Maxwell Para Simples Indexação

Título
[en] INFERENCE OF THE QUALITY OF DESTILLATION PRODUCTS USING ARTIFICIAL NEURAL NETS AND FILTER OF EXTENDED KALMAN

Título
[pt] INFERÊNCIA DA QUALIDADE DE PRODUTOS DE DESTILAÇÃO UTILIZANDO REDES NEURAIS ARTIFICIAIS E FILTRO DE KALMAN ESTENDIDO

Autor
[pt] LEONARDO GUILHERME CAETANO CORREA

Vocabulário
[pt] REDE NEURAL ARTIFICIAL

Vocabulário
[pt] INFERENCIA DE QUALIDADE

Vocabulário
[pt] FILTRO DE KALMAN ESTENDIDO

Vocabulário
[pt] INTELIGENCIA COMPUTACIONAL

Vocabulário
[en] ARTIFICIAL NEURAL NETWORKS

Vocabulário
[en] QUALITY INFERENCE

Vocabulário
[en] EXTENDED KALMAN FILTER

Vocabulário
[en] COMPUTATIONAL INTELLIGENCE

Resumo
[pt] Atualmente cresce o interesse científico e industrial na elaboração de métodos de controle não lineares. Porém, estes modelos costumam ter difícil implementação e um custo elevado até que se obtenha uma ferramenta de controle confiável. Desta forma, estudos na área de métodos de apoio à decisão procuram desenvolver aplicações inteligentes com custos reduzidos, capazes de executar controles industriais avançados com excelentes resultados, como no caso da indústria petroquímica. Na destilação de derivados de petróleo, por exemplo, é comum fazer uso de análises laboratoriais de amostras para identificar se uma substância está com suas características físico-químicas dentro das normas internacionais de produção. Além disso, o laudo pericial desta análise permite regular os instrumentos da planta de produção para que se consiga um controle mais acurado do processo e, conseqüentemente, um produto final com maior qualidade. Entretanto, apesar da análise laboratorial ter maior acurácia nos resultados que avaliam a qualidade do produto final, exige, às vezes, muitas horas de análise, o que retarda o ajuste dos equipamentos de produção, reduzindo a eficiência do processo e aumentando o tempo de produção de certos produtos, que precisam ter sua composição, posteriormente, corrigida com outros reagentes. Outra desvantagem está relacionada aos custos de manutenção e calibração dos instrumentos localizados na área de produção, pois, como estes equipamentos estão instalados em ambientes hostis, normalmente sofrem uma degradação acelerada, o que pode gerar leituras de campo erradas, dificultando a ação dos operadores. Em contrapartida, dentre os métodos inteligentes mais aplicados em processos industriais químicos, destacam-se as redes neurais artificiais. Esta estrutura se inspira nos neurônios biológicos e no processamento paralelo do cérebro humano, tendo assim a capacidade de armazenar e utilizar o conhecimento experimental que for a ela apresentado. Apesar do bom resultado que a estrutura de redes neurais gera, existe uma desvantagem relacionada à necessidade de re-treinamento da rede quando o processo muda seu ponto de operação, ou seja, quando a matériaprima sofre algum tipo de mudança em suas características físico-químicas. Como solução para este problema, foi elaborado um método híbrido que busca reunir as vantagens de uma estrutura de redes neurais com a habilidade de um filtro estocástico, conhecido por filtro de Kalman estendido. Em termos práticos, o filtro atua em cima dos pesos sinápticos da rede neural, atualizando os mesmos em tempo real e permitindo assim que o sistema se adapte constantemente às variações de mudança de processo. O sistema também faz uso de pré-processamentos específicos para eliminar ruídos dos instrumentos de leitura, erros de escalas e incompatibilidade entre os sinais de entrada e saída do sistema, que foram armazenados em freqüências distintas; o primeiro em minutos e o segundo em horas. Além disso, foram aplicadas técnicas de seleção de variáveis para melhorar o desempenho da rede neural no que diz respeito ao erro de inferência e ao tempo de processamento. O desempenho do método foi avaliado em cada etapa elaborada através de diferentes grupos de testes utilizados para verificar o que cada uma delas agregou ao resultado final. O teste mais importante, executado para avaliar a resposta da metodologia proposta em relação a uma rede neural simples, foi o de mudança de processo. Para isso, a rede foi submetida a um grupo de teste com amostras dos sinais de saída somados a um sinal tipo rampa. Os experimentos mostraram que o sistema, utilizando redes neurais simples, apresentou um resultado com erros MAPE em torno de 1,66%. Por outro lado, ao utilizar redes neurais associadas ao filtro de Kalman estendido, o erro cai à metade, ficando em torno de 0,8%. Isto comprova que, além do filtro de Kalman não destruir a qualidade da rede neural original, ele consegue adaptá-la a mudanças de processo, permitindo, assim, que a variável de saída seja inferida adequadamente sem a necessidade de retreinamento da rede.

Resumo
[en] Nowadays, scientific and industrial interest on the development of nonlinear control systems increases day after day. However, before these models become reliable, they must pass through a hard and expensive implementation process. In this way, studies involving decision support methods try to develop low cost intelligent applications to build up advanced industrial control systems with excellent results, as in the petrochemical industry. In the distillation of oil derivatives, for example, it is very common the use of laboratorial sample analysis to identify if a substance has its physical- chemistry characteristics in accordance to international production rules. Besides, the analyses results allow the adjustment of production plant instruments, so that the process reaches a thorough control, and, consequently, a final product with higher quality. However, although laboratory analyses are more accurate to evaluate final product quality, sometimes it demands many hours of analysis, delaying the adjustments in the production equipment. In this manner, the process efficiency is reduced and some products have its production period increased because they should have its composition corrected with other reagents. Another disadvantage is the equipments´ maintenance costs and calibration, since these instruments are installed in hostile environments that may cause unaccurate field measurements, affecting also operator´s action. On the other hand, among the most applied intelligent systems in chemical industry process are the artificial neural networks. Their structure is based on biological neurons and in the parallel processing of the human brain. Thus, they are capable of storing and employing experimental knowledge presented to it earlier. Despite good results presented by neural network structures, there is a disadvantage related to the need for retraining whenever the process changes its operational point, for example, when the raw material suffers any change on its physical-chemistry characteristics. The proposed solution for this problem is a hybrid method that joins the advantages of a neural network structure with the ability of a stochastic filter, known as extended Kalman filter. This filter acts in the synaptic weights, updating them online and allowing the system to constantly adapt itself to process changes. It also uses specific pre-processing methods to eliminate scale mistakes, noises in instruments readings and incompatibilities between system input and output, which are measured with different acquisition frequencies; the first one in minutes and the second one in hours. Besides, variable selection techniques were used to enhance neural network performance in terms of inference error and processing time. The method´s performance was evaluated in each process step through different test groups used to verify what each step contributes to the final result. The most important test, executed to analyse the system answer in relation to a simple neural network, was the one which simulated process changes. For that end, the network was submitted to a test group with output samples added to a ramp signal. Experiments demonstrated that a system using simple neural networks presented results with MAPE error of about 1,66%. On the other hand, when using neural networks associated to an extended Kalman filter, the error decreases to 0,8%. In this way, it´s confirmed that Kalman filter does not destroy the original neural network quality and also adapts it to process changes, allowing the output inference without the necessity of network retraining.

Orientador(es)
CARLOS ROBERTO HALL BARBOSA

Banca
MARLEY MARIA BERNARDES REBUZZI VELLASCO

Banca
CARLOS ROBERTO HALL BARBOSA

Banca
KARLA TEREZA FIGUEIREDO LEITE

Banca
RITA DE CASSIA BLANCO DA SILVA BERLIM

Catalogação
2005-12-19

Apresentação
2005-05-24

Tipo
[pt] TEXTO

Formato
application/pdf

Formato
application/pdf

Formato
application/pdf

Formato
application/pdf

Formato
application/pdf

Formato
application/pdf

Formato
application/pdf

Formato
application/pdf

Idioma(s)
PORTUGUÊS

Referência [pt]
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7588@1

Referência [en]
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7588@2

Referência DOI
https://doi.org/10.17771/PUCRio.acad.7588


Arquivos do conteúdo
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS PDF
CAPÍTULO 1 PDF
CAPÍTULO 2 PDF
CAPÍTULO 3 PDF
CAPÍTULO 4 PDF
CAPÍTULO 5 PDF
CAPÍTULO 6 PDF
REFERÊNCIAS BIBLIOGRÁFICAS PDF