

Frequency of queue (%) 45.48 0.00 21.09 0.00
Queue above 10 patients (%) 6.71 0.00 0.99 0.00
Queue between 1 and 10 (%) 38.76 0.00 20.10 0.00
Average number in queue 2.52 0.02 0.74 0.01
Average waiting time (min) 55.74 0.50 16.52 0.24
Average scheduled utilization (%) 65.35 0.00 47.12 0.00

Beds

Frequency of queue (%) 1.74 0.00 5.08 0.00
Queue above 10 patients (%) 0.00 0.00 0.01 0.00
Queue between 1 and 10 (%) 1.74 0.00 5.06 0.00
Average number in queue 0.04 0.00 0.11 0.00
Average waiting time (min) 1.26 0.05 3.89 0.11
Average scheduled utilization (%) 24.86 0.00 36.20 0.00

Overall average waiting time (min) 54,56 0.52 16.83 0.18

The optimal schedule leads to a reduction of approximately 61% and 54%
in the frequency of queues for ’First General Assessment’ and ’Second General
Assessment’, respectively, when compared with the current empirically-defined
schedule. Moreover, for ’First General Assessment’, the frequency of queue
with more than 10 patients is reduced by approximately 87%. For ’Second
General Assessment’, this same indicator achieves a reduction of about 85%.
The proposed model leads to a reduction of approximately 81% and 71% in
the number of patients in queue for ’First General Assessment’ and ’Second
General Assessment’, respectively, while the average waiting time decreases by
approximately 80% and 70% in relation to the current schedule, respectively
for ’First General Assessment’ and ’Second General Assessment’. Although we
observe the reduction of all queue indicators for ’First General Assessment’
and ’Second General Assessment’ treatment phases, we observe an increase in
the queue indicators for ’Medication’ and ’Beds’ treatment phases. As we do
not increase the number of physicians used, the model distributes the doctors
between the areas and schedules to reduce the total waiting time, and for this,
some areas have their queue indicators impaired to the detriment of the others.
As we can see the overall average waiting time is reduced from 55’ to 17’ using
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the model when compared to the current schedule.
It is worthy of mentioning that we do not report the indicators about

the ’Triage’ because the staffing defined by the model was the same used in
the current allocation, thus the queue indicators are similar.

Taken together, these results indicate that the schedule generated by the
proposed model takes advantage of the wide representation of the uncertainty
in the arrival of patients by the generation of scenarios and thus achieves better
results than those from the current manually-defined ED schedule.

5.5
Conclusions

The methodology we propose can optimally generate a schedule that
aligns staff service capacity with patient arrivals, while accounting for all sched-
ule requirements and contractual agreements. Aligning physician schedule with
patient demand in all stages of treatments is a strategy for improving patient
throughput in the ED, reducing the average LOS. Furthermore, our method-
ology is generalizable to other EDs, i.e., we can extend the model to different
ED configurations that present other queue rules, schedule requirements, and
contractual agreements. The main limitation of our study deals with the fact
that we assumed fixed and constant staff service rates across the entire plan-
ning horizon for each stage of treatment. Nevertheless, as shown in Kuo [2014],
this assumption is acceptable in an ED setting because emergency physicians
are cross-trained (i.e., equipped with all essential medical knowledge for po-
tential illnesses and injuries of patients in EDs) and must work as efficiently
as possible; moreover this assumption is relaxed in the simulation.
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6
Coordinating physician scheduling for clinic and surgery ap-
pointments to deliver timely access in a specialized surgical
unit

In this chapter, we present a description of the problem of resource assign-
ment in a specialty surgical unit to properly coordinate physician scheduling to
clinic and surgery appointments. In the sequence, we present the mathematical
model formulated to represent the problem. Finally, we present the results of
a real case study in a hospital from the USA.

6.1
Problem Description

The problem in question can be defined as the physician scheduling in a
surgical specialty division (SSD), where one seeks to determine the activities
each physician should handle in each day of the planning horizon in accordance
with service requirements and contractual agreements, and the distributions of
demand through the physicians coordinating clinic and surgery appointment,
taking into consideration uncertainty in demand. Such decisions arise in the
context of tactical capacity planning of health care staffs. Specialty surgical
practice faces a significant challenge in scheduling physicians to maintain a
proper balance of clinic and surgery appointments. Time in clinic results
in surgical procedures to be performed by the physician while time in the
operation room (OR) reduce the number of patients waiting for surgery.
Inappropriate time assigned both to the clinic and OR derive in the problem
of delivering timely and convenient access to health services. This problem is
motivated by the desire to properly coordinate physician scheduling to clinic
and surgery appointments to minimize the number of patients waiting for
treatment, and consequently the access time, in a highly specialized surgical
unit. Many surgical divisions around the world are observing a raise in patient
demand that surpasses the increase of capacity, leading to long indirect wait
times. We define “indirect wait time” or “access delay” to appointment as
the number of business days between the day a patient is referred to the
specialty surgical unit and the day the appointment (both for clinic encouter
and surgery) occurred (see Gupta and Denton [2008] about direct vs. indirect
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time). Bearing in mind that what connects demand and capacity is how
the unit handles access to services, we propose three different prioritization
policies: access to clinic, access to surgery (itinerary length) or total access.

Typically, patients referred to a SSD have surgery as a treatment option
due to their medical condition. In general, the process begins when patients
call the department requiring a clinical appointment. During the clinical
appointment, the surgeon and the patient discuss treatment options, and once
the surgery is feasible, the surgery is scheduled. The patient flow through the
SSD is represented as a queuing system with the treatment steps and the
resources. Figure 6.1 represents an example of the flow in the SSD. We have
the patient flow, which is different each day. Patients referred to the surgical
department wait in a queue (’virtual queue’) until the clinical encounter be
performed for one of the physicians. Then, if the surgery is required for the
treatment (a percentage α of the patients served each day in the clinic (St)
needs surgery), the patient waits again until the day of the surgery, also in a
’virtual queue’. The surgery is mandatory to be performed by the same doctor
who attends the patient in the clinical appointment. Here we are concerned
about the indirect time since the patients are wait from the moment they
require an appointment until de day of the consultation/surgery instead the
wait time in the day of the procedure (direct time) and because of this we call
’virtual queue’ since the patients are not waiting in a waiting room.

Figure 6.1: General patient flow in a surgical specialty division

According to how the surgical unit want/need to handle the access to
services, we define three different prioritization policies: access to clinic, access
to surgery (itinerary length) or total access. As we observe in Figure 6.1,
when the objective is to achieve shorter waiting time for clinic appointments,
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the policy defined is the access to clinic; when the objective is to achieve
shorter waiting time for the surgery, the policy defined is the access to surgery
(also called itinerary length); and when the objective is a balance waiting time
between clinic appointment and surgery the policy defined is the total access.

The problem is performed for a planning horizon that consists of a set of
subsequent days of finite and fixed length T . We assume that a fixed number of
physicians P must be scheduled over the planning horizon through K different
assignment types. Figure 6.2 shows an example of physician scheduling in the
SSD. For each day in the planning horizon, the physician should be assigned to
the clinic (C) or to the operation room (OR) in order to meet the demand, but
the physicians should also be assign to other activities, e.g. Administrative,
Research and Education (A/R/E) and Paid Time Off (D), in order to respect
the service requirements and contractual agreements.

Figure 6.2: Example of physician scheduling in a surgical specialty division

To address this issue, we propose a two-stage stochastic modeling formu-
lation. The mathematical model objective is to minimize the number of pa-
tients waiting for clinic and for surgery appointments that are weighted in the
objective function by a factor β and 1−β, respectively, where β ∈ [0, 1] should
vary according to the policy adopted by the surgical unit. Therefore, the model
aims to guarantee the proper balance of physician assignments to clinic and
surgery appointments to meet patient demand according to the policy adopted,
while taking into account scheduling requirements and contractual agreement
to perform the assignments to other activities that physicians should deal. The
first-stage decisions define the physicians‘ assignments, i.e. define the activity
each physician will perform in each day to meet the scheduling requirements
and the contractual agreement; the second-stage decisions are the evaluation of
queue level for clinic and surgery given the physician assignment for a certain
realization ξ of the uncertain parameters. The uncertainties in the model are
related to the levels of demand (patients referred to a specialty surgical unit)
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for a clinic appointment and consequently for surgeries, which are modeled as
random variables.

We found some related papers to this study: Gunawan and Lau [2010],
Gunawan and Lau [2013], Baugh [2012], Martinez et al. [2016a], Martinez et al.
[2016b], and Kazemian et al. [2017]. Martinez et al. [2016b] and Kazemian et al.
[2017] address the scheduling of patients referred to a surgical specialty and
study the impact of scheduling policies on clinical and surgical access using
discrete-event simulation. The objective in both is to reduce waiting times
to access elective surgery, coordinating clinical and surgical appointments.
Martinez et al. [2016a] analyze strategies to assign surgeons in an elective
surgical practice and to evaluate the clinical and surgical capacity by using
a simulation model. Their objective is to identify inefficiencies and to point
strategic changes to the schedule to achieve better allocation of surgeon
resources. Baugh [2012] use a simulation model to investigate how access to
care responds to surgeons’ time allocation policies and other factors. Gunawan
and Lau [2010] and Gunawan and Lau [2013] develop a model to assign
physician duties to the defined time slots/shifts over a planning horizon to
satisfy as many physicians’ preferences and services requirements as possible
while ensuring the optimal use of the resources. As duties, they refer to
surgery, clinic appointments, scopes, calls, administration. There are some
differences between these studies and ours. First, we consider the physician
scheduling as opposed to considering patient scheduling policies once we aim
to improve access to care better distributing the capacity of this scarce resource
among the services. Second, we use an optimization model to automatically
coordinate the assignment of the physicians to clinic, OR and other tasks by
considering all service requirements, contractual agreement, and uncertainty
in the demand; whereas Martinez et al. [2016a] and Baugh [2012] just evaluate
the schedule that is manually done in the former and for a single physician
in the latter. Third, our paper focuses on the access to care, the principal
difference from Gunawan and Lau [2010] and Gunawan and Lau [2013], and
for this, we incorporate the factor demand in the model on which we consider
the associated uncertainty to better allocate the physicians resources over time
and activities.

The most important difference between our work and the papers in
literature related to scheduling problem in health care is that we extend our
view to integrating the scheduling of clinic and surgery appointments such
that the physician capacity is distributed through the days in clinic, ORs
and other activities they may handle and the indirect waiting time of the
patients for both the clinic and surgery appointment is minimized according
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to the policies proposed. This model also considers the continuity of care
between patient-surgeon, once to assign the capacity we ensure the number
of surgeries derived from consultations in the clinic is delivered by the same
surgeon. The concept of coordinating physician scheduling to clinic and surgery
appointments considering different prioritization policies and addressing the
uncertainty in demand is unique and novel in our work and, to the best of
our knowledge, has never been studied before in the context of none of the
scheduling areas mentioned previously.

Table 6.1 summarizes the contributions of this chapter comparing with
related works in literature.
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Table 6.1: Summary of contributions from the Chapter 6
Chapter 6 Literature

Physician scheduling - integrate the scheduling of clinic
and surgery appointments

Patient scheduling policies e.g. [Kazemian et al., 2017; Martinez
et al., 2016b]

Optimization model - automatically coordinate the assign-
ment of the physicians

Simulation model – evaluate schedule manually done e.g. [Martinez et al., 2016a]

Multiple physicians Just one physician e.g. [Baugh, 2012]

Focus on the access to care – consider demand uncertainty Focus just in perfom the scheduling of physicians over the
diferente tasks

e.g. [Gunawan and Lau, 2010, 2013]
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We assign the physician to a task for the entire day, and the allocation in
the OR and clinic is based on institutional standards; we assume the surgeon’s
block time is predetermined. Our model is concerned with choosing (1) the
activity that should be assigned to the physician, (2) the number of clinic
appointment performed in each day per physician, and (3) the number of
surgeries performed in each day per physician.

6.2
Mathematical Model Framework

In this section we present the mathematical model developed to deal with
the aforementioned problem. The objective of the mathematical model is to
minimize the expected value of the number of patients waiting according to
the policy adopted by the surgical unit, while taking into account scheduling
requirements and contractual agreement for each physician. Table 6.2 presents
the domains in which our model attributes are defined, while Tables 6.3 and
6.4 provide a complete listing of parameter and variable definitions.

Table 6.2: Sets, subsets and corresponding domains
Sets Indexes Domain Description

Physicians (P ) p {1, ..., |P |} Physicians of the surgical division
Days (T ) t, t" {1, ..., |T |} Days in the planning horizon
Assignments Type (K) k {0, ..., |K|} Places that the physician can be assigned (OR, Clinic...)
Scenarios (Ξ) ξ {0, ..., |Ξ|} Possible realization scenarios
Days other tasks (τ) - Subset of Days (T ) Days where assignments to other tasks can be added
OR (O) - Subset of Assignments Type (K) Assignments type related to tasks in OR
Clinic (C) - Subset of Assignments Type (K) Assignments type related to tasks in Clinic
Clinic and OR (CO) - Subset of Assignments Type (K) Assignments type related to tasks in Clinic and OR

Table 6.3: Model parameters
Parameters Description Unit

β Weight assigned to objective function parcels [0, 1]
nk Minimum number of assignments for type k -
q Maximum number of days the physician can be allocated consecutively in the OR -
u Maximum number of ORs (nOR) available for the surgical division -
l Minimum number of ORs that surgical division must use per day -
ikpt Indication if physician p in the day t is allowed to be assigned to place k {0, 1}
κkjt Capacity (number of appointments to be performed) for each physician p in day t for each assignment

type k
-

dtξ Demand (arrival of patients for each day t) in realization ξ -
α Percentage of patients requiring surgery after clinic appointment -
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Table 6.4: Model variables
Variables Description Domain

wcli
tξ Number of patients wait for clinic appointment in day t in realization ξ R+

wsur
ptξ Number of patients wait for surgery in day t for physician p in realization ξ R+

xkpt Decision if physician p is allocated to place k in the day t {0, 1} | ∃ ikpt
ykptξ Number of patients assigned to physician p in the day t for surgery in realization ξ in place

k

Z+

dsurptξ Demand of surgeries for physician p in the day t in realization ξ Z+

The proposed mathematical formulation is as follow:

Min Z = β ∗
∑
t∈T

wcli
tξ + (1− β) ∗

∑
p∈P

∑
t∈T

wsur
ptξ (6-1)

The objective function in (6-1) consists of minimizing the total number of
patients waiting for clinic and surgery appointments weighted in the objective
function by a factor β and 1− β, respectively. The prioritization of one policy
over another occurs in the definition of the β factor.

Subject to:
∑
k∈K

xkpt = 1 ∀p ∈ P, ∀t ∈ T (6-2)

Constraint (6-2) guarantees that each physician is assigned to just one
place each day.

∑
t∈τ

xkpt ≥ nk ∀p ∈ P, ∀k ∈ K (6-3)

Constraints (6-3) matches the minimum time the physician should have
in each assignments type.

t”≤t+q∑
t”≥t

∑
k∈O

xkpt” ≤ q ∀p ∈ P, ∀t ∈ T (6-4)

Constraint (6-4) establishes that each physician can just be assigned in
the OR for at most q days consecutively.

∑
p∈P

∑
k∈O

xkpt ≤ u ∀t ∈ T (6-5)

∑
p∈P

∑
k∈O

xkpt ≥ l ∀t ∈ T (6-6)

Constraints (6-5)-(6-6) enforces that the number of Physicians assigns to
OR per day is not higher than the maximum number of ORs the department
can use and not lower than the minimum number of ORs the department need
to use, respectively.

ykptξ ≤ xkptκ
k
jt ∀p ∈ P, ∀t ∈ T,∀k ∈ OC,∀ξ ∈ Ξ (6-7)
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Constraint (6-7) ensures that patients will only be assigned to an ap-
pointment to a physician in a certain place if the physician is allocated to that
place in that day and has available capacity to perform the medical encounter.

wcli
tξ = wcli

t−1,ξ + dt−1,ξ −
∑
p∈P

ykptξ ∀t ∈ T,∀k ∈ C, ∀ξ ∈ Ξ (6-8)

Constraint (6-8) computes the number of patients waiting for a clinic
appointment each day.

dsurptξ ≤ αykp,t−1,ξ ∀p ∈ P, ∀t ∈ T,∀k ∈ C, ∀ξ ∈ Ξ (6-9)

dsurptξ ≥ αykp,t−1,ξ − 1 ∀p ∈ P, ∀t ∈ T,∀k ∈ C, ∀ξ ∈ Ξ (6-10)

Constraint (6-9)-(6-10) establishes the surgery demand for each physi-
cian. Surgery demand is a rate of the clinic appointments performed by each
physician.

wsur
ptξ = wsur

p,t−1,ξ + dsurptξ − ykptξ ∀p ∈ P, ∀t ∈ T,∀k ∈ O, ∀ξ ∈ Ξ (6-11)

Constraint (6-11) computes the number of patients waiting for surgery
each day for each physician.

6.3
Numerical Experiments

In this section, we show the results of the computational experiments
conducted with the proposed model, considering a real case study on the
colorectal surgery (CRS) division. The two-stage stochastic programming
model and the sampling technique were implemented using AIMMS version
4.46, and the MILP models were solved using GUROBI 7.5 with defaults
settings. We performed the experiments in an Intel i5 3.2 GHz 8GB RAM
computer.

To take into account the uncertainty in demand levels for patients
referred to SSD, scenarios were generated by using the Poisson distribution
being the lambda (λ) the average number of patients referred SSD for each
weekday, as following:

dtξ = f(λt)
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The computational experiments using SAA were performed considering
Monte Carlo Sampling (MCS) as scenario generation method. For this study
we used Monte Carlo Sampling since convergence occurs for a small number
of scenarios. For lower bound calculation, our in-sample analysis, we use 10
replications (M = 10) and we start using 5 scenarios (N = 5). We use an
additional independent set of samples of 1,000 independent scenarios (T = 1
and N̄ = 1, 000), representing the true distribution, to calculate the upper
bound, our out-of-sample analysis. If the stop criterion presented in the Section
3.2.2 is not achieved the required number of scenarios N is increased by 5.

In the numerical experiments of this section the objective is to show how
the number of patients in the queue changes as we vary the β factor in the
objective function and with this we constructed an efficiency frontier (number
of patients waiting versus beta factor). Then, we discuss where each of the
three prioritization policies defined are located on the efficiency frontier.

6.3.1
Case Study

The proposed model was tested in a real case study on the colorectal
surgery (CRS) division of Mayo Clinic in Rochester, Minnesota. However,
our general modeling framework can be used for other surgical units and
other medical centers that offer clinic consultations followed by surgery. In
the studied surgical division, physician scheduling is made for three months,
but the planning is done two months in advance. Figure 6.3 shows an example
of how we consider the planning horizon for the unit studied.

Figure 6.3: Example of the planning horizon considered in the case study

From the Figure 6.3 what we observe is: the planning horizon considered
is five months; in the Month 3 just small capacity adjustments is allowed
which derives from the policy of CRS division in which physicians can use
two operation rooms to perform more surgeries in one day. The second OR is
assigned to a physician that is already allocated to perform surgery in a given
day and preferably for physicians with more patients waiting for surgeries, thus
these doctors have 2 ORs (called 2ORs activity) to that day; in the Month 5

DBD
PUC-Rio - Certificação Digital Nº 1521900/CA



Chapter 6. Coordinating physician scheduling for clinic and surgery
appointments to deliver timely access in a specialized surgical unit 117

the physicians can be allocated to any activity according to the availability of
each one (ikpt); for the other months, a fixed allocation is used since there are
several capacity slots already occupied with clinic appointments and surgeries
based on previous physician scheduling, same reason why for Month 3 just
small adjustment of capacity is allowed. Hence, the planning horizon has 100
days since we just consider weekdays. However, we included 10 more days in
these experiments to better see the behavior of the model so the planning
horizon analyzed here have 110 days (|T | = 110).

The CRS division under study consists of ten physicians (|P | = 10).
Physicians can be assigned for 7 types of activities (|K| = 7): operation room
(OR), 2 operations rooms (2 ORs), clinic (C), small surgeries (G), emergency
room (ER), Administrative, Research and Education (A/R/E), and time not
assigned in the unit (UN). The allocation for OR, 2OR and C is based on
demand (dtξ) that has different average number of patients referred to CRS
division for each weekday (λt = 10.04, 16.96, 12.07, 15.68, 7.92). The allocation
for other activities varies from physician to physician according to services
requirements and contractual agreements in which a minimum assignment in
each activity should be respected (nk). The physicians can be assigned for a
maximum of 3 consecutive days in an OR (q = 3). Each physician can perform
up to 8 encounters per day in the clinic and up to 3 surgeries per day in OR
(κkjt). In this surgical division, an average of 68% of the patients seen in the
clinic need surgery (α = 0.68). The CRS division can use per day a maximum
of 4 ORs (u = 4) and must use a minimum of 1 OR per day (l = 1).

An important assumption that is implied in traditional methods for queue
studies is that the system is operating in a steady-state manner, in a sense
that the initialization of variables should not be a concern. However, since
we are proposing an optimization-based approach, it is mandatory to define
initial queue levels. Therefore, we use a result of a preliminary simulation
study (see Martinez et al. [2016a] and Martinez et al. [2016b] to details about
the simulation) using the current configuration of CRS to define the initial
queue for clinic appointments and surgery. Hence, the initial queue for clinic
appointment is equal to 13 and for surgery equal to 168, being the queue for
each physician as presented in Table 6.5.

Table 6.5: Initial queue for surgery per physician
Physician 1 2 3 4 5 6 7 8 9 10

Initial queue 21 20 15 14 20 23 18 10 16 11
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6.3.2
Results

We start defining the number of scenarios that should be used in the
experiments. For this, we used the model considering the factor β = 0.5 to
run preliminary tests as specified in Section 3.2.2 using Monte Carlo Sampling
(MCS) using. The optimal solution for each number of scenarios until achieve
the stop criterion is shown in Table 6.6.

Table 6.6: Gap, lower and upper bound of SAA experiments
Na Measures LBb UBc gap

5
Average 2486.62 2796.01 309.39 (12.44%)
Deviation 29.52 50.25 58.27

Deviation(%) 1.19 1.80 2.34

10

Average 2506.62 2636.01 129.39 (5.16%)
Deviation 25.51 81.29 85.19

Deviation(%) 1.02 3.08 3.40

15

Average 2577.73 2587.48 9.75 (0.38%)
Deviation 18.82 7.87 20.39

Deviation(%) 0.73 0.30 0.79

aN - Number of Scenarios
bLB - Lower Bound
cUB - Upper Bound

The results suggest that the variability is due to the number of scenarios
considered to obtain the solution and tend to reduce as we consider more
scenarios. This effect is related with the fact that, in general, a larger number of
scenarios leads to a more comprehensive staffing and scheduling profile in terms
of its ability to handle with higher demands, which makes the system more
robust with respect to variations in the demand and consecutively achieves
small fluctuations in second-stage. We notice that the optimality gap achieve
the stop criterion defined for 15 scenarios, being the gap 0.38%. Table 6.7
shows the minimum and maximum confidence levels for the optimal gap for
each number of scenarios, which confirm that 15 scenarios can be considered
sufficient to determine the lower and upper bounds of the objective functions
since as for a confidence level of 95%, the maximum value of the gap is ≤ 1%.
The size of the model (i.e., variables and constraints) and the average execution
times are shown in Table N.1 in Appendix N.
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Table 6.7: Confidence interval of the optimal gap
Na 95% Confidence level

5
Min 10.99
Max 13.89

10
Min 3.06
Max 7.27

15
Min -0.11
Max 0.87

aN - Number of Scenarios

To construct the efficiency frontier we vary the value of the β factor from
0 to 1 in the objective function (6-1) and we analyzed the results in terms of
the number of patients waiting for clinic appointments, for surgery and the
total number of patients waiting. Figures 6.4 shows the efficiency frontiers in
terms of β factor vs. the average number of patients waiting.

Figure 6.4: β factor vs. average number of patients waiting: (a) for clinic
appotinments; (b) for surgery; (c) total of patients waiting; (d) total number
of patients waiting without extreme values of β 0 and 1

As can be seen, the efficiency frontier related to the total of patients
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waiting (Figure 6.4 (c)) is the combination of the graphs in Figure 6.4 (a)
and (b) since the total number of patients waiting is the sum of the patients
waiting in the two stages of the treatment. In the Figure 6.4 (d), we remove the
extreme points (β factor = 0 and β factor = 1) to better see the behavior of
the midpoints in the curve. For Figure 6.4 (d), we note that the lowest values
of the total number of patients waiting are achieved to β between 0.4 and 0.6
being the minimum value reached using β = 0.6. We summarize the results in
terms of the average queue, worst case, and average idle capacity for clinic and
surgery service for each value of β factor in Table O.1 in Appendix O.

Figure 6.5 shows the efficiency frontier in terms of the average number
of patients waiting for clinic appointments and the average number of patients
waiting for surgery.

0.1

0.2

0.3

0.4

0.5
0.6

0.7
0.8

0.9

0

5

10

15

20

25

30

35

40

45

50

55

0 5 10 15 20 25 30 35 40 45 50 55

A
v
er

ag
e 

n
u

m
b

er
 o

f 
p

at
ie

n
t 

w
ai

ti
n
g
 f

o
r 

su
rg

er
y

Average number of patients waiting for clinic

Figure 6.5: Average number of patients waiting for clinic appotinments vs.
Average number of patients waiting for surgery

Each point on the graph showed in Figure 6.5 represents the result in
terms of number of patients waiting for each β chosen. The extreme points
were removed since for β = 1 we have only patients waiting for surgery and
for β = 0 we have only patients waiting for surgery, with no trade-off between
the two measures.

Figures 6.6 (a) and (b) shows, respectively, the number of patients waiting
for clinic appointment and surgery over the days in last month of the planning
horizon using the β factor = 0.6 that is the value of β which the total number
of patients waiting is the lowest. In this Figure, we also plot the result of the
observed schedule, which means that we fixed the real schedule used by CRS
during the planning horizon addressed in this study and run the proposed
model.
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Figure 6.6: Comparation between the average number of patients waiting using
the proposed model with β factor = 0.6 and the observed schedule (a) for clinic
appointments; (b) for surgery

From Figure 6.6, we observe that using the proposed model it is possible
to achieve better results in terms of the number of patients waiting than the
schedule manually-defined by CRS since the curve of the ’Observed schedule’
graph is mostly above the curve of the results of the proposed model. The
schedule from the model using β = 0.6 achieves a reduction of 82% and 98%
in terms of the average number of patients waiting in the last month for clinic
appointments and for surgery, respectively.

6.3.3
Discussion

This work presents a mathematical model to minimize the number of
patients waiting for clinic and surgery according to the prioritization policies
we propose: total access, access to clinic or access to surgery (itinerary length).
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The prioritization of one policy over another occurs in the definition of the β
factor. When setting a high value for β, we are working with the Access to
Clinic policy, setting a low value for β the policy Itinerary Length is defined,
and settling intermediates values for β the established policy would be the
Total Access. We present a case of the colorectal surgery (CRS) division of a
large academic medical center to test the model proposed.

From the results, we note that when we work with extreme values of β (β
= 0 or β = 1) the results are not good in terms of the total of patients waiting.
When we set β = 1 we are working with the policy Access to Clinic, so the
prioritization is to patients waiting for clinic appointments and the model do
not have the motivation to reduce the number of patients waiting for surgery
thus the number of patients waiting in this stage of treatment is very high,
contributing to increasing the number of total patients waiting. When we set β
= 0, we are working with the policy Itinerary Length and occur the opposite.
In this case, as the objective is to minimize just the number of patients waiting
for surgery, which is the second stage of the treatment, the model decides not to
flow the patients through the system, i.e., seeing patients in clinic and sending
them to surgery, so the queue in surgery remains zero all the time while the
queue in the clinic increase over the time. Also, from the results, we can say
that setting β from 0.4 to 0.8 we are working with the Total Access policy and
we achieved very similar results using these values, being the better results in
terms of the total number of patients waiting using β = 0.6.

According to the patient’s characteristics referred to the CRS, division
studied and to the practice discussion with physicians, the values of β indicated
for this case study is the values related the Total Access policy. Patients referred
to CRS division addressed in this work are mostly patients with some suspicion
of cancer who need timely access both to clinic appointment with a specialist
and to surgery, if surgery was the treatment indicated (which in that unit
occurs on average 68% of the time). Comparing the results of the observed
schedule with the results from the model using β = 0.6, we see that using
the schedule from the proposed model, the goal of balancing timely access
between clinic and surgery is reached with more success. With the schedule
used by CRS during the planning horizon addressed the number of patients
waiting for surgery increase fast.

The model variation related to clinic access (high β values) is suggested
for practices where the patients have more urgency in the encounter with the
specialist and are not worried about the time for surgery. For example, we can
cite the plastic surgery unit where this situation can occur more frequently.
In plastic surgery division, patients often want quick access to the expert for
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opinion and recommendation, but can wait longer for surgery. One reason is
that these patients, in some cases, do not have sure that they want to perform
the procedure.

For practices where the patients have more urgency in perform the
surgery after pass through the clinic encounter and are not worried about
the waiting time for clinic appointments, the suggestion is the model variation
related to itinerary length (low β values). For example, medical check-up units
and other practices where the number of patients who need surgery is very low
(the alpha is low), but when there are surgical cases, they require urgency.

6.3.4
Conclusions

In this chapter, we presented a novel framework for coordinating physi-
cian scheduling to clinic and surgery appointments in a highly-specialized sur-
gical unit to minimize the number of patients waiting for treatment, and conse-
quently, the access time. Proof of concept was given for the colorectal surgery
(CRS) division of Mayo Clinic in Rochester, Minnesota. Knowing that what
connects demand and capacity is how the unit deals with access to services,
we proposed three different prioritization policies addressed by a mathemati-
cal model in which the prioritization of one policy over another occurs in the
definition of a β factor in the objective function. The model is based on the
two-stage stochastic model, and we created possible realization scenarios to
consider uncertainty in demand (patients referred to surgical specialty divi-
sion) using Sample Average Approximation (SAA). Numerical results demon-
strated that the model performed as expected with the variation of β factor
and can outperform the observed schedule from CRS. There is no single policy
overall; the best policy depends on the goal, the case mix, and the wishes of
the patients of each surgical division. For CRS, we consider the total access
policy the most indicated; in this case, we consider total access when β =
0.6. Total access performs 82% and 98% better than the observed schedule in
terms of the average number of patients waiting in the last month for clinic
appointment and for surgery, respectively.
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Conclusions

Healthcare providers face a significant challenge to meet demand prop-
erly since the demand for health services over the last few decades have raised
due to the increased attention about preventive care and the aging population.
Thus, healthcare administrators often effort to use existing capacity more ef-
ficiently. In this context, the healthcare staff scheduling is one of the modern
healthcare challenges once inadequate scheduling leads to inappropriate pa-
tient treatment, decreasing both patient and provider satisfaction. In this the-
sis, we presented a framework to solve a set of problems related to healthcare
staff scheduling. The models proposed are based on the two-stage stochastic
programming, and we create possible realization scenarios to consider uncer-
tainty in demand using Sample Average Approximation (SAA). To evaluate
the models, we used real historical patient data from two hospitals in Brazil
and one in the USA.

Concerning the first problem presented, we proposed a generalizable and
integrated two-satge stochastic programming that, combined with a discrete-
event simulation model, supports physician staffing and scheduling in the
Emergency Department (ED) considering uncertainties related to patient ar-
rivals able to reduce the time door-to-doctor. We validated and tested our
model using real data from two EDs of Brazilian hospital, and the model
proved to be adaptable to the two different realities. About the second prob-
lem, we proposed a mathematical model approach to provide timely access
to the overall treatment in an Emergency Department. We proposed a two-
stage stochastic programming formulation which the aim is to guarantee that
enough staff (physicians and nurses) will be available to meet patient demand
to minimize the total number of patients waiting per hour. Moreover, the as-
signment of individual physicians is performed for each day and shift following
service requirements and contractual agreements, taking into consideration un-
certainty in patient arrival patterns. We validated and tested our model using
real data from an ED of Brazilian hospitals. For both problems, our main con-
tributions are the development a model that simultaneously supports physician
staffing and scheduling, adequately accounts for service requirements, contrac-
tual agreements and the relation between installed capability and demand,
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all the while considering multiple overlapped shifts, different physician cate-
gories, and physicians preferences; the incorporation of uncertainties in patient
arrivals by means of a two-stage stochastic programming using Sample Aver-
age Approximation; and, to validate and test our model, the application of the
model in case studies using real data from Brazilian hospital EDs.

For the first problem, the proposed methodology enhances alignment
between service capacity and demand, significantly improving all queue and
waiting time indicators, which were evaluated using a discrete-event simulation
model. In fact, for the hospital of case study I, the frequency of queue and
average time door-to-doctor were reduced by 73% and 92%, respectively,
compared to the current manually-defined ED schedule, and for the hospital
of case study II, the frequency of queue decrease about 22% and the average
time door-to-doctor decrease 48%. The Latin Hypercube Sampling performed
better to this problem converging faster to solutions that are close to the
real optimal solution of the problem comparing to Monte Carlo Sampling. For
the second problem, the proposed methodology shows that aligning physician
schedule with patient demand in all stages of treatments is a strategy for
improving patient throughput in the ED, reducing the overall average LOS,
which decrease 23% compared to the current manually-defined ED schedule.
Both in the first and second problem addressed, our methodology facilitates
and speeds up the generation of physician schedules in the EDs studied and
ensures that all scheduling rules are met. It is also important to highlight that
the proposed optimization approach is generalizable to other ED settings, with
only a few minor adaptations.

In the last problem, we presented a novel framework for coordinating
physician scheduling to clinic and surgery appointments in a highly-specialized
surgical unit to minimize the number of patients waiting for treatment, and
consequently the access time, in a highly specialized surgical unit. We proposed
three different prioritization policies, and we discussed each of the three
prioritization policies using an efficiency frontier. Proof of concept was given for
the colorectal surgery (CRS) division of Mayo Clinic in Rochester, Minnesota.
Our main contributions are the development a model that integrates the
scheduling of clinic and surgery appointments, considers the continuity of
care between patient-surgeon, presents the concept of different prioritization
policies, all the while considering the uncertainty in demand. Numerical results
demonstrated that the model can outperform the observed schedule from CRS.
There is no single policy overall; the best policy depends on the goal, the case
mix, and the wishes of the patients of each surgical division. For CRS, we
consider the total access policy the most indicated, which performs 82% and
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98% better than the observed schedule in terms of the average number of
patients waiting in the last month for a clinic appointment and for surgery,
respectively.

We consider that we accomplished with this thesis the objective of
reducing the distance between theoretical research and real-world applications
since we have successfully applied optimization knowledge to design decision
support tools that ably solve the problems addressed.

7.1
Future Perspectives

For future work, the following points would be essential to research:

– Study the impact of service time when it is considered as a random vari-
able in the optimization models, instead of just varying this parameter
in the simulation;

– Perform a stress test for the proposed models, increasing the demand,
decreasing capacity in the three models and increasing the number
of phases of treatment in the second problem, in order to know the
performance of the models in these conditions;

– Consider other staff categories in the model proposed in Chapter 5,
considering two or more staff categories to the same stage of treatment.
This characteristic increases the resolution complexity of the model.

– Generalize the model proposed in Chapter 5 to reflect the operational
characteristics of several EDs without making any adaptation in the
model, i.e., being only necessary to provide a different data set.

– Apply acceleration techniques (e.g Benders’ Decomposition) to achieve
solutions with lower computational time to enable future practical ap-
plications.

– Apply other solutions approaches manly in the problem of Chapter 5
as: Dynamic Programming and Multistage Optmization, Risk Aversion
Control on the optmization, Distributionally Robust Optimization, and
etc.

– Consider the effect of seasonality on patient demand and criticality (case
mix).

– Integrate the analysis of the areas studied (ED, surgical unit) with other
areas of the hospital, for example, bed management, image center. The
ED and the surgical unit are directly affected by the bed management,
and the image center strongly impacts the ED, so the importance of the
integrated analysis of these areas for a global solution.
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– Implement the proposed solutions in the hospitals studied to compare
the current scenario with the improvements achieved in practice.

– Apply the proposed models in other hospitals.
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A
Complete account of the studies screened, assessed for eligi-
bility, and included in the literature review

This appendix provides a complete account of the studies screened,
assessed for eligibility, and included in our review, with reasons for exclusions
at each stage. Of note, we adopt the Preferred Reporting Items for Systematic
reviews and Meta-Analyses (PRISMA) guidelines [Moher et al., 2009].

For data collection, we used the Scopus database and performed a
keyword-driven search strategy. In what concerns the Physician Scheduling
Problem (PSP), our search spanned publications prior to January of 2017 and
comprised the fields “title”, “abstracts”, and “keywords” with no limitations
with regards to the field “journals”. Moreover, the search was limited to papers
written in English, Spanish, or Portuguese. Due to the relative scarcity of
studies dealing with physician scheduling, our search for PSP papers was not
limited by the number of citations.

Keywords included words directly related to physician scheduling (see
items (i)-(iv) below) as well as words related to solution techniques (see item
(vii) below). We also made a specific search for words related to techniques
that address uncertainty (see item (viii) below). Finally, it is worthwhile to
mention that an advanced search was also performed to retrieve different
spelling occurrences of the keywords in both the singular and plural forms. The
keywords were chosen to yield the following unified query, where the asterisk
(*) is used as a substitute for zero or more characters, and the question mark
(?) is used as a substitute for a single character:

(i) ("physician* rostering" OR "physician* scheduling")

(ii) ("resident rostering" OR "resident scheduling" OR "resident physician*
rostering" OR "resident physician* scheduling" OR "residents rostering"
OR "residents scheduling" OR "residents physician* rostering" OR "resi-
dents physician* scheduling")

(iii) ("physician* " OR "residents physician*" OR "resident physician*" OR
resident OR residents)

(iv) ("rostering" OR "scheduling" OR "shift* scheduling" OR "shift* roster-
ing")

DBD
PUC-Rio - Certificação Digital Nº 1521900/CA



Appendix A. Complete account of the studies screened, assessed for eligibility,
and included in the literature review 137

(v) = (iii) AND (iv)

(vi) = (i) OR (ii) OR (v)

(vii) (*heuristic* OR optimi?ation OR "*integer program*" OR "math* pro-
gram*" OR "linear program*" OR "network optimi?ation" OR "goal pro-
gram*" OR "mixed integer program*" OR "multi-objective program*" OR
"multi objective program*" OR "multiple objective program*" OR "multi-
objective optimi?ation" OR "multi objective optimi?ation" OR "multi-
ple objective optimi?ation*" OR "constrain* program*" OR "constrain*
optimi?ation" OR "set covering" OR "set patitioning" OR "?agrangian
heuristic" OR "column generation" OR "ant colony optimi?ation" OR
"tabu search" OR "genetic algorithm*" OR "memetic algorithm*" OR
"grasp" OR "GRASP" OR "neural networks" OR "branch-and-bound" OR
" branch and bound" OR "branch-and-price" OR " branch and price" OR
"branch-and-cut" OR " branch and cut" OR "simulated annealing" OR
"artificial inteligence" OR fuzzy OR "greedy search")

(viii) ("stochastic programm*" OR "stochastic optmi?ation*" OR "robust
programm*" OR "rosbust optmi?ation*" OR uncertain* OR "chance
constrain*" OR "chance-constrain*")

(ix) = (vi) AND (vii) AND (viii)

For study selection, we formulated the following exclusion criteria: (1)
study is not related to physician scheduling; (2) study refers to patient ap-
pointment; (3) study does not use optimization/operation research techniques;
(4) physician scheduling is not the main subject of the study. Studies whose
abstract did not meet any number of the above criteria were excluded from fur-
ther analysis. The studies retained were read in full, and in doing so, we verified
the need to define two additional exclusion criteria: (5) paper is not available
online; (6) study characteristics do not fit the classification field proposed for
the review discussion and the summary table proposed.

Figure 2 details the number of studies screened, assessed for eligibility,
and included in our review, with reasons for exclusion at each stage.
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Figure A.1: Stepwise data collection process for physician scheduling
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B
Detailed account of the constraints defined in the reviewed
Physician Scheduling Problem formulations

This appendix provides a detailed account of the constraints defined in
the reviewed Physician Scheduling Problem (PSP) formulations.
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Table B.1: Time related constraints for PSP

Ref.
A B C D E F G H I J K L M N O P Q R S T U V

h s h s h s h s h s h s h s h s h s h s h s h s h s h s h s h s h s h s h s h s h s h s

Bard et al. [2013] - - - - - - - - - - - - - - - - - - - - - - x x x x - - - - - - - - - - - - - - - - - -
Bard et al. [2014] - - - - - - - - - - - - - - - - - - - - - - x x x x - - - - - - - - - - - - - - - - - -
Bard et al. [2016] - - - - - - - - - - - - - - - - - - - - - - x - x - - - - - - - - - - - - - - - - - - -
Baum et al. [2014] - - - - - - - - - - - - - - - - - - x - - - x - - - - - - - - - - - - - - - - - - - - -

Beaulieu et al. [2000] x - - - - x - - - - - - - x - - x - - - - - - - - - - - - - - x - x - - - - - - - - - -
Bowers et al. [2016] - - - - x - - - - - - - - - - - x - - - - - x - - - - - - - - - - - - - - - - - - - - -

Bruni and Detti [2014] x - - - - - - - x - - - - - - - - - - - - - - - - - x - x - - - - - - - - - - - - - - -
Brunner and Edenharter [2011] x - - - - - - - - - - - - - - - - - - - - - x - - - - - - - x - - - - - - - x - x - - -

Brunner et al. [2009] x - - - - - - - - - - - - - - - - - - - - - - x - - - - - - - - - x - - - - x - x - x -
Brunner et al. [2011] x - x - - - - - - - x - - - - - - - - - - - x - - - - - - - - - - x - - - - x - x - x -

Carrasco [2010] x - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Carter and Lapierre [2001] x x - - x x x x x x - - - - - - - - - - x x - - - - - - - - - - - - - - - - - - - - - -

Cohn et al. [2009] - - - - - - - - - - - - - - - - - - - - x - - - - - - - - - - - - - - - - - - - - - - -
Day et al. [2006] x - - - - - x - - - - - - - x - - - - - - - - - - - - - x - - - x - - - - - - - - - - -

Elomri et al. [2015] - - - - x - - - - - - - - - - - x - - - - - - - - - - - - - - - - - - - - - - - - - - -
Ferrand et al. [2011] x - - - - - - - - - - x x - - - - - - - x - x - x - - - - - - - - - - - - - - - - - - -
Fügener et al. [2015] - - - - x - - - - - - - x - - - x - - - - - - - - - - - - - - - - - - - - - - - - - - -
Gendron et al. [2005] x - - - - - - - - - - - - - - - x - - - - - - - - - - - - - - x - x - - - - - - - - - -

Güler [2013] - - - - - - - - - - - - - - - - - - - - x - - - - - - - x - - - - - - - - - - - - - - -
Güler et al. [2013] - - - - x - - - - - - - - - - - x - - - - - x - - - - - - - - - - - - x - - - - - - - -

Gunawan and Lau [2010] - - - - - - - - - - - - - - - - - - - - - - x - - - - - - - - - - - - - - - - - - - - -
Gunawan and Lau [2013] - - - - - - - - - - - - - - - - x - - - - - - - - - - - - - - - x - - - - - - - - - - -
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Hidri and Labidi [2016] - - - - x - - - - - - - - - - - - - - - - - - - - - - - - - x - - - - - - - - - - - - -
Huang et al. [2016] x - - - x - x - x - - - - - - - x - - - - - x - - - x - - - - - - - - - - - - - - - - -

Kazemian et al. [2014] x - - - - - - - - - x - - - x - - - - - - - - - - - - - x - - - x - - - - - - - - - - -
Lo and Lin [2011] - x - - - - x - - - - - - - - x - - - - - - - - - - x - - - - x - x - - - - - - - - - -

Rosocha et al. [2015] x - - - x x - - - - - - - - - - x - - - - - x - - - - - x - - x x - - - - - - - - - - -
Savage et al. [2015] - - - - - - - - - - - - - - - - x - - - - - - - - - - - - - - - - - - - - - - - - - - -
Shamia et al. [2015] - - - - - - - - - - - - - - - - x - - - x - - - - - - - - - - - - - - - - - - - - - - -
Sherali et al. [2002] - - x - - - - - - - - - - - - - - - - - - x - - - - - - - - - - - - - - - - - - - - - -

Smalley and Keskinocak [2016] - - - - - - - - - - - - - - - - x - - - - - - - - - - - - - - - - - - - - - - - - - - -
Smalley et al. [2015] x - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - x - - - x - - - - - - -

Stolletz and Brunner [2012] x - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - x - x - - - - x - x - x -
Topaloglu [2006] - - - - - - - - - - - x - - - - x - - - - - x - x - - - - - - - - - - - - - - - - - - -
Topaloglu [2009] - - - - x - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Topaloglu and Ozkarahan [2011] - - - - x - - - - - - - - - x - x - - - - - - - - - - - - - x - x - - - - - - - - - - -
Van Huele and Vanhoucke [2014] - - - - x - - - - - - - - - - - x - - - - - - - - - - - - - x - x - - - - - - - - - - -

Wang et al. [2007] - x - - - - - - - - - - - - x - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
White and White [2003] - - - - x - - - - - - x - - - - - - - - - - x - - - - - - - - - - - - - - - - - - - - -

A - Minimum interval between shift allocations; B - Minimum interval after a block of shifts; C - Maximum consecutive working days; D - Minimum consecutive
working days; E - Minimum consecutive days off; F - Maximum consecutive shift type; G - Minimum consecutive shift type; H - Maximum consecutive working
hours; I - Maximum shift/block per day; J - Minimum shift/block per day; K - Maximum number of days on in a period; L - Maximum number of shifts worked
during a period; M - Minimum number of shifts worked during a period; N - Maximum number of days off in a period; O - Minimum number of days off in a
period; P - Minimum number of hours a physician must work in period; Q - Maximum number of hours a physician must work in period; R - Maximum number
of assignments per week day; S - Maximum number of hours worked per day; T - Minimum length of time a shift must span; U - Maximum length of time a shift
must span; V - Assigned the breaks required for each shift length. h - Hard constraints; s - Soft constraints.
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Table B.2: Weekend related constraints for PSP

Ref.
A B C D E F G

h s h s h s h s h s h s h s

Beaulieu et al. [2000] - x - - - - - - - - - x - -
Bowers et al. [2016] - - - - x - - - - - - - - -

Bruni and Detti [2014] - - - - - - - - x - - - - -
Carter and Lapierre [2001] - - - - - - x x x x - - x x

Ferrand et al. [2011] - - - - x - - - x - x - - -
Fügener et al. [2015] - - - - - - x - - - - - - -
Güler et al. [2013] - - - - x - - - - - - x - -

Hidri and Labidi [2016] - - - - - - - - - - x - - -
Huang et al. [2016] - - - - - - x - - - - - - -
Rosocha et al. [2015] - - - - - - - x x x - x - -
Sherali et al. [2002] - - - - - - x - - - - - - -
Topaloglu [2006] - - - x - - - - - - - - - -
Topaloglu [2009] - - - - x - - - - - - - - -

Topaloglu and Ozkarahan [2011] - - - - - - x - - - - - - -
Van Huele and Vanhoucke [2014] - - - - - - - - - x - - - -

A - Number of complete working weekends; B - Number of weekend off in a period; C -Number of working weekend days; D - Maximum number of working
weekends; E - Maximum number of consecutive work weekends; F - No split weekends; G - Work in identical shift types over a weekend. h - Hard constraints; s -
Soft constraints.

Table B.3: Shift/pattern sequencing constraints for PSP
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Ref.
A B C D E F G H I J

h s h s h s h s h s h s h s h s h s h s

Bard et al. [2013] - - - - x - - - - - - - x x - - - - - -
Bard et al. [2014] - - - - x - - - - - - - x x - - - - - -
Bard et al. [2016] - - - - x - - - - - - - - - - - - - - -
Baum et al. [2014] - - - - x - - - - - - - - - - - - - - -

Beaulieu et al. [2000] - - x - - - - - - x - - x x - - - - - -
Bowers et al. [2016] - - - - x - - - x - - - x - - - - - - -

Bruni and Detti [2014] - - - - x - x - x - - - - - - - - - - -
Cohn et al. [2009] - - - - - - - - - - - - - - x - - x - x
Day et al. [2006] - - - - x - - - - - - - - - - - - - - -

Ferrand et al. [2011] - - x - - x - - - - - - - - - - - - - -
Fügener et al. [2015] - - - - x - - - - x - - - - - - - - - -
Güler et al. [2013] - - - - - - - - x x x x - x - - - - - -

Gunawan and Lau [2013] - - - - - - - - - - - - x - - - - - - -
Hidri and Labidi [2016] - - x - x - - - - - - - - - - - - - - -
Kazemian et al. [2014] - - x - - - - - - - - - x - - - - - - -

Lo and Lin [2011] - x - x - - - - - - - - - - - - - - - -
Rosocha et al. [2015] - - - - - x - - - - - - x x - - - - - -

Smalley and Keskinocak [2016] - - - - - - - - x - - - - - - - - - - -
Smalley et al. [2015] - - - - x x - - - - - - - - - - - - - -

Stolletz and Brunner [2012] - - - - - - - - x - - - - - - - - - - -
Topaloglu [2006] - - - - x - - - - - - - x - - - - - - -
Topaloglu [2009] - - - - - - - - x - - - - - - - - - - -

Topaloglu and Ozkarahan [2011] - - - - - - - - x - x - x - - - - - - -
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White and White [2003] - - - - - x - - - - - - - - - - - - - -

A - Off-on-off pattern; B - Minimum number of days off after night shifts or consecutive night shift; C - Assign specifics shifts patterns/to skill; D - No certain
shift type for specific physician; E - Maximum number of certain shift type; F - Minimum number of certain shift type; G - Avoid some shifts patterns; H -
Residents cannot be assigned to calls at different hospitals on the same night; I - Assigned to work a shift on exactly one holiday during the period; J - Night
assign location be the hospital closest to their daytime assignment. h - Hard constraints; s - Soft constraints.

Table B.4: Coverage related constraints for PSP

Ref.
A B C D E

h s h s h s h s h s

Bard et al. [2013] x - - x x - - - - -
Bard et al. [2014] x - - x - - - - - -
Bard et al. [2016] - - x - x - - - - -
Baum et al. [2014] - - x - x - - - - -

Beaulieu et al. [2000] x - - - - - - - - -
Bowers et al. [2016] x - - - - - - - - -

Bruni and Detti [2014] x - - - - - - - - -
Brunner and Edenharter [2011] x - - - - - - x - -

Brunner et al. [2009] x - - - - - - - - -
Brunner et al. [2011] - - - - - - - - - -

Carrasco [2010] x - - - - - x - - -
Carter and Lapierre [2001] x x - - - - - - - -

Cohn et al. [2009] x - - - - - - - - -
Day et al. [2006] x - - - - - x - - -
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Ferrand et al. [2011] - - - x - - - - - -
Fügener et al. [2015] x - - - - - x - - -
Gendron et al. [2005] x - - - - - - - - -

Güler [2013] x - - - - - - - - -
Güler et al. [2013] - - x - x - - - - -

Gunawan and Lau [2010] - - - - - - - - - x
Hidri and Labidi [2016] x - - - - - - - - -
Huang et al. [2016] x - - - - - - - - -

Kazemian et al. [2014] x - - - - - - - - -
Lo and Lin [2011] x - - - - - - - - -

Rosocha et al. [2015] x - - - - - x - - -
Savage et al. [2015] - x x - - - - - - -
Sherali et al. [2002] x - - - - - x - - -

Smalley and Keskinocak [2016] - - - - x - x - - -
Smalley et al. [2015] x - - - - - - - - -

Stolletz and Brunner [2012] x - - - - - - - - -
Topaloglu [2006] x - - - - - - - - -

Topaloglu and Ozkarahan [2011] - x - - - - - - x -
Turner et al. [2013] - - - - - - - - - -

Van Huele and Vanhoucke [2014] x - - - - - - - - -
Wang et al. [2007] x - - - - - - - - -

White and White [2003] - - - - - - - x - -

A - Cover required; B - Minimum staff level; C - Maximum staff level; D - Assign specific skill category per shift; E - Maximum number of physician for each
period of work. h - Hard constraints; s - Soft constraints.
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Table B.5: Preference/Fairness related constraints for PSP

Ref.
A B C D E F G

h s h s h s h s h s h s h s

Bard et al. [2016] - - - - - - x - - - - - - -
Baum et al. [2014] - x - - - x - - - - - - - -

Beaulieu et al. [2000] - - x - - - - - - - - - - -
Bowers et al. [2016] x - x x - - - - - - - - - -

Bruni and Detti [2014] - x - - - - - - - - - - - -
Brunner and Edenharter [2011] - - - - - - - - - - - - - x

Brunner et al. [2009] - - - - - - - - - - - - - x
Brunner et al. [2011] - - - - - - - - - - - - - x

Carrasco [2010] x x - - - - - - - - - - - -
Carter and Lapierre [2001] x x - x - - - - - - - - - -

Cohn et al. [2009] - x - x - - - - - - x - - -
Elomri et al. [2015] - x - - - - - - - - - - - -
Ferrand et al. [2011] x - - - - - - - - - - - - -
Fügener et al. [2015] - x - x - - - - - - - - - -
Gendron et al. [2005] - x x - - - - - - - - - - -

Güler [2013] - - - x - - - - - - - - - -
Güler et al. [2013] - - - x - - - - - - - - - -

Gunawan and Lau [2010] - x - x - - - - - - - - - -
Gunawan and Lau [2013] - - - x - - - - - - - - - -
Hidri and Labidi [2016] - - - - - - - - - - - - - -
Huang et al. [2016] - - - x - - - - - - - - - -

Kazemian et al. [2014] - - - - - - x - - - - - - -

DBD
PUC-Rio - Certificação Digital Nº 1521900/CA



Appendix
B.

D
etailed

accountofthe
constraints

defined
in

the
reviewed

Physician
Scheduling

Problem
form

ulations
147

Lo and Lin [2011] - - - x - - - - - - - - - -
Rosocha et al. [2015] - - - - - - - - - x - - - -
Shamia et al. [2015] x - - - - - - - - - - - - -
Sherali et al. [2002] - - - x - - - - - - - - - -

Smalley and Keskinocak [2016] - x - x - - - - - - - - - -
Smalley et al. [2015] - - - x x - - - - - - - - -

Stolletz and Brunner [2012] - x - x x - - - - - - - - x
Topaloglu [2006] - x - - - - - - - - - - - -
Topaloglu [2009] x x - x - - - - - - - - - -

Van Huele and Vanhoucke [2014] - - - x - - - - - - - - - -
Wang et al. [2007] - x - x - - - - - - - - - -

White and White [2003] - x - - - - - - - - - - - -

A - Balancing workload; B - Allocation according with the preferred schedule or shift rotational profile; C - Maximum overtime assigned to each physician; D -
Number of a shift type in a period for a given rotation should remain the same/Shift change is not allowed during bedside multidisciplinary rounds; E -
Schedules with few changes over time; F - No assign certain category in a specific day; G - All shift starting times in his or her schedule for an arbitrary week
should be contained in an individual time window of pre-defined length. h - Hard constraints; s - Soft constraints.

Table B.6: Other constraints for PSP

Ref.
A B C D E F G H I J K L M N O P Q R S

h s h s h s h s h s h s h s h s h s h s h s h s h s h s h s h s h s h s h s

Bard et al. [2013] - - x - - - - - - - - - - - - - - - - x - x - x x - x - - - - - - - x x x -
Bard et al. [2014] - - x - - - - - - - - - - - - - - - - x - x - x x - x - - - - - - - - - - -
Bowers et al. [2016] x - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Carrasco [2010] - - - - - - - - - - - - - x - - - - - - - - - - - - - - - - - - - - - - - -
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Cohn et al. [2009] - - - - - - - - - - - x - - - - - - - - - - - - - - - - - - - - - - - - - -
Elomri et al. [2015] - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - x - - - - -

Güler [2013] - - - - - - - - - - - - - - - x - x - - - - - - - - - - - - - - - - - - - -
Güler et al. [2013] - - x - - x - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Gunawan and Lau [2010] - - - - - - - - - - - - - - - - - - - - - - - - - - - - x - - - - - - - - -
Rosocha et al. [2015] - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - x - - - - - - -
Smalley et al. [2015] - - x - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

A - Continuity of staff when treating patients; B - Tutorship roster; C - Working separately; D - Each employee is assigned at most to one location and clinic
type per time block per week; E - A clinic should be staffed with zero employees or with at least the minimum amount necessary to provide that type of clinic
service; F - Prespecified number of shifts at each hospital; G - The group of employees assigned to the same shift, should change often and show no preference for
specific pairings; H – Minimum duration that a resident has to work in a ward/clinic type; I - Minimum time residents work with each specialist; J - The ratio of
house staff to faculty should be maximized within the given limits; K -Each resident should be assigned the same clinic days each week; L - Minimum number of
faculty on duty each week; M - For each team at most max T team members can be assigned clinic duty on any day; N- Maximum assignment per area; O -
Maximum of duty per shift; P - Standard day-offs have to be determined before scheduling; Q - Each resident must perform all his duty in the same department
in a period; R - Minimum house staff on a required inpatient rotation; S - No violation of ratio of house staff to faculty. h - Hard constraints; s - Soft constraints.
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This appendix contains an assessment of planning horizon, shift types,
personnel characteristics, performance measures, and constraints found in the
surveyed Physician Scheduling Problem (PSP) papers.
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Table C.1: Planning horizon, shift types, and personnel character-
istics found in surveyed PSP papers

Ref. (A) PH (B)
Shifts number (C) Shift length (D) Shift start (E) Shift overlapping (F)

CS (G)
Skill categories (H)

1 2 3 + UD F D F D NO O 1 2 3 + SSep. HSub.

Bard et al. [2013] UD - - x - - x - x - x - x x - - - x -
Bard et al. [2014] 1m - x - - - x - x - x - - x - - - x -
Bard et al. [2016] 1m - x - - - x - x - x - - x - - - x -
Baum et al. [2014] 1m - x - - - x - x - x - - - - x - x -
Beaulieu et al. [2000] 3m x - - - - x - x - x - - x - - - x -
Bowers et al. [2016] 4w - - - x - x - x - - x - x - - - x -
Bruni and Detti [2014] 9w - - x - - x - x - - x - x - - - x -
Brunner and Edenharter [2011] UD - x - - - x - x - x - - - - - x x -
Brunner et al. [2009] 1w - - - - x - x - x - x - - x - - - x
Brunner et al. [2011] 2w - - - - x - x - x - x - x - - - x -
Carrasco [2010] UD - - - - x - x - x - x - x - - - x -
Carter and Lapierre [2001] 1y - - - x - x - x - x - - - - x - x -
Cohn et al. [2009] 1y x - - - - x - x - x - - - x - - x -
Day et al. [2006] 4w - - - x - x - x - x - - - - - x x -
Elomri et al. [2015] 2m - x - - - x - x - - x - x - - - x -
Ferrand et al. [2011] 1y - - x - - x - x - x - x x - - - x -
Fügener et al. [2015] UD - x - - - x - x - - x - - - - x x -
Gendron et al. [2005] 2w - - - x - x - x - - x - x - - - x -
Güler [2013] 1m x - - - - x - x - x - x - x - - x -
Güler et al. [2013] 3m - x - - - x - x - x - - - - - x x -
Gunawan and Lau [2010] 1w - x - - - x - x - x - - x - - - x -
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Gunawan and Lau [2013] 5d - x - - - x - x - x - - x - - - x -
Hidri and Labidi [2016] 4w - x - - - x - x - x - - x - - - x -
Huang et al. [2016] 1m - - x - - x - x - x - - - x - - x -
Kazemian et al. [2014] 4w - - - - x - x x - - x - - - - x x -
Lo and Lin [2011] UD - - x - - x - x - x - - x - - - x -
Rosocha et al. [2015] 1m - - - - - x - x - x - - - x - - x -
Savage et al. [2015] 1d - - - x - x - x - - x - x - - - x -
Shamia et al. [2015] 2m - x - - - x - x - x - - - x - - x -
Sherali et al. [2002] 1m x - - - - x - x - x - - - - x - - x
Smalley and Keskinocak [2016] 1y - x - - - - x x - - x - - - - x x -
Smalley et al. [2015] 51w - - x - - x - x - - x - - - x - x -
Stolletz and Brunner [2012] 2w - - - - x - x - x - x - x - - - x -
Topaloglu [2006] 1m - x - - - x - x - x - - - - x - x -
Topaloglu [2009] 1m - x - - - x - x - x - - - - - x x -
Topaloglu and Ozkarahan [2011] 4w - - x - - x - x - - x - - - x - x -
Turner et al. [2013] 1d - - - - - x - x - x - - - - - x x -
Van Huele and Vanhoucke [2014] 1w - - - - - x - x - x - - - - - x x -
Wang et al. [2007] 1m x x - - - x - x - x - - x - - - x -
White and White [2003] 4w x - - - - x - x - x - - - - x - - x

Ref. – Reference PH – Planning horizon; w – week(s); m – month; d – day(s); h – hours; y – year; UD – user-definable + More shifts; UD – user-definable F –
fixed; D – definable NO – non-overlapping; O – overlapping CS – Cyclical shifts SSep. – Schedule separately; HSub.- Hierarchical substitution allowed

Table C.2: Performance measures found in surveyed PSP papers

Objective CV PR PC OT OP US HW FA RE PH OS DE QU #P PO UD VI MD CR TC
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Min/Max Min Max Min Min Min Min Max Max Min Min Min Min Min Min Min Min Min Min Min Min

Bard et al. [2013] x - - - - - - - - - - - - - - - - - - -
Bard et al. [2014] x - - - - - x - - - - - - - - - - - - -
Bard et al. [2016] - - - - - - x - - - - - - - - - - - - -
Baum et al. [2014] - - - - - - - - - - - - - - - - - x x -
Beaulieu et al. [2000] - x - - - - - - - - - - - - - - - - - -
Bowers et al. [2016] x - - - - - - - - - - - - - - - - - - -
Bruni and Detti [2014] - x - - - - - - - - - - - - - - - - - -
Brunner and Edenharter [2011] - x x - - - - x - - - - - - - - - - - -
Brunner et al. [2009] - - - - - - - - x - - - - - - - - - - -
Brunner et al. [2011] - - - x x - - - - - - - - - - - - - - -
Carrasco [2010] - - - x x - - - - - - - - - - - - - - -
Carter and Lapierre [2001] - - - - - - - - - - - x - - - - - - - -
Cohn et al. [2009] - - x - x - - - - - - - - - - - - - - -
Day et al. [2006] - - - - - - x - - - - - - x - - - - - -
Elomri et al. [2015] - - - - - - - x - - - - - - - - - - - -
Ferrand et al. [2011] x - - - - - - - - - - - - - - - - - - -
Fügener et al. [2015] x x x - - - - - - - - - - - - - - - - -
Gendron et al. [2005] - - - - - - - x - - - - - - - - - - - -
Güler [2013] x - - - - - - - - - - - - - - - - - - -
Güler et al. [2013] x - - - - - - - - - - - - - - - - - - -
Gunawan and Lau [2010] - x - - - - - - - - - - - - - x - - - -
Gunawan and Lau [2013] - x - - - x - - - - - - - - - - - - - -
Hidri and Labidi [2016] - - - x - - - - - - - - - - - - - - - -
Huang et al. [2016] - x - - - - - - - - - - - - - - - - - -
Kazemian et al. [2014] - - - - - - - - - x - - - - - - - - - -
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Lo and Lin [2011] x - - - - - - - - - - - - - - - - - - -
Rosocha et al. [2015] x - - - - - - - - - - - - - - - - - - -
Savage et al. [2015] - - - - - - - - - - - - x - - - - - - -
Shamia et al. [2015] x - - - - - - - - - - - - - - - - - - -
Sherali et al. [2002] x - x x x - - - - - - - - - - - - - - -
Smalley and Keskinocak [2016] - - x - - x - - - - - x - - - - x - - -
Smalley et al. [2015] - - x - - - - - - x - - - - - - - - - -
Stolletz and Brunner [2012] - - - x x - - - - - - - - - x - - - - -
Topaloglu [2006] x - - - - - - - - - - - - - - - - - - -
Topaloglu [2009] x - - - - - - - - - - - - - - - - - - -
Topaloglu and Ozkarahan [2011] - - - - - x - - x - x - - - - - - - - -
Turner et al. [2013] x - - - - - - - - x - - - - - - - - - -
Van Huele and Vanhoucke [2014] - - - x - - - - - - - - - - - - - - - -
Wang et al. [2007] x - - - - - - - - - - - - - - - - - - -
White and White [2003] x - - - - - - - - - - - - - - - - - - -

CV - Soft Constraint Violations; PR – Preferences; PC - Preference Cost; OT - Overtime Assignment Costs; OP - Cost of outside physicians; US –
Understaffing; HW – Hour worked by residents; FA - Fairly in the scheduling; RE – Remuneration; PH – patient handoff continuity; OS – Overstaffing; DE -
Deviation from Equality; QU- Queue; #P – Number of physicians/residents; PO - Paid out time cost; UD - Number of unscheduled duties; VI - Variance of
intervals between consecutive physician duties; MD - Maximum deviation between the number of patients that can be seen during any session over the week
from the average; CR - Number Changes that result from Reassigning clinic sessions over the week. TC – travel cost.

Table C.3: Constraints found in surveyed PSP papers

Ref. (A)
TR (B) WR (C) SP/S (D) CR (E) P/R (F) O (G)

HC SC HC SC HC SC HC SC HC SC HC SC
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Bard et al. [2013] x x x x - - x x x x - -
Bard et al. [2014] x x - - x x x x - - x x
Bard et al. [2016] x x - - x x x x - - x x
Baum et al. [2014] x - - - x - x - x - - -
Beaulieu et al. [2000] x - - - x - x - - x - -
Bowers et al. [2016] x x - x x x x - x - - -
Bruni and Detti [2014] x - x - x - x - x x x -
Brunner and Edenharter [2011] x - x - x - x - - x - -
Brunner et al. [2009] x - - - - - x x - x - -
Brunner et al. [2011] x x - - - - x - - x - -
Carrasco [2010] x x - - - - x - - x - -
Carter and Lapierre [2001] x - - - - - x - x x - -
Cohn et al. [2009] x - - - x - x - x x - -
Day et al. [2006] x - - - x - x - - - - -
Elomri et al. [2015] x - - - - - - - - x x -
Ferrand et al. [2011] x x x - x x - x x - - -
Fügener et al. [2015] x - x - x x x - - x - -
Gendron et al. [2005] x x - - - - x - x x - -
Güler [2013] x - - - - - x - - x - -
Güler et al. [2013] x x x x x x x - - x x x
Gunawan and Lau [2010] x - - - - - - x - x x -
Gunawan and Lau [2013] x - - - x - - - - x - -
Hidri and Labidi [2016] x - x - x - x - - - - -
Huang et al. [2016] x - x - - - x - - x - -
Kazemian et al. [2014] x - - - x - x - x - - -
Lo and Lin [2011] x x - - - x x - - x - -
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Rosocha et al. [2015] x x x x x x x - - x x -
Savage et al. [2015] x - - - - - - x - - - -
Shamia et al. [2015] x - - - - - - - x - - -
Sherali et al. [2002] x x x - - - x - - x - -
Smalley and Keskinocak [2016] x - - - x - x - - x x -
Smalley et al. [2015] x - - - x x x - x x - -
Stolletz and Brunner [2012] x x - - x - x - x x - -
Topaloglu [2006] x x - x x - x - - x - -
Topaloglu [2009] x - x - x - - - x x - -
Topaloglu and Ozkarahan [2011] x - x - x - x x - - - -
Turner et al. [2013]
Van Huele and Vanhoucke [2014] x - - x - - x - - x - -
Wang et al. [2007] x x - - - - x - - x - -
White and White [2003] x x - - - x - x - x - -

TR – Time related constrains; WR – Weekend related constrains; SP/S - Shifts pattern/sequencing constrains; CR - Cover related constraints; P/R -
Preference/Fairness related constraints; O – Other constraints; HC – Hard constraints; SC - Soft constraints
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Extra material from the Hospital A’s case study from Chapter
4

Table D.1: Current schedule of physicians in the Hospital A
Week 1 Week 2 Week 3 Week 4

Shift M T W T F S S M T W T F S S M T W T F S S M T W T F S S

1 5 5 5 5 5 5 2 5 5 5 5 5 4 4 5 5 5 5 5 5 4 5 5 5 5 5 4 5
2 2 2 1 2 2 2 2 2 2 1 2 1 2 2 2 2 1 2 2 2 2 2 2 1 2 2 2 2
3 2 1 2 1 2 3 3 2 1 2 2 1 3 3 2 1 2 1 2 3 3 2 1 2 2 1 3 3
4 5 5 5 5 3 5 2 5 5 5 5 3 4 4 5 5 5 5 3 4 4 5 5 5 5 3 4 5
5 2 2 2 1 1 2 2 2 2 2 1 0 2 2 2 2 2 1 1 2 2 2 2 2 1 0 2 2
6 2 2 2 2 1 3 3 2 2 2 2 0 3 3 2 2 2 2 2 3 3 2 2 2 2 0 3 2
7 3 4 4 3 3 4 3 3 4 4 4 4 1 3 3 4 4 4 3 3 3 3 4 4 3 3 3 2

Figure D.1: Fit test of the patients arrival distribution in the Hospital A
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Table D.2: Average interval between arrival per hour and day of week in ED
of Hospital A

Day

Time of day (h)a M T W T F S S

0 15.0 11.3 13.9 12.2 14.3 12.7 13.7

1 18.5 15.4 18.3 17.3 16.3 17.7 17.1

2 24.9 22.2 25.1 25.7 24.2 23.0 23.6

3

32.4 33.3 34.1 33.7 37.0 34.3 32.2
4
5
6

7 17.7 16.8 18.3 20.0 20.1 21.5 25.4

8
8.4 9.7 9.9 11.4 10.8 11.8 12.723

9 6.0 6.5 6.8 7.2 8.0 8.4 7.9

10
3.8 4.4 4.5 4.8 5.2 5.1 5.111

12
4.3 4.8 5.2 5.3 5.8 5.5 5.314

13
4.5 5.1 5.4 5.3 5.9 5.7 5.815

16

4.8 5.5 5.9 6.2 6.6 6.4 6.317
20

18
5.1 5.8 6.4 6.7 7.6 7.5 6.721

a24 hour clock format
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E
Size of the model from the Hospital A’s case study from
Chapter 4

The size of the models (i.e., variables and constraints), average execution
times, and their standard deviation are shown in Table E.1.

Table E.1: Size of the model from the case study in the Hospital A
Scenarios Variables Constraints Time(s) St.Dev (s)

100 43373 53215 15.27 28.02
200 76973 70015 17.97 12.97
300 110573 86815 26.24 35.53
400 144173 103615 33.01 26.47
500 177773 120415 36.43 10.12
600 211373 137215 39.41 11.23
700 244973 154015 46.63 6.99
800 278573 170815 57.5 6.22
900 312173 187615 61.11 29.94
1000 345773 204415 69.26 17.40
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Extra SAA material from the Hospital A’s case study

Table F.1 shows the minimum and maximum confidence levels for the
optimal gap in each experiment.

Table F.1: Confidence interval of the optimal gap from case study in the
Hospital A

Monte Carlo Sampling Latin Hypercube Sampling

100 Scenarios
Min 234.834 87.929
Max 262.424 87.960

200 Scenarios
Min 89.017 18.512
Max 96.650 18.539

300 Scenarios
Min 53.603 11.343
Max 60.831 11.344

400 Scenarios
Min 38.381 5.395
Max 43.473 5.419

500 Scenarios
Min 35.763 4.277
Max 39.471 4.302

600 Scenarios
Min 26.990 0.000
Max 31.321 0.024

700 Scenarios
Min 22.634 -0.043
Max 26.473 -0.019

800 Scenarios
Min 16.979 -0.969
Max 20.541 -0.945

900 Scenarios
Min 15.087 0.156
Max 18.310 0.180

1000 Scenarios
Min 15.423 0.000
Max 18.658 0.000

Tables F.2 and F.3 show the number of first-stage solutions in the in-
sample analysis, i.e., how many different solutions were observed in each
replication. In the tables, we present the results of each replication by varying
the number of scenarios using the Monte Carlo and the Latin Hypercube
methods, respectively. The solution we consider for analysis here is the number
of physicians allocated for each day and shift. For example, in Table F.2 we
see that using 100 scenarios we have 5 possible solutions for the number of
physicians that should be allocated on Monday’s Shift 1.

We can observe from Table F.2 that as we increase the number of
scenarios, the number of possible solutions decreases, tending to converge to a
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single solution. We see that the Average Number of Solutions (ANS) is 3.8 for
100 scenarios and decreases progressively reaching 2.3 for 1,000 scenarios. We
observed the same behavior in Table F.3 using the Latin Hypercube technique.
However, we noticed a faster convergence tending to a single solution using this
sampling method (ANS = 1.5 for 1,000 scenarios).

Table F.2: Number of solutions using Monte Carlo Sampling method
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

ANSb
Shiftsa 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Sc
en

ar
io
s

100 5 4 4 5 4 4 3 3 4 4 5 3 4 3 4 5 3 5 3 4 3 4 4 4 5 4 4 3 4 4 4 5 3 4 2 3 3 3 5 4 3 3 4 4 4 5 3 3 2 3.8
200 3 3 3 5 4 3 2 3 4 3 4 3 3 2 2 3 3 3 3 3 2 3 3 3 4 3 2 2 3 4 3 4 3 3 2 3 3 3 4 3 3 2 4 4 3 4 3 2 2 3.0
300 3 3 3 4 3 2 2 3 3 3 5 3 2 1 2 2 3 3 3 2 2 3 3 3 4 2 2 2 3 3 3 4 3 3 2 3 3 3 4 3 3 2 3 3 2 3 3 3 2 2.8
400 3 3 3 4 3 2 2 2 4 3 5 3 3 2 2 3 3 3 3 2 1 3 3 3 3 2 2 2 2 2 3 4 2 3 2 3 4 2 3 3 3 2 3 4 2 3 3 3 2 2.8
500 3 3 2 3 3 3 2 2 3 3 4 3 2 1 2 2 3 3 2 2 1 3 3 2 4 3 2 1 2 2 3 4 2 3 2 2 3 2 3 3 3 2 2 3 3 4 3 3 2 2.6
600 3 3 3 4 3 2 2 3 3 3 4 3 2 1 2 2 3 3 2 2 1 3 2 2 3 2 3 2 2 2 3 4 3 3 2 2 3 2 3 3 3 2 3 3 2 3 3 3 2 2.6
700 2 3 4 4 3 2 2 3 3 3 4 3 2 2 2 2 2 3 2 2 1 2 3 2 3 2 2 1 3 2 3 2 2 3 2 2 3 2 3 3 3 2 3 3 2 3 3 3 2 2.5
800 3 3 3 3 3 2 2 2 2 3 3 3 2 1 2 2 3 3 2 2 1 2 2 2 3 2 1 1 2 2 3 2 2 2 2 3 3 3 4 3 3 2 3 4 2 3 2 2 2 2.4
900 2 3 2 3 2 2 2 2 2 3 3 3 2 1 2 2 3 3 2 2 1 3 3 2 3 2 2 1 2 2 3 3 2 3 2 2 2 3 3 3 3 2 2 2 2 3 2 3 2 2.3
1000 2 3 2 3 3 2 2 2 2 3 3 3 2 1 2 2 3 3 2 2 1 2 3 2 3 2 2 1 2 2 3 3 2 2 2 2 3 3 3 2 3 2 2 3 2 3 3 2 2 2.3

aShift distributions (shift 1 to shift 7) as showed in Figure 4.3
bANS - Average Number of Solutions

Table F.3: Number of solutions using Latin Hypercube Sampling method
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

ANSb
Shiftsa 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

Sc
en

ar
io
s

100 3 4 3 5 3 2 2 2 4 3 4 4 3 3 3 4 4 4 3 4 2 4 4 4 4 3 2 2 3 3 3 4 3 4 2 3 4 3 4 3 3 2 4 4 3 4 3 3 2 3.2
200 3 3 3 4 3 3 2 3 3 3 3 2 2 1 2 3 3 4 2 3 1 3 2 2 3 2 2 1 3 3 3 4 2 3 2 2 3 3 3 3 3 2 3 3 3 3 2 2 2 2.6
300 3 3 2 4 3 2 2 2 2 3 4 3 2 1 2 2 2 3 2 2 1 3 2 2 3 2 1 1 2 2 3 3 2 3 2 3 3 3 3 3 3 2 2 2 2 3 2 2 2 2.4
400 2 2 3 4 3 2 2 2 2 3 3 2 2 1 1 1 2 2 2 2 1 1 2 2 3 2 1 1 2 2 3 3 2 2 2 2 3 3 2 3 3 2 2 2 2 3 2 2 2 2.1
500 3 3 2 3 3 2 2 2 2 3 4 2 2 1 2 2 2 3 2 2 1 1 2 2 3 2 1 1 2 3 3 2 2 2 2 2 3 2 2 3 3 2 2 2 2 3 2 1 1 2.2
600 2 2 2 2 2 2 2 2 2 3 3 2 2 1 1 1 2 2 1 1 1 1 1 2 3 2 1 1 1 1 2 2 2 2 2 2 2 2 2 3 2 2 2 2 3 2 2 2 1 1.8
700 2 2 3 2 2 2 2 2 3 3 2 2 1 1 1 2 2 1 1 1 1 2 2 3 2 1 1 1 1 2 2 1 1 1 2 2 2 2 2 2 1 2 2 2 3 2 1 1 1 1.7
800 1 1 2 2 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 2 1 2 2 2 2 1 1 1 1.4
900 1 1 2 2 1 2 2 2 2 2 3 2 2 1 1 1 2 2 1 1 1 1 1 2 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 2 2 1 1 1 2 2 1 1 1 1.5
1000 1 1 2 3 2 2 2 2 2 3 3 2 1 1 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 1 1 2 1 1 1 1 2 2 1 2 2 1 1 1 2 2 1 2 2 1.5

aShift distributions (shift 1 to shift 7) as showed in Figure 4.3
bANS - Average Number of Solutions

As for each number of scenarios, we run 50 replications, it is important
to analyze the frequency with which each solution appears. With this, we can
analyze dominant solutions. We call dominant solutions the solutions that
appear most often. Tables F.4 - F.13 present the results of the dominant
solution analysis for the Monte Carlo method. Tables F.14 - F.23 show the
results for the Latin Hypercube technique. For dominant solution analysis, we
use a color scale according to Figure F.1. When a solution appears 26 times
or more (more than 50 %) we consider only 1 dominant solution, otherwise we
consider as dominant solution any solution that appears between 11 and 25
times.
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Figure F.1: Color scale used in the dominant solution analysis

Considering only the dominant solutions, we observed that even with just
100 scenarios we have a low number of possible solutions using both methods.
Despite a large number of possible solutions, we see that as we increase the
number of scenarios, even if other solutions ever appear, the solution tends
to converge to a point, which we call the dominant solution and which can
be considered the true solution for the problem. The results showed that the
LHS method converges more quickly to a true solution since the ANS always
decreases and from 300 scenarios the ANS is already 1.0 and remain the same in
the tests with more scenarios. Using the MCS, we observed a greater oscillation
of the ANS.

Table F.4: Analysis of dominant solution from Monte Carlo Sampling method
using 100 scenarios

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Shifts/
#Physicians

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

0 0 0 17 0 11 6 0 0 0 13 0 24 1 0 0 0 9 0 23 1 0 0 0 16 0 26 5 0 0 0 19 0 19 3 0 0 0 24 0 19 18 0 0 0 22 0 10 8 0
1 0 6 20 0 27 19 0 0 6 22 0 22 22 0 0 2 28 0 25 24 0 0 0 24 0 16 31 0 0 5 22 0 29 21 0 0 0 22 0 21 22 0 0 3 25 0 25 30 0
2 0 11 10 1 10 19 0 0 18 14 0 4 23 0 0 22 13 1 2 20 0 0 23 9 3 7 11 0 0 24 7 1 2 24 0 0 21 4 1 9 10 0 0 15 2 2 15 12 0
3 0 20 3 0 2 6 0 0 24 1 3 0 4 0 0 22 0 2 0 5 0 0 20 1 5 1 3 0 0 18 2 8 0 2 0 0 22 0 8 1 0 0 0 27 1 7 0 0 0
4 0 13 0 8 0 0 0 0 2 0 13 0 0 1 5 3 0 22 0 0 7 9 6 0 17 0 0 7 15 3 0 27 0 0 36 23 7 0 21 0 0 17 25 5 0 13 0 0 18
5 20 0 0 29 0 0 19 23 0 0 24 0 0 45 32 1 0 23 0 0 41 31 1 0 19 0 0 39 29 0 0 12 0 0 14 22 0 0 18 0 0 32 20 0 0 27 0 0 32
6 18 0 0 7 0 0 28 25 0 0 7 0 0 4 12 0 0 2 0 0 2 9 0 0 6 0 0 4 5 0 0 2 0 0 0 5 0 0 2 0 0 1 4 0 0 1 0 0 0
7 10 0 0 5 0 0 3 2 0 0 3 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANS

#Sol 5 4 4 5 4 4 3 3 4 4 5 3 4 3 4 5 3 5 3 4 3 4 4 4 5 4 4 3 4 4 4 5 3 4 2 3 3 3 5 4 3 3 4 4 4 5 3 3 2 3.8
#SolD 2 3 2 1 1 2 1 2 2 3 3 2 2 1 1 2 1 2 2 2 1 1 2 2 2 1 1 1 1 2 2 1 1 2 1 2 2 2 2 2 2 1 2 1 2 1 2 1 1 1.7

aShift distributions (shift 1 to shift 7) as showed in Figure 4.3
b#Physicians - Number of Physicians assigned to that shift
c#Sol - Number of different solutions
d#SolD - Number of dominant solutions
eANS - Average Number of Solutions
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Table F.5: Analysis of dominant solution from Monte Carlo Sampling method
using 200 scenarios

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Shifts/
#Physicians

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

0 0 0 15 0 12 0 0 0 0 16 0 19 0 0 0 0 17 0 27 2 0 0 0 11 0 15 0 0 0 0 14 0 25 3 0 0 0 27 0 14 19 0 0 0 22 0 11 0 0
1 0 0 28 0 27 26 0 0 3 24 0 26 19 0 0 2 30 0 22 36 0 0 0 35 0 31 41 0 0 3 25 0 22 21 0 0 0 21 0 32 21 0 0 3 26 0 32 35 0
2 0 14 6 0 9 22 0 0 16 9 0 5 30 0 0 22 3 0 1 12 0 0 16 4 0 4 9 0 0 30 10 0 2 26 0 0 13 1 0 4 9 0 0 21 2 0 7 15 0
3 0 23 0 0 1 2 0 0 29 0 1 0 1 0 0 26 0 0 0 0 0 0 30 0 4 0 0 0 0 16 0 7 0 0 0 0 33 0 2 0 0 0 0 25 0 3 0 0 0
4 0 13 0 5 0 0 0 0 2 0 9 0 0 0 0 0 0 14 0 0 0 9 4 0 28 0 0 2 9 1 0 27 0 0 36 21 4 0 25 0 0 20 14 1 0 20 0 0 16
5 18 0 0 25 0 0 18 31 0 0 26 0 0 47 34 0 0 30 0 0 47 39 0 0 17 0 0 48 37 0 0 13 0 0 14 26 0 0 21 0 0 30 31 0 0 24 0 0 34
6 27 0 0 15 0 0 32 17 0 0 14 0 0 3 16 0 0 6 0 0 3 2 0 0 1 0 0 0 4 0 0 3 0 0 0 3 0 0 2 0 0 0 4 0 0 3 0 0 0
7 5 0 0 4 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

8 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANS

#Sol 3 3 3 5 4 3 2 3 4 3 4 3 3 2 2 3 3 3 3 3 2 3 3 3 4 3 2 2 3 4 3 4 3 3 2 3 3 3 4 3 3 2 4 4 3 4 3 2 2 3.0
#SolD 1 2 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 2 1 2 1 1 2 1 2 1 1 1 1.2

aShift distributions (shift 1 to shift 7) as showed in Figure 4.3
b#Physicians - Number of Physicians assigned to that shift
c#Sol - Number of different solutions
d#SolD - Number of dominant solutions
eANS - Average Number of Solutions

Table F.6: Analysis of dominant solution from Monte Carlo Sampling method
using 300 scenarios

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Shifts/
#Physicians

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

0 0 0 18 0 12 0 0 0 0 8 0 19 0 0 0 0 19 0 22 0 0 0 0 17 0 21 0 0 0 0 15 0 36 1 0 0 0 30 0 18 17 0 0 0 21 0 22 2 0
1 0 0 26 0 30 34 0 0 1 33 0 27 17 0 0 0 22 0 26 33 0 0 0 29 0 28 44 0 0 2 32 0 12 20 0 0 0 19 0 29 28 0 0 1 29 0 27 37 0
2 0 11 5 0 8 16 0 0 26 8 0 4 33 0 0 23 9 0 1 17 0 0 15 3 0 0 6 0 0 34 3 0 1 29 0 0 22 1 0 3 5 0 0 34 0 0 1 11 0
3 0 35 0 0 0 0 0 0 23 0 2 0 0 0 0 27 0 0 0 0 0 0 32 0 1 0 0 0 0 14 0 3 0 0 0 0 22 0 4 0 0 0 0 15 0 0 0 0 0
4 0 4 0 4 0 0 0 0 0 0 11 0 0 0 0 0 0 21 0 0 0 11 3 0 18 0 0 1 10 0 0 24 0 0 34 22 6 0 14 0 0 11 9 0 0 15 0 0 14
5 11 0 0 16 0 0 11 22 0 0 28 0 0 50 36 0 0 24 0 0 49 35 0 0 23 0 0 49 36 0 0 21 0 0 16 27 0 0 29 0 0 39 40 0 0 23 0 0 36
6 35 0 0 27 0 0 39 27 0 0 8 0 0 0 14 0 0 5 0 0 1 4 0 0 8 0 0 0 4 0 0 2 0 0 0 1 0 0 3 0 0 0 1 0 0 12 0 0 0

7 4 0 0 3 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANS

#Sol 3 3 3 4 3 2 2 3 3 3 5 3 2 1 2 2 3 3 3 2 2 3 3 3 4 2 2 2 3 3 3 4 3 3 2 3 3 3 4 3 3 2 3 3 2 3 3 3 2 2.8
#SolD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 3 1 1 1 1.1

aShift distributions (shift 1 to shift 7) as showed in Figure 4.3
b#Physicians - Number of Physicians assigned to that shift
c#Sol - Number of different solutions
d#SolD - Number of dominant solutions
eANS - Average Number of Solutions

Table F.7: Analysis of dominant solution from Monte Carlo Sampling method
using 400 scenarios

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Shifts/
#Physicians

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

0 0 0 25 0 11 0 0 0 0 12 0 21 1 0 0 0 18 0 16 0 0 0 0 18 0 16 0 0 0 0 11 0 31 4 0 0 0 27 0 17 17 0 0 0 21 0 18 2 0
1 0 0 23 0 33 37 0 0 1 31 0 22 20 0 0 0 27 0 33 36 0 0 0 30 0 34 42 0 0 0 37 0 18 19 0 0 1 23 0 32 26 0 0 1 28 0 29 35 0
2 0 7 1 0 5 13 0 0 20 6 0 7 29 0 0 13 5 0 1 14 0 0 12 1 0 0 8 0 0 41 2 0 0 27 0 0 25 0 0 1 7 0 0 27 0 0 3 13 0
3 0 34 0 0 0 0 0 0 28 0 1 0 0 0 0 35 0 0 0 0 0 0 37 0 0 0 0 0 0 9 0 2 0 0 0 0 23 0 0 0 0 0 0 21 0 0 0 0 0
4 0 9 0 1 0 0 0 0 1 0 9 0 0 0 0 2 0 20 0 0 0 5 1 0 21 0 0 2 6 0 0 33 0 0 35 13 1 0 17 0 0 16 13 1 0 15 0 0 13
5 13 0 0 15 0 0 9 29 0 0 26 0 0 49 42 0 0 27 0 0 50 44 0 0 26 0 0 48 44 0 0 14 0 0 15 35 0 0 32 0 0 34 35 0 0 30 0 0 37
6 36 0 0 26 0 0 41 21 0 0 13 0 0 1 8 0 0 3 0 0 0 1 0 0 3 0 0 0 0 0 0 1 0 0 0 2 0 0 1 0 0 0 2 0 0 5 0 0 0

7 1 0 0 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANS

#Sol 3 3 3 4 3 2 2 2 4 3 5 3 3 2 2 3 3 3 3 2 1 3 3 3 3 2 2 2 2 2 3 4 2 3 2 3 4 2 3 3 3 2 3 4 2 3 3 3 2 2.8
#SolD 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1.1

aShift distributions (shift 1 to shift 7) as showed in Figure 4.3
b#Physicians - Number of Physicians assigned to that shift
c#Sol - Number of different solutions
d#SolD - Number of dominant solutions
eANS - Average Number of Solutions
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Table F.8: Analysis of dominant solution from Monte Carlo Sampling method
using 500 scenarios

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Shifts/
#Physicians

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

0 0 0 28 0 9 0 0 0 0 16 0 24 0 0 0 0 20 0 26 0 0 0 0 23 0 16 0 0 0 0 14 0 35 2 0 0 0 24 0 17 14 0 0 0 26 0 17 2 0
1 0 0 21 0 35 36 0 0 0 29 0 25 15 0 0 0 26 0 24 34 0 0 0 27 0 33 49 0 0 0 30 0 14 24 0 0 0 25 0 32 32 0 0 0 19 0 31 34 0
2 0 8 0 0 6 13 0 0 30 4 0 1 35 0 0 19 4 0 0 16 0 0 10 0 0 1 1 0 0 44 6 0 0 24 0 0 16 0 0 1 3 0 0 26 4 0 1 14 0
3 0 29 0 0 0 1 0 0 18 0 0 0 0 0 0 31 0 0 0 0 0 0 37 0 1 0 0 0 0 6 0 1 0 0 0 0 31 0 0 0 0 0 0 23 0 1 0 0 0
4 0 13 0 0 0 0 0 0 2 0 6 0 0 0 0 0 0 11 0 0 0 5 3 0 15 0 0 0 3 0 0 26 0 0 32 21 3 0 19 0 0 17 12 1 0 15 0 0 15
5 16 0 0 14 0 0 12 20 0 0 27 0 0 50 41 0 0 36 0 0 50 44 0 0 29 0 0 50 47 0 0 21 0 0 18 29 0 0 28 0 0 33 38 0 0 25 0 0 35
6 32 0 0 32 0 0 38 30 0 0 16 0 0 0 9 0 0 3 0 0 0 1 0 0 5 0 0 0 0 0 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 9 0 0 0

7 2 0 0 4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANS

#Sol 3 3 2 3 3 3 2 2 3 3 4 3 2 1 2 2 3 3 2 2 1 3 3 2 4 3 2 1 2 2 3 4 2 3 2 2 3 2 3 3 3 2 2 3 3 4 3 3 2 2.6
#SolD 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1.1

aShift distributions (shift 1 to shift 7) as showed in Figure 4.3
b#Physicians - Number of Physicians assigned to that shift
c#Sol - Number of different solutions
d#SolD - Number of dominant solutions
eANS - Average Number of Solutions

Table F.9: Analysis of dominant solution from Monte Carlo Sampling method
using 600 scenarios

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Shifts/
#Physicians

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

0 0 0 24 0 7 0 0 0 0 12 0 26 0 0 0 0 24 0 17 0 0 0 0 30 0 13 1 0 0 0 14 0 36 1 0 0 0 26 0 21 22 0 0 0 25 0 20 4 0
1 0 0 25 0 41 34 0 0 1 33 0 22 11 0 0 0 24 0 32 34 0 0 0 20 0 37 47 0 0 0 33 0 13 19 0 0 0 24 0 27 27 0 0 0 25 0 27 36 0
2 0 6 1 0 2 16 0 0 28 4 0 1 39 0 0 15 2 0 0 16 0 0 6 0 0 0 2 0 0 41 3 0 1 30 0 0 30 0 0 1 1 0 0 24 0 0 3 10 0
3 0 38 0 0 0 0 0 0 21 0 0 0 0 0 0 35 0 0 0 0 0 0 44 0 0 0 0 0 0 9 0 2 0 0 0 0 17 0 0 0 0 0 0 24 0 0 0 0 0
4 0 6 0 1 0 0 0 0 0 0 6 0 0 0 0 0 0 10 0 0 0 2 0 0 12 0 0 0 7 0 0 27 0 0 37 11 3 0 7 0 0 9 16 2 0 13 0 0 11
5 11 0 0 20 0 0 15 21 0 0 30 0 0 50 44 0 0 38 0 0 50 47 0 0 34 0 0 49 43 0 0 18 0 0 13 39 0 0 40 0 0 41 33 0 0 32 0 0 39
6 37 0 0 26 0 0 35 28 0 0 12 0 0 0 6 0 0 2 0 0 0 1 0 0 4 0 0 1 0 0 0 3 0 0 0 0 0 0 3 0 0 0 1 0 0 5 0 0 0

7 2 0 0 3 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANS

#Sol 3 3 3 4 3 2 2 3 3 3 4 3 2 1 2 2 3 3 2 2 1 3 2 2 3 2 3 2 2 2 3 4 3 3 2 2 3 2 3 3 3 2 3 3 2 3 3 3 2 2.6
#SolD 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1.1

aShift distributions (shift 1 to shift 7) as showed in Figure 4.3
b#Physicians - Number of Physicians assigned to that shift
c#Sol - Number of different solutions
d#SolD - Number of dominant solutions
eANS - Average Number of Solutions

Table F.10: Analysis of dominant solution from Monte Carlo Sampling method
using 700 scenarios

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Shifts/
#Physicians

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

0 0 0 29 0 9 0 0 0 0 5 0 33 0 0 0 0 29 0 13 0 0 0 0 27 0 15 0 0 0 0 15 0 42 2 0 0 0 21 0 24 14 0 0 0 23 0 30 2 0
1 0 0 16 0 39 30 0 0 2 37 0 11 9 0 0 0 20 0 37 41 0 0 0 22 0 34 49 0 0 0 30 0 7 14 0 0 0 29 0 25 34 0 0 1 27 0 18 40 0
2 0 6 3 0 1 20 0 0 29 7 0 6 40 0 0 10 0 0 0 9 0 0 9 0 0 0 1 0 0 45 4 0 0 34 0 0 28 0 0 1 2 0 0 28 0 0 2 8 0
3 0 39 1 0 0 0 0 0 19 0 0 0 0 0 0 40 0 0 0 0 0 0 39 0 0 0 0 0 0 5 0 0 0 0 0 0 21 0 0 0 0 0 0 21 0 0 0 0 0
4 0 5 0 2 0 0 0 0 0 0 9 0 0 0 0 0 0 10 0 0 0 7 2 0 11 0 0 0 2 0 0 26 0 0 36 12 1 0 13 0 0 11 12 0 0 11 0 0 9
5 7 0 0 11 0 0 19 19 0 0 23 0 0 49 45 0 0 37 0 0 50 43 0 0 34 0 0 50 46 0 0 24 0 0 14 38 0 0 35 0 0 39 37 0 0 26 0 0 41
6 43 0 0 32 0 0 31 29 0 0 17 0 0 1 5 0 0 3 0 0 0 0 0 0 5 0 0 0 2 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 13 0 0 0

7 0 0 0 5 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANS

#Sol 2 3 4 4 3 2 2 3 3 3 4 3 2 2 2 2 2 3 2 2 1 2 3 2 3 2 2 1 3 2 3 2 2 3 2 2 3 2 3 3 3 2 3 3 2 3 3 3 2 2.5
#SolD 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1.0

aShift distributions (shift 1 to shift 7) as showed in Figure 4.3
b#Physicians - Number of Physicians assigned to that shift
c#Sol - Number of different solutions
d#SolD - Number of dominant solutions
eANS - Average Number of Solutions
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Table F.11: Analysis of dominant solution from Monte Carlo Sampling method
using 800 scenarios

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Shifts/
#Physicians

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

0 0 0 39 0 10 0 0 0 0 14 0 26 0 0 0 0 31 0 16 0 0 0 0 30 0 6 0 0 0 0 10 0 40 0 0 0 0 22 0 24 16 0 0 0 20 0 29 0 0
1 0 0 10 0 39 37 0 0 0 33 0 22 17 0 0 0 17 0 34 38 0 0 0 20 0 43 50 0 0 0 39 0 9 17 0 0 0 25 0 24 30 0 0 2 30 0 20 39 0
2 0 5 1 0 1 13 0 0 27 3 0 1 33 0 0 13 1 0 0 12 0 0 2 0 0 0 0 0 0 48 1 0 0 33 0 0 26 2 0 1 4 0 0 34 0 0 0 11 0
3 0 33 0 0 0 0 0 0 23 0 0 0 0 0 0 37 0 0 0 0 0 0 48 0 0 0 0 0 0 2 0 0 0 0 0 0 23 0 2 0 0 0 0 13 0 0 0 0 0
4 0 12 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 9 0 0 0 3 0 0 16 0 0 0 2 0 0 31 0 0 39 13 1 0 9 0 0 9 9 1 0 11 0 0 11
5 13 0 0 7 0 0 11 23 0 0 32 0 0 50 43 0 0 34 0 0 50 47 0 0 31 0 0 50 48 0 0 19 0 0 11 36 0 0 36 0 0 41 39 0 0 27 0 0 39
6 35 0 0 36 0 0 39 27 0 0 16 0 0 0 7 0 0 7 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 1 0 0 3 0 0 0 2 0 0 12 0 0 0

7 2 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANS

#Sol 3 3 3 3 3 2 2 2 2 3 3 3 2 1 2 2 3 3 2 2 1 2 2 2 3 2 1 1 2 2 3 2 2 2 2 3 3 3 4 3 3 2 3 4 2 3 2 2 2 2.4
#SolD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1.0

aShift distributions (shift 1 to shift 7) as showed in Figure 4.3
b#Physicians - Number of Physicians assigned to that shift
c#Sol - Number of different solutions
d#SolD - Number of dominant solutions
eANS - Average Number of Solutions

Table F.12: Analysis of dominant solution from Monte Carlo Sampling method
using 900 scenarios

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Shifts/
#Physicians

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

0 0 0 31 0 7 0 0 0 0 13 0 30 0 0 0 0 24 0 15 0 0 0 0 29 0 14 0 0 0 0 11 0 42 1 0 0 0 18 0 25 14 0 0 0 22 0 32 1 0
1 0 0 18 0 43 38 0 0 0 32 0 18 13 0 0 0 24 0 35 35 0 0 0 20 0 36 49 0 0 0 37 0 7 20 0 0 0 31 0 23 29 0 0 0 28 0 17 40 0
2 0 5 0 0 0 12 0 0 35 5 0 2 37 0 0 10 1 0 0 15 0 0 12 0 0 0 1 0 0 48 1 0 0 29 0 0 32 1 0 1 7 0 0 30 0 0 0 9 0
3 0 39 0 0 0 0 0 0 15 0 0 0 0 0 0 40 0 0 0 0 0 0 37 0 0 0 0 0 0 2 0 0 0 0 0 0 18 0 0 0 0 0 0 20 0 0 0 0 0
4 0 6 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 13 0 0 0 2 1 0 10 0 0 0 1 0 0 27 0 0 33 9 0 0 15 0 0 15 11 0 0 7 0 0 10
5 9 0 0 11 0 0 12 15 0 0 22 0 0 50 44 0 0 35 0 0 50 45 0 0 36 0 0 50 49 0 0 21 0 0 17 41 0 0 34 0 0 35 39 0 0 31 0 0 40
6 41 0 0 35 0 0 38 35 0 0 22 0 0 0 6 0 0 2 0 0 0 3 0 0 4 0 0 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 12 0 0 0

7 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANS

#Sol 2 3 2 3 2 2 2 2 2 3 3 3 2 1 2 2 3 3 2 2 1 3 3 2 3 2 2 1 2 2 3 3 2 3 2 2 2 3 3 3 3 2 2 2 2 3 2 3 2 2.3
#SolD 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1.0

aShift distributions (shift 1 to shift 7) as showed in Figure 4.3
b#Physicians - Number of Physicians assigned to that shift
c#Sol - Number of different solutions
d#SolD - Number of dominant solutions
eANS - Average Number of Solutions

Table F.13: Analysis of dominant solution from Monte Carlo Sampling method
using 1000 scenarios

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Shifts/
#Physicians

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

0 0 0 35 0 5 0 0 0 0 12 0 27 0 0 0 0 36 0 12 0 0 0 0 26 0 10 0 0 0 0 10 0 45 0 0 0 0 23 0 23 19 0 0 0 21 0 35 0 0
1 0 0 15 0 43 37 0 0 0 34 0 21 9 0 0 0 12 0 37 41 0 0 0 23 0 40 49 0 0 0 36 0 4 17 0 0 0 25 0 27 26 0 0 0 28 0 13 36 0
2 0 2 0 0 2 13 0 0 27 4 0 1 41 0 0 7 2 0 0 9 0 0 6 0 0 0 1 0 0 46 4 0 0 33 0 0 21 1 0 0 4 0 0 37 0 0 1 14 0
3 0 41 0 0 0 0 0 0 23 0 0 0 0 0 0 43 0 0 0 0 0 0 43 0 0 0 0 0 0 4 0 0 0 0 0 0 28 0 0 0 0 0 0 11 0 0 0 0 0
4 0 7 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 8 0 0 0 4 1 0 17 0 0 0 2 0 0 29 0 0 38 10 1 0 8 0 0 10 9 2 0 4 0 0 15
5 9 0 0 15 0 0 13 22 0 0 34 0 0 50 46 0 0 37 0 0 50 46 0 0 29 0 0 50 48 0 0 20 0 0 12 40 0 0 41 0 0 40 41 0 0 35 0 0 35
6 41 0 0 32 0 0 37 28 0 0 14 0 0 0 4 0 0 5 0 0 0 0 0 0 4 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 11 0 0 0

7 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANS

#Sol 2 3 2 3 3 2 2 2 2 3 3 3 2 1 2 2 3 3 2 2 1 2 3 2 3 2 2 1 2 2 3 3 2 2 2 2 3 3 3 2 3 2 2 3 2 3 3 2 2 2.3
#SolD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1.0

aShift distributions (shift 1 to shift 7) as showed in Figure 4.3
b#Physicians - Number of Physicians assigned to that shift
c#Sol - Number of different solutions
d#SolD - Number of dominant solutions
eANS - Average Number of Solutions
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Table F.14: Analysis of dominant solution from Latin Hypercube Sampling
method using 100 scenarios

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Shiftsa/
#Physiciansb

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

0 0 0 14 0 13 0 0 0 0 16 0 22 4 0 0 0 9 0 21 1 0 0 0 10 0 24 0 0 0 0 21 0 35 5 0 0 0 28 0 15 19 0 0 0 28 0 12 4 0
1 0 1 29 0 24 30 0 0 1 27 0 17 17 0 0 3 31 0 23 36 0 0 1 36 0 22 42 0 0 2 25 0 13 19 0 0 2 20 0 28 25 0 0 3 18 0 30 30 0
2 0 9 7 0 13 20 0 0 15 7 0 10 29 0 0 23 9 0 6 12 0 0 21 3 0 4 8 0 0 34 4 0 2 24 0 0 19 2 0 7 6 0 0 17 4 0 8 16 0
3 0 31 0 1 0 0 0 0 32 0 0 1 0 0 0 22 1 5 0 1 0 0 25 1 2 0 0 0 0 14 0 2 0 2 0 0 26 0 3 0 0 0 0 25 0 2 0 0 0
4 0 9 0 7 0 0 0 0 2 0 13 0 0 0 0 2 0 23 0 0 0 8 3 0 23 0 0 0 6 0 0 28 0 0 34 17 3 0 20 0 0 22 20 5 0 20 0 0 19
5 24 0 0 20 0 0 12 35 0 0 26 0 0 42 33 0 0 15 0 0 47 37 0 0 23 0 0 49 40 0 0 18 0 0 16 31 0 0 23 0 0 28 26 0 0 22 0 0 31
6 21 0 0 17 0 0 38 15 0 0 10 0 0 7 16 0 0 7 0 0 3 4 0 0 2 0 0 1 4 0 0 2 0 0 0 2 0 0 4 0 0 0 3 0 0 6 0 0 0

7 5 0 0 5 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 ANSe

#Solc 3 4 3 5 3 2 2 2 4 3 4 4 3 3 3 4 4 4 3 4 2 4 4 4 4 3 2 2 3 3 3 4 3 4 2 3 4 3 4 3 3 2 4 4 3 4 3 3 2 3.2
#SolDd 2 1 1 2 3 1 1 1 1 1 1 2 1 1 1 2 1 2 2 1 1 1 2 1 2 2 1 1 1 1 2 1 1 2 1 1 1 1 2 1 2 1 1 2 1 2 1 1 1 1.3

aShift distributions (shift 1 to shift 7) as showed in Figure 4.3
b#Physicians - Number of Physicians assigned to that shift
c#Sol - Number of different solutions
d#SolD - Number of dominant solutions
eANS - Average Number of Solutions

Table F.15: Analysis of dominant solution from Latin Hypercube Sampling
method using 200 scenarios

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Shifts/
#Physicians

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

0 0 0 25 0 10 0 0 0 0 12 0 20 0 0 0 0 17 0 20 0 0 0 0 16 0 19 0 0 0 0 21 0 36 1 0 0 0 23 0 18 17 0 0 0 23 0 27 0 0
1 0 0 24 0 35 22 0 0 1 32 0 30 13 0 0 0 25 0 30 31 0 0 0 34 0 31 49 0 0 2 27 0 14 15 0 0 0 25 0 29 25 0 0 0 25 0 23 36 0
2 0 5 1 0 5 27 0 0 24 6 0 0 37 0 0 8 8 0 0 18 0 0 13 0 0 0 1 0 0 36 2 0 0 34 0 0 25 2 0 3 8 0 0 33 2 0 0 14 0
3 0 34 0 0 0 1 0 0 25 0 0 0 0 0 0 40 0 1 0 1 0 0 37 0 0 0 0 0 0 12 0 4 0 0 0 0 22 0 0 0 0 0 0 14 0 0 0 0 0
4 0 11 0 1 0 0 0 0 0 0 8 0 0 0 0 2 0 21 0 0 0 1 0 0 20 0 0 0 5 0 0 21 0 0 40 14 3 0 16 0 0 19 9 3 0 10 0 0 13
5 16 0 0 22 0 0 27 22 0 0 34 0 0 50 43 0 0 24 0 0 50 44 0 0 25 0 0 50 43 0 0 21 0 0 10 36 0 0 32 0 0 31 38 0 0 31 0 0 37
6 30 0 0 22 0 0 23 27 0 0 8 0 0 0 7 0 0 4 0 0 0 5 0 0 5 0 0 0 2 0 0 4 0 0 0 0 0 0 2 0 0 0 3 0 0 9 0 0 0

7 4 0 0 5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANS

#Sol 3 3 3 4 3 3 2 3 3 3 3 2 2 1 2 3 3 4 2 3 1 3 2 2 3 2 2 1 3 3 3 4 2 3 2 2 3 3 3 3 3 2 3 3 3 3 2 2 2 2.6
#SolD 1 1 2 2 1 1 1 1 2 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 2 2 1 1 2 1 1 1 2 1 1 1 1 1.2

Table F.16: Analysis of dominant solution from Latin Hypercube Sampling
method using 300 scenarios

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Shifts/
#Physicians

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

0 0 0 38 0 9 0 0 0 0 10 0 36 0 0 0 0 32 0 10 0 0 0 0 24 0 13 0 0 0 0 16 0 46 1 0 0 0 25 0 23 18 0 0 0 24 0 35 0 0
1 0 0 12 0 39 38 0 0 0 36 0 13 4 0 0 0 18 0 40 46 0 0 0 26 0 37 50 0 0 0 32 0 4 10 0 0 0 24 0 25 31 0 0 0 26 0 15 42 0
2 0 1 0 0 2 12 0 0 24 4 0 1 46 0 0 4 0 0 0 4 0 0 10 0 0 0 0 0 0 47 2 0 0 39 0 0 26 1 0 2 1 0 0 41 0 0 0 8 0
3 0 41 0 0 0 0 0 0 26 0 0 0 0 0 0 46 0 0 0 0 0 0 40 0 0 0 0 0 0 3 0 0 0 0 0 0 20 0 0 0 0 0 0 9 0 0 0 0 0
4 0 8 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 13 0 0 0 1 0 0 14 0 0 0 1 0 0 29 0 0 41 14 4 0 8 0 0 8 5 0 0 6 0 0 8
5 9 0 0 11 0 0 12 26 0 0 33 0 0 50 46 0 0 31 0 0 50 44 0 0 35 0 0 50 49 0 0 20 0 0 9 35 0 0 39 0 0 42 45 0 0 29 0 0 42
6 40 0 0 31 0 0 38 24 0 0 11 0 0 0 4 0 0 6 0 0 0 5 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 3 0 0 0 0 0 0 15 0 0 0

7 1 0 0 7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANS

#Sol 3 3 2 4 3 2 2 2 2 3 4 3 2 1 2 2 2 3 2 2 1 3 2 2 3 2 1 1 2 2 3 3 2 3 2 3 3 3 3 3 3 2 2 2 2 3 2 2 2 2.4
#SolD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1.0
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Table F.17: Analysis of dominant solution from Latin Hypercube Sampling
method using 400 scenarios

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Shifts/
#Physicians

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

0 0 0 36 0 2 0 0 0 0 13 0 37 0 0 0 0 34 0 1 0 0 0 0 34 0 5 0 0 0 0 9 0 45 0 0 0 0 16 0 31 15 0 0 0 22 0 34 0 0
1 0 0 13 0 45 33 0 0 0 36 0 13 4 0 0 0 16 0 49 48 0 0 0 16 0 45 50 0 0 0 39 0 5 5 0 0 0 33 0 18 32 0 0 0 28 0 16 48 0
2 0 0 1 0 3 17 0 0 22 1 0 0 46 0 0 0 0 0 0 2 0 0 2 0 0 0 0 0 0 49 2 0 0 45 0 0 31 1 0 1 3 0 0 35 0 0 0 2 0
3 0 43 0 0 0 0 0 0 28 0 0 0 0 0 0 50 0 0 0 0 0 0 48 0 0 0 0 0 0 1 0 0 0 0 0 0 18 0 0 0 0 0 0 15 0 0 0 0 0
4 0 7 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 15 0 0 0 0 0 0 14 0 0 0 1 0 0 34 0 0 46 7 1 0 5 0 0 7 9 0 0 7 0 0 2
5 8 0 0 16 0 0 17 28 0 0 35 0 0 50 50 0 0 35 0 0 50 50 0 0 33 0 0 50 49 0 0 14 0 0 4 43 0 0 45 0 0 43 41 0 0 30 0 0 48
6 42 0 0 31 0 0 33 22 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0

7 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANS

#Sol 2 2 3 4 3 2 2 2 2 3 3 2 2 1 1 1 2 2 2 2 1 1 2 2 3 2 1 1 2 2 3 3 2 2 2 2 3 3 2 3 3 2 2 2 2 3 2 2 2 2.1
#SolD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.0

Table F.18: Analysis of dominant solution from Latin Hypercube Sampling
method using 500 scenarios

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Shifts/
#Physicians

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

0 0 0 39 0 6 0 0 0 0 13 0 36 0 0 0 0 40 0 2 0 0 0 0 35 0 7 0 0 0 0 10 0 48 0 0 0 0 15 0 32 15 0 0 0 24 0 40 0 0
1 0 0 11 0 42 31 0 0 0 32 0 14 2 0 0 0 10 0 48 48 0 0 0 15 0 43 50 0 0 1 38 0 2 4 0 0 0 35 0 17 34 0 0 0 26 0 10 50 0
2 0 1 0 0 2 19 0 0 32 5 0 0 48 0 0 1 0 0 0 2 0 0 2 0 0 0 0 0 0 48 2 0 0 46 0 0 35 0 0 1 1 0 0 41 0 0 0 0 0
3 0 43 0 0 0 0 0 0 18 0 0 0 0 0 0 49 0 0 0 0 0 0 48 0 0 0 0 0 0 1 0 0 0 0 0 0 13 0 0 0 0 0 0 9 0 0 0 0 0
4 0 6 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 9 0 0 0 0 0 0 10 0 0 0 0 0 0 34 0 0 47 4 2 0 4 0 0 4 6 0 0 5 0 0 0
5 6 0 0 11 0 0 19 18 0 0 29 0 0 50 49 0 0 40 0 0 50 50 0 0 38 0 0 50 49 0 0 16 0 0 3 46 0 0 46 0 0 46 44 0 0 26 0 0 50
6 43 0 0 35 0 0 31 32 0 0 13 0 0 0 1 0 0 1 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0

7 1 0 0 4 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANS

#Sol 3 3 2 3 3 2 2 2 2 3 4 2 2 1 2 2 2 3 2 2 1 1 2 2 3 2 1 1 2 3 3 2 2 2 2 2 3 2 2 3 3 2 2 2 2 3 2 1 1 2.2
#SolD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.0

Table F.19: Analysis of dominant solution from Latin Hypercube Sampling
method using 600 scenarios

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Shifts/
#Physicians

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

0 0 0 41 0 0 0 0 0 0 15 0 40 0 0 0 0 39 0 0 0 0 0 0 40 0 5 0 0 0 0 6 0 0 0 0 0 14 0 34 14 0 0 0 27 0 46 0 0 50
1 0 0 9 0 47 35 0 0 0 33 0 10 2 0 0 0 11 0 50 50 0 0 0 10 0 45 50 0 0 0 44 0 3 0 0 0 36 0 16 35 0 0 0 23 0 4 49 0 0
2 0 0 0 0 3 15 0 0 28 2 0 0 48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 47 0 0 35 0 0 0 1 0 0 46 0 0 0 1 0 0
3 0 45 0 0 0 0 0 0 22 0 0 0 0 0 0 50 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 4 0 0 0 0 0 0
4 0 5 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 11 0 0 0 0 0 0 9 0 0 0 0 0 0 38 0 47 1 0 0 2 0 0 3 4 0 0 3 0 0 1 0
5 5 0 0 12 0 0 15 22 0 0 27 0 0 50 50 0 0 39 0 0 50 50 0 0 37 0 0 50 50 0 0 12 0 3 49 0 0 48 0 0 47 46 0 0 21 0 0 49 0
6 45 0 0 38 0 0 35 28 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANS

#Sol 2 2 2 2 2 2 2 2 2 3 3 2 2 1 1 1 2 2 1 1 1 1 1 2 3 2 1 1 1 1 2 2 2 2 2 2 2 2 2 3 2 2 2 2 3 2 2 2 1 1.8
#SolD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.0

Table F.20: Analysis of dominant solution from Latin Hypercube Sampling
method using 700 scenarios

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Shifts/
#Physicians

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

0 0 45 0 3 0 0 0 0 11 0 45 0 0 0 0 45 0 0 0 0 0 0 38 0 4 0 0 0 0 6 0 50 0 0 0 0 7 0 42 7 0 0 0 21 0 45 0 0 50
1 0 5 0 47 43 0 0 0 38 0 5 1 0 0 0 5 0 50 50 0 0 0 12 0 46 50 0 0 0 44 0 0 0 0 0 0 43 0 8 43 0 0 0 29 0 5 50 0 0
2 0 0 0 0 7 0 0 34 1 0 0 49 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 50 0 0 0 50 0 0 42 0 0 0 0 0 0 45 0 0 0 0 0 0
3 45 0 0 0 0 0 0 16 0 0 0 0 0 0 50 0 0 0 0 0 0 48 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 5 0 0 0 0 0 0
4 5 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 5 0 0 0 0 0 0 10 0 0 0 0 0 0 40 0 0 50 3 0 0 1 0 0 0 3 0 0 2 0 0 0 0
5 0 0 5 0 0 7 16 0 0 33 0 0 50 50 0 0 45 0 0 50 50 0 0 38 0 0 50 50 0 0 10 0 0 0 47 0 0 49 0 0 50 47 0 0 30 0 0 50 0
6 0 0 42 0 0 43 34 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0 0 0 0

7 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANS

#Sol 2 2 3 2 2 2 2 2 3 3 2 2 1 1 1 2 2 1 1 1 1 2 2 3 2 1 1 1 1 2 2 1 1 1 2 2 2 2 2 2 1 2 2 2 3 2 1 1 1 1.7
#SolD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.0

Table F.21: Analysis of dominant solution from Latin Hypercube Sampling
method using 800 scenarios

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Shifts/
#Physicians

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

0 0 0 45 0 0 0 0 0 0 7 0 49 0 0 0 0 50 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 50 0 0 0 0 6 0 44 6 0 0 0 25 0 50 0 0
1 0 0 5 0 50 44 0 0 0 43 0 1 1 0 0 0 0 0 50 50 0 0 0 0 0 50 50 0 0 0 50 0 0 0 0 0 0 44 0 6 44 0 0 0 25 0 0 50 0
2 0 0 0 0 0 6 0 0 31 0 0 0 49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 50 0 0 44 0 0 0 0 0 0 49 0 0 0 0 0
3 0 50 0 0 0 0 0 0 19 0 0 0 0 0 0 50 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 1 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 50 0 0 0 0 0 0 0 1 0 0 0 0 0 0
5 0 0 0 5 0 0 6 19 0 0 37 0 0 50 50 0 0 50 0 0 50 50 0 0 50 0 0 50 50 0 0 0 0 0 0 50 0 0 50 0 0 50 49 0 0 26 0 0 50
6 50 0 0 45 0 0 44 31 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANS

#Sol 1 1 2 2 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 2 1 2 2 2 2 1 1 1 1.4
#SolD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1.0
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Table F.22: Analysis of dominant solution from Latin Hypercube Sampling
method using 900 scenarios

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Shifts/
#Physicians

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

0 0 0 44 0 0 0 0 0 0 15 0 46 0 0 0 0 47 0 0 0 0 0 0 40 0 1 0 0 0 0 1 0 50 0 0 0 0 8 0 42 8 0 0 0 26 0 50 0 0
1 0 0 6 0 50 44 0 0 0 35 0 4 1 0 0 0 3 0 50 50 0 0 0 10 0 49 50 0 0 0 49 0 0 0 0 0 0 42 0 8 42 0 0 0 24 0 0 50 0
2 0 0 0 0 0 6 0 0 32 0 0 0 49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 50 0 0 42 0 0 0 0 0 0 50 0 0 0 0 0
3 0 50 0 0 0 0 0 0 18 0 0 0 0 0 0 50 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 9 0 0 0 0 0 0 49 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 6 0 0 6 18 0 0 28 0 0 50 50 0 0 47 0 0 50 50 0 0 41 0 0 50 50 0 0 1 0 0 0 50 0 0 50 0 0 50 50 0 0 24 0 0 50
6 50 0 0 44 0 0 44 32 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANS

#Sol 1 1 2 2 1 2 2 2 2 2 3 2 2 1 1 1 2 2 1 1 1 1 1 2 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 2 2 1 1 1 2 2 1 1 1 1.5
#SolD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.0

Table F.23: Analysis of dominant solution from Latin Hypercube Sampling
method using 1000 scenarios

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Shifts/
#Physicians

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

0 0 0 48 0 1 0 0 0 0 12 0 49 0 0 0 0 47 0 0 0 0 0 0 47 0 0 0 0 0 0 0 0 50 0 0 0 0 6 0 44 6 0 0 0 22 0 50 0 0
1 0 0 2 0 49 47 0 0 0 37 0 1 0 0 0 0 3 0 50 50 0 0 0 3 0 50 50 0 0 0 50 0 0 0 0 0 0 44 0 6 44 0 0 0 28 0 0 49 0
2 0 0 0 0 0 3 0 0 33 1 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 50 0 0 44 0 0 0 0 0 0 50 0 0 0 1 0
3 0 50 0 0 0 0 0 0 17 0 0 0 0 0 0 50 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 3 0 0 0 0 0 0 3 0 0 0 0 0 0 49 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 1
5 0 0 0 2 0 0 3 17 0 0 35 0 0 50 50 0 0 47 0 0 50 50 0 0 47 0 0 50 50 0 0 1 0 0 0 50 0 0 50 0 0 50 50 0 0 28 0 0 49
6 50 0 0 47 0 0 47 33 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 0 0 0

7 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANS

#Sol 1 1 2 3 2 2 2 2 2 3 3 2 1 1 1 1 2 2 1 1 1 1 1 2 2 1 1 1 1 1 1 2 1 1 1 1 2 2 1 2 2 1 1 1 2 2 1 2 2 1.5
#SolD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.0
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G
Numerical results from the Hospital A’s case study using
historical data

In this Appendix, we present a preliminary study in the Hospital A using
just historical data as scenarios in the optimization model.

Based on historical patient arrival data, we created possible realization
scenarios that were used to construct a finite set SC. The dataset to which we
had access consisted of 68 weeks, each of which was taken as an individual sce-
nario. Hence, 68 demand scenarios were generated, each of which corresponded
to the realization of real ED historical demand and was associated with a value
of parameter DEM c

ht. The optimal solution for the model was achieved. The
computational characteristics of the model are presented in Table G.1.

Table G.1: Computational results to case study in the Hospital A
Number of scenarios 68
Number of constraints 47,84
Number of variables 32,621
Number of non zeros 309,401
Number of iterations 2,150,151
CPU time (sec) 436.93

At this point, it is worth pointing out that the current manually-defined
ED schedule underutilizes workload capacity due to the difficulty of manually
searching for feasible schedule solutions. Total available physician workload
(tallied from each physician’s available workload) amounts to 4,200 hours,
but only 3,522 hours are currently allocated in the manual schedule. More
importantly, personnel costs account for 3,888 physician work hours, but
approximately 10% of such costs cover wasted, i.e., unscheduled work hours.
However, it is reasonable to expect that our model’s optimal solution would
make use of full workload capacity, which could misleadingly seem to indicate
an increase in total physician workload when compared to the current schedule.
To ensure fairness of comparison between the current schedule and the one
generated by our optimization model, we report two sets of results: the first
set was generated considering the current overall staffing level (44 physicians)
and limiting the total workload in the model by the same number of hours
currently used in the ED ; the second set was generated considering the current
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overall staffing level (44 physicians) without limiting the total workload in the
model by the same number of hours currently used in the ED . In what follows,
we will refer to the former as being generated by Model 1 and the latter as
being generated by Model 2. For the first set of results, we include in the model
presented in Section 4.2 the constraint as follow:

∑
d

∑
s

∑
p

xsdpDURs ≤MAX_WL (G-1)

Constraint (G-1) enforces that the total number of hours assigned in the
entire planning horizon is less than or equal to the total allowable workload.

BeingMAX_WL the maximum workload that can be allocated for each
planning horizon p. For the Model 1 MAX_WL = 3,522 hours and for the
Model 2 MAX_WL = 3,888 hours

We begin by discussing the results generated by Model 1. Table G.2
contrasts indicators of service quality for the current schedule with those
obtained through discrete-event simulation of the optimal schedule. In addition
to the value of each indicator, we also report on half-width (HW), when
applicable. The half-width value may be interpreted by saying "in 95% of
repeated trials, the sample mean would be reported as within the interval
sample mean ± half-width". In the last column of Table G.2 (∆1%), we present
the percentage variation of the indicator values. A number of points are worthy
of mention: first, note the reduction of approximately 40% in the frequency of
queues and an even greater reduction (of the order of 78%) in the frequency
of queues with more than 10 patients (when comparing the schedule from
Model 1 with the current schedule). Moreover, the schedule from Model 1
leads to a reduction of approximately 73% in the number of patients in queue.
The decrease in queue occurrence and the number of patients in the queue is
reflected in the reduction of the average waiting time and, consequently, in the
time door-to-doctor (since the average service time is the same for both the
current schedule and the one generated by Model 1). The average time door-
to-doctor decreased by approximately 73% in relation to the current schedule.
Finally, note that the total number of physician hours used by the schedule
from Model 1 is inferior to the total used in the current schedule. This occurs
due to constraint (G-1), which was added to ensure a fair comparison between
the current and model-generated schedules, for reasons discussed above.

We then used historical data to compare service capacity with demand.
Of note, the schedule generated by Model 1 provides greater adherence of
service capacity to varying demand, i.e., more physicians are on duty on days
with greater demand than on other days. For example, we verified that on
Mondays, which is the day of highest demand, more physicians are available
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Table G.2: Discrete-event simulation results for Model 1
Current schedule Model 1

Value HW Value HW ∆1%

Number of patients 85,623.66 78.28 85,611.4 73.84 -0.01%
Frequency of queue (%) 24.05 - 14.37 - -40.25%
Frequency of queue > 10 patients (%) 9.84 - 2.11 - -78.58%
Frequency of queue ≤ 10 patients (%) 14.21 - 12.26 - -13.72%
Average number of patients in queue 3.00 0.08 0.79 <0.02 -73.67%
Average time door-to-doctor (min) 24.53 0.63 6.48 <0.14 -73.61%
Total number of physician hours used 3,522.00 - 3,504.00 - -0.51%

on CM than on any other day of the week. Figure G.1 presents the histograms
of idle capacity and queue frequency for the current schedule and the schedule
generated by Model 1, where negative values indicate idle capacity and positive
values indicate unmet demand, resulting in the queue. Thus, for example, the
value -18 means that there was a capacity to see 18 additional patients in a
given work hour, which implies that there were 6 physicians in excess in CM,
considering each physician can visit 3 patients per hour.
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Figure G.1: Histogram of frequency distribution of idle capacity (negative
values) or queue (positive values) for (a) current schedule; (b) schedule
generated by Model 1

As shown in Figure G.1(a), idleness occurs more frequently than queues
in the current schedule, but the number of people in queue can be very large,
up to 60. On the other hand, in the histogram in Figure G.1(b) we observe
that queues are not only less frequent for the schedule generated by Model 1,
but also smaller.

We now proceed by discussing the results generated by Model 2. Recall
that Model 2 does not include constraint (G-1), meaning that the total
workload is not limited by the total number of work hours currently used in
the manually-defined schedule. Table G.3 contrasts indicators of service quality
for the current schedule with those obtained through discrete-event simulation
of the optimal schedule generated by Model 2. In addition to the value of
each indicator, we also report on half-width (HW), when applicable. In the
last column of Table G.3 (∆2%), we present the percentage variation of the
indicator values. Several points are worthy of mention: first, note the reduction
of approximately 62% in the frequency of queues, which is a significantly
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greater reduction than the one shown in Table G.2. Moreover, the frequency of
queues with more than 10 patients (one of the main quality indicators defined
by managers from the real ED we are analyzing) is approximately 0.91%,
which is considerably lower than both the current schedule and the schedule
generated by Model 1. Additionally, the schedule from Model 2 leads to a
reduction of approximately 86% in the number of patients in the queue, while
the average time door-to-doctor decrease by approximately 86% in relation to
the current schedule. Taken together, these results indicate that the schedule
generated by Model 2 takes better advantage of the total available workload
during the planning horizon and more efficiently allocates physicians when
compared to both the current schedule and the schedule generated by Model
1. A direct comparison of Tables G.2 and G.3 reveals that all queue and wait
time indicators are considerably lower for Model 2 than for Model 1 or the
current schedule.

Table G.3: Discrete-event simulation results for Model 2
Current schedule Model 2

Value HW Value HW ∆2%

Number of patients 85,623.66 78.28 85,622.92 70.94 0.00%
Frequency of queue (%) 24.05 - 9.00 - -62.58%
Frequency of queue > 10 patients (%) 9.84 - 0.91 - -90.71%
Frequency of queue ≤ 10 patients (%) 14.21 - 8.08 - -43.14%
Average number of patients in queue 3.00 0.08 0.42 <0.01 -86.11%
Average time door-to-doctor (min) 24.53 0.63 3.41 <0.10 -86.12%
Total number of physician hours used 3,522.00 - 3,888.00 - 9.41%

We end with a discussion on the use of the total physician workload in
the schedule from Model 1 vs. the one from Model 2. Since we do not limit the
total workload in Model 2, its use is greater than in Model 1. This means that
Model 2 outperforms Model 1 (and, consequently, the manual schedule) in the
scheduling phase. We can further observe that the average utilization is lower
in the schedule generated by Model 2, indicating that physician idleness is
greater. This occurs because, by removing constraint (G-1), the model can
further minimize queues by allocating more physicians than the minimum
required, thus leading to idleness at certain points in time. Of note, Model
2 more adequately accounts for real ED schedule requirements given that it
does not include the artificially-defined constraint on total physician workload.
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H
Size of the model from the Hospital B’s case study from
Chapter 4

The size of the models (i.e., variables and constraints), average execution
times, and their standard deviation are shown in Table H.1.

Table H.1: Size of the model from the case study in the Hospital B
Scenarios Variables Constraints Time(s) St.Dev (s)

100 50443 307516 172.99 108.72
200 84043 324316 165.04 40.56
300 117643 341116 278.58 194.72
400 151243 357916 282.36 36.16
500 184843 374716 508.80 344.94
600 218443 391516 1512.113 2578.02
700 252043 408316 851.34 743.56
800 285643 425116 1735.79 1967.06
900 319243 441916 1932.535 841.31
1000 352843 458716 2188.666 879.34
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Table I.1 shows the minimum and maximum confidence levels for the
optimal gap in each experiment.

Table I.1: Confidence interval of the optimal gap from case study in the
Hospital B

Monte Carlo Sampling Latin Hypercube Sampling

100 Scenarios
Min 166.573 68.923
Max 169.859 70.292

200 Scenarios
Min 129.906 29.524
Max 132.130 31.153

300 Scenarios
Min 109.915 15.626
Max 111.955 16.844

400 Scenarios
Min 51.545 3.377
Max 54.195 4.309

500 Scenarios
Min 39.995 0.471
Max 41.519 0.992

600 Scenarios
Min 30.274 0.166
Max 31.865 0.866

700 Scenarios
Min 19.648 -0.038
Max 21.099 0.796

800 Scenarios
Min 13.706 -0.117
Max 14.785 0.535

900 Scenarios
Min 9.553 -0.111
Max 10.714 0.294

1000 Scenarios
Min 7.172 -0.321
Max 8.712 0.402

Tables I.2 and I.3 show the number of first-stage solutions in the in-
sample analysis, i.e., how many different solutions were observed in each
replication. In the tables, we present the results of each replication by varying
the number of scenarios using the Monte Carlo and the Latin Hypercube
methods, respectively. The solution we consider for analysis here is the number
of physicians allocated for each day and hour. For example, in Table I.2, we
see that using 100 scenarios we have XX possible solutions for the number of
physicians that should be allocated at Hour 0 on Monday.
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We can observe from Table I.2 that as we increase the number of
scenarios, the number of possible solutions decreases, tending to converge to a
single solution. We see that the Average Number of Solutions (ANS) is 4.3 for
100 scenarios and decreases progressively reaching 3.0 for 1,000 scenarios. We
observed the same behavior in Table I.3 using the Latin Hypercube technique.
However, we noticed a faster convergence tending to a single solution using
this sampling method (ANS = 2.99 for 1,000 scenarios).
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Table I.2: Number of solutions using Monte Carlo Sampling method
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Hour 0 1 2 3 4 6 7 8 9 12 13 14 15 0 1 2 3 4 5 6 7 8 9 12 13 14 15 0 1 2 3 4 5 6 7 8 9 12 13 14 15 0 1 2 3 4 6 7 8 9 12 13 14 15 0 1 2 3 4 6 7 9 12 13 14 0 1 2 3 4 12 13 14 15 0 1 2 3 4 5 12 13 14 15 ANSa

Sc
en

ar
io
s

100 3 5 7 4 3 4 3 0 0 5 2 6 2 6 5 6 4 4 0 4 3 3 4 6 5 7 0 7 6 7 4 4 3 4 3 0 3 6 4 5 0 7 5 6 4 4 4 3 3 4 6 5 4 0 6 6 4 4 4 4 0 3 6 5 2 5 5 4 3 3 4 4 5 2 5 5 6 4.0 3 3 2 3 5 2 4.3
200 2 5 6 5 4 6 3 3 0 6 3 7 0 5 4 6 2 3 0 3 3 3 3 5 4 7 2 5 4 7 3 3 2 3 0 0 3 5 5 5 2 5 5 5 3 3 4 0 2 2 6 5 3 0 6 5 3 3 3 3 0 2 3 3 0 2 2 2 2 2 2 2 2 2 2 2 3 2.0 2 2 0 2 2 1 3.4
300 2 5 4 3 3 3 2 0 0 5 2 5 2 5 3 5 3 3 2 3 3 0 2 6 5 6 0 6 6 6 3 3 0 3 2 0 2 6 4 5 0 6 4 5 3 3 3 2 0 3 6 5 4 0 6 5 3 3 3 3 0 2 4 4 0 3 3 2 2 2 3 3 2 2 2 2 3 3.0 2 2 0 2 2 1 3.3
400 2 3 4 3 3 3 2 3 0 4 2 4 2 5 3 5 2 3 0 3 2 0 3 5 6 6 0 5 4 6 2 3 0 3 0 2 3 5 4 4 0 6 4 4 2 3 3 2 0 3 4 4 3 0 4 4 3 3 3 3 2 2 4 4 2 3 3 2 2 2 3 3 2 2 2 2 3 2.0 2 2 0 2 2 1 3.1
500 1 3 4 3 3 3 1 2 0 5 3 5 2 5 3 5 2 3 0 2 1 0 2 5 6 6 0 5 4 6 2 3 0 3 2 2 2 6 5 4 0 6 5 4 2 3 3 2 0 3 4 4 3 2 4 4 3 3 3 3 2 0 3 3 1 2 2 2 2 2 2 2 2 2 2 2 3 3.0 2 2 0 2 3 2 3.1
600 1 3 4 2 2 3 0 0 0 4 2 4 0 4 2 5 2 3 0 3 2 2 2 6 4 5 0 6 4 5 2 3 0 4 0 2 2 7 5 5 2 7 5 5 2 3 3 1 0 3 6 5 3 0 6 5 2 3 3 3 2 2 4 4 1 3 3 2 2 2 3 3 3 2 2 2 2 2.0 2 2 0 2 2 1 3.1
700 1 3 4 2 2 3 0 0 0 4 2 4 0 4 2 5 2 3 3 0 2 2 2 6 4 5 0 6 7 5 2 3 0 4 0 2 2 7 5 5 2 4 5 5 2 3 3 1 0 3 6 5 3 0 6 5 2 3 3 3 2 2 4 4 1 3 3 2 2 2 3 3 3 2 2 2 2 2.0 2 2 0 2 2 1 3.1
800 1 3 4 3 2 3 2 2 2 4 2 4 0 4 3 4 2 3 0 3 2 2 2 5 5 6 0 5 5 6 2 3 0 3 0 2 2 6 4 5 2 6 4 5 2 3 4 1 0 3 5 4 3 0 5 4 3 2 3 3 2 2 4 4 1 3 2 2 2 2 2 2 2 2 2 2 2 2.0 2 2 0 2 3 2 3.1
900 1 2 2 2 2 3 2 2 2 4 2 4 0 4 2 5 2 3 0 3 2 2 3 5 4 5 0 5 4 6 3 3 0 3 2 2 3 5 4 5 2 5 4 5 2 3 4 1 0 3 5 4 3 2 5 4 3 3 3 3 2 2 4 4 1 3 2 2 2 2 2 2 2 2 2 2 2 2.0 2 2 0 2 2 2 3.1
1000 1 2 3 2 2 4 3 2 2 4 2 4 0 4 3 5 2 2 0 2 2 0 2 5 4 6 0 5 4 6 3 3 0 3 0 0 2 6 4 5 2 6 4 5 3 3 4 1 0 2 5 4 3 2 5 4 3 3 3 3 2 2 3 4 1 3 2 2 2 2 2 2 2 2 2 2 2 2.0 2 0 0 2 2 2 3.0

aANS - Average Number of Solutions

Table I.3: Number of solutions using Latin Hypercube Sampling method
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Hour 0 1 2 3 4 6 7 8 12 13 14 15 0 1 2 3 4 6 7 8 9 12 13 14 0 1 2 3 4 6 7 8 9 12 13 14 0 1 2 3 4 6 7 8 9 12 13 14 15 0 1 2 3 4 6 7 9 12 13 14 0 1 2 3 4 12 13 14 15 0 1 2 3 4 14 15 ANS

Sc
en

ar
io
s

100 1 2 2 2 3 3 3 0 4 2 4 0 4 4 5 3 4 3 2 0 3 5 4 6 5 4 6 3 4 4 3 0 3 5 4 5 5 4 5 3 4 4 0 0 3 5 4 3 2 5 4 2 3 4 5 3 4 3 3 2 2 2 2 2 0 2 2 2 2 2 2 4 2 3 1 1 3.5
200 1 1 1 1 2 3 2 0 4 2 4 0 4 3 5 2 3 3 2 0 3 5 4 6 5 4 6 3 3 3 2 0 2 5 4 5 5 4 5 3 3 3 0 0 2 5 4 3 2 5 4 2 3 3 4 2 3 3 3 2 2 2 2 2 0 2 2 2 2 2 2 3 2 2 1 1 3.1
300 1 1 2 2 0 2 0 0 4 2 4 0 4 2 4 2 2 1 0 0 3 5 3 4 5 3 4 2 3 3 2 0 3 7 5 4 7 5 4 2 3 4 0 0 3 5 4 3 0 5 4 2 2 3 3 0 2 3 3 0 2 2 2 2 0 2 2 2 2 2 2 3 2 2 1 1 2.8
400 1 1 1 1 2 3 0 0 4 2 4 0 4 2 4 2 2 2 0 0 2 5 4 6 5 4 6 2 3 3 0 0 2 5 5 4 5 5 4 2 3 3 1 0 2 5 4 3 0 5 4 2 2 3 3 0 2 3 3 0 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 2.8
500 1 1 1 2 2 3 0 0 4 2 4 0 4 2 4 2 2 2 0 0 2 5 3 5 5 3 5 2 3 3 0 0 2 5 5 5 6 5 5 3 3 3 0 0 2 5 4 3 0 5 4 2 2 3 4 0 2 3 3 0 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 2.8
600 1 1 1 1 0 2 2 0 4 2 4 0 4 2 4 2 2 1 2 0 0 5 3 5 5 3 5 2 3 3 0 2 2 5 4 5 5 4 5 2 3 3 2 0 2 5 4 3 0 5 4 2 2 3 3 0 2 3 3 0 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 2.8
700 1 1 1 1 2 2 0 0 4 2 4 0 4 2 4 2 2 1 0 0 2 5 3 5 5 3 5 2 3 3 0 2 2 5 4 5 5 4 5 2 3 3 0 2 2 5 4 3 0 5 4 2 2 3 3 0 2 3 3 0 2 2 2 2 2 2 2 2 2 2 2 2 1 0 0 0 2.7
800 1 1 1 1 0 2 2 0 4 2 4 2 4 2 5 2 2 1 0 0 2 4 3 5 5 3 5 2 3 3 0 0 2 5 4 5 5 4 4 2 2 3 0 0 2 4 3 3 0 5 4 2 2 3 3 0 2 3 3 0 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 2.7
900 1 1 1 1 0 2 1 0 4 2 4 0 4 2 5 2 2 1 2 0 2 4 3 5 5 3 5 2 3 3 0 0 2 5 4 4 5 4 4 2 2 3 0 0 2 4 4 2 0 5 4 2 2 3 3 0 2 3 3 0 2 2 2 2 0 2 2 2 2 2 2 2 1 2 1 1 2.7
1000 1 1 1 1 0 2 0 1 4 2 4 0 4 2 5 2 2 1 0 1 2 4 3 5 4 3 5 2 3 3 0 0 2 4 4 4 5 4 4 2 2 3 1 1 2 4 3 2 0 4 3 2 2 3 3 0 2 3 3 0 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 2.6

aANS - Average Number of Solutions
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As for each number of scenarios we run 50 replications, it is important
to analyze the frequency with which each solution appears. With this, we
can analyze dominant solutions. We call dominant solutions the solutions that
appear most often. Tables I.4 - I.13 present the results of the dominant solution
analysis for the Monte Carlo method. Tables I.14 - I.23 show the results for
the Latin Hypercube technique. For dominant solution analysis, we use a color
scale according to Figure F.1. When a solution appears 26 times or more
(more than 50 %) we consider only 1 dominant solution, otherwise we consider
as dominant solution any solution that appears between 11 and 25 times.

Considering only the dominant solutions, we observed that even with just
100 scenarios we have a low number of possible solutions using both methods.
Despite a large number of possible solutions, we see that as we increase the
number of scenarios, even if other solutions ever appear, the solution tends to
converge to a point, which we call the dominant solution and which can be
considered the true solution for the problem. The results showed that the LHS
method converges more quickly to a true solution since the ANS for dominant
solutions always decreases and from 500 scenarios the ANS is already about
1.09. Using the MCS, we observed a greater oscillation of the ANS.
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Table I.4: Analysis of dominant solution from Monte Carlo Sampling method using 100 scenarios
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Hour/
# Physiciansa

0 1 2 3 4 6 7 8 9 12 13 14 15 0 1 2 3 4 5 6 7 8 9 12 13 14 15 0 1 2 3 4 5 6 7 8 9 12 13 14 15 0 1 2 3 4 6 7 8 9 12 13 14 15 0 1 2 3 4 6 7 9 12 13 14 0 1 2 3 4 12 13 14 15 0 1 2 3 4 5 12 13 14 15

0 2 1 1 1 34 13 47 0 0 3 40 1 48 2 1 1 1 18 0 8 47 47 27 5 16 3 0 2 1 1 1 21 48 17 48 0 29 2 11 3 0 2 1 1 1 23 17 48 48 39 1 12 9 0 2 1 2 1 23 10 0 32 1 10 42 2 1 1 1 47 2 19 1 30 2 2 1 1 32 45 46 35 1 5
1 0 6 0 0 15 21 2 0 0 13 9 0 1 2 1 0 28 24 0 38 2 2 21 9 20 6 0 4 16 3 15 23 1 26 1 0 21 5 17 18 0 1 12 5 11 21 20 1 1 8 2 19 26 0 0 3 11 19 23 24 0 17 0 17 7 0 23 23 0 2 4 21 6 19 3 33 0 1 17 4 3 11 0 45
2 46 35 1 3 0 16 0 0 0 15 0 8 0 12 28 5 20 7 0 4 0 0 1 15 8 18 0 9 22 6 29 6 0 7 0 0 0 12 16 20 0 5 16 18 30 6 12 0 0 3 6 11 13 0 2 25 36 25 4 15 0 0 1 19 0 0 21 24 29 0 22 7 20 0 7 9 4 16 0 0 0 3 0 0
3 3 8 1 18 0 0 0 0 0 12 0 13 0 17 19 8 2 0 0 0 0 0 0 11 4 12 0 15 7 19 6 0 0 0 0 0 0 18 6 4 0 12 16 18 9 0 0 0 0 0 13 7 2 0 6 12 2 6 0 0 0 0 6 3 0 2 4 3 21 0 22 3 21 0 38 6 16 33 0 0 0 0 3 0
4 0 1 5 29 1 0 0 0 0 7 0 18 0 11 2 13 0 1 0 0 0 0 0 7 1 7 0 11 4 12 0 1 0 0 0 0 0 11 0 5 0 18 6 6 0 1 0 0 0 0 23 1 0 0 14 8 0 0 1 0 0 0 17 1 0 7 2 0 0 1 0 0 2 0 1 1 25 0 1 0 0 0 11 0
5 0 0 25 0 0 0 0 0 0 0 0 9 0 7 0 17 0 0 0 0 0 0 0 3 0 3 0 7 1 7 0 0 1 0 0 0 0 2 0 0 0 11 0 3 0 0 0 0 0 0 5 0 0 0 22 2 0 0 0 0 0 0 19 0 0 22 0 0 0 0 0 0 0 0 0 0 4 0 0 1 0 0 34 0
6 0 0 15 0 0 1 0 0 0 0 0 1 0 0 0 7 0 0 0 1 0 0 0 0 0 1 0 3 0 3 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 5 0 0 0 0 1 0 0 6 0 0 18 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
7 0 0 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANSd

#Solb 3 5 7 4 3 4 3 0 0 5 2 6 2 6 5 6 4 4 0 4 3 3 4 6 5 7 0 7 6 7 4 4 3 4 3 0 3 6 4 5 0 7 5 6 4 4 4 3 3 4 6 5 4 0 6 6 4 4 4 4 0 3 6 5 2 5 5 4 3 3 4 4 5 2 5 5 6 4 3 3 2 3 5 2 4.32
#SolDc 1 1 2 1 1 3 1 0 0 3 1 2 1 3 1 2 1 2 0 1 1 1 1 2 2 2 0 2 2 2 1 2 1 1 1 0 3 3 2 0 3 3 2 1 2 3 1 1 1 2 3 1 0 2 2 1 2 2 2 0 1 2 2 1 2 2 2 1 1 2 2 2 1 1 1 2 1 1 1 1 1 1 1 1.47

a#Physicians - Number of Physicians assigned to that shift
b#Sol - Number of different solutions
c#SolD - Number of dominant solutions
dANS - Average Number of Solutions

Table I.5: Analysis of dominant solution from Monte Carlo Sampling method using 200 scenarios
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Hour/
# Physiciansa

0 1 2 3 4 6 7 8 9 12 13 14 15 0 1 2 3 4 5 6 7 8 9 12 13 14 15 0 1 2 3 4 5 6 7 8 9 12 13 14 15 0 1 2 3 4 6 7 8 9 12 13 14 15 0 1 2 3 4 6 7 9 12 13 14 0 1 2 3 4 12 13 14 15 0 1 2 3 4 5 12 13 14 15

0 0 0 0 1 36 6 47 47 0 2 38 0 0 0 0 0 0 24 0 3 47 47 27 2 17 2 49 0 0 0 0 25 49 23 0 0 33 0 14 6 49 0 0 0 0 29 13 0 49 36 0 11 9 0 0 0 0 0 27 9 0 29 0 13 0 0 0 0 0 48 0 31 0 23 0 0 0 0 39 47 0 44 0 0
1 1 9 0 2 12 26 2 2 0 12 11 2 0 2 1 0 26 23 0 41 2 2 22 12 17 3 1 2 17 1 6 19 1 15 0 0 16 2 14 18 1 0 14 8 10 15 19 0 1 14 1 24 31 0 0 5 19 20 17 26 0 21 0 25 0 0 32 29 0 2 0 19 0 27 0 41 0 0 11 3 0 6 0 50
2 49 36 2 3 1 15 0 0 0 17 1 5 0 12 29 1 24 3 0 6 0 0 1 18 12 15 0 12 17 4 41 6 0 12 0 0 1 9 18 20 0 2 14 16 37 6 17 0 0 0 2 13 10 0 1 24 29 24 6 15 0 0 0 12 0 0 18 21 23 0 18 0 28 0 8 9 0 7 0 0 0 0 0 0
3 0 3 2 14 1 2 0 0 0 15 0 18 0 17 18 8 0 0 0 0 0 0 0 13 4 17 0 18 13 17 3 0 0 0 0 0 0 22 3 4 0 9 18 20 3 0 1 0 0 0 11 1 0 0 2 19 2 6 0 0 0 0 0 0 0 0 0 0 27 0 32 0 22 0 42 0 11 43 0 0 0 0 0 0
4 0 1 3 30 0 2 0 0 0 3 0 15 0 14 2 19 0 0 0 0 0 0 0 5 0 11 0 13 3 17 0 0 0 0 0 0 0 13 1 2 0 22 3 4 0 0 0 0 0 0 27 1 0 0 11 1 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 36 0 0 0 0 0 6 0
5 0 1 33 0 0 2 0 0 0 1 0 8 0 5 0 14 0 0 0 0 0 0 0 0 0 1 0 5 0 9 0 0 0 0 0 0 0 4 0 0 0 13 1 2 0 0 0 0 0 0 8 0 0 0 27 1 0 0 0 0 0 0 25 0 0 18 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 44 0
6 0 0 5 0 0 0 0 0 0 0 0 1 0 0 0 7 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 1 0 0 0 8 0 0 0 0 0 0 0 13 0 0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 5 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANSd

#Solb 2 5 6 5 4 6 3 3 0 6 3 7 0 5 4 6 2 3 0 3 3 3 3 5 4 7 2 5 4 7 3 3 2 3 0 0 3 5 5 5 2 5 5 5 3 3 4 0 2 2 6 5 3 0 6 5 3 3 3 3 0 2 3 3 0 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 0 2 2 1 3.39
#SolDc 1 1 1 1 1 1 1 1 0 3 1 2 0 3 1 2 1 2 0 1 1 1 1 3 3 3 1 3 3 2 1 2 1 3 0 0 1 2 3 2 1 2 3 2 1 1 3 0 1 1 1 3 1 0 1 2 1 2 1 1 0 1 3 3 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1.35
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Table I.6: Analysis of dominant solution from Monte Carlo Sampling method using 300 scenarios
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Hour/
# Physiciansa

0 1 2 3 4 6 7 8 9 12 13 14 15 0 1 2 3 4 5 6 7 8 9 12 13 14 15 0 1 2 3 4 5 6 7 8 9 12 13 14 15 0 1 2 3 4 6 7 8 9 12 13 14 15 0 1 2 3 4 6 7 9 12 13 14 0 1 2 3 4 12 13 14 15 0 1 2 3 4 5 12 13 14 15

0 0 0 0 0 42 6 49 0 0 1 44 0 49 0 0 0 0 21 49 47 47 0 20 2 26 2 0 0 1 0 0 27 0 22 49 0 34 1 23 1 0 0 0 0 0 25 18 49 0 38 0 13 12 0 0 0 0 0 21 12 0 18 0 9 0 0 0 0 0 46 0 29 0 17 0 0 0 0 33 48 0 46 0 0
1 1 2 0 0 7 30 1 0 0 10 6 0 1 1 0 0 25 28 1 1 2 0 30 7 17 3 0 2 25 2 7 17 0 18 1 0 16 2 15 12 0 1 23 2 9 21 19 1 0 11 1 21 29 0 0 9 17 26 20 24 0 32 0 28 0 0 28 37 0 4 2 19 0 33 0 38 0 1 17 2 0 4 0 50
2 49 40 0 1 1 14 0 0 0 20 0 8 0 10 35 1 19 1 0 2 0 0 0 24 4 11 0 7 17 5 36 6 0 10 0 0 0 11 6 24 0 2 15 11 40 4 13 0 0 1 3 12 8 0 1 19 31 21 9 14 0 0 0 11 0 0 20 13 17 0 19 2 33 0 12 12 0 5 0 0 0 0 0 0
3 0 4 0 7 0 0 0 0 0 13 0 15 0 20 13 12 6 0 0 0 0 0 0 11 2 15 0 24 4 10 7 0 0 0 0 0 0 18 6 11 0 11 6 24 1 0 0 0 0 0 14 3 1 0 3 18 2 3 0 0 0 0 2 2 0 0 2 0 33 0 29 0 17 0 38 0 14 44 0 0 0 0 0 0
4 0 2 3 42 0 0 0 0 0 6 0 17 0 13 2 14 0 0 0 0 0 0 0 5 1 13 0 11 2 16 0 0 0 0 0 0 0 16 0 0 0 18 6 11 0 0 0 0 0 0 17 1 0 0 14 3 0 0 0 0 0 0 11 0 0 2 0 0 0 0 0 0 0 0 0 0 34 0 0 0 0 0 4 0
5 0 2 41 0 0 0 0 0 0 0 0 9 0 6 0 14 0 0 0 0 0 0 0 1 0 6 0 5 1 12 0 0 0 0 0 0 0 2 0 2 0 16 0 0 0 0 0 0 0 0 13 0 0 0 17 1 0 0 0 0 0 0 28 0 0 20 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 46 0
6 0 0 4 0 0 0 0 0 0 0 0 1 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 1 0 5 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 2 0 0 0 13 0 0 0 0 0 0 0 9 0 0 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANSd

#Solb 2 5 4 3 3 3 2 0 0 5 2 5 2 5 3 5 3 3 2 3 3 0 2 6 5 6 0 6 6 6 3 3 0 3 2 0 2 6 4 5 0 6 4 5 3 3 3 2 0 3 6 5 4 0 6 5 3 3 3 3 0 2 4 4 0 3 3 2 2 2 3 3 2 2 2 2 3 3 2 2 0 2 2 1 3.27
#SolDc 1 1 1 1 1 1 1 0 0 2 1 2 1 2 1 3 3 1 1 1 1 0 1 2 1 3 0 2 2 2 1 1 0 2 1 0 1 3 2 3 0 3 2 3 1 2 3 1 0 2 3 3 1 0 3 2 1 1 2 3 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1.30
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Table I.7: Analysis of dominant solution from Monte Carlo Sampling method using 400 scenarios
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Hour/
# Physiciansa

0 1 2 3 4 6 7 8 9 12 13 14 15 0 1 2 3 4 5 6 7 8 9 12 13 14 15 0 1 2 3 4 5 6 7 8 9 12 13 14 15 0 1 2 3 4 6 7 8 9 12 13 14 15 0 1 2 3 4 6 7 9 12 13 14 0 1 2 3 4 12 13 14 15 0 1 2 3 4 5 12 13 14 15

0 0 0 0 0 44 5 49 47 0 0 42 0 49 0 0 0 0 20 0 3 49 0 24 0 21 1 0 0 0 0 0 22 0 24 0 49 33 0 15 1 0 0 0 0 0 27 16 49 0 36 0 15 11 0 0 0 0 0 25 14 49 23 0 8 49 0 0 0 0 46 0 31 0 27 0 0 0 0 37 47 0 46 0 0
1 1 3 0 0 5 37 1 2 0 12 8 0 1 1 0 0 30 27 0 43 1 0 24 13 20 4 0 0 21 1 11 21 0 9 0 1 14 1 19 21 0 1 15 1 9 17 21 1 0 13 0 18 35 0 0 10 16 21 15 25 1 27 0 30 1 0 31 27 0 4 2 17 0 23 0 39 0 0 13 3 0 4 0 50
2 49 44 0 1 1 8 0 0 0 18 0 11 0 11 35 2 20 3 0 4 0 0 2 17 5 13 0 13 20 4 39 7 0 17 0 0 3 12 14 15 0 1 19 21 41 6 13 0 0 1 4 12 4 0 0 22 33 27 10 11 0 0 0 11 0 0 17 23 27 0 16 2 24 0 10 11 0 11 0 0 0 0 0 0
3 0 3 0 4 0 0 0 0 0 12 0 11 0 18 13 10 0 0 0 0 0 0 0 13 1 18 0 17 7 13 0 0 0 0 0 0 0 22 2 13 0 12 14 15 0 0 0 0 0 0 10 5 0 0 4 13 1 2 0 0 0 0 2 1 0 0 2 0 23 0 32 0 26 0 40 0 10 39 0 0 0 0 0 0
4 0 0 3 45 0 0 0 0 0 8 0 19 0 12 2 14 0 0 0 0 0 0 0 5 1 10 0 13 2 18 0 0 0 0 0 0 0 9 0 0 0 22 2 13 0 0 0 0 0 0 18 0 0 0 10 5 0 0 0 0 0 0 10 0 0 3 0 0 0 0 0 0 0 0 0 0 36 0 0 0 0 0 4 0
5 0 0 41 0 0 0 0 0 0 0 0 9 0 8 0 15 0 0 0 0 0 0 0 2 2 4 0 5 0 10 0 0 0 0 0 0 0 6 0 0 0 8 0 0 0 0 0 0 0 0 18 0 0 0 18 0 0 0 0 0 0 0 30 0 0 16 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 46 0
6 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 2 0 4 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0 8 0 0 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANSd

#Solb 2 3 4 3 3 3 2 3 0 4 2 4 2 5 3 5 2 3 0 3 2 0 3 5 6 6 0 5 4 6 2 3 0 3 0 2 3 5 4 4 0 6 4 4 2 3 3 2 0 3 4 4 3 0 4 4 3 3 3 3 2 2 4 4 2 3 3 2 2 2 3 3 2 2 2 2 3 2 2 2 0 2 2 1 3.10
#SolDc 1 1 1 1 1 1 1 1 0 3 1 3 1 3 1 2 1 1 0 1 1 0 2 3 2 2 0 3 2 2 1 2 0 2 0 1 1 2 3 3 0 2 3 3 1 1 1 1 0 1 2 3 1 0 2 2 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1.31
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Table I.8: Analysis of dominant solution from Monte Carlo Sampling method using 500 scenarios
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Hour/
# Physiciansa

0 1 2 3 4 6 7 8 9 12 13 14 15 0 1 2 3 4 5 6 7 8 9 12 13 14 15 0 1 2 3 4 5 6 7 8 9 12 13 14 15 0 1 2 3 4 6 7 8 9 12 13 14 15 0 1 2 3 4 6 7 9 12 13 14 0 1 2 3 4 12 13 14 15 0 1 2 3 4 5 12 13 14 15

0 0 0 0 0 45 4 50 49 0 1 37 0 49 0 0 0 0 28 0 0 50 0 28 1 22 1 0 0 0 0 0 29 0 15 49 49 39 0 18 4 0 0 0 0 0 29 17 49 0 38 0 9 12 49 0 0 0 0 30 7 17 0 0 10 50 0 0 0 0 49 0 39 0 10 0 0 0 0 26 48 0 49 0 1
1 0 1 0 0 4 33 0 1 0 9 12 1 1 1 0 0 22 21 0 48 0 0 22 6 15 5 0 1 22 1 9 15 0 17 1 1 11 7 14 15 0 0 18 4 6 17 18 1 0 10 0 18 35 1 0 8 15 19 14 28 33 0 0 34 0 0 39 41 0 1 0 11 0 40 0 44 0 1 24 2 0 1 0 49
2 50 48 0 1 1 13 0 0 0 17 1 12 0 9 33 3 28 1 0 2 0 0 0 20 10 17 0 6 16 5 41 6 0 18 0 0 0 10 14 17 0 7 14 15 44 4 15 0 0 2 0 22 3 0 0 17 33 29 6 15 0 0 0 6 0 0 11 9 10 0 11 0 40 0 6 6 0 6 0 0 0 0 0 0
3 0 1 0 4 0 0 0 0 0 16 0 15 0 17 14 11 0 0 0 0 0 0 0 15 1 15 0 20 11 17 0 0 0 0 0 0 0 14 2 14 0 10 14 17 0 0 0 0 0 0 21 1 0 0 0 24 2 2 0 0 0 0 0 0 0 0 0 0 40 0 39 0 10 0 44 0 19 43 0 0 0 0 0 0
4 0 0 1 45 0 0 0 0 0 7 0 13 0 16 3 16 0 0 0 0 0 0 0 8 1 8 0 15 1 15 0 0 0 0 0 0 0 12 2 0 0 14 2 14 0 0 0 0 0 0 17 0 0 0 21 1 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 1 0
5 0 0 45 0 0 0 0 0 0 0 0 9 0 7 0 12 0 0 0 0 0 0 0 0 1 4 0 8 0 8 0 0 0 0 0 0 0 6 0 0 0 12 2 0 0 0 0 0 0 0 10 0 0 0 17 0 0 0 0 0 0 0 34 0 0 11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 48 0
6 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 1 0 0 0 6 0 0 0 0 0 0 0 0 2 0 0 0 10 0 0 0 0 0 0 0 10 0 0 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

7 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANSd

#Solb 1 3 4 3 3 3 1 2 0 5 3 5 2 5 3 5 2 3 0 2 1 0 2 5 6 6 0 5 4 6 2 3 0 3 2 2 2 6 5 4 0 6 5 4 2 3 3 2 0 3 4 4 3 2 4 4 3 3 3 3 2 0 3 3 1 2 2 2 2 2 2 2 2 2 2 2 3 3 2 2 0 2 3 2 3.07
#SolDc 1 1 1 1 1 1 1 1 0 2 1 3 1 2 1 3 1 1 0 1 1 1 2 2 2 0 2 3 2 1 1 0 3 1 1 1 2 3 3 0 2 3 3 1 1 3 1 0 1 2 2 1 1 2 2 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1.28
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Table I.9: Analysis of dominant solution from Monte Carlo Sampling method using 600 scenarios
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Hour/
# Physiciansa

0 1 2 3 4 6 7 8 9 12 13 14 15 0 1 2 3 4 5 6 7 8 9 12 13 14 15 0 1 2 3 4 5 6 7 8 9 12 13 14 15 0 1 2 3 4 6 7 8 9 12 13 14 15 0 1 2 3 4 6 7 9 12 13 14 0 1 2 3 4 12 13 14 15 0 1 2 3 4 5 12 13 14 15

0 0 0 0 0 43 5 0 0 0 0 39 0 0 0 0 0 0 20 0 1 49 49 22 1 18 0 0 0 0 0 0 32 0 16 0 49 35 2 26 3 49 0 0 0 0 27 18 50 0 35 0 14 12 0 0 0 0 0 27 9 49 21 0 7 50 0 0 0 0 49 0 38 0 20 0 0 0 0 36 48 0 49 0 0
1 0 2 0 0 7 33 0 0 0 14 11 0 0 0 0 0 30 29 0 47 1 1 28 11 20 7 0 1 18 0 1 17 0 17 0 1 15 1 17 11 1 2 26 3 7 16 20 0 0 14 1 23 32 0 0 9 15 21 16 34 1 29 0 36 0 0 39 31 0 1 1 11 1 30 0 40 0 0 14 2 0 1 0 50
2 50 47 0 0 0 12 0 0 0 17 0 7 0 14 31 1 20 1 0 2 0 0 0 19 11 14 0 11 20 7 49 1 0 15 0 0 0 9 3 19 0 1 17 9 43 7 12 0 0 1 3 8 6 0 1 25 35 28 7 7 0 0 0 6 0 0 10 19 20 0 10 1 29 0 9 10 0 3 0 0 0 0 0 0
3 0 1 0 4 0 0 0 0 0 14 0 17 0 17 19 8 0 0 0 0 0 0 0 13 1 12 0 19 11 14 0 0 0 2 0 0 0 20 2 16 0 11 3 21 0 0 0 0 0 0 9 4 0 0 3 11 0 1 0 0 0 0 1 1 0 0 1 0 30 0 39 0 20 0 41 0 14 47 0 0 0 0 0 0
4 0 0 1 46 0 0 0 0 0 5 0 16 0 14 0 15 0 0 0 0 0 0 0 5 0 14 0 13 1 12 0 0 0 0 0 0 0 12 2 1 0 18 2 16 0 0 0 0 0 0 19 1 0 0 9 4 0 0 0 0 0 0 6 0 0 1 0 0 0 0 0 0 0 0 0 0 36 0 0 0 0 0 1 0
5 0 0 46 0 0 0 0 0 0 0 0 10 0 5 0 21 0 0 0 0 0 0 0 1 0 3 0 5 0 14 0 0 0 0 0 0 0 4 0 0 0 12 2 1 0 0 0 0 0 0 17 0 0 0 19 1 0 0 0 0 0 0 36 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 49 0
6 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 1 0 3 0 0 0 0 0 0 0 2 0 0 0 4 0 0 0 0 0 0 0 0 1 0 0 0 17 0 0 0 0 0 0 0 7 0 0 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANSd

#Solb 1 3 4 2 2 3 0 0 0 4 2 4 0 4 2 5 2 3 0 3 2 2 2 6 4 5 0 6 4 5 2 3 0 4 0 2 2 7 5 5 2 7 5 5 2 3 3 1 0 3 6 5 3 0 6 5 2 3 3 3 2 2 4 4 1 3 3 2 2 2 3 3 3 2 2 2 2 2 2 2 0 2 2 1 3.09
#SolDc 1 1 1 1 1 1 0 0 0 3 1 2 0 3 1 2 1 1 0 1 1 1 1 3 3 3 0 3 3 3 1 1 0 3 0 1 1 2 1 3 1 3 1 2 1 1 3 1 0 1 2 2 1 0 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1.25
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Table I.10: Analysis of dominant solution from Monte Carlo Sampling method using 700 scenarios
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Hour/
# Physicians

0 1 2 3 4 6 7 8 9 12 13 14 15 0 1 2 3 4 5 6 7 8 9 12 13 14 15 0 1 2 3 4 5 6 7 8 9 12 13 14 15 0 1 2 3 4 6 7 8 9 12 13 14 15 0 1 2 3 4 6 7 9 12 13 14 0 1 2 3 4 12 13 14 15 0 1 2 3 4 5 12 13 14 15

0 0 0 0 0 43 5 0 0 0 0 39 0 0 0 0 0 0 20 1 0 49 49 22 1 18 0 0 0 0 0 0 32 0 16 0 49 35 2 26 3 49 0 0 0 0 27 18 50 0 35 0 14 12 0 0 0 0 0 27 9 49 21 0 7 50 0 0 0 0 49 0 38 0 20 0 0 0 0 36 48 0 49 0 0
1 0 2 0 0 7 33 0 0 0 14 11 0 0 0 0 0 30 29 47 0 1 1 28 11 20 7 0 1 2 0 1 17 0 17 0 1 15 1 17 11 1 18 26 3 7 16 20 0 0 14 1 23 32 0 0 9 15 21 16 34 1 29 0 36 0 0 39 31 0 1 1 11 1 30 0 40 0 0 14 2 0 1 0 50
2 50 47 0 0 0 12 0 0 0 17 0 7 0 14 31 1 20 1 2 0 0 0 0 19 11 14 0 11 1 7 49 1 0 15 0 0 0 9 3 19 0 20 17 9 43 7 12 0 0 1 3 8 6 0 1 25 35 28 7 7 0 0 0 6 0 0 10 19 20 0 10 1 29 0 9 10 0 3 0 0 0 0 0 0
3 0 1 0 4 0 0 0 0 0 14 0 17 0 17 19 8 0 0 0 0 0 0 0 13 1 12 0 19 11 14 0 0 0 2 0 0 0 20 2 16 0 11 3 21 0 0 0 0 0 0 9 4 0 0 3 11 0 1 0 0 0 0 1 1 0 0 1 0 30 0 39 0 20 0 41 0 14 47 0 0 0 0 0 0
4 0 0 1 46 0 0 0 0 0 5 0 16 0 14 0 15 0 0 0 0 0 0 0 5 0 14 0 13 18 12 0 0 0 0 0 0 0 12 2 1 0 1 2 16 0 0 0 0 0 0 19 1 0 0 9 4 0 0 0 0 0 0 6 0 0 1 0 0 0 0 0 0 0 0 0 0 36 0 0 0 0 0 1 0
5 0 0 46 0 0 0 0 0 0 0 0 10 0 5 0 21 0 0 0 0 0 0 0 1 0 3 0 5 12 14 0 0 0 0 0 0 0 4 0 0 0 0 2 1 0 0 0 0 0 0 17 0 0 0 19 1 0 0 0 0 0 0 36 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 49 0
6 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 1 4 3 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 17 0 0 0 0 0 0 0 7 0 0 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANS

#Sol 1 3 4 2 2 3 0 0 0 4 2 4 0 4 2 5 2 3 3 0 2 2 2 6 4 5 0 6 7 5 2 3 0 4 0 2 2 7 5 5 2 4 5 5 2 3 3 1 0 3 6 5 3 0 6 5 2 3 3 3 2 2 4 4 1 3 3 2 2 2 3 3 3 2 2 2 2 2 2 2 0 2 2 1 3.09
#SolD 1 1 1 1 1 1 0 0 0 3 1 2 0 3 1 2 1 1 0 1 1 1 1 3 3 3 0 3 3 3 1 1 0 3 0 1 1 2 1 3 1 3 1 2 1 1 3 1 0 1 2 2 1 0 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1.25
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Table I.11: Analysis of dominant solution from Monte Carlo Sampling method using 800 scenarios
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Hour/
# Physiciansa

0 1 2 3 4 6 7 8 9 12 13 14 15 0 1 2 3 4 5 6 7 8 9 12 13 14 15 0 1 2 3 4 5 6 7 8 9 12 13 14 15 0 1 2 3 4 6 7 8 9 12 13 14 15 0 1 2 3 4 6 7 9 12 13 14 0 1 2 3 4 12 13 14 15 0 1 2 3 4 5 12 13 14 15

0 0 0 0 0 46 1 49 49 49 0 42 0 0 0 0 0 0 16 0 1 49 49 21 2 24 1 0 0 0 0 0 32 0 15 0 49 39 0 22 5 49 0 0 0 0 35 12 50 0 45 0 13 10 0 0 0 0 0 27 8 49 17 0 10 50 0 0 0 0 49 0 42 0 11 0 0 0 0 25 49 0 49 0 1
1 0 4 0 0 4 32 1 1 1 10 8 0 0 0 0 0 33 33 0 48 1 1 29 7 12 5 0 2 26 1 4 14 0 20 0 1 11 5 10 15 1 0 22 5 2 14 18 0 0 4 0 24 34 0 0 10 13 23 15 34 1 33 0 34 0 0 42 39 0 1 0 8 0 39 0 45 0 0 25 1 0 1 0 49
2 50 45 0 1 0 17 0 0 0 14 0 11 0 10 35 0 17 1 0 1 0 0 0 15 11 17 0 7 10 5 46 4 0 15 0 0 0 7 12 19 0 5 10 15 48 1 18 0 0 1 1 12 6 0 0 22 36 27 8 8 0 0 0 5 0 0 8 11 11 0 8 0 39 0 5 5 0 6 0 0 0 0 0 0
3 0 1 0 6 0 0 0 0 0 18 0 20 0 14 13 14 0 0 0 0 0 0 0 15 2 19 0 15 11 17 0 0 0 0 0 0 0 19 6 10 0 7 12 19 0 0 2 0 0 0 14 1 0 0 1 17 1 0 0 0 0 0 1 1 0 0 0 0 39 0 42 0 11 0 45 0 20 44 0 0 0 0 0 0
4 0 0 1 43 0 0 0 0 0 8 0 9 0 18 2 18 0 0 0 0 0 0 0 11 1 6 0 15 2 19 0 0 0 0 0 0 0 13 0 1 0 19 6 10 0 0 0 0 0 0 18 0 0 0 14 1 0 0 0 0 0 0 5 0 0 1 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 1 0
5 0 0 42 0 0 0 0 0 0 0 0 10 0 8 0 13 0 0 0 0 0 0 0 0 0 2 0 11 1 6 0 0 0 0 0 0 0 3 0 0 0 13 0 1 0 0 0 0 0 0 15 0 0 0 18 0 0 0 0 0 0 0 34 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48 0
6 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 3 0 0 0 3 0 0 0 0 0 0 0 0 2 0 0 0 15 0 0 0 0 0 0 0 10 0 0 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

7 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANSd

#Solb 1 3 4 3 2 3 2 2 2 4 2 4 0 4 3 4 2 3 0 3 2 2 2 5 5 6 0 5 5 6 2 3 0 3 0 2 2 6 4 5 2 6 4 5 2 3 4 1 0 3 5 4 3 0 5 4 3 2 3 3 2 2 4 4 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 2 3 2 3.08
#SolDc 1 1 1 1 1 1 1 1 1 2 1 2 0 2 1 3 1 1 0 1 1 1 1 3 3 2 0 3 1 2 1 1 0 3 0 1 1 2 2 2 1 2 2 2 1 1 3 1 0 1 3 3 1 0 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 0 1 1 1 1.27
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Table I.12: Analysis of dominant solution from Monte Carlo Sampling method using 900 scenarios
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Hour/
# Physiciansa

0 1 2 3 4 6 7 8 9 12 13 14 15 0 1 2 3 4 5 6 7 8 9 12 13 14 15 0 1 2 3 4 5 6 7 8 9 12 13 14 15 0 1 2 3 4 6 7 8 9 12 13 14 15 0 1 2 3 4 6 7 9 12 13 14 0 1 2 3 4 12 13 14 15 0 1 2 3 4 5 12 13 14 15

0 0 0 0 0 48 2 49 49 49 0 48 0 0 0 0 0 0 19 0 1 49 49 21 5 32 0 0 0 0 0 0 26 0 26 49 49 38 0 16 2 49 0 0 0 0 29 20 50 0 41 0 18 10 49 0 0 0 0 26 10 49 14 0 12 50 0 0 0 0 47 0 42 0 14 0 0 0 0 29 49 0 49 0 1
1 0 1 0 0 2 35 1 1 1 17 2 0 0 0 0 0 31 30 0 46 1 1 29 11 8 3 0 5 32 1 8 18 0 13 1 1 11 5 22 11 1 0 16 2 5 16 13 0 0 8 0 14 35 1 0 10 12 24 14 26 1 36 0 35 0 0 42 39 0 3 0 8 0 36 0 43 0 0 21 1 0 1 0 49
2 50 49 0 0 0 13 0 0 0 13 0 10 0 17 44 1 19 1 0 3 0 0 1 11 7 14 0 10 8 3 41 6 0 11 0 0 1 10 10 19 0 5 22 10 45 5 16 0 0 1 4 15 5 0 0 21 37 25 10 14 0 0 0 2 0 0 8 11 14 0 8 0 36 0 7 7 0 1 0 0 0 0 0 0
3 0 0 0 1 0 0 0 0 0 10 0 14 0 13 6 10 0 0 0 0 0 0 0 14 3 15 0 12 7 12 1 0 0 0 0 0 0 17 2 16 0 10 10 20 0 0 1 0 0 0 10 3 0 0 4 16 1 1 0 0 0 0 1 1 0 0 0 0 36 0 42 0 14 0 43 0 21 49 0 0 0 0 0 0
4 0 0 0 49 0 0 0 0 0 10 0 9 0 10 0 13 0 0 0 0 0 0 0 9 0 10 0 14 3 15 0 0 0 0 0 0 0 14 0 2 0 17 2 16 0 0 0 0 0 0 16 0 0 0 11 3 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 29 0 0 0 0 0 1 0
5 0 0 49 0 0 0 0 0 0 0 0 17 0 10 0 11 0 0 0 0 0 0 0 0 0 8 0 9 0 12 0 0 0 0 0 0 0 4 0 0 0 14 0 2 0 0 0 0 0 0 19 0 0 0 15 0 0 0 0 0 0 0 35 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 49 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 1 0 0 0 19 0 0 0 0 0 0 0 12 0 0 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANSd

#Solb 1 2 2 2 2 3 2 2 2 4 2 4 0 4 2 5 2 3 0 3 2 2 3 5 4 5 0 5 4 6 3 3 0 3 2 2 3 5 4 5 2 5 4 5 2 3 4 1 0 3 5 4 3 2 5 4 3 3 3 3 2 2 4 4 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0 2 2 2 3.06
#SolDc 1 1 1 1 1 1 1 1 1 2 1 2 0 2 1 3 1 1 0 1 1 1 1 3 1 2 0 2 1 3 1 1 0 1 1 1 1 2 2 3 1 2 2 2 1 1 3 1 0 1 2 3 1 1 3 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1.25

Table I.13: Analysis of dominant solution from Monte Carlo Sampling method using 1000 scenarios
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Hour/
# Physiciansa

0 1 2 3 4 6 7 8 9 12 13 14 15 0 1 2 3 4 5 6 7 8 9 12 13 14 15 0 1 2 3 4 5 6 7 8 9 12 13 14 15 0 1 2 3 4 6 7 8 9 12 13 14 15 0 1 2 3 4 6 7 9 12 13 14 0 1 2 3 4 12 13 14 15 0 1 2 3 4 5 12 13 14 15

0 0 0 0 0 49 1 1 49 49 0 40 0 0 0 0 0 0 17 0 0 49 0 22 2 21 1 0 0 0 0 0 27 0 21 0 0 37 2 15 1 49 0 0 0 0 30 17 50 0 42 0 10 10 49 0 0 0 0 27 4 49 14 0 10 50 0 0 0 0 49 0 43 0 16 0 0 0 0 32 0 0 49 0 0
1 0 0 0 0 1 37 36 1 1 16 10 0 0 0 0 0 33 33 0 48 1 0 28 13 19 5 0 2 21 1 5 19 0 15 0 0 13 7 16 19 1 2 15 1 9 12 17 0 0 8 0 18 34 1 0 8 10 23 19 32 1 36 0 33 0 0 43 34 0 1 0 7 0 34 0 46 0 0 18 0 0 1 0 49
2 50 49 0 0 0 11 13 0 0 13 0 12 0 16 30 2 17 0 0 2 0 0 0 14 9 9 0 13 19 6 42 4 0 14 0 0 0 8 13 11 0 7 16 19 40 8 15 0 0 0 6 17 6 0 0 17 39 26 4 14 0 0 0 5 0 0 7 16 16 0 7 0 34 0 4 4 0 2 0 0 0 0 0 1
3 0 1 0 1 0 1 0 0 0 13 0 15 0 13 19 12 0 0 0 0 0 0 0 14 1 22 0 14 9 8 3 0 0 0 0 0 0 22 6 15 0 8 13 11 1 0 1 0 0 0 16 5 0 0 6 19 1 1 0 0 0 0 0 2 0 0 0 0 34 0 43 0 16 0 46 0 16 48 0 0 0 0 0 0
4 0 0 1 49 0 0 0 0 0 8 0 7 0 13 1 18 0 0 0 0 0 0 0 7 0 5 0 14 1 23 0 0 0 0 0 0 0 7 0 4 0 22 6 15 0 0 0 0 0 0 16 0 0 0 16 6 0 0 0 0 0 0 7 0 0 1 0 0 0 0 0 0 0 0 0 0 34 0 0 0 0 0 1 0
5 0 0 48 0 0 0 0 0 0 0 0 16 0 8 0 4 0 0 0 0 0 0 0 0 0 8 0 7 0 5 0 0 0 0 0 0 0 4 0 0 0 7 0 4 0 0 0 0 0 0 9 0 0 0 16 0 0 0 0 0 0 0 33 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 49 0
6 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 3 0 0 0 9 0 0 0 0 0 0 0 10 0 0 43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANSd

#Solb 1 2 3 2 2 4 3 2 2 4 2 4 0 4 3 5 2 2 0 2 2 0 2 5 4 6 0 5 4 6 3 3 0 3 0 0 2 6 4 5 2 6 4 5 3 3 4 1 0 2 5 4 3 2 5 4 3 3 3 3 2 2 3 4 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 2 2 2 2.99
#SolDc 1 1 1 1 1 1 1 1 1 3 1 3 0 3 1 3 1 1 0 1 1 0 1 3 2 1 0 3 2 1 1 1 0 3 0 0 1 1 3 3 1 1 3 3 1 1 3 1 0 1 2 2 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1.24
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Table I.14: Analysis of dominant solution from Latin Hypercube Sampling method using 100 scenarios
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Hour/
# Physiciansa

0 1 2 3 4 6 7 8 12 13 14 15 0 1 2 3 4 6 7 8 9 12 13 14 0 1 2 3 4 6 7 8 9 12 13 14 0 1 2 3 4 6 7 8 9 12 13 14 15 0 1 2 3 4 6 7 9 12 13 14 0 1 2 3 4 12 13 14 15 0 1 2 3 4 14 15

0 0 0 0 0 48 1 48 0 0 38 0 0 0 0 0 0 15 1 49 0 18 2 20 1 0 0 0 0 29 17 48 0 40 0 17 4 0 0 0 0 28 19 0 0 39 0 10 12 49 0 0 0 0 35 3 48 20 0 8 49 0 0 0 0 0 0 35 0 15 0 0 0 0 34 0 0
1 0 1 0 0 1 35 1 0 9 12 0 0 0 1 0 34 34 43 1 0 31 10 23 4 2 20 1 5 17 16 1 0 9 4 17 12 0 18 3 6 17 13 0 0 10 0 14 36 1 0 9 13 13 10 39 1 28 0 33 1 0 36 33 0 0 0 15 0 35 0 38 0 0 15 0 50
2 50 49 1 0 0 14 0 0 19 0 13 0 9 27 2 15 1 6 0 0 1 17 5 15 10 23 5 43 3 16 0 0 0 11 15 21 4 17 14 42 4 17 0 0 0 1 24 2 0 0 14 37 35 4 6 0 1 0 9 0 0 14 17 14 0 16 0 34 0 14 12 1 1 0 0 0
3 0 0 0 1 0 0 0 0 15 0 14 0 19 20 14 1 0 0 0 0 0 11 2 14 16 5 16 2 0 0 0 0 0 15 1 11 11 14 20 2 0 0 0 0 0 20 2 0 0 1 24 0 2 0 1 0 0 0 0 0 0 0 0 36 0 34 0 16 0 36 0 14 49 0 0 0
4 0 0 0 49 1 0 0 0 7 0 15 0 15 2 18 0 1 0 0 0 0 10 0 12 11 2 13 0 1 0 0 0 0 14 0 2 15 1 11 0 1 0 0 0 0 18 0 0 0 20 3 0 0 1 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 34 0 1 0 0
5 0 0 49 0 0 0 0 0 0 0 8 0 7 0 11 0 0 0 0 0 0 0 0 4 11 0 11 0 0 0 0 0 0 6 0 0 14 0 2 0 0 0 0 0 0 9 0 0 0 18 0 0 0 0 0 0 0 32 0 0 16 0 0 0 0 0 0 0 0 0 0 1 0 0 50 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 4 0 0 1 0 0 0 0 0 0 6 0 0 0 0 1 0 0 0 2 0 0 0 9 0 0 0 0 1 0 0 8 0 0 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANSd

#Solb 1 2 2 2 3 3 3 0 4 2 4 0 4 4 5 3 4 3 2 0 3 5 4 6 5 4 6 3 4 4 3 0 3 5 4 5 5 4 5 3 4 4 0 0 3 5 4 3 2 5 4 2 3 4 5 3 4 3 3 2 2 2 2 2 0 2 2 2 2 2 2 4 2 3 1 1 3.49
#SolDc 1 1 1 1 1 1 1 0 1 1 3 0 2 1 3 1 1 1 1 0 1 2 2 3 3 2 3 1 1 3 1 0 1 3 3 3 3 3 3 1 2 3 0 0 1 2 2 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1.30

a#Physicians - Number of Physicians assigned to that shift
b#Sol - Number of different solutions
c#SolD - Number of dominant solutions
dANS - Average Number of Solutions

Table I.15: Analysis of dominant solution from Latin Hypercube Sampling method using 200 scenarios
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Hour/
# Physiciansa

0 1 2 3 4 6 7 8 12 13 14 15 0 1 2 3 4 6 7 8 9 12 13 14 0 1 2 3 4 6 7 8 9 12 13 14 0 1 2 3 4 6 7 8 9 12 13 14 15 0 1 2 3 4 6 7 9 12 13 14 0 1 2 3 4 12 13 14 15 0 1 2 3 4 14 15

0 0 0 0 0 49 1 49 0 0 38 0 0 0 0 0 0 15 1 49 0 18 2 20 1 0 0 0 0 29 18 49 0 41 0 17 4 0 0 0 0 29 19 0 0 39 0 10 12 49 0 0 0 0 36 3 49 21 0 8 49 0 0 0 0 0 0 35 0 15 0 0 0 0 34 0 0
1 0 0 0 0 1 35 1 0 9 12 0 0 0 0 0 35 34 43 1 0 31 10 23 4 2 20 1 5 18 16 1 0 9 4 17 10 0 17 4 6 17 14 0 0 11 0 14 36 1 0 8 14 14 10 40 1 28 0 33 1 0 35 34 0 0 0 15 0 35 0 37 0 0 16 0 50
2 50 50 0 0 0 14 0 0 19 0 13 0 9 28 1 15 1 6 0 0 1 17 5 15 10 23 4 44 3 16 0 0 0 11 15 25 4 17 13 43 4 17 0 0 0 1 24 2 0 0 15 36 35 4 6 0 1 0 9 0 0 15 16 15 0 16 0 34 0 14 13 0 1 0 0 0
3 0 0 0 0 0 0 0 0 15 0 14 0 19 20 14 0 0 0 0 0 0 11 2 14 18 5 16 1 0 0 0 0 0 15 1 9 10 15 22 1 0 0 0 0 0 20 2 0 0 1 24 0 1 0 1 0 0 0 0 0 0 0 0 35 0 34 0 16 0 36 0 15 49 0 0 0
4 0 0 0 50 0 0 0 0 7 0 15 0 15 2 18 0 0 0 0 0 0 10 0 12 10 2 13 0 0 0 0 0 0 14 0 2 16 1 9 0 0 0 0 0 0 18 0 0 0 20 3 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 34 0 0 0 0
5 0 0 50 0 0 0 0 0 0 0 8 0 7 0 12 0 0 0 0 0 0 0 0 4 10 0 12 0 0 0 0 0 0 6 0 0 14 0 2 0 0 0 0 0 0 9 0 0 0 18 0 0 0 0 0 0 0 32 0 0 16 0 0 0 0 0 0 0 0 0 0 1 0 0 50 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 2 0 0 0 9 0 0 0 0 0 0 0 8 0 0 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANSd

#Solb 1 1 1 1 2 3 2 0 4 2 4 0 4 3 5 2 3 3 2 0 3 5 4 6 5 4 6 3 3 3 2 0 2 5 4 5 5 4 5 3 3 3 0 0 2 5 4 3 2 5 4 2 3 3 4 2 3 3 3 2 2 2 2 2 0 2 2 2 2 2 2 3 2 2 1 1 3.09
#SolDc 1 1 1 1 1 1 1 0 2 1 3 0 2 1 3 1 1 1 1 0 1 2 2 3 1 2 3 1 1 3 1 0 1 3 3 1 2 3 2 1 1 3 0 0 1 2 2 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1.29
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Table I.16: Analysis of dominant solution from Latin Hypercube Sampling method using 300 scenarios
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Hour/
# Physiciansa

0 1 2 3 4 6 7 8 12 13 14 15 0 1 2 3 4 6 7 8 9 12 13 14 0 1 2 3 4 6 7 8 9 12 13 14 0 1 2 3 4 6 7 8 9 12 13 14 15 0 1 2 3 4 6 7 9 12 13 14 0 1 2 3 4 12 13 14 15 0 1 2 3 4 14 15

0 0 0 0 0 0 0 0 0 0 42 0 0 0 0 0 0 22 0 0 0 21 2 32 0 0 0 0 0 23 26 49 0 34 2 17 2 0 0 0 0 28 20 0 0 39 0 15 14 0 0 0 0 0 31 9 0 19 0 11 0 0 0 0 0 0 0 46 0 15 0 0 0 0 29 0 0
1 0 0 0 0 0 37 0 0 16 8 0 0 0 0 0 28 28 50 0 0 28 12 13 0 2 32 0 11 17 10 1 0 15 2 14 14 2 17 2 4 18 11 0 0 10 1 14 35 0 0 15 14 19 10 31 0 31 0 36 0 0 46 35 0 0 0 4 0 35 0 48 0 0 21 0 50
2 50 50 0 0 0 13 0 0 17 0 10 0 16 39 0 22 0 0 0 0 1 16 5 15 12 13 0 39 10 14 0 0 1 9 16 19 2 14 14 46 4 18 0 0 1 0 20 1 0 1 13 36 31 9 10 0 0 0 3 0 0 4 15 15 0 4 0 35 0 2 2 0 1 0 0 0
3 0 0 0 3 0 0 0 0 9 0 13 0 17 11 10 0 0 0 0 0 0 12 0 15 16 5 15 0 0 0 0 0 0 25 2 15 9 16 19 0 0 1 0 0 0 13 0 0 0 0 21 0 0 0 0 0 0 0 0 0 0 0 0 35 0 46 0 15 0 48 0 21 49 0 0 0
4 0 0 0 47 0 0 0 0 8 0 11 0 9 0 15 0 0 0 0 0 0 8 0 10 12 0 15 0 0 0 0 0 0 9 1 0 25 2 15 0 0 0 0 0 0 16 1 0 0 13 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 28 0 0 0 0
5 0 0 47 0 0 0 0 0 0 0 16 0 8 0 10 0 0 0 0 0 0 0 0 10 8 0 10 0 0 0 0 0 0 2 0 0 9 1 0 0 0 0 0 0 0 19 0 0 0 16 1 0 0 0 0 0 0 36 0 0 4 0 0 0 0 0 0 0 0 0 0 1 0 0 50 0
6 0 0 3 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 19 0 0 0 0 0 0 0 11 0 0 46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANSd

#Solb 1 1 2 2 0 2 0 0 4 2 4 0 4 2 4 2 2 1 0 0 3 5 3 4 5 3 4 2 3 3 2 0 3 7 5 4 7 5 4 2 3 4 0 0 3 5 4 3 0 5 4 2 2 3 3 0 2 3 3 0 2 2 2 2 0 2 2 2 2 2 2 3 2 2 1 1 2.84
#SolDc 1 1 1 1 0 1 0 0 2 1 3 0 2 1 2 1 1 1 0 0 1 3 1 2 3 1 2 1 2 1 1 0 1 1 3 3 1 3 3 1 1 3 0 0 1 3 3 1 0 3 3 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1.22
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Table I.17: Analysis of dominant solution from Latin Hypercube Sampling method using 400 scenarios
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Hour/
# Physiciansa

0 1 2 3 4 6 7 8 12 13 14 15 0 1 2 3 4 6 7 8 9 12 13 14 0 1 2 3 4 6 7 8 9 12 13 14 0 1 2 3 4 6 7 8 9 12 13 14 15 0 1 2 3 4 6 7 9 12 13 14 0 1 2 3 4 12 13 14 15 0 1 2 3 4 14 15

0 0 0 0 0 49 0 0 0 0 42 0 0 0 0 0 0 20 0 0 0 24 2 23 1 0 0 0 0 25 23 0 0 34 0 15 1 0 0 0 0 38 10 50 0 43 0 14 13 0 0 0 0 0 30 11 0 16 0 8 0 0 0 0 0 49 0 42 0 14 0 0 0 0 27 0 0
1 0 0 0 0 1 36 0 0 13 8 0 0 0 0 0 30 30 49 0 0 26 10 16 4 2 23 1 8 17 17 0 0 16 6 12 15 0 15 1 4 9 17 0 0 7 0 16 32 0 0 11 13 20 8 26 0 34 0 36 0 0 42 37 0 1 0 8 0 36 0 44 0 0 23 0 50
2 50 50 0 0 0 13 0 0 18 0 10 0 13 37 0 20 0 1 0 0 0 23 10 10 12 16 4 42 8 10 0 0 0 18 16 20 6 12 15 46 3 23 0 0 0 2 16 5 0 0 17 37 30 12 13 0 0 0 6 0 0 8 13 14 0 8 0 36 0 6 6 0 0 0 0 0
3 0 0 0 0 0 1 0 0 13 0 13 0 21 13 10 0 0 0 0 0 0 10 1 18 21 10 10 0 0 0 0 0 0 14 5 14 18 16 20 0 0 0 0 0 0 17 4 0 0 2 18 0 0 0 0 0 0 0 0 0 0 0 0 36 0 42 0 14 0 44 0 23 50 0 0 0
4 0 0 0 50 0 0 0 0 6 0 17 0 10 0 17 0 0 0 0 0 0 5 0 8 10 1 18 0 0 0 0 0 0 10 2 0 14 5 14 0 0 0 0 0 0 10 0 0 0 19 4 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 27 0 0 0 0
5 0 0 50 0 0 0 0 0 0 0 10 0 6 0 10 0 0 0 0 0 0 0 0 9 5 0 8 0 0 0 0 0 0 2 0 0 10 2 0 0 0 0 0 0 0 20 0 0 0 10 0 0 0 0 0 0 0 36 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 18 0 0 0 0 0 0 0 8 0 0 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANSd

#Solb 1 1 1 1 2 3 0 0 4 2 4 0 4 2 4 2 2 2 0 0 2 5 4 6 5 4 6 2 3 3 0 0 2 5 5 4 5 5 4 2 3 3 1 0 2 5 4 3 0 5 4 2 2 3 3 0 2 3 3 0 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 2.83
#SolDc 1 1 1 1 1 1 0 0 3 1 2 0 2 1 2 1 1 1 0 0 1 1 2 1 2 2 1 1 2 2 0 0 1 2 3 3 2 3 3 1 1 2 1 0 1 2 3 1 0 2 3 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.21
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Table I.18: Analysis of dominant solution from Latin Hypercube Sampling method using 500 scenarios
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Hour/
# Physiciansa

0 1 2 3 4 6 7 8 12 13 14 15 0 1 2 3 4 6 7 8 9 12 13 14 0 1 2 3 4 6 7 8 9 12 13 14 0 1 2 3 4 6 7 8 9 12 13 14 15 0 1 2 3 4 6 7 9 12 13 14 0 1 2 3 4 12 13 14 15 0 1 2 3 4 14 15

0 0 0 0 0 48 2 0 0 0 37 0 0 0 0 0 0 18 0 0 0 23 2 22 0 0 0 0 0 30 20 0 0 41 0 15 5 0 0 0 0 36 10 0 0 47 0 19 12 0 0 0 0 0 26 11 0 16 0 12 0 0 0 0 0 49 0 47 0 13 0 0 0 0 29 0 0
1 0 0 0 0 2 31 0 0 8 13 0 0 0 0 0 32 32 45 0 0 27 8 21 2 2 22 0 6 14 9 0 0 9 4 19 16 0 15 5 3 13 14 0 0 3 0 20 37 0 0 14 13 29 14 31 0 34 0 36 0 0 47 38 0 1 0 3 0 37 0 47 0 0 21 0 50
2 50 50 0 0 0 17 0 0 19 0 14 0 8 32 0 18 0 5 0 0 0 21 7 14 8 21 2 44 6 21 0 0 0 9 13 18 4 19 17 46 1 26 0 0 0 1 10 1 0 0 26 37 21 10 7 0 0 0 2 0 0 3 12 13 0 3 0 37 0 3 3 0 0 0 0 0
3 0 0 0 2 0 0 0 0 14 0 18 0 19 18 16 0 0 0 0 0 0 10 0 21 21 7 14 0 0 0 0 0 0 20 2 10 9 13 17 1 0 0 0 0 0 8 1 0 0 1 10 0 0 0 1 0 0 0 0 0 0 0 0 37 0 47 0 13 0 47 0 20 50 0 0 0
4 0 0 0 50 0 0 0 0 9 0 10 0 14 0 18 0 0 0 0 0 0 9 0 9 10 0 21 0 0 0 0 0 0 11 1 1 20 2 10 0 0 0 0 0 0 14 0 0 0 8 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0
5 0 0 50 0 0 0 0 0 0 0 8 0 9 0 9 0 0 0 0 0 0 0 0 4 9 0 9 0 0 0 0 0 0 6 0 0 11 1 1 0 0 0 0 0 0 26 0 0 0 14 0 0 0 0 0 0 0 36 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 1 0 0 0 26 0 0 0 0 0 0 0 12 0 0 47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANSd

#Solb 1 1 1 2 2 3 0 0 4 2 4 0 4 2 4 2 2 2 0 0 2 5 3 5 5 3 5 2 3 3 0 0 2 5 5 5 6 5 5 3 3 3 0 0 2 5 4 3 0 5 4 2 2 3 4 0 2 3 3 0 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 2.84
#SolDc 1 1 1 1 1 1 0 0 2 1 2 0 2 1 2 1 1 1 0 0 2 1 2 2 1 2 2 1 1 2 0 0 1 2 3 2 2 3 2 1 1 1 0 0 1 1 2 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.09
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Table I.19: Analysis of dominant solution from Latin Hypercube Sampling method using 600 scenarios
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Hour/
# Physiciansa

0 1 2 3 4 6 7 8 12 13 14 15 0 1 2 3 4 6 7 8 9 12 13 14 0 1 2 3 4 6 7 8 9 12 13 14 0 1 2 3 4 6 7 8 9 12 13 14 15 0 1 2 3 4 6 7 9 12 13 14 0 1 2 3 4 12 13 14 15 0 1 2 3 4 14 15

0 0 0 0 0 0 0 49 0 0 45 0 0 0 0 0 0 26 0 26 0 0 1 38 0 0 0 0 0 17 26 0 49 38 0 26 3 0 0 0 0 29 10 49 0 40 0 19 7 0 0 0 0 0 14 11 0 9 0 12 0 0 0 0 0 49 0 44 0 19 0 0 0 0 32 0 0
1 0 0 0 0 0 34 1 0 13 5 0 0 0 0 0 26 24 50 24 0 0 12 10 1 1 38 0 7 26 13 0 1 12 4 12 13 0 24 3 5 17 14 1 0 10 0 19 41 0 0 12 7 31 26 29 0 41 0 34 0 0 44 32 0 1 0 6 0 31 0 45 0 0 18 0 50
2 50 50 0 0 0 16 0 0 17 0 10 0 13 45 0 24 0 0 0 0 0 17 2 15 12 10 1 43 7 11 0 0 0 10 10 19 4 14 13 45 4 26 0 0 0 2 10 2 0 0 26 43 19 10 10 0 0 0 4 0 0 6 18 19 0 6 0 31 0 5 5 0 0 0 0 0
3 0 0 0 0 0 0 0 0 10 0 15 0 17 5 10 0 0 0 0 0 0 10 0 13 17 2 14 0 0 0 0 0 0 19 2 10 10 10 19 0 0 0 0 0 0 9 2 0 0 2 10 0 0 0 0 0 0 0 0 0 0 0 0 31 0 44 0 19 0 45 0 18 50 0 0 0
4 0 0 0 50 0 0 0 0 10 0 12 0 10 0 17 0 0 0 0 0 0 10 0 9 10 0 20 0 0 0 0 0 0 12 0 5 19 2 10 0 0 0 0 0 0 20 0 0 0 9 2 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 32 0 0 0 0
5 0 0 50 0 0 0 0 0 0 0 13 0 10 0 10 0 0 0 0 0 0 0 0 10 10 0 9 0 0 0 0 0 0 5 0 0 12 0 5 0 0 0 0 0 0 15 0 0 0 20 0 0 0 0 0 0 0 34 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 4 0 0 0 15 0 0 0 0 0 0 0 12 0 0 44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANSd

#Solb 1 1 1 1 0 2 2 0 4 2 4 0 4 2 4 2 2 1 2 0 0 5 3 5 5 3 5 2 3 3 0 2 2 5 4 5 5 4 5 2 3 3 2 0 2 5 4 3 0 5 4 2 2 3 3 0 2 3 3 0 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 2.79
#SolDc 1 1 1 1 0 1 1 0 2 1 3 0 2 1 2 1 1 1 1 0 0 2 1 2 2 1 2 1 1 1 0 1 1 2 1 2 2 2 2 1 1 1 1 0 1 2 2 1 0 2 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.09
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Table I.20: Analysis of dominant solution from Latin Hypercube Sampling method using 700 scenarios
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Hour/
# Physiciansa

0 1 2 3 4 6 7 8 12 13 14 15 0 1 2 3 4 6 7 8 9 12 13 14 0 1 2 3 4 6 7 8 9 12 13 14 0 1 2 3 4 6 7 8 9 12 13 14 15 0 1 2 3 4 6 7 9 12 13 14 0 1 2 3 4 12 13 14 15 0 1 2 3 4 14 15

0 0 0 0 0 49 0 0 0 0 37 0 0 0 0 0 0 11 0 0 0 16 1 26 0 0 0 0 0 33 15 0 48 46 0 18 2 0 0 0 0 34 10 0 48 44 0 13 9 0 0 0 0 0 26 10 0 12 0 9 0 0 0 0 0 49 0 44 0 8 0 0 0 0 0 0 0
1 0 0 0 0 1 38 0 0 16 13 0 0 0 0 0 39 39 50 0 0 34 14 19 1 1 26 0 3 14 25 0 2 4 3 15 21 0 18 2 7 11 14 0 2 6 0 24 40 0 0 12 9 26 14 35 0 38 0 36 0 0 44 43 0 1 0 6 0 42 0 44 0 0 0 0 0
2 50 50 0 0 0 12 0 0 20 0 5 0 16 31 0 11 0 0 0 0 0 23 5 8 14 19 1 47 3 10 0 0 0 15 8 10 3 15 21 43 5 26 0 0 0 1 12 1 0 0 25 41 24 10 5 0 0 0 5 0 0 6 7 8 0 6 0 42 0 6 6 0 0 0 0 0
3 0 0 0 0 0 0 0 0 12 0 19 0 22 19 5 0 0 0 0 0 0 10 0 24 22 5 8 0 0 0 0 0 0 18 9 16 15 8 10 0 0 0 0 0 0 10 1 0 0 1 12 0 0 0 0 0 0 0 0 0 0 0 0 42 0 44 0 8 0 44 0 25 50 0 0 0
4 0 0 0 50 0 0 0 0 2 0 10 0 10 0 21 0 0 0 0 0 0 2 0 11 11 0 24 0 0 0 0 0 0 10 0 1 18 9 16 0 0 0 0 0 0 22 0 0 0 10 1 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 0
5 0 0 50 0 0 0 0 0 0 0 16 0 2 0 14 0 0 0 0 0 0 0 0 6 2 0 11 0 0 0 0 0 0 4 0 0 10 0 1 0 0 0 0 0 0 15 0 0 0 22 0 0 0 0 0 0 0 36 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 2 0 0 0 15 0 0 0 0 0 0 0 9 0 0 44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANSd

#Solb 1 1 1 1 2 2 0 0 4 2 4 0 4 2 4 2 2 1 0 0 2 5 3 5 5 3 5 2 3 3 0 2 2 5 4 5 5 4 5 2 3 3 0 2 2 5 4 3 0 5 4 2 2 3 3 0 2 3 3 0 2 2 2 2 2 2 2 2 2 2 2 2 1 0 0 0 2.74
#SolDc 1 1 1 1 1 1 0 0 3 1 2 0 2 1 2 1 1 1 0 0 1 2 1 1 1 1 1 1 1 2 0 1 1 2 2 2 2 2 2 1 1 1 0 1 1 2 3 1 0 2 3 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 2 1 0 0 0 1.09
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Table I.21: Analysis of dominant solution from Latin Hypercube Sampling method using 800 scenarios
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Hour/
# Physiciansa

0 1 2 3 4 6 7 8 12 13 14 15 0 1 2 3 4 6 7 8 9 12 13 14 0 1 2 3 4 6 7 8 9 12 13 14 0 1 2 3 4 6 7 8 9 12 13 14 15 0 1 2 3 4 6 7 9 12 13 14 0 1 2 3 4 12 13 14 15 0 1 2 3 4 14 15

0 0 0 0 0 0 0 49 0 0 36 0 49 0 0 0 0 13 0 0 0 13 0 29 0 0 0 0 0 27 21 0 0 43 0 18 4 0 0 0 0 33 14 0 0 48 0 16 8 0 0 0 0 0 26 11 0 9 0 12 0 0 0 0 0 49 0 43 0 16 0 0 0 0 33 0 0
1 0 0 0 0 0 39 1 0 12 14 0 1 0 0 0 36 37 50 0 0 37 9 18 3 1 29 0 6 17 13 0 0 7 2 14 11 0 18 4 1 17 10 0 0 2 0 16 40 0 0 10 9 24 13 29 0 41 0 36 0 0 43 35 0 1 0 7 0 34 0 43 0 0 17 0 50
2 50 50 0 0 0 11 0 0 24 0 11 0 12 36 2 14 0 0 0 0 0 27 3 9 9 18 3 44 6 16 0 0 0 12 15 15 3 14 10 49 0 26 0 0 0 2 18 2 0 0 22 41 26 11 10 0 0 0 2 0 0 7 15 16 0 7 0 34 0 7 7 0 0 0 0 0
3 0 0 0 0 0 0 0 0 8 0 13 0 24 14 9 0 0 0 0 0 0 8 0 15 26 3 9 0 0 0 0 0 0 24 3 19 12 15 15 0 0 0 0 0 0 13 0 0 0 2 16 0 0 0 0 0 0 0 0 0 0 0 0 34 0 43 0 16 0 43 0 16 50 0 0 0
4 0 0 0 50 0 0 0 0 6 0 14 0 8 0 14 0 0 0 0 0 0 6 0 14 8 0 15 0 0 0 0 0 0 10 0 1 23 3 21 0 0 0 0 0 0 16 0 0 0 10 2 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 34 0 0 0 0
5 0 0 50 0 0 0 0 0 0 0 12 0 6 0 14 0 0 0 0 0 0 0 0 9 6 0 14 0 0 0 0 0 0 2 0 0 10 0 0 0 0 0 0 0 0 19 0 0 0 16 0 0 0 0 0 0 0 36 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 21 0 0 0 0 0 0 0 12 0 0 43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANSd

#Solb 1 1 1 1 0 2 2 0 4 2 4 2 4 2 5 2 2 1 0 0 2 4 3 5 5 3 5 2 3 3 0 0 2 5 4 5 5 4 4 2 2 3 0 0 2 4 3 3 0 5 4 2 2 3 3 0 2 3 3 0 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 2.72
#SolDc 1 1 1 1 0 1 1 0 2 1 4 1 2 1 3 1 1 1 0 0 1 1 1 2 1 1 2 1 1 3 0 0 1 2 3 3 2 3 2 1 1 1 0 0 1 0 0 1 0 2 2 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.11
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Table I.22: Analysis of dominant solution from Latin Hypercube Sampling method using 900 scenarios
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Hour/
# Physiciansa

0 1 2 3 4 6 7 8 12 13 14 15 0 1 2 3 4 6 7 8 9 12 13 14 0 1 2 3 4 6 7 8 9 12 13 14 0 1 2 3 4 6 7 8 9 12 13 14 15 0 1 2 3 4 6 7 9 12 13 14 0 1 2 3 4 12 13 14 15 0 1 2 3 4 14 15

0 0 0 0 0 0 0 50 0 0 42 0 0 0 0 0 0 14 0 48 0 16 0 37 0 0 0 0 0 25 24 0 0 39 0 23 2 0 0 0 0 28 26 0 0 43 0 7 7 0 0 0 0 0 28 4 0 9 0 9 0 0 0 0 0 0 0 43 0 12 0 0 0 0 29 0 0
1 0 0 0 0 0 40 0 0 19 8 0 0 0 0 0 36 36 50 2 0 34 19 8 2 1 37 0 8 17 11 0 0 11 7 9 12 0 23 2 3 22 15 0 0 7 0 13 43 0 0 7 7 22 18 35 0 41 0 35 0 0 43 38 0 0 0 7 0 38 0 43 0 0 21 0 50
2 50 50 0 0 0 10 0 0 13 0 12 0 19 44 1 14 0 0 0 0 0 14 5 11 18 8 2 42 8 15 0 0 0 7 12 10 7 9 10 47 0 9 0 0 0 3 26 0 0 0 13 43 28 4 11 0 0 0 6 0 0 7 12 12 0 7 0 38 0 7 7 0 0 0 0 0
3 0 0 0 0 0 0 0 0 9 0 11 0 13 6 12 0 0 0 0 0 0 9 0 12 14 5 11 0 0 0 0 0 0 24 6 26 7 12 12 0 0 0 0 0 0 26 4 0 0 3 26 0 0 0 0 0 0 0 0 0 0 0 0 38 0 43 0 12 0 43 0 21 50 0 0 0
4 0 0 0 50 0 0 0 0 9 0 8 0 9 0 10 0 0 0 0 0 0 8 0 8 9 0 12 0 0 0 0 0 0 9 0 0 24 6 26 0 0 0 0 0 0 12 0 0 0 26 4 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 29 0 0 0 0
5 0 0 50 0 0 0 0 0 0 0 19 0 9 0 8 0 0 0 0 0 0 0 0 17 8 0 8 0 0 0 0 0 0 3 0 0 9 0 0 0 0 0 0 0 0 9 0 0 0 11 0 0 0 0 0 0 0 35 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 9 0 0 43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANSd

#Solb 1 1 1 1 0 2 1 0 4 2 4 0 4 2 5 2 2 1 2 0 2 4 3 5 5 3 5 2 3 3 0 0 2 5 4 4 5 4 4 2 2 3 0 0 2 4 4 2 0 5 4 2 2 3 3 0 2 3 3 0 2 2 2 2 0 2 2 2 2 2 2 2 1 2 1 1 2.67
#SolDc 1 1 1 1 0 1 1 0 2 1 3 0 2 1 2 1 1 1 1 0 1 2 1 3 2 1 3 1 2 2 0 0 1 1 2 1 1 2 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1.04

Table I.23: Analysis of dominant solution from Latin Hypercube Sampling method using 1000 scenarios
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Hour/
# Physiciansa

0 1 2 3 4 6 7 8 12 13 14 15 0 1 2 3 4 6 7 8 9 12 13 14 0 1 2 3 4 6 7 8 9 12 13 14 0 1 2 3 4 6 7 8 9 12 13 14 15 0 1 2 3 4 6 7 9 12 13 14 0 1 2 3 4 12 13 14 15 0 1 2 3 4 14 15

0 0 0 0 0 0 0 0 50 0 39 0 0 0 0 0 0 10 0 0 50 11 0 34 0 0 0 0 0 31 14 0 0 44 0 26 1 0 0 0 0 33 14 50 50 46 0 16 13 0 0 0 0 0 30 10 0 15 0 6 0 0 0 0 0 49 0 45 0 18 0 0 0 0 30 0 0
1 0 0 0 0 0 45 0 0 14 11 0 0 0 0 0 40 40 50 0 0 39 12 11 3 0 35 0 6 15 10 0 0 6 6 12 10 0 26 1 1 17 10 0 0 4 0 15 37 0 0 13 14 20 9 38 0 35 0 41 0 0 45 33 0 1 0 5 0 32 0 45 0 0 20 0 50
2 50 50 0 0 0 5 0 0 26 0 7 0 11 40 1 10 0 0 0 0 0 26 5 7 12 11 3 44 4 26 0 0 0 10 10 17 6 12 10 49 0 26 0 0 0 0 19 0 0 0 18 36 30 11 2 0 0 0 3 0 0 5 17 18 0 5 0 32 0 5 5 0 0 0 0 0
3 0 0 0 0 0 0 0 0 10 0 10 0 26 10 7 0 0 0 0 0 0 9 0 10 26 4 7 0 0 0 0 0 0 21 2 22 10 10 16 0 0 0 0 0 0 10 0 0 0 0 19 0 0 0 0 0 0 0 0 0 0 0 0 32 0 45 0 18 0 45 0 20 50 0 0 0
4 0 0 0 50 0 0 0 0 3 0 19 0 10 0 10 0 0 0 0 0 0 3 0 18 9 0 10 0 0 0 0 0 0 13 0 0 22 2 23 0 0 0 0 0 0 13 0 0 0 10 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0
5 0 0 50 0 0 0 0 0 0 0 14 0 3 0 19 0 0 0 0 0 0 0 0 12 3 0 18 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 26 0 0 0 13 0 0 0 0 0 0 0 41 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 50 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 26 0 0 0 0 0 0 0 6 0 0 45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANSd

#Solb 1 1 1 1 0 2 0 1 4 2 4 0 4 2 5 2 2 1 0 1 2 4 3 5 4 3 5 2 3 3 0 0 2 4 4 4 5 4 4 2 2 3 1 1 2 4 3 2 0 4 3 2 2 3 3 0 2 3 3 0 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 2.65
#SolDc 1 1 1 1 0 1 0 1 1 1 2 0 1 1 2 1 1 1 0 1 1 1 1 2 1 1 2 1 1 1 0 0 1 2 1 2 1 1 2 1 1 1 1 1 1 1 3 1 0 1 3 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.03
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J
Numerical results of the Hospital B’s case study using histor-
ical data

In this Appendix, we present a preliminary study in the Hospital B using
just historical data as scenarios in the optimization model.

We used the historical patient arrival data to create possible realization
scenarios that were used to construct a finite set SC. The dataset to which we
had access consisted of 42 weeks, which each week correspond to an individual
scenario each of which corresponded to the realization of real ED historical
demand and was associated with a value of parameter DEM c

ht. The optimal
solution for the model was achieved. The computational characteristics of the
model are presented in Table J.1.

Table J.1: Computational results to case study in the Hospital B
Number of scenarios 42
Number of constraints 297,605
Number of variables 30,619
Number of non zeros 719,867
Number of iterations 186,706
CPU time (sec) 94,34

Table J.2 contrasts indicators of service quality for the current schedule
with those obtained through discrete-event simulation of the optimal schedule.
In addition to the value of each indicator, we also report on half-width (HW),
when applicable. The half-width value may be interpreted by saying "in 95%
of repeated trials, the sample mean would be reported as within the interval
sample mean ± half-width". In the last column of Table J.2 (∆1%), we present
the percentage variation of the indicator values. It is worthy of mentioning
that: first, the frequency of queue decrease in order of 22% and the frequency
of queue with more than 10 patients about 39%. Moreover, the schedule from
model 1 leads to a reduction of approximately 43% in the number of patients in
queue. Decreasing queue occurrence and the number of patients in the queue,
we observed a reduction of the average waiting time and, consequently, in
the time door-to-doctor. The average time door-to-doctor decreased by about
32% in relation to the current schedule. The total number of physician hours
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used by the schedule from the model is equal to the total used in the current
schedule.

Table J.2: Discrete-event simulation results for case study in the Hospital B
Current schedule Model

Value HW Value HW ∆1%

Number of patients 72,798.72 60.18 72,981.01 63.36 0.25%
Frequency of queue (%) 32.21 - 25.25 - -21.61%
Frequency of queue > 10 patients (%) 12.75 - 7.83 - -38.59%
Frequency of queue ≤ 10 patients (%) 19.46 - 17.69 - -9.10%
Average number of patients in queue 3.87 0.45 2.23 <0.04 -42.45%
Average time door-to-doctor (min) 36.55 0.45 25.02 <0.47 -31.55%
Total number of physician hours used 1,457.00 - 1,457.00 - 0.00%

Figure J.1 presents the histograms of idle capacity and queue frequency
for the current schedule and the schedule generated by the model. As shown
in Figure J.1(a), idleness occurs more frequently than queue in the current
schedule, but the number of people in queue can be very large, up to 72.
On the other hand, the histogram in Figure J.1(b) has a smaller right tail
distribution than the one in Figure J.1(a), indicating that queues are not only
less frequent for the schedule generated by the model, but also smaller.
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Figure J.1: Histogram of frequency distribution of idle capacity (negative
values) or queue (positive values) for (a) current schedule; (b) schedule
generated by Model 1

From the results, we noted that for this case study it was also possible
to achieve a significant reduction in all queue and waiting time indicators, just
making the doctors’ entry time in the ED studied more flexible.
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K
Extra material from the Hospital B’s case study from Chapter
4

Table K.1: Current schedule of physicians in the Hospital B
Fixed Physicians On-callers Physicians

Shift M T W T F S S M T W T F S S

1 1 1 2
2 1 1
3 2 1 1 7 5 6 6 6 8 9
4 1
5 1 1 2 1
6 2 1 2
7 1 1
8 1 1 1
9 1 1 2 1 3
10 1
11 8 7 7 7 7 6 6
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Figure K.1: Fit test of the patients arrival distribution in the Hospital A
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Table K.2: Average interval between arrival per hour and day of week for first
general assessment in ED of Hospital B

Day

Time of day (h)a M T W T F S S

0 23.5 19.2 18.7 18.7 20.7 18.4 17.1

1 36.0 20.4 26.2 26.2 20.8 27.3 26.3

2
28.7 29.8 29.4 29.4 33.9 33.5 28.96

3

41.3 35.9 41.0 41.0 46.0 38.0 32.44
5

7
7.5 9.9 10.8 10.8 11.4 12.8 13.622

8 4.8 5.0 7.2 7.2 6.2 10.1 10.3

9 3.7 4.1 5.1 5.1 5.2 6.2 5.8

10

3.2 3.9 4.4 4.4 4.5 5.6 5.7

11
13
14
15

12 3.7 4.1 5.1 5.1 5.2 6.2 5.8

16
4.1 4.5 4.7 4.7 5.4 7.2 6.517

18
4.5 5.2 5.5 5.5 6.3 7.7 7.119

20
6.1 6.3 6.4 6.4 7.9 8.6 8.921

23 10.4 11.6 11.2 11.2 11.6 13.5 13.1

a24 hour clock format

DBD
PUC-Rio - Certificação Digital Nº 1521900/CA



DBD
PUC-Rio - Certificação Digital Nº 1521900/CA



Appendix L. Extra material from the case study of Chapter 5 201

L
Extra material from the case study of Chapter 5

Table L.1: Average interval between arrival per hour and day of week in ED of
hospital studied

Day

Time of day (h)a M T W T F S S

0 21.2 17.9 16.8 16.8 18.6 16.6 17.1

1 32.4 18.4 23.6 23.6 18.7 24.6 23.8

2
25.8 26.8 26.5 26.5 30.5 30.1 26.06

3

37.2 32.3 36.9 36.9 41.4 34.2 29.24
5

7
6.8 8.9 9.7 9.7 10.2 11.5 12.222

8 4.3 4.5 6.5 6.5 6.2 9.1 9.27

9 3.3 3.7 4.6 4.6 4.7 5.6 5.2

10

2.9 3.5 3.9 3.9 4.0 5.0 5.1

11
13
14
15

12 3.3 3.7 4.6 5.1 4.7 5.6 5.2

16
3.7 4.2 4.2 4.2 4.9 6.5 5.917

18
4.1 4.7 4.6 4.6 5.7 6.9 6.419

20
5.5 5.7 5.8 5.8 7.1 7.7 8.021

23 9.4 10.4 10.0 10.0 10.4 12.2 11.8

a24 hour clock format

DBD
PUC-Rio - Certificação Digital Nº 1521900/CA



M
Size of the model from the Hospital B’s case study from
Chapter 5

The size of the models (i.e., variables and constraints), average execution
times, and their variances are shown in Table M.1.

Table M.1: Size of SAA’s experiments from Chapter 5
Scenarios Variables Constraints Time(s) St.Dev(s)

20 57835 351553 676.36 117.39
40 98155 411893 1618.82 516.90
60 138475 472233 2550.01 475.38
80 178795 532573 3383.81 282.93
100 219115 592913 3602.60 0.34
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N
Size of the model from Chapter 6

The size of the models (i.e., variables and constraints) and the average
execution times are shown in Table N.1.

Table N.1: Size of SAA’s experiments
Na Variables Constraints Time(s)

5 23,702 29,178 517.21
10 46,437 57,473 795.62
15 69,172 85,768 1,215.75

aN - Number of Scenarios
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O
Extra material from the Chapter 6

Table O.1 summarize the results in terms of the average queue, worst
case, and average idle capacity for clinic and surgery service for each value
of β factor. In this table, we present the average numbers followed by the
standard deviation between parenthesis. We report the total average and the
average related just to the last month of planning horizon, this is because in
the CRS just in the last month (Month 5) of the planning horizon considered
we can do free assignments (as explained in Section 6.3.1) and the model has
freedom to assign the physicians according to the objective. Before that, the
schedule used is the same, although in month 3, the decision regard assignment
to the second OR also varies for each objective.
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Table O.1: Results summary about average queue, capacity and patients seen in clinic and surgery service
β factor

Indicators 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Clinic

Average Queue (Dev.) 682.49 (392.03) 52.83 (31.72) 33.85 (30.53) 26.71 (25.64) 10.05 (8.29) 5.10 (4.99) 4.23 (4.62) 4.01 (4.37) 3.19 (4.12) 2.81 (3.82) 2.36 (3.76)
Worst Case 1489.00 178.00 133.00 121 97.00 52.00 80.00 71.00 165.00 48.00 43.00
Average Queue in the Last Month (Dev.) 1188.29 (94.12) 22.24 (15.13) 7.35 (6.02) 4.48 (4.21) 1.96 (1.83) 1.58 (1.93) 0.88 (0.89) 1.22 (1.78) 0.31 (0.41) 0.24 (0.41) 0.64 (2.19)
Worst Queue in the Last Month 1489.00 178.00 62.00 52.00 42.00 26.00 79.00 69.00 52.00 25.00 10.00
Average Idle Capacity (Dev.) 17.38 (7.66) 6.76 (5.29) 5.79 (4.88) 5.59 (4.71) 5.76 (4.28) 5.79 (4.42) 5.64 (4.38) 5.63 (4.56) 5.98 (4.86) 5.86 (4.87) 9.12 (9.23)

Surgery

Average Queue (Dev.) 13.24 (35.44) 20.89 (35.09) 23.83 (35.92) 26.67 (37.83) 36.94 (45.89) 41.71 (48.02) 41.74 (47.94) 43.00 (47.49) 44.31 (47.27) 46.91 (46.56) 548.49 (228.65)
Worst Case 159.00 159.00 159.00 159.00 160.00 163.00 164.00 163.00 48.00 167.00 1051.00
Average Queue in the Last Month (Dev.) 0.03 (0.02) 0.76 (1.04) 1.33 (1.36) 2.33 (2.02) 4.07 (3.84) 5.88 (4.45) 5.38 (4.22) 6.35 (5.09) 7.39 (5.37) 8.77 (5.79) 845.71 (60.36)
Worst Queue in the Last Month 53.00 8.00 11.00 12.00 31.00 47.00 47.00 43.00 16.00 47.00 1051.00
Average Idle Capacity (Dev.) 7.94 (3.67) 1.96 (1.83) 1.76 (1.66) 1.84 (1.69) 1.76 (1.82) 1.76 (1.76) 1.67 (1.68) 1.58 (1.62) 1.54 (1.59) 1.43 (1.54) 7.83 (3.45)

Total

Average Queue (Dev.) 695.73 (372.77) 73.73 (51.82) 57.68 (56.50) 53.38 (55.82) 46.99 (50.23) 46.81 (48.53) 45.97 (40.87) 47.02 (48.18) 47.51 (47.86) 49.72 (47.05) 550.85 (227.88)
Worst Case 1497.00 212.00 205.00 211.00 211.00 189.00 190.00 189.00 187.00 188.00 1054.00
Average Queue in the Last Month (Dev.) 1188.26 (94.13) 22.99 (15.46) 8.67 (6.54) 6.81 (5.51) 6.04 (5.21) 7.45 (5.10) 6.26 (0.89) 7.57 (5.79) 7.71 (5.76) 9.01 (5.88) 845.77 (60.47)
Worst Queue in the Last Month 1497.00 182.00 67.00 63.00 65.00 62.00 123.00 104.00 63.00 66.00 1054.00
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