Maxwell Para Simples Indexação

Título
[en] ABOUT THE MEASURE OF MAXIMAL ENTROPY AND HOROSPHERICAL FOLIATIONS OF GEODESIC FLOWS OF COMPACT MANIFOLDS WITHOUT CONJUGATE POINTS

Título
[pt] SOBRE A MEDIDA DE MÁXIMA ENTROPIA E FOLIAÇÕES HORÓSFERICAS DE FLUXOS GEODÉSICOS EM VARIEDADES SEM PONTOS CONJUGADOS

Autor
[pt] EDHIN FRANKLIN MAMANI CASTILLO

Vocabulário
[pt] FLUXO GEODESICO

Vocabulário
[pt] ESPACOS GROMOV HIPERBOLICOS

Vocabulário
[pt] GAP DE ENTROPIA

Vocabulário
[pt] VARIEDADE SEM PONTOS CONJUGADOS

Vocabulário
[pt] FIBRADOS DE GREEN

Vocabulário
[pt] FOLHACOES HOROSFERICAS

Vocabulário
[pt] MEDIDA DE MAXIMA ENTROPIA

Vocabulário
[pt] VISIBILIDADE

Vocabulário
[en] GEODESIC FLOW

Vocabulário
[en] GROMOV HYPERBOLIC SPACES

Vocabulário
[en] ENTROPY GAP

Vocabulário
[en] MANIFOLDS WITHOUT CONJUGATE POINTS

Vocabulário
[en] GREEN BUNDLES

Vocabulário
[en] HOROSPHERICAL FOLIATIONS

Vocabulário
[en] MEASURE OF MAXIMAL ENTROPY

Vocabulário
[en] VISIBILITY

Resumo
[pt] Nesta tese, estudamos algumas propriedades dinâmicas e geométricas do fluxo geodésico de certas variedades compactas sem pontos conjugados. A tese tem duas partes principais. Primeiro estendemos o trabalho de Gelfert-Ruggiero sobre a existência de um fator expansivo para o fluxo geodésico ao caso de superfícies compactas sem pontos conjugados e gênero maior que um. A idéia principal é definir uma relação de equivalência que colapsa as órbitas bi-asintóticas do fluxo geodésico. Isto induz um fator que preserva o tempo e é semi-conjugado ao fluxo geodésico sob o mapa do quociente. Além disso, o fator é expansivo, topologicamente misto e tem uma estrutura de produto local. Estas propriedades implicam que o fator tem uma única medida de máxima entropia. Levantamos esta medida para o fibrado tangente unitário e nos certificamos de que é a única medida de máxima entropia para o fluxo geodésico. Isto fornece uma prova alternativa do teorema de Climenhaga-Knieper-War para o resultado de unicidade. Na última parte da tese, estendemos alguns resultados de Gelfert e Ruggiero de superfícies compactas do gênero superior e sem pontos conjugados para n-variedades compactas sem pontos conjugados e recobrimento universal Gromov hiperbólico. Assumindo que os fibrados de Green são contínuos e a existência de uma geodésica fechada hiperbólica, mostramos que os fibrados de Green são tangentes às foliações horósfericas. Além disso, as foliações horósfericas são as únicas foliações contínuas do fibrado tangente unitário, invariantes pelo fluxo geodésico e que satisfazem uma condição de transversalidade local. Este fato só foi conhecido para superfícies compactas sem pontos conjugados pelo trabalho de Barbosa-Ruggiero, e em dimensões mais elevadas assumindo a condição mais forte de assíntota limitada pelo trabalho de Eschenburg.

Resumo
[en] In this thesis, we study some dynamical and geometrical properties of the geodesic flow of certain compact manifolds without conjugate points. The thesis has two main parts. We first extend Gelfert-Ruggiero s work about the existence of an expansive factor for the geodesic flow to the case of compact surfaces without conjugate points and genus greater than one. The main idea is to define an equivalence relation that collapses biasymptotic orbits of the geodesic flow. This induces a factor time-preserving semi-conjugate to the geodesic flow under the quotient map. Moreover, the factor is expansive, topologically mixing and has a local product structure. These properties imply that the factor has a unique measure of maximal entropy. We lift this measure to the unit tangent bundle and make sure that it is the unique measure of maximal entropy for the geodesic flow. This provides an alternative proof of Climenhaga-Knieper-War’s theorem for the uniqueness result. In the last part of the thesis, we extend some results of Gelfert and Ruggiero from compact higher genus surfaces without conjugate points to compact n-manifolds without conjugate points and Gromov hyperbolic universal covering. Assuming that Green bundles are continuous and the existence of a hyperbolic closed geodesic, we show that Green bundles are tangent to the horospherical foliations. Moreover, the horospherical foliations are the only continuous foliations of the unit tangent bundle, invariant by the geodesic flow and satisfying a condition of local transversality. This fact was only known for compact surfaces without conjugate points by Barbosa-Ruggiero s work, and in higher dimensions assuming the stronger condition of bounded asymptote by Eschenburg s work.

Orientador(es)
RAFAEL OSWALDO RUGGIERO RODRIGUEZ

Banca
RAFAEL OSWALDO RUGGIERO RODRIGUEZ

Banca
JOSE BARBOSA GOMES

Banca
BRUNO RODRIGUES SANTIAGO

Banca
YURI GOMES LIMA

Banca
KATRIN GRIT GELFERT

Banca
PABLO DANIEL CARRASCO CORREA

Banca
KHADIM MBACKE WAR

Banca
ALI TAHZIBI

Catalogação
2022-11-04

Apresentação
2022-09-16

Tipo
[pt] TEXTO

Formato
application/pdf

Idioma(s)
INGLÊS

Referência [pt]
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61079@1

Referência [en]
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61079@2

Referência DOI
https://doi.org/10.17771/PUCRio.acad.61079


Arquivos do conteúdo
NA ÍNTEGRA PDF