Maxwell Para Simples Indexação

Título
[en] COMBINATORIAL GAMES AND THE NEIGHBORHOOD CONJECTURE

Título
[pt] JOGOS COMBINATÓRIOS E A CONJECTURA DA VIZINHANÇA

Autor
[pt] HANDEL SCHOLZE MARQUES

Vocabulário
[pt] HIPERGRAFOS

Vocabulário
[pt] METODO PROBABILISTICO

Vocabulário
[pt] PROBLEMA DE SAT

Vocabulário
[pt] JOGOS COMBINATORIOS

Vocabulário
[en] HYPERGRAPHS

Vocabulário
[en] PROBABILISTIC METHOD

Vocabulário
[en] SAT

Vocabulário
[en] COMBINATORIAL GAMES

Resumo
[pt] A teoria dos Jogos Combinatórios é o estudo de jogos com informação completa. Isso é, todos os jogadores conhecem todos os possíveis movimentos, além disso, temos que não há sorte ou a habilidade de realizar um movimento, então, em teoria jogar perfeitamente é possível. Exemplos de jogos assim são jogo da velha, xadrez, damas, Nim... a lista continua. Nessa dissertação focamos no jogo Maker-Breaker. Ele tem dois jogadores que sequencialmente escolhem um vértice de um hipergrafo. O objetivo de Maker é escolher todos os vértices de uma aresta e o objetivo de Breaker é prevenir isso. Para entender em quais tipos de hipergrafos Maker ou Breaker ganha e quais são as estratégias de vitória utilizamos SAT, probabilidade, teoria dos grafos em geral e mais.

Resumo
[en] The theory of Combinatorial Games is the study of games with perfect information. This means that all players have knowledge of all possible moves, also there isn t luck or skill to perform a move, so, in theory perfect play is possible. Examples of games like these are tic-tac-toe, chess, checkers, Nim... the list goes on. In this dissertation we focus on the Maker-Breaker game. It has two players that pick a vertex from a hypergraph. The goal of Maker is to claim all vertices of an edge and the goal of Breaker is to prevent it. To understand in which types of hypergraphs does Maker or Breaker win and what are the winning strategies, we make use of SAT, Probability, general Graph Theory and more.

Orientador(es)
SIMON RICHARD GRIFFITHS

Banca
NICOLAU CORCAO SALDANHA

Banca
SIMON RICHARD GRIFFITHS

Banca
MAURICIO DE LEMOS RODRIGUES COLLARES NETO

Banca
TAISA LOPES MARTINS

Catalogação
2021-06-22

Apresentação
2021-04-30

Tipo
[pt] TEXTO

Formato
application/pdf

Idioma(s)
INGLÊS

Referência [pt]
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=53376@1

Referência [en]
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=53376@2

Referência DOI
https://doi.org/10.17771/PUCRio.acad.53376


Arquivos do conteúdo
NA ÍNTEGRA PDF