7
Referências Bibliográficas

A motivação original desta metodologia foi a tentativa de modelar a rede de neurônios humanos visando compreender o funcionamento do cérebro. Portanto, como o próprio nome da metodologia revela, sua motivação inicial foi a de realizar tarefas complexas que o cérebro executa com elevada efetividade (por exemplo: reconhecimento de padrões, percepção e controle motor) através da simulação de seu funcionamento.

Segundo Haykin (1999), uma rede neural artificial (RNA) é um sistema de processamento maciçamente paralelo, composto por unidades simples com capacidade natural de armazenar conhecimento e disponibilizá-lo para uso futuro.

Do ponto de vista neurofisiológico, muito pouco se conhece sobre o funcionamento dos neurônios e suas conexões o que compromete a fidelidade destes modelos em fisiologia. As RNAs assemelham-se ao cérebro em dois aspectos:

• Elas extraem conhecimento do ambiente através de um processo de aprendizagem ou treinamento; e

• Os pesos das conexões entre os neurônios, conhecidos como pesos sinápticos, são utilizados para armazenar o conhecimento adquirido.

A figura 24 apresenta um modelo de neurônio biológico com a sequência de propagação dos sinais pela célula. Os neurônios artificiais também são chamados de nós, ou unidades.

A natureza das RNAs faz com que seu estudo seja multidisciplinar, envolvendo pesquisadores de diversas áreas, como neurofisiologia, psicologia, física, computação, engenharia, estatística, entre outras.
McCulloch & Pitts (1943) projetaram a estrutura que é conhecida como a unidade básica de uma rede neural. Estes pesquisadores propuseram um modelo de neurônio como uma unidade de processamento binária (Figura 25) e provaram que estas unidades são capazes de executar várias operações lógicas (OU, AND, etc.). Este modelo, apesar de muito simples, trouxe uma grande contribuição para as discussões sobre a construção dos primeiros computadores digitais, permitindo a criação dos primeiros modelos matemáticos de dispositivos artificiais que buscavam analogias biológicas. Matematicamente, o neurônio da Figura 25 pode ser expresso por:

\[y = f(\sum_{i=0}^{n} w_i \cdot x_i + b) \]

onde o termo \(b \) é chamado de ‘bias’ (ruído somados aos dados). Alterando-o, provoca-se uma translação da função de ativação ao longo do eixo das ordenadas, permitindo, então, uma maior variação do valor de resposta do neurônio artificial.
8.1. Redes Feedforward

No caso mais simples de redes em camadas (*layers*), tem-se uma camada de entrada com neurônios cujas saídas alimentam a última camada da rede. Geralmente, os neurônios de entrada são propagadores puros, ou seja, eles simplesmente repetem o sinal de entrada em sua saída distribuída. Por outro lado, as unidades de saída costumam ser unidades processadoras, como apresentado na Figura 26. A propagação de sinais nesta rede é puramente unidirecional (*feedforward*): os sinais são propagados apenas da entrada para a saída, e nunca vice-versa. Esta arquitetura está ilustrada na Figura 26(a) e a direção de propagação dos sinais na Figura 26(b).

A segunda classe de rede *feedforward* se distingue pela presença de uma ou mais camadas intermediárias ou escondidas (camadas em que os neurônios são efetivamente unidades processadoras, mas não correspondem à camada de saída). Adicionando-se uma ou mais camadas intermediárias, aumenta-se o poder computacional de processamento não-linear e armazenagem da rede. O conjunto de saídas dos neurônios de cada camada da rede é utilizada como entrada para a camada seguinte. AFigura 27(a) ilustra uma rede *feedforward* de múltiplas (duas) camadas intermediárias.
As redes feedforward de múltiplas camadas, são geralmente treinadas usando o algoritmo de retro-propagação do erro (error backpropagation), embora existam outros algoritmos de treinamento. Este algoritmo requer a propagação direta (feedforward) do sinal de entrada através da rede, e a retro-propagação (propagação reversa, ou backpropagation) do sinal de erro, como ilustrado na Figura 27(b).

Figura 27- Redes Neurais Feedforward múltiplas camadas a) Arquitetura; b) Sentido de propagação do sinal funcional.

8.2. Métodos de Aprendizagem

A capacidade de aprendizagem é uma das características marcantes das RNAs. Uma rede neural aprende, basicamente, através de um processo iterativo de ajuste de pesos e limiares (bias). Atualmente, existem processos mais sofisticados de aprendizagem (ou treinamento), que são capazes de ajustar não apenas os pesos da rede, mas também sua arquitetura e as funções de ativação dos neurônios (Kwok & Yeung, 1997, de Castro et al., 1999a,b; de Castro & Von Zuben, 1998).

Segundo Haykin (1999), Aprendizagem (ou treinamento) é o processo pelo qual os parâmetros livres de uma rede neural são adaptados através de um mecanismo de apresentação de estímulos fornecidos pelo ambiente no qual a rede está inserida. O tipo de treinamento é definido pela forma na qual os parâmetros são modificados.
Resumidamente, podemos descrever o funcionamento de um neurônio artificial como:

Na primeira etapa, os sinais de entrada são multiplicados por seus respectivos pesos ou sinapses;

Na segunda etapa estes resultados são somados pela função somadora;

Na última etapa, aplica-se a função de ativação ao resultado da função somadora, gerando, então, a saída do neurônio.

8.2.1. Aprendizagem Supervisionada

Um treinamento supervisionado implica na apresentação de vários vetores de entrada e saída correspondentes aos valores desejados, até que o erro alcance um nível satisfatório, dentre os algoritmos de treinamento supervisionado encontramos o de retropropagação dos erros (“backpropagation”). O treinamento não-supervisionado não requer este vetor de saída; o sistema extrai as características do conjunto de padrões, agrupando-os em classes. Desta forma, o treinamento não-supervisionado se aplica apenas a problemas de agrupamentos e otimização, enquanto o treinamento supervisionado é mais genérico, podendo ser empregado em previsões de séries temporais.

8.2.2. Aprendizagem Não-Supervisionada

No processo de aprendizagem não-supervisionada ou auto-organizada, não existe um supervisor para avaliar o desempenho da rede em relação ao conjunto de treinamento, ou seja, os dados são não-rotulados. A rede se adapta as regularidades estatísticas dos dados de entrada, desenvolvendo a habilidade de criar representações internas para codificar características da entrada e, assim, gerar novas classes automaticamente. Geralmente os algoritmos auto-organizados utilizam aprendizagem competitiva.

Na aprendizagem competitiva, os neurônios de saída da rede competem entre si para se tornarem ativos. Um único neurônio de saída é ativado a cada iteração. Esta característica torna o algoritmo apropriado para descobrir
características estatísticas, que podem ser utilizadas para classificar um conjunto de padrões de entrada.

Existem três elementos básicos para uma regra de aprendizagem competitiva:

- Um conjunto de neurônios iguais, exceto pelos pesos das conexões;
- Um mecanismo de competição entre os neurônios. Aquele que vencer a competição é chamado de vencedor (*winner-takes-all*).

Neurônios individuais aprendem a se especializar em grupos (ou clusters) de padrões similares, tornando-se detectores de características para diferentes classes de padrões de entrada.

Em sua forma mais simples, uma rede competitiva possui uma única camada de neurônios de saída, totalmente interconectados. Também existem conexões laterais entre os neurônios capazes de efetuar uma inibição lateral entre os neurônios vizinhos.

Para um neurônio k ser o vencedor, seu campo induzido local \(v_k\) em relação a um determinado padrão \(x\) deve ser o maior de toda a rede. O sinal de saída \(y_k\) do neurônio vencedor \(k\) é posto em 1, e o sinal de saída de todos os outros neurônios que perderam a competição é posto em 0.

\[
y_k(t) = \begin{cases}
1 & \text{se } v_k > v_j \forall j, \ j \neq k \\
0 & \text{demais casos}
\end{cases}
\]

onde o campo induzido local \(v_k\) representa a ação combinada das entradas positivas e laterais do neurônio.

Se um neurônio não responde a um determinado padrão de entrada, nenhuma aprendizagem ocorre. Por outro lado, se um neurônio ganha a competição, um ajuste \(\Delta w_{kj}\) é aplicado ao vetor de pesos \(w_{kj}\) deste neurônio vencedor.