Maxwell Para Simples Indexação

Título
[pt] PREVISÃO DE POTÊNCIA REATIVA

Título
[en] REACTIVE POWER FORECASTING

Autor
[pt] ELIANE DA SILVA CHRISTO

Vocabulário
[pt] POTENCIA REATIVA

Vocabulário
[pt] MAPAS AUTO-ORGANIZAVEIS DE KOHONEN

Vocabulário
[pt] MODELO DE DEFASAGEM

Vocabulário
[pt] MINIMOS QUADRADOS

Vocabulário
[en] REACTIVE POWER

Vocabulário
[en] KOHONEN SELF-ORGANIZED MAP

Vocabulário
[en] LAGS MODEL

Vocabulário
[en] LEAST SQUARES

Resumo
[pt] No novo modelo do Setor Elétrico é essencial desenvolver novas técnicas que estimem valores futuros, a curto e longo-prazos, das potências ativa e reativa. Com base nisso, este trabalho tem por objetivo apresentar uma nova técnica de previsão horária de potência reativa a curto-prazo, por subestação, baseada na linearidade existente entre as potências ativa e reativa. O modelo proposto, denominado de Modelo Híbrido de Previsão de Reativo, é dividido em duas etapas: A primeira etapa é feita uma classificação dos dados através de uma rede neural não supervisionada Mapas Auto-Organizáveis de Kohonen (SOM); A segunda etapa, utiliza-se um modelo de defasagem distribuída auto-regressivo (ADL) com estimação de Mínimos Quadrados Reponderados Iterativamente (IRLS) acoplado a uma correção para autocorrelação serial dos resíduos - Método Iterativo de Cochrane-Orcutt. Este Modelo Híbrido tem como variável dependente a potência reativa, e como variáveis explicativas dados horários de potência ativa e reativa no instante atual e defasadas no tempo. A previsão de potência reativa a curto-prazo é dividida em in sample e em out of sample. A previsão out of sample é aplicada a períodos horários em até um mês à frente. O modelo proposto é aplicado aos dados de uma concessionária específica de Energia Elétrica e os resultados são comparados a um modelo de Regressão Dinâmica convencional e a um modelo de Redes Neurais Artificiais Feedforward de Múltiplas camadas (MLP) com um algoritmo de retropropagação do erro.

Resumo
[en] The forecasting of reactive and active power is an important tool in the monitoring of an Electrical Energy System. The main purpose of the present work is the development of a new short-term reactive power hourly forecast technique, which can be used at utility or substations levels. The proposed model, named A Hybrid Model for Reactive Forecasting, is divided in two stages. In the first stage, the active and reactive power data are classified by an unsupervised neural network - the Self-Organized Maps of Kohonen (SOM). In the second stage, a Autoregressive Distributed Lags Model (ADL) is used with its parameters estimated by an Iteratively Reweighted Least Square (IRLS). It also includes a correction lag structure for serial autocorrelation of the residuals as used in the Cochrane-Orcutt formulation. The short term reactive power forecasting is divided in in sample and out of sample. The out of sample forecast is applied to hourly periods until one month ahead. The proposed model is applied to real data of one substation and the results are compared with two other approaches, a conventional Dynamic Regression and a Feedforward Multi-layer Perceptron (MLP) Artificial Neural Network model.

Orientador(es)
REINALDO CASTRO SOUZA

Banca
MARLEY MARIA BERNARDES REBUZZI VELLASCO

Banca
MONICA BARROS

Banca
REINALDO CASTRO SOUZA

Banca
TUFI MACHADO SOARES

Banca
SERGIO HENRIQUE FERREIRA DA CUNHA

Catalogação
2005-12-28

Apresentação
2005-07-26

Tipo
[pt] TEXTO

Formato
application/pdf

Formato
application/pdf

Formato
application/pdf

Formato
application/pdf

Formato
application/pdf

Formato
application/pdf

Formato
application/pdf

Formato
application/pdf

Idioma(s)
PORTUGUÊS

Referência [pt]
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7622@1

Referência [en]
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7622@2

Referência DOI
https://doi.org/10.17771/PUCRio.acad.7622


Arquivos do conteúdo
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS PDF
CAPÍTULO 1 PDF
CAPÍTULO 2 PDF
CAPÍTULO 3 PDF
CAPÍTULO 4 PDF
CAPÍTULO 5 PDF
CAPÍTULO 6 PDF
REFERÊNCIAS BIBLIOGRÁFICAS E ANEXOS PDF