Maxwell Para Simples Indexação

Título
[pt] EXTRAÇÃO DE REGRAS FUZZY PARA MÁQUINAS DE VETOR SUPORTE (SVM) PARA CLASSIFICAÇÃO EM MÚLTIPLAS CLASSES

Título
[en] FUZZY RULES EXTRACTION FROM SUPPORT VECTOR MACHINES (SVM) FOR MULTI-CLASS CLASSIFICATION

Autor
[pt] ADRIANA DA COSTA FERREIRA CHAVES

Vocabulário
[pt] REGRAS FUZZY

Vocabulário
[pt] SVM

Vocabulário
[pt] CLASSIFICACAO EM MULTIPLAS CLASSES

Vocabulário
[pt] EXTRACAO DE REGRAS

Vocabulário
[en] FUZZY RULES

Vocabulário
[en] SVM

Vocabulário
[en] MULTI-CLASS CLASSIFICATION

Vocabulário
[en] EXTRACTION OF RULES

Resumo
[pt] Este trabalho apresenta a proposta de um novo método para a extração de regras fuzzy de máquinas de vetor suporte (SVMs) treinadas para problemas de classificação. SVMs são sistemas de aprendizado baseados na teoria estatística do aprendizado e apresentam boa habilidade de generalização em conjuntos de dados reais. Estes sistemas obtiveram sucesso em vários tipos de problemas. Entretanto, as SVMs, da mesma forma que redes neurais (RN), geram um modelo caixa preta, isto é, um modelo que não explica o processo pelo qual sua saída é obtida. Alguns métodos propostos para reduzir ou eliminar essa limitação já foram desenvolvidos para o caso de classificação binária, embora sejam restritos à extração de regras simbólicas, isto é, contêm funções ou intervalos nos antecedentes das regras. No entanto, a interpretabilidade de regras simbólicas ainda é reduzida. Deste modo, propõe-se, neste trabalho, uma técnica para a extração de regras fuzzy de SVMs treinadas, com o objetivo de aumentar a interpretabilidade do conhecimento gerado. Além disso, o modelo proposto foi desenvolvido para classificação em múltiplas classes, o que ainda não havia sido abordado até agora. As regras fuzzy obtidas são do tipo se x1 pertence ao conjunto fuzzy C1, x2 pertence ao conjunto fuzzy C2,..., xn pertence ao conjunto fuzzy Cn, então o ponto x = (x1,...,xn) é da classe A. Para testar o modelo foram realizados estudos de caso detalhados com quatro bancos de dados: Íris, Wine, Bupa Liver Disorders e Winconsin Breast Cancer. A cobertura das regras resultantes da aplicação desse modelo nos testes realizados mostrou-se muito boa, atingindo 100% no caso da Íris. Após a geração das regras, foi feita uma avaliação das mesmas, usando dois critérios, a abrangência e a acurácia fuzzy. Além dos testes acima mencionados foi comparado o desempenho dos métodos de classificação em múltiplas classes usados no trabalho.

Resumo
[en] This text proposes a new method for fuzzy rule extraction from support vector machines (SVMs) trained to solve classification problems. SVMs are learning systems based on statistical learning theory and present good ability of generalization in real data base sets. These systems have been successfully applied to a wide variety of application. However SVMs, as well as neural networks, generates a black box model, i.e., a model which does not explain the process used in order to obtain its result. Some considered methods to reduce this limitation already has been proposed for the binary classification case, although they are restricted to symbolic rules extraction, and they have, in their antecedents, functions or intervals. However, the interpretability of the symbolic generated rules is small. Hence, to increase the linguistic interpretability of the generating rules, we propose a new technique for extracting fuzzy rules of a trained SVM. Moreover, the proposed model was developed for classification in multiple classes, which was not introduced till now. Fuzzy rules obtained are presented in the format if x1 belongs to the fuzzy set C1, x2 belongs to the fuzzy set C2 , … , xn belongs to the fuzzy set Cn , then the point x=(x1, x2, …xn) belongs to class A. For testing this new model, we performed detailed researches on four data bases: Iris, Wine, Bupa Liver Disorders and Wisconsin Breast Cancer. The rules´ coverage resultant of the application of this method was quite good, reaching 100% in Iris case. After the rules generation, its evaluation was performed using two criteria: coverage and accuracy. Besides the testing above, the performance of the methods for multi-class SVM described in this work was evaluated.

Orientador(es)
MARLEY MARIA BERNARDES REBUZZI VELLASCO

Coorientador(es)
RICARDO TANSCHEIT

Banca
RICARDO TANSCHEIT

Banca
MARLEY MARIA BERNARDES REBUZZI VELLASCO

Banca
MARIA LUIZA FERNANDES VELLOSO

Banca
FLAVIO JOAQUIM DE SOUZA

Banca
VALMIR CARNEIRO BARBOSA

Banca
KARLA TEREZA FIGUEIREDO LEITE

Catalogação
2006-10-25

Apresentação
2006-04-18

Tipo
[pt] TEXTO

Formato
application/pdf

Formato
application/pdf

Formato
application/pdf

Formato
application/pdf

Formato
application/pdf

Formato
application/pdf

Formato
application/pdf

Formato
application/pdf

Idioma(s)
PORTUGUÊS

Referência [pt]
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=9191@1

Referência [en]
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=9191@2

Referência DOI
https://doi.org/10.17771/PUCRio.acad.9191


Arquivos do conteúdo
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS PDF
CAPÍTULO 1 PDF
CAPÍTULO 2 PDF
CAPÍTULO 3 PDF
CAPÍTULO 4 PDF
CAPÍTULO 5 PDF
CAPÍTULO 6 PDF
REFERÊNCIAS BIBLIOGRÁFICAS E APÊNDICES PDF