Maxwell Para Simples Indexação

Título
[en] PORTFOLIO SELECTION VIA DATA-DRIVEN DISTRIBUTIONALLY ROBUST OPTIMIZATION

Título
[pt] SELEÇÃO DE CARTEIRAS DE ATIVOS FINANCEIROS VIA DATA-DRIVEN DISTRIBUTIONALLY ROBUST OPTIMIZATION

Autor
[pt] JOAO GABRIEL FELIZARDO S SCHLITTLER

Vocabulário
[pt] PROBABILIDADE

Vocabulário
[pt] OTIMIZACAO DATA-DRIVEN

Vocabulário
[pt] OTIMIZACAO DE PORTFOLIO SOB AMBIGUIDADE

Vocabulário
[pt] OTIMIZACAO SOB AMBIGUIDADE

Vocabulário
[pt] OTIMIZACAO DISTRIBUTIONALLY ROBUST

Vocabulário
[pt] OTIMIZACAO SOB INCERTEZA

Vocabulário
[pt] OTIMIZACAO DE PORTFOLIO

Vocabulário
[en] PROBABILITY

Vocabulário
[en] DATA-DRIVEN OPTIMIZATION

Vocabulário
[en] PORTFOLIO OPTIMIZATION UNDER AMBIGUITY

Vocabulário
[en] OPTIMIZATION UNDER AMBIGUITY

Vocabulário
[en] DISTRUBUTIONALLY ROBUST OPTIMIZATION

Vocabulário
[en] OPTIMIZATION UNDER UNCERTAINTY

Vocabulário
[en] PORTFOLIO OPTIMIZATION

Resumo
[pt] Otimização de portfólio tradicionalmente assume ter conhecimento da distribuição de probabilidade dos retornos ou pelo menos algum dos seus momentos. No entanto, é sabido que a distribuição de probabilidade dos retornos muda com frequência ao longo do tempo, tornando difícil a utilização prática de modelos puramente estatísticos, que confiam indubitavelmente em uma distribuição estimada. Em contrapartida, otimização robusta considera um completo desconhecimento da distribuição dos retornos, e por isto, buscam uma solução ótima para todas as realizações possíveis dentro de um conjunto de incerteza dos retornos. Mais recentemente na literatura, técnicas de distributionally robust optimization permitem lidar com a ambiguidade com relação à distribuição dos retornos. No entanto essas técnicas dependem da construção do conjunto de ambiguidade, ou seja, distribuições de probabilidade a serem consideradas. Neste trabalho, propomos a construção de conjuntos de ambiguidade poliédricos baseado somente em uma amostra de retornos. Nestes conjuntos, as relações entre variáveis são determinadas pelos dados de maneira não paramétrica, sendo assim livre de possíveis erros de especificação de um modelo estocástico. Propomos um algoritmo para construção do conjunto e, dado o conjunto, uma reformulação computacionalmente tratável do problema de otimização de portfólio. Experimentos numéricos mostram que uma melhor performance do modelo em comparação com benchmarks selecionados.

Resumo
[en] Portfolio optimization traditionally assumes knowledge of the probability distribution of returns or at least some of its moments. However is well known that the probability distribution of returns changes over time, making difficult the use of purely statistic models which undoubtedly rely on an estimated distribution. On the other hand robust optimization consider a total lack of knowledge about the distribution of returns and therefore it seeks an optimal solution for all the possible realizations wuthin a set of uncertainties of the returns. More recently the literature shows that distributionally robust optimization techniques allow us to deal with ambiguity regarding the distribution of returns. However these methods depend on the construction of the set of ambiguity, that is, all distribution of probability to be considered. This work proposes the construction of polyhedral ambiguity sets based only on a sample of returns. In those sets, the relations between variables are determined by the data in a non-parametric way, being thus free of possible specification errors of a stochastic model. We propose an algorithm for constructing the ambiguity set, and then a computationally treatable reformulation of the portfolio optimization problem. Numerical experiments show that a better performance of the model compared to selected benchmarks.

Orientador(es)
MARCOS CRAIZER

Orientador(es)
DAVI MICHEL VALLADAO

Banca
MARCOS CRAIZER

Banca
BRUNO DA COSTA FLACH

Banca
ALEXANDRE STREET DE AGUIAR

Banca
DAVI MICHEL VALLADAO

Banca
THUENER ARMANDO DA SILVA

Catalogação
2019-01-07

Apresentação
2018-09-27

Tipo
[pt] TEXTO

Formato
application/pdf

Idioma(s)
PORTUGUÊS

Referência [pt]
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=36002@1

Referência [en]
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=36002@2

Referência DOI
https://doi.org/10.17771/PUCRio.acad.36002


Arquivos do conteúdo
NA ÍNTEGRA PDF