Logo PUC-Rio Logo Maxwell
ETDs @PUC-Rio
Estatística
Título: ALGORITMOS BASEADOS EM DECOMPOSIÇÃO E RELAXAÇÃO PARA PROBLEMAS DE PROGRAMAÇÃO INTEIRA MISTA QUADRÁTICA COM RESTRIÇÕES QUADRÁTICAS NÃO CONVEXA
Autor: TIAGO COUTINHO CARNEIRO DE ANDRADE
Colaborador(es): SILVIO HAMACHER - Orientador
FABRICIO CARLOS PINHEIRO OLIVEIRA - Coorientador
Catalogação: 29/ABR/2019 Língua(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Notas: [pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
[en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio.
Referência(s): [pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=37845&idi=1
[en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=37845&idi=2
DOI: https://doi.org/10.17771/PUCRio.acad.37845
Resumo:
Esta tese investiga e desenvolve algoritmos baseados em relaxação Lagrangiana e técnica de desagregação multiparamétrica normalizada para resolver problemas não convexos de programação inteira-mista quadrática com restrições quadráticas. Primeiro, é realizada uma revisão de técnias de relaxação para este tipo de problema e subclasses do mesmo. Num segundo momento, a técnica de desagregação multiparamétrica normalizada é aprimorada para sua versão reformulada onde o tamanho dos subproblemas a serem resolvidos tem seu tamanho reduzido, em particular no número de variáveis binárias geradas. Ademais, dificuldas em aplicar a relaxação Lagrangiana a problemas não convexos são discutidos e como podem ser solucionados caso o subproblema dual seja substituído por uma relaxação não convexa do mesmo. Este método Lagrangiano modificado é comparado com resolvedores globais comerciais e resolvedores de código livre. O método proposto convergiu em 35 das 36 instâncias testadas, enquanto o Baron, um dos resolvedores que obteve os melhores resultados, conseguiu convergir apenas para 4 das 36 instâncias. Adicionalmente, mesmo para a única instância que nosso método não conseguiu resolver, ele obteve um gap relativo de menos de 1 por cento, enquanto o Baron atingiu um gap entre 10 por cento e 30 por cento para a maioria das instâncias que o mesmo não convergiu.
Descrição: Arquivo:   
NA ÍNTEGRA PDF