Título: | PREVISÕES PONTUAIS E INTERVALARES DE SÉRIES TEMPORAIS DE ALTA FREQUÊNCIA COM SISTEMA DE LÓGICA FUZZY | ||||||||||||
Autor: |
BRUNO QUARESMA BASTOS |
||||||||||||
Colaborador(es): |
REINALDO CASTRO SOUZA - Orientador FERNANDO LUIZ CYRINO OLIVEIRA - Coorientador |
||||||||||||
Catalogação: | 12/JUL/2017 | Língua(s): | PORTUGUÊS - BRASIL |
||||||||||
Tipo: | TEXTO | Subtipo: | TESE | ||||||||||
Notas: |
[pt] Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio. [en] All data contained in the documents are the sole responsibility of the authors. The data used in the descriptions of the documents are in conformity with the systems of the administration of PUC-Rio. |
||||||||||||
Referência(s): |
[pt] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=30504&idi=1 [en] https://www.maxwell.vrac.puc-rio.br/projetosEspeciais/ETDs/consultas/conteudo.php?strSecao=resultado&nrSeq=30504&idi=2 |
||||||||||||
DOI: | https://doi.org/10.17771/PUCRio.acad.30504 | ||||||||||||
Resumo: | |||||||||||||
A previsão de séries temporais é um assunto de grande importância para diversas áreas, podendo servir como base para planejamento e controle, entre outros. As formas mais comuns de previsão são as pontuais. É arriscado, no entanto, planejadores tomarem decisões unicamente com base em previsões
pontuais, pois séries reais são compostas por uma parte aleatória que não pode ser definida por modelagem matemática. Um modo de contornar este problema é realizando previsões intervalares. Estas fornecem informações sobre as incertezas das previsões pontuais, o que auxilia o planejador em suas decisões. Modelos de lógica fuzzy têm sido investigados na literatura de previsão devido a sua capacidade de modelar incertezas. Apesar disso, sistemas de lógica fuzzy Mamdani (MFLS) foram pouco investigados no tema, comparando-se a outros tipos de modelagens fuzzy. Ademais, entende-se que a literatura de previsão intervalar com modelos fuzzy é limitada. Neste contexto, este trabalho propõe um método para construção de previsões intervalares a partir das previsões pontuais do modelo MFLS de tipo-1 (T1 MFLS). O método proposto para construção de previsões intervalares do MFLS é baseado na reamostragem de erros in-sample. O modelo T1 MFLS é construído com uma heurística (para partição do universo de discurso das variáveis do modelo) e com a seleção da entrada do modelo. Previsões pontuais e intervalares são produzidas para séries horárias de carga de energia elétrica. A literatura de modelos fuzzy de previsão é revisada.
|
|||||||||||||
|